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Introduction

� Context:
• Offline SLAM for submarine robots
• Fleeting detections of marks
• Static and punctual marks
• Known data association
• Without outliers

� Tools:
• Interval arithmetic and constraint propagation on tubes
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Introduction

� Experiments with Daurade and Redermor submarines
with marks in the sea
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Problem formalization
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Problem formalization

� Equations

ẋ = fx, u (evolution equation)

y = gx (measurement equation independent from waterfall)

z = hx, u, m (marks detection equations)

vx, u, m = 0 ⇒ z ∈ W (marks visibility condition on the waterfall)
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Problem formalization

� Fleeting data
• A fleeting point is a pair        such that
• It is a measurement that is only significant when a given 

condition is satisfied, during a short and unknown time.

t, z vxt,ut, m = 0
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Problem formalization

� Waterfall
• is a function that associates to a time            a subset
• is called the waterfall (from the lateral sonar community).

W t ∈ R Wt ∈ R
W
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Problem formalization

� Waterfall
• Example: lateral sonar image
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Problem formalization

� Waterfall
• On a waterfall, we do not 

detect marks, we get 
areas where we are sure 
there are no marks
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CSP on tubes
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CSP on tubes

� CSP
• Variables are trajectories (temporal functions) ,       and real 

vector

• Domains are interval trajectories (tubes) ,         and box 

• Constraints are:

xt ẋt
m

xt ẋt m

ẋ = fx,u

y = gx

z = hx,u,m

vx, u,m = 0 ⇒ z ∈ W
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CSP on tubes

� Tubes
• The set of functions from     to       is a lattice so we can use 

interval of trajectories
• A tube         , with a sampling time           is a box-valued function 

constant on intervals
• The box                                 , with                  is the       

slice of the tube          and is denoted

xt

R Rn

δ > 0
kδ,kδ + δ,k ∈ Z

kδ,kδ + δ × xtk  t k ∈ kδ,kδ + δ k th

xt xk 
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CSP on tubes

� Tubes
• The integral of a tube can be defined as:

• We have also:

∫
t0

t
xτdτ = ∑k∈κt0 ,t

δ. xk 

xt ∈ xt ⇒ ∫
t0

t xτdτ ∈ ∫
t0

t
xτdτ
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CSP on tubes

� Tubes
• However, we cannot define the derivative of a tube in the general 

case, even if in our case we will have analytic expressions of 
derivatives:

ẋt = fxt, ut
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CSP on tubes

� Tubes
• Contractions with tubes: e.g. increasing function constraint
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Contraction of the visibility relation
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Contraction of the visibility relation

� Problem: contract tubes        ,         with respect to a 
relation:

� 2 theorems: 1 to contract         and the other for 

v t yt

vt = 0 ⇒ yt ∈ Wt

yt v t
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Contraction of the visibility relation

� Example 1: 
• Dynamic localization of a robot with a rotating telemeter in a 

plane environment with unknown moving objects hiding 
sometimes a punctual known mark

ẋ 1 = cosx 3 + b1

ẋ 2 = sinx 3 + b2

ẋ 3 = u + b3

ẋ 4 = ω + b4 .
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Contraction of the visibility relation

� Example 1
• is at    
• Telemeter accuracy is              , scope is
• Visibility function    and observation function   are:

hx = x 1 sinx 3 + x 4  − x 2 cosx 3 + x 4 

gx = −x 1 cosx 3 + x 4  − x 2 sinx 3 + x 4 .

h g
±0.01m s = s−, s+  = 1,10m

m 0,0
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Contraction of the visibility relation

� Example 1
• We have:

which translates to:

with:

hx = 0 and gx ∈ s ∩ −∞, d ⇒ d = gx

hxt = 0 ⇒ gxt ∈ Wt

Wt = −∞, s−  ∪ s+,∞ ∪ d−,∞.
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Contraction of the visibility relation

� Example 1

� Example 1: contraction of yt
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Contraction of the visibility relation

� Example 2: contraction of v t
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Conclusion
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Conclusion

� In this talk, we presented a SLAM problem with fleeting
detections

� The main problem is to use the visibility relation to 
contract positions

� We proposed a method based on tubes contractions
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Questions?

� Contacts
• fabrice.le_bars@ensta-bretagne.fr


