ENSTA Bretagne : Modélisation avancée des matériaux -  simulation d'essai de traction sur éprouvette de matériau composite à 3 couches

Advanced Modeling of Materials and Structures

Modeling is essential in numerous industries (aviation, maritime, automotive, energy, defense, biomedical engineering, etc.).
For example, it can be used to reduce the environmental footprint, adapt to new standards, meet higher requirements, or seize new opportunities and develop new markets (new materials, innovative processes or renewable energy).
Career prospects

To train students to become engineers who can handle complex design challenges in any field where mechanical performance is of paramount importance

Course content

•   Material behavior laws, 
•   Characterization of materials and modeling, from micron to meter
•   Digital simulation of complex multi-physics, mechanical, thermal and physicochemical phenomena
•   Calculation of nonlinear finite elements,
•   Dynamic behavior of structures
•   Material and structure fatigue

ENSTA Bretagne : essais sur matériaux
Julien Ogor

Industry-leading training

In close partnership with the CNRS Joint Research Center, the program focuses on:

  • Predicting and modeling the behavior of all types of materials and structures,
  • Designing and optimizing mechanical systems to make them more reliable (impact resistance, durability), lighter, less expensive and more environment-friendly.

Companies need to understand the structure, behavior, aging, etc. of steels, light alloys, elastomers, composites, biomaterials and the mechanical systems they belong to. Such expertise is relevant to the complete lifecycle of industrial parts, from manufacturing to maintenance to the end-of-life stage.

Graduates have strong expertise in the characterization, modeling and simulation of the behavior of materials and structures (failure of materials and structures, behavior law formulation, nonlinear phenomena simulation, explicit dynamics, etc.).

With such expertise, students can go on to work for engineering firms, advanced simulation departments and R&D offices.

A double degree

This major is linked to a Research Master’s degree that allows students to earn a double degree (engineering degree and Master of Science). Graduates can then pursue an international career and/or an engineering doctorate (thesis relating to materials and structural calculations).

Target Careers Activity Sectors
  • Studies engineer
  • Research engineer
  • Calculation engineer
  • Doctor of Engineering
  • Aeronautics
  • Automotive
  • Maritime
  • Energies
  • Medical
  • etc.

Examples of end-of-study projects by students majoring in Advanced Modeling of Materials and Structures

  • Modeling of nonlinear vibrations in a bolted assembly with unilateral contact
  • Modeling study for injected short-fiber composite materials
  • Modeling of a rocket’s rolling in ballistic phase
  • Study of shape-memory alloys
  • Proposal of new development and size calculation methods, including prediction of vibration behavior
  • Study of fatigue in various aeronautical metallic materials obtained by additive manufacturing

contact

Nicole Pouliquen
Admissions Coordinator (French students)
+33 (0)2 98 34 87 01

contact

Johanna OGON
Erasmus+ Coordinator
+33 (0)2 98 34 87 30