Estimating the trajectory of low-cost
autonomous robots using interval analysis :
application to the euRathlon competition
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Abstract In this paper, we describe a method based on interval arithmetic and con-
tractors to compute an envelope containing the trajectory of a robot from usual pro-
prioceptive and exteroceptive data, using a simple state equation model. To illus-
trate the applicability of the method, data from the euRathlon 2015, a multi-domain
robotics competition, will be processed to build an estimation of the trajectory of
a low-cost AUV (Autonomous Underwater Vehicle), navigating with the help of
acoustic communication and ranging with an ASV (Autonomous Surface Vehicle).
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1 Introduction

In a submarine context, estimating the real trajectory of a robot after its mission
is a challenging problem (see e.g. [PSSL14] for a review of possible techniques),
especially for small low-cost AUVs (Autonomous Underwater Vehicles). Indeed,
the GPS is not available underwater and in a small low-cost AUV, some important
sensors for localization might not be available or with reduced functionality and
accuracy, due to size, costs and energy restrictions:

DVL (Doppler Velocity Log): this sensor can provide the speed of the vehicle
w.r.t. the sea floor or surface, which is a very important data for the localization in
dead-reckoning if it is accurate enough, see e.g. [HPYZ08], [VMO09].

Sonar (SOund Navigation And Ranging): depending on its type and quality, this
device can help to the vehicle localization if marks on the sea floor can be detected
(see e.g. [Jau09a], [LBSJ10] and [RRNTO6] for a context of SLAM), if we are in
a known environment (see e.g. [Jau09b], [RNRT06] and [MPM™09]) or using a
bathymetry map (see e.g. [FWO08]).

USBL (Ultra-Short BaseLine): acoustic ranging and bearing from one or several
devices of known positions is a typical way to follow accurately a submarine without
error accumulation, see e.g. [RPWO06].

INS (Inertial Navigation System)/AHRS (Attitude and Heading Reference Sys-
tem): accurate intertial and magnetic sensors to get the angles of the robot (espe-
cially the heading) are necessary to limit the error accumulation on the position
estimation in a dead-reckoning context.

Additionally, few ready-to-use software suites able to fuse all those different data
to build an estimation of the trajectory of a robot are available. Moreover, since
most of the existing localization methods are based on probablities (see e.g. iXBlue
DELPH in [GAQ9] for a Kalman-based fusion between INS, DVL, LBL, USBL,
etc.), it is sometimes hard to evaluate the estimation error or detect inconsistencies.
Taking into account partial information such as a position deduced by an operator
that saw the robot at some time in a know place can be specially difficult to formalize
and fuse with the other localization information.

For our underwater robot localization application, we propose a method based
on interval arithmetic. Interval analysis has been proven to be efficient for several
similar problems in robotics and other related applications:

e Localization of a robot with fugitive data that appear at some given time, see
[LSRJ12].

Mosaicking, see [LIT16].

SLAM with indistinguishable marks, see [Jaul6].

Getting a guaranteed approximation of the explored area, see [DJ16a].
Detecting loops in a trajectory, see [ADJ13].

Improvements in GPS positioning, see [DB16].

Robot calibration, see [DTDC14].

In our context, we want to estimate the trajectory of a 2D robot knowing its state
equations, inputs and heading at all times, with some punctual position measure-
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ments (e.g. GPS when surfacing at a waypoint) as well as range measurements with
another moving robot of known position (e.g. using acoustic modems with range
measurement capability). Cooperation between robots has already demonstrated its
efficiency in several situations, compared to the use of a single, usually bigger and
more expensive robot: see e.g. [RC10], [APCV11], [GMG™12] or [LC14] for coop-
eration between 2, 3 or more AUVs, see [CGLPOS5] for the use of several acoustic
buoys to localize underwater robots using a set-membership approach and see e.g.
[MMO08] and [FPL10] for cooperation between an ASV and an AUV.

In this paper, we will first describe the interval-based data fusion method used,
and then show its application to the trajectory estimation of the SARDINE AUV
during the euRathlon 2015 competition (see [FFD™16] for more information about
the euRathlon competition).

2 Set-membership data fusion method for localization

2.1 Interval arithmetic

Interval arithmetic (see e.g. [Moo79], [KK96], [JKDWO1] and [JNR15]) is a nu-
merical tool which makes it possible to solve non-linear equations and non-convex
minimization problems, in a global and guaranteed way. Now, estimating the state
of a robot can be seen as solving simultaneously a set of non-linear equations, for
which interval analysis could be useful. This section recalls the basic notions of
interval arithmetic.

An interval is a closed and connected subset of R. IR is the set of the intervals
of R. Consider two intervals [x] and [y] and an operator ¢ € {+,—,.,/}, we define
[x] ¢ [y] as the smallest interval which contains all feasible values for x oy, if x €
[x] and y € [y]. For instance

[_3a4} + [2’5] - [_1a9]7
[—1,4].[2,5] = [-5,20], (1)
[_]73]/[275] [_%’%]

If f is an elementary function such as sin,cos,... we define f([x]) as the smallest
interval which contains all feasible values for f(x), if x € [x]. A box or interval
vector [x] is a vector whose components are intervals:

[x] =[x, x] ] X oo X [, ] = [x1] X e X [ 2)

x~ is the interval lower bound and x™ its upper bound. The midpoint (or center)

of a bounded and non-empty interval is mid([x]) = *- ;X+ . The width of a non-empty
interval is defined by w ([x]) = x* —x~. By convention, w (@) = —eo. If w([x]) =0,

[x] is degenerated. In this case, [x] is a real singleton and will be noted {x}.
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For a box, the width is w([x]) = max {w ([x1]),...,w([x,])}. We define also the
volume of a non-empty box as

vol ([x]) = H w ([xi]) .

1<i<n

Most of the time, if [x] is an interval containing the x position of a robot, mid([x])
will be taken as an estimation of x, and w([x]) /2 will be taken as the estimation
error. The volume of the box [x] representing the 2D or 3D position estimation of
the robot could be also used to evaluate the estimation precision.

2.2 Contraction and propagation

ICP (Interval Constraint Propagation) is a technique (or sort of algorithm) that en-
ables to solve efficiently (computing time is in general lower than other methods
such as those involving bisections) equations on intervals. It is a combination be-
tween 2 more general notions: constraint propagation and interval arithmetic (see
e.g. [JWO02]).

Consider a constraint 4 (i.e., an equation or an inequality), some variables
X1,X2,... involved in € and prior interval domains [x;] that contain all feasible val-
ues for the x;’s. Interval arithmetic makes possible to contract the domains [x;] with-
out removing any feasible values for the x;. For instance, consider the equation x3 =
x1 + x2 where the domains for x1,x3,x3 are given by [x;] = [—e0, 5], [x2] = [—o0,4]
and [x3] = [6,00]. These domains can be contracted to [x}] = [2,5],[x5] = [1,4] and
[x;] = [6,9]. The resulting interval calculus is as follows:

X3 =X1+x2=x3 € [6,00} N ([*00,5} + [*00,4])
= [6,00] N [—o0,9] = [6,9].

X1 =xa =12 x1 € [=o0,5] 0 ([6,] — [~ 4] o
= [~o=,5]N (2,00 = [2,5].
X2 =x3—x] = X2 € [—o0,4]N([6 ”}—[—“75])

= [—o0, 4] N [1,00] = [1,4].

A graph of constraints can be used as a simple representation to show which
variable will be used to contract the others. For example, if z> = exp (x) +y and
x€[1,4],y€3.1,3.2],z€ [4,8], thenx=In (> —y) = x € [x]NIn (2 —y) € [2.5,4]
and z=+/exp (x) +y =z € [z7)N/exp (x) +y € [4,7.6]. Therefore, the graph for the
constraint z2 = exp (x) +y would be like in Figure 1.

This contraction procedure can be performed with much more complex con-
straints. A contraction operator is called a contractor (see [CJ09]). When more
than one constraint are involved, the contractions are performed sequentially several
times, until no more significant contractions can be observed. It can be shown that
the box to which the method converges does not depend on the order to which the
contractors are applied (see [JKDWOL1]), but the computing time is highly sensitive
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Fig. 1 Graph of constraints.

to this order. There is no optimal order in general, but in practice, one of the most
efficient is called forward-backward propagation. It consists in writing the whole
set of equations under the form f(x)=y where x and y correspond to quantities
that can be measured (i.e., some prior interval domains are given for them). Then,
using interval arithmetic, the intervals are propagated from x to y in a first step (for-
ward propagation) and, in a second step, the intervals are propagated from y to x
(backward propagation). Tools such as the IBEX library can be used to manipulate
contractors, see [Chal3].

2.3 Context, assumptions and principle of the method used

In this paper, we will only consider a 2D localization problem, where the vertical
localization problem is considered as solved or not needed:

e Most of the submarines have accurate depth and/or altimeter sensors compared
to x,y localization sensors.

e Due to the submarine depth control at low depth and the fact that the acoustic
modem on the surface vehicle is 1 m below the surface, the submarine acoustic
modem can be considered in the same plane as the surface robot acoustic modem.

e The robot’s trajectory is most of the time in the same plane, the depth changes are
typically almost punctual: submerging in the beginning to reach target mission
depth, surfacing at the end or to get GPS data.

We will also assume that there are no outliers in the data: they were manually
removed, e.g. obvious temporary bad GPS fixes at some surfacing points (GPS fixes
will be considered as punctual: for each fix, only 1 position at a specific time has
been taken into account), and bad range measurements or data communications were
automatically rejected. If outliers cannot be removed manually, a method using re-
laxed intersection is proposed in [JauO9b].

The method used in this paper is inspired from [Jau09a] and [LBSJ10]. In our
set-membership context, we can describe our problem as follows
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x = f(x,u) (evolution equation)
y = g(x) (observation equation) 4)
r; = r(x,m) (ranging equation)

where x(¢) is the state vector of the submarine, u(z) is its input vector, y(¢) is its out-
put vector, m is the location of the surface robot and r; is the i/ range measurement
between the 2 robots. We consider that

e At some time 7, we have a box [x] (z) containing the state vector:
x(1) € [x] () )
e Forallr € [1,1f], we have boxes enclosing the u(r) and y(r):
Vi € [to,1¢],u(t) € [u] () and y(z) € [y] (1) (6)
e We have a finite subset .# C [to, ] such that
ri(t) € [r] (2)- (7

If t € ., the ranging measurement i has been made at time # and we have a box
enclosing m(7).

For simplicity, we assume that the submarine motion can be described by the
following evolution equation (inspired from [JauO9b]):

X =vcosH

y = vsinf

ézuz—ul (8)
v = (u+u)—v

where (x,y) are the 2D coordinates of the robot, 0 is its heading, v its speed, u; the
input for the right thruster, u; the input for the left thruster (see Figure 2).

This equation is similar to the classical tank/wheelchair model (see e.g. [Jaul5]),
with very simple adaptations to simulate the fluid friction effects. We have chosen
here a normalized model with the friction coefficient (in front of v) equal to 1, but
in practice, the coefficient is different and needs to be estimated (e.g. empirically).

The observation equation is

y=1vy 9
0

because (x,y) can be measured sometimes by the GPS when the robot is near the

surface and 0 is measured by the AHRS at all times.

The ranging equation for the i/ communication and range measurement is

=\ m+ (- my)? (10)
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Fig. 2 Description of the submarine variables.

where r; is the distance between the submarine and the surface robot (measured by
the internal ranging function of the acoustic modems) and m = (m,,m,) is the po-
sition of the surface robot (measured by its GPS and sent to the submarine through
the acoustic modems). It is worth noting that to be accurate in practice, due to the
communication and ranging time, we should consider the fact that the position of
the robots might have changed between the moment when the range measurement
is made, the moment when the position of the surface vehicle is measured, and the
moment when it is received by the submarine. We could also have clock synchro-
nization errors between robots (see e.g. [BJ14] for methods to handle this). In our
case, those uncertainties will be included inside the uncertainty for m and r;.
As a consequence, our problem can be written as follows:

X =vcosH

y =vsin6

0 =u—u ) (11)
v = (uj+up)—v

ri =/ (x—m)? + (v —my)?
To solve this problem, we will use the ICP techniques described previously:

e First we need to use the observation equation to contract the known GPS posi-
tions of the robot, see Figure 3.

e Then, a forward-backward propagation w.r.t. time on the differential equations
discretized using e.g. Euler method can be used to get a first evaluation of the
trajectory, see Figure 4.

e Contracting the ranging equation should improve the position estimation of the
robot at the specific ranging times, see Figure 5.
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@ W x(7)

Fig. 3 Graph of constraints for the observation equation.

OO @

Fig. 4 Graph of constraints for the evolution equation (left : forward with time, right : backward

with time).
.—I—. @)

Fig. 5 Graph of constraints for the ranging equation.

e Repeating all the previous contraction operations until no more significant im-
provement on the trajectory estimation should propagate the punctual contrac-
tions on the whole trajectory.

Note that if needed, we could take into account more general exteroceptive data
such as bearing measurements, see e.g. [DJ16b] or [[JG14] for related work.

3 Application

3.1 Description of the experiment

The euRathlon 2015 competition (see [FFD"16]) proposed a situation where marine
and submarine robots had to collaborate with ground and aerial robots to analyze
the state of an area after a possible earthquake and determine which pipeline from
a mock nuclear plant should be stopped to stem a leak while letting other pipelines
cool the reactor. The submarine data presented in this paper corresponds to the AUV
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Fig. 6 AUV and ASV.

navigating through the pipelines structures area, and searching for the right one (2
groups of pipelines separated by 50 m and at a depth of around 5 m were to be
inspected, with colored objects indicating their state). Meanwhile, aerial and ground
robots were inspecting the damages around and inside the mock nuclear plant.

We must emphasize that these data were taken during a competition, therefore
they have not been specifically done to illustrate the method described here. This
implies that they are not perfect, for example: compasses of the robots were not
calibrated correctly, the competition area was probably not deep enough to get a
good acoustic communication, the acoustic modem on the ASV only started in the
middle of the experiment, etc. This is to show that the approach can be efficient on
real-world data.

The SARDINE AUV was equipped with a pressure sensor to get his depth, a
mid-cost AHRS to get its heading, a GPS to get its position near the surface, a
rotating sonar (not used for this part of the experiment), 2 cameras (not used for this
part of the experiment) and a low-cost acoustic modem with ranging capability. In
particular, it did not have a DVL or other sensor to evaluate its speed. It is controlled
in the plane using 2 horizontal thrusters, and a central vertical thruster controls his
depth (it is statically equilibrated to have an almost neutral buoyancy without roll
or pitch), see Figure 6. The ASV was controlled using 2 thrusters and was equipped
with a GPS, a low-cost AHRS, a camera (not used for this part of the experiment)
and the same acoustic modem as the AUV, installed at 1 m below the hull to avoid
immediate reflexion of acoustic waves on it.

During the experiment, the robots had their own embedded position estimation
algorithms. The principle of the algorithm to estimate the position used inside the
submarine was similar to what is described in this paper, but with the following
differences:

e No backward propagation w.r.t. time.

e Different coefficients were used in the state equations (few time was spent to
adjust them during the experiment).

e In case of inconsistencies between data, specific non-optimal fallback choices
were made.
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It is also important to note that this estimation was not always used by the em-
bedded control part, see Figure 7:

e In the beginning yes.
e However for the “’spirals”, no, an open loop was used.

Here is a description of the trajectory (in Figure 7) evaluated by the embedded
algorithm and retrieved just after the experiment, without further processing (we
will refer to this estimation as the “’realtime estimation” in what follows):

The ASV was always staying around the same waypoint "HV2”.

The AUV submerged at ’Surface begin” point and started to follow the way-
points, surfacing at each one ("WP1”, "WP2”, "WP3”, "WP4”). During this
phase, we clearly see the ”jumps” in the trajectory estimation due to the GPS
when surfacing: between 2 waypoints, the trajectory estimation appears to be
perfectly in the direction of the target waypoints, however this estimation is cor-
rected when the robot surfaces and gets the GPS. When at the surface, we also see
additional ”jumps” due to the fact that the GPS provides very noisy data when it
is at the limit to not be able to see the satellites.

o After "WP4”, it started to make a spiral around, using relative control commands
(i.e. without trying to use its absolute position estimation). The trajectory esti-
mation has some “jumps” at this point also due to the corrections made with the
range measurements.

Then, it moved to the East and made another spiral.
Finally it surfaced at the end of the mission. The total distance covered by the
robot was approximately 500 m.

3.2 Results

A program available on
www.ensta-bretagne.fr/lebars/sardine2015/

has been made to make the offline processing of the data, see Figure 8.

All the state variables are first initialized with intervals centered on the realtime
estimation and with an infinite width, while the inputs are loaded as degenerated
intervals. After loading all the data as intervals, the first operation that should be
done is to contract the data w.r.t. the measured punctual GPS positions (using the
observation equation). To propagate the effect of those punctual known positions,
we need then to use the evolution equation of the submarine to contract forward in
time (see Figure 9), and then backward (see Figure 10).

For the forward contraction, the x and y errors (see Figure 11) increase linearly
over the time. Between e.g. the second and the third waypoint, we clearly see 3
different inclinations of the x and y error curves:
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Surface begin

Date des images satelite B | 2006 23° long 10.602913° élév. Om

11

Google

Altitude  197m

Fig. 7 Realtime trajectory estimation retrieved from the robot just after the experiment. Note that
we do not have the ground truth for this experiment and that in the beginning, the robot is following
waypoints ("WP1”..”WP4”), while in the end, it is making 2 spirals without following specific

waypoints.
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Fig. 8 UxV Data Viewer, a software made to post-process the data of robots using interval meth-

ods.
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Fig. 9 Trajectory envelope (black squares) and center (green dots) after the GPS position contrac-
tion (the yellow squares represent the GPS fixes) and forward contraction.

Fig. 10 Trajectory envelope (black squares) and center (green dots) after the GPS position contrac-
tion (the yellow squares represent the GPS fixes), forward contraction and backward contraction.
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Fig. 11 Trajectory error w.r.t. time (x: green, y: red) after the GPS position contraction and forward
contraction. Axis are [0,3600]sx [0,20]m. The graphic is cut on the top to be able to see in the same
time the general trends and the specific parts discussed in this section.

Fig. 12 Trajectory error w.r.t. time (x: green, y: red) after the GPS position contraction, forward
contraction and backward contraction. Axis are [0,3600]sx [0,20]m. The graphic is cut on the top
to be able to see in the same time the general trends and the specific parts discussed in this section.
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e The first is when the robot is stopped at the surface or going down after the GPS
fix, but is not trying to move in the horizontal plane.
The second when the robot is moving from one waypoint to the next.
The third is similar to the first: the robot is surfacing but is not trying to move in
the horizontal plane.

If we were only doing the backward contraction (i.e. without forward contraction
before), the errors would decrease linearly.

After the forward-backward contractions, we notice a step in the middle of the
y error graphics, between e.g. the first and the second waypoint (see Figure 12).
This is due to the fact that the robot seems to have a bias (bad magnetic calibration,
currents, non symmetric parts on the robot could explain this) and the GPS position
measured at the surface was a surprise w.r.t. the expected surfacing position. This is
consistent with the small width of the boxes (i.e. small width of [x]) at this part of
the trajectory: the GPS is about to be inconsistent with the state equations on the x
coordinate, but it is still consistent enough to not generate an empty set. To be more
clear, we can take a simple example where a car travels between 2 cities in a straight
line (1 dimension problem) at a limited speed in a known time. If:

e The speed limit is 110 km/h (the car can be slower, but not faster),
e The time of travel was 3h10,
e The distance between the cities is 330 km,

We can estimate the position of the car at all times (except at the very beginning
and the very end where we know in which city we are) with the same error, which
corresponds to the distance covered in 10 min at 110 km/h, i.e. 18.33 km.

If we continue the analysis of Figure 12, there is another case where there is
almost no step (triangular curve shape): between the second and the third waypoint.
In this case, the robot was always in the middle of the box, there was no surprise
at the end. In Figure 10, we can also mention that there are very big boxes in the
beginning before the first GPS fix, and the dotted green part of the trajectory visible
in Figure 9 corresponds also to the center of some of them before the backward
contraction.

If we now use the ranging equation to contract the trajectory, and then make
again a forward and backward contraction to propagate the effect of the punctual
range measurements, we get the Figures 13 and 14. Since the range measurements
were made mainly when the submarine was far on the right of the surface robot,
only the x coordinate estimation is significantly improved.

The final post-processed trajectory estimation is compared with the realtime es-
timation in Figure 15. We clearly see that for the final "’spiral”, the robot was not
aware that it drifted closer to the North wall than expected. Indeed, the operators
following the robot during the competition (a small buoy at the surface was attached
to the submarine as a safety mark) confirmed that the robot was very likely to be
close to the wall.

It is important to note that in the context of such a submarine competition, it
is very difficult (for example necessary sensors would be expensive, would pertur-
bate other sensors or would not fit on all the robots), to get a ground truth. Most
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Fig. 13 Final trajectory envelope (black squares) and center (green dots), with GPS fixes (yellow
squares).

Fig. 14 Final trajectory error w.r.t. time (x: green, y: red). Axis are [0,3600]sx [0,20]m. The
graphic is cut on the top to be able to see in the same time the general trends and the specific
parts discussed in this section.
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Surfa\ce begin

-.Google

Altitude 194 m

Fig. 15 Comparison between realtime estimation (in green) and post-processed estimation (in
blue).

of the time the robot is not even visible from the operators point of view when the
robot is navigating in the sea. In those circumstancies, a guaranteed set-membership
method enables to quickly obtain an estimation of the robot trajectory despite the
non-linearities of the equations and if all the assumptions made are valid, it guar-
anties that the robot is inside the trajectory envelope, otherwise it helps detecting
unknown events generating inconsistencies that would have been missed otherwise
if we were using probabilistic methods.

4 Conclusion

In this paper, we described a set-membership method used to take into account dif-
ferent types of proprioceptive and exteroceptive data to compute the envelope of the
trajectory of a mobile robot. The method has been applied to the localization of a
submarine with puntual GPS positions when at the surface and punctual range mea-
surements with a surface vehicle of known position. A post-processing software has
been made to demonstrate the simple use of interval methods in this kind of local-
ization problem, and a similar algorithm was run in realtime on the submarine (with
some limitations such as the absence of backward propagation in time because the
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robot does not know its future GPS fixes). The method is general enough to be also
used for other kind of robots.
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