

Localization problems for an AUV

Localization problems in mobile robotics

06/03/2018-3

 To be able to know what to do, an autonomous mobile robot first needs to know its current state, especially its position

Localization problems in mobile robotics

Problems

- Non-linear dynamic model of the robots
- Deal with outliers in measurements
- Fusing different types of data
- Representation of uncertainties

Localization problems in mobile robotics

- Different localization scenarios for an AUV
 - Dead-reckoning using compass and thrusters inputs or using DVL
 - Static sonar localization when inside a known basin.
 - Dynamic sonar localization when inside a known basin

Uncertainties

- Representations of uncertainties
 - Probabilistic methods
 - Gaussian
 - Particles
 - => Try to get most probable solutions
 - Set-membership methods
 - Zonotopes
 - Ellipsoids
 - Intervals
 - => Try to enclose all possible solutions

Interval arithmetic

- $[-\infty,2]$, [-1,4], $[-\infty,\infty]$ are examples of intervals
- Operations $\diamond \in \{+,-,*,/\}$
 - $[x^-, x^+] \diamond [y^-, y^+] =$ smallest interval containing the set of all possible values for $x \diamond y$
 - [-1,4] + [2,3] = [1,7]
 - [-1,4] * [2,3] = [-3,12]
 - [-1,4]/[2,3] = [-1/2,2]
- Multiplication by a number, intersection, union
 - 2[-1,4] = [-2,8]
 - $[-1,3] \cap [2,4] = [2,3]$
 - $[-1,2] \sqcup [3,4] = [-1,4]$
- Image by a function
 - $\sin([0,\pi]) = [0,1]$

- Real intervals can be generalized
 - Vectors intervals (boxes)
 - Sets intervals
 - Functions intervals (tubes)
 - Any set with a lattice structure

- CSP (Constraint Satisfaction Problem)
 - A CSP is made of
 - A set of variables
 - A set of domains enclosing the variables

Contraction

• If $z^2 = \exp(x) + y$ and $x \in [1,4], y \in [3.1,3.2], z \in [4,7]$, then • $x = \ln(z^2 - y) \Rightarrow x \in [x] \cap \ln([z]^2 - [y]) = [2.5,3.9]$

- Contraction and propagation
 - We call contractor an operator that reduce the domain of variables
 - A propagation is a repeated call to contractors

Other techniques such as bisections can also be done

06/03/2018-13

- Handling outliers : relaxed intersection (q-intersection)
 - Example of a CSP with 6 constraints : C₁,C₂,C₃,C₄,C₅,C₆ where 2 constraints are inconsistent

Sets that satisfy only one constraint

Sets that satisfy only a defined number of constraints

Sonar localization for an AUV 06/03/2018- 14

- To learn
 - IAMOOC: https://www.ensta-bretagne.fr/jaulin/iamooc.html
 - pylbex: http://www.ensta-bretagne.fr/desrochers/pyibex
 - EASIBEX-MATLAB: https://github.com/ENSTABretagneRobotics/EASIBEX-MATLAB

Localization for an AUV

- Examples of different localization scenarios for an AUV
 - Dead-reckoning using compass and thrusters inputs or using DVL
 - Static sonar localization when inside a basin
 - Dynamic sonar localization

Sonar localization for an AUV 06/03/2018- 17

- Simplified state equations of the AUV using compass and thrusters inputs
 - Need some known position, e.g. using GPS when on surface
 - Need to set coefficients related to the speed of the robot depending on inputs, damping, etc.
 - Possible forward and backward propagation in time using interval analysis

$$\dot{x} = v \cos \theta
\dot{y} = v \sin \theta
\dot{\theta} = u_2 - u_1
\dot{v} = u_1 + u_2 - v$$

Example

```
% Known initial state.
 x hat=[[-0.1,0.1];[-0.1,0.1];[-0.1,0.1];[10-0.1,10+0.1]];
- while (bExit == 0)
     % Simulator.
     x = x+f(x,u)*dt; % Simulated evolution equation of the robot.
     v = q(x); % Simulated observation equation.
     % Interval observer.
     x_{hat} = i_Add(x_{hat}, dt^{f_hat}(x_{hat}, u)); % Estimated state of the robot using evolution equation.
     x hat(3,:) = i Inter({x hat(3,:);[y(3)-0.1,y(3)+0.1]}); % Contract estimated state using observation equation (compass)
     draw hat (x hat); % Draw estimated position.
     draw(x); % Simulated robot.
     % Wait a little bit.
     pause (dt);
     t = t+dt;
 end
```


Problems

- This simple model assumes no lateral movement, and there is no sensor to estimate it
- Estimation errors accumulate quickly with time since there are no position or speed measurements

- If we add a DVL
 - Measure speed, so errors accumulate more slowly
 - We have more general equations, since any lateral movement is measured

$$\left(\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{z} \end{array} \right) = R\left(\phi, \theta, \psi \right) \left(\begin{array}{c} v_x \\ v_y \\ v_z \end{array} \right)$$

Sonar localization for an AUV 06/03/2018- 21

- Using a sonar in a known environment, we can stop the accumulation of estimation errors
 - Mechanical rotating sonar

Sonar data when the robot is static

06/03/2018- 23

Sonar data when the robot is moving

Sonar localization for an AUV 06/03/2018- 24

- Context: map of the environment known but outliers expected, good compass and a sonar available
- First problem : where are the walls on the sonar image?
- Second problem: where is the robot w.r.t the walls?

Dead-reckoning+static sonar localization

Dynamic sonar localization

- Sonar data when the robot is moving
 - We can use the state equations used for the dead-reckoning to correct the sonar data

Sonar localization for an AUV 06/03/2018- 27

Dynamic sonar localization

06/03/2018- 28

Future work

- Dead-reckoning
 - Loops detection
 - Process and fuse with raw IMU data using interval analysis
- Sonar localization
 - Estimate the heading using sonar data
 - Better classify the different types of outliers
 - Use the 3D of the sonar data

