

→ TRAINING PROGRAM

You will find all the information on our training programs in this leaflet. Each semester is composed of projects and lessons organized into Course Units (Unités d'Enseignements/ UE in French). The first two semesters are common to all students, whereas the following semesters are different constrained by the second to the course to the continuous second by the second se

different according to the options you choose to further your studies (9 possible choices).

Important note : The candidate's level of language should enable him or her to follow classes taught in French and English. A minimum level of B1 is recommended in both languages.

≋			(((p)))	À	N	<u>i</u> ji		
YEAR 1 (E								
SE	PTEMBER TO I			JANUARY			RUARY TO JUNE	
	SEMESTE	ER 1	I	NTERNSHIP (4 wee	ks)		SEMESTER 2	
YEAR 2 (E								
SEPTEME	BER TO DECEM	IBER [ECEMBER TO APR	L		FROM MAY		
SI	MESTER 3		SEMESTER 4		INT	TERNSHIP (4 to 5 r	nonths)	
EAR 3 (E	3AC+5)							
	SEF	PTEMBER TO FEBRUA	RY			FROM MARCH		
		SEMESTER 5		5	EMESTER 6 = END		RNSHIP (5 to 6 month	1s)
Semester 1	CO	RE C	URR				Course	e units = CU
Semester 1				Semester SYSTEMS MODELIN		_	_	
Mathematics	for Engineers				u ility and Statistics			
Introduction to				Informa				
Introduction t	÷	- 5		Partial	Differential Equation	ons and Wave Prop	agation	
Analysis of Sp	atial Data				Processing 2		5	
Signal Proces	sing 1			Data Ba	Data Bases			
Continuum Me	echanics			Incomp	ressible Fluid Mech	nanics		
Energy and cl	imate							
			SCI	ENCES AND TECHNOL				
Technological					cturing Processes			
Computer Aid					Materials Mechanics of Deformable Bodies			
Mechanics of		avetame			Experimental Mechanics			
Sensors and measurement systems Automatics 1				Digital electronics (Arduino)				
Introduction to	n Digital Syste	ems			-Actuator Loop	0)		
introduction	o Digitat O joto				technology			
					ction to Systems Er	ngineering		
					EN	GINEERING FOR TRA	NSITIONS	
				Sustair	nable design			
				Sustair	nable consumption	and responsible in	novation	
				Tools f	or social and societ	al transitions		
Semester 1		Semester 2		ester 3	Semester 4		Semester 5	
					D LANGUAGE LEARNI			
LL1 English		LL1 English	LL1	English	LL1 Englis	h	Choice of LL1/LL2	

HUMAN AND SOCIAL SCIENCES, SPORT AND LANGUAGE LEARNING				
LL1 English	LL1 English	LL1 English	LL1 English	Choice of LL1/LL2
LL2 optional	LL2 optional	LL2 optional	LL2 optional	Sport
Sport	Sport	Sport	Sport	Choice of Cultural Awareness Workshops
The Engineer and Society 1	The Engineer and Society 2	Financial analysis	Business games	Leadership week
Internship Preparation	Big Challenge		Optional Modules	
Personal Development 1	Personal Development		Research /	
Economics			Entrepreneurship projects	
Bibliographic studies			Engineering and modeling	

The candidate's level of language should enable him or her to follow classes taught in French and English. A minimum level of B1 is recommended in both languages.

SPECIALIZATION

🗮 HYDROGRAPHY - OCEANOGRAPHY			
SEMESTER 3	SEMESTER 4	SEMESTER 5	
CU CORE SUBJECTS FOR HYDROGRAPHY	CU GEOMATICS	CU CARTOGRAPHY AND UNDERWATERNAVIGATION	
 Mathematics Linear Optimization Least Squares Method Bathymetry 	 Geographic Data Management Estimation Kalman filter 	 Cartography Law of the Sea Underwater Navigation 	
UE GEOSCIENCES	CU OCEANOGRAPHY AND MARINE GEOPHYSICS	CU REMOTE SENSING AND MODELING	
• Geology • Meteorology • Tides • Geodesy • Positioning Technology	 Descriptive Physical Oceanography Marine Geophysics Geophysical Fluid Dynamics Sub-Bottom Profilers 	 Remote Sensing Coastal Ocean Modeling Automatic seabed analysis 	
	CU HYDROGRAPHIC DATA PROCESSING AND Analysis	CU PROFILE	
	 Bathymetric Data Processing 	 Specific lessons according to profile 	

- Geostatistics / Spatial interpolation
- Hydrographic Project Management
- Sedimentary hydrodynamics
- ADCP: Acoustic Doppler Current Profiler

Source Observation systems and artificial intelligence				
SEMESTER 3	SEMESTER 4	SEMESTER 5		
CU CORE SUBJECTS	CU AI & DECISION SUPPORT	CU ARTIFICIAL INTELLIGENCE		
 Mathematics Linear Optimization Operational Research Advanced imperative programming Advanced object-oriented programming 	 Decision and estimation theory Digital optimization and Markov ModelsMachine Machine learning 	 Deep learning Big data & data sciences Quantum computing Image and video 		
CU INFORMATICS AND NETWORKS	CU INFORMATION PROCESSING	CU AUTONOMOUS SYSTEMS		
 Localization by Kalman Filtering Waves and Environment Waveform and Modulation 	 Software Design Estimation and regularization Channel access electronics Signal and Image Processing 	 Visual Servoing Microwave devices Al & Embedded Systems Antennas and transmit/receive chains 		
		CU OBSERVATION SYSTEMS		
		Remote Sensing EM & GE Detection		

- Radar and Imaging

AUTONOMOUS ROBOTICS		
SEMESTER 3	SEMESTER 4	SEMESTER 5
CU CORE SUBJECTS	CU INFORMATICS & ROBOTICS	CU ARTIFICAL INTELLIGENCE
 Mathematics Linear Optimization Operational Research C++ Language 	 Interval Computation SWR GNU / Embedded Linux Digital image processing 	 Machine learning Embedded machine learning Initiation to Research
UE LOCALIZATION	CU EXPLORATION	CU AUTONOMY
 Introduction to Robotics Inertial units Kalman Filtering Networks and OSs for robotics 	 Robotic Challenge Guiding of mobile robots Simulation 	 Visual Servoing Software development Systems Engineering
		CU ROBOTICS AND INDUSTRY
		a 2D vision

- 3D vision Robotic Architecture
- Industry (((၀))) **DESIGN OF COMPUTING SYSTEMS** SEMESTER 3 SEMESTER 5 CU CORE SUBJECTS CU SYSTEM SECURITY CU INFORMATION PROCESSING AND SECURITY Mathematics • Information Processing and Protection • End-to-end security Component Security Linear Optimization Certification and reverse engineering Operational Research Machine learning Security applied to embedded networks and Introduction to networks architectures Verification CU LOCALIZATION CU SYSTEMS ARCHITECTURE CU SYSTEMS MODELING • Imperative programming in C • Web application development • Distributed architectures and virtualization • Exploitation System (OS) Software design Systems Simulation Object-oriented programming in Java Compilation Advanced and embedded operating systems Computer architecture •Parallel programming and advanced embedded technologies CU SOFTWARE ENGINEERING AND MODELING
 - Software product line engineering
 - Software-system modeling and meta-modeling • Web application development
 - Validation

C OFFSHORE AND NAVAL ARCHITECTURE				
	SEMESTER 4			
CU CORE SUBJECTS FOR MECHANICS	CU CORE SUBJECTS	CU THEORY AND PRACTICE		
• Mathematics • Materials • Finite Elements	 Composites & nanocomposites Plates and Beams Vibrations 	Offshore and Naval Platforms Ship design Loop		
CU BASICS IN NAVAL ARCHITECTURE	CU OFFSHORE AND NAVAL ARCHITECTURE	CU CORE SUBJECTS FOR OFFSHORE AND NAVAL Architecture		
 Mechanical Engineering Introduction to Resistance to headway Ship Structures basics 	 Fundamental principle of dynamics and notion of added masses and inertia Wave theory and integral methods Case study: wing theory 	 Maneuverability Resistance and propulsion Seaworthiness Naval Structure 		
 Ship stability Wing lift theory 	 Introduction to the Finite Volume Method Geometric non-linearity 	CU PROFILES		
Turbulence and boundary layer CFD Case Studies	• Turbulence	 Ship Hydrodynamics, Ship Structures, Offshore infrastructure architecture 		

PYROTECHNIC SYSTEMS				
CU CORE SUBJECTS FOR MECHANICS	CU CORE SUBJECTS	CU PYROTECHNIC SYSTEMS		
• Mathematics • Materials • Finite Elements	 Composites & nanocomposites Plates and Beams Vibrations 	 Interior ballistics Solid propulsion Pyrotechnic Safety 		
CU BASICS IN PYROTECHNIC ENGINEERING	CU PYROTECHNIC SYSTEMS	CU SHOCKS AND DETONATIONS		
 Mechanical Engineering Wing lift theory Thermics/Thermodynamics Turbulence and boundary layer 	 Compressible Flows Propulsion 	 Shocks Life cycles Modeling and analysis of problems related to rapid dynamics 		
CFD Case Studies		CU COMBUSTION		
		• Combustion • Detonations		

Service ARCHITECTURE

CU CORE SUBJECTS FOR MECHANICS	CU CORE SUBJECTS	CU VEHICLE ARCHITECTURE
• Mathematics • Materials • Finite Elements	 Composites & nanocomposites Plates and Beams Vibrations 	 Vehicle Architecture Systems Engineering Design in an automotive environment
CU MECHANICAL ENGINEERING AND HEAT ENGINES	VEHICLE ARCHITECTURE	CU POWERTRAINS
 Mechanical Engineering Power Transmission Systems Thermics/Thermodynamics 	 Vehicle Dynamics Electric Vehicles Thermal engines: basics 	 Thermal engines Hybridization and hydrogen Electric vehicle architecture Power Transmission
		CU MATERIALS AND STRUCTURES
		 Finite Elements and Non-Linearity Thermodynamics and Behavior Laws Fatigue

ADVANCED MODELING OF MATERIALS AND STRUCTURES				
SEMESTER 3		SEMESTER 5		
CU CORE SUBJECTS FOR MECHANICS	CU CORE SUBJECTS	CU ADVANCED MODELING OF MATERIALS		
• Mathematics • Materials • Finite Elements	 Composites & nanocomposites Plates and Beams Vibrations 	 Elastomers and composite Materials Multiscale behavior modeling Fatigue and Experimental Techniques 		
CU MECHANICAL ENGINEERING AND HEAT ENGINES	CU ADVANCED MODELING OF MATERIALS AND Structures	CU SPECIFIC APPLIED FORCES		
 Mechanical Engineering Power Transmission Systems Thermics/Thermodynamics 	 Introduction to Advanced Modeling of Materials and Structures Optimization 	 Modeling and analysis of problems related to rapid dynamics Stability and nonlinear mechanics 		
		CU MODELING OF MATERIALS AND Structures		
		 Non-linear Finite Elements Thermodynamics and Constitutive Equations 		

→ SPECIALIZATION

୍ମନ୍ମିକ୍ଲି ENGINEERING AND BUSINESS SCIENCE

SEMESTER 4 SEMES

These in-depth studies take place in Semester 5. They are proposed in addition to the courses given in Semesters 3 and 4 and in one of the 8 other in-depth study paths.

CU TECHNOLOGICAL ECOSYSTEMS, CONTROL AND STRATEGY
 Technological ecosystems: economic, political and legal environments Strategy, organization and management of project performance Technological market studies and human resources management
CU PROJECT MANAGEMENT AND BUSINESS ENGINEERING
 Fundamentals of project management Project deployment (Industry management) Innovation management and business engineering
CU ENTREPRENEURSHIP - PERFORMANCE MANAGEMENT
 Business Development Intrapreneurship and performance management OR Entrepreneurship

\rightarrow THE PROJECTS

SEMESTER 1 / Bibliography

The bibliographic study is approached as a research exercise: reading then synthesis of the technical and scientific documents. The objectives are to learn how to gather information, work in a team, successfully complete work within pre-fixed deadlines and write a formatted bibliographic synthesis. The students show proof of initiative, curiosity and autonomy.

SEMESTER 2 / Systems Discovery and Analysis

Semester 2 is composed of 3 projects enabling the first courses to be put into practice.

These 3 projects (the "Informatics" Project, the "Big Challenge" Project and the "Systems Discovery" Project) enable the students to develop their abilities to problematize, comprehend complexity in various fields as well as put their knowledge into practice to answer the issues raised.

SEMESTER 3 / Field Application Project

This Course Unit is composed of project leadership (leading a project...) and project management (multi-cultural aspects, diversity...), systems engineering courses and a scientific and technical pre-project linked to the chosen training profile. It comprises the 3rd step in the series of projects which aims to increase autonomy and the active acquisition of knowledge throughout the training.

SEMESTRE 4 / The Enhanced Focus Project

This enables future engineers to deal with an industrial issue proposed by a business in the field of mechanics, information technologies, or hydrography. Grouped into small teams (2 to 5 students), the future engineers are required to apply a project management approach to satisfy the industrial objectives defined by the project initiator.

This major project enables the students to apply their scientific and technological knowledge, make contacts, establish the scope of the subject and the important technical choices to respect the deadlines. In some cases, their work concludes with the design of a demonstrator.

SEMESTER 5 / Enhanced Focus Systems Project

This enables students to work on concrete subjects comparable with those that they will meetcarry out in their future career.

In order to confront this real industrial issue, in relation with their in-depth study path, the student engineers are called upon to review and apply their knowledge as well as demonstrate their initiative. This is not an academic exercise with a single solution. Within their teams, the students have to envisage different scenarios and choose the answer that seems to them to be the most suitable for the objectives and constraints imposed, in the time allowed.

The courses and ECTS listed in this document are for information purposes only. They are liable to change in line with company expectations. These developments are part of the continuous improvement plan. ENSTA Bretagne has received the ISO 9001 accreditation for all its activities