












Suivi de waypoints par un robot buggy autonome

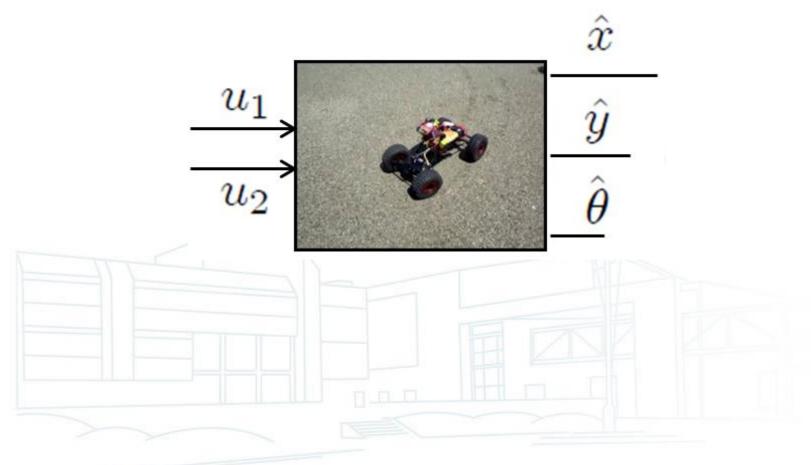




### But



 Faire un robot buggy capable de suivre une trajectoire définie par des points GPS

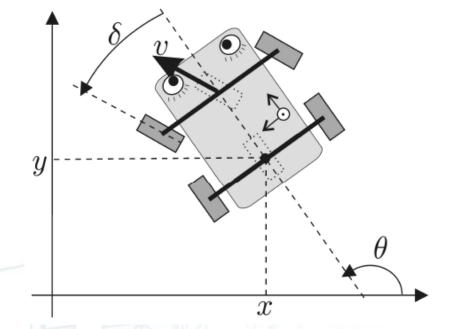







# Schéma du système






# Modèle d'état du buggy et équations géométriques



### Buggy: modèle de type voiture

$$\begin{cases} \dot{x} = v \cos \delta \cos \theta \\ \dot{y} = v \cos \delta \sin \theta \\ \dot{\theta} = \frac{v \sin \delta}{L} \end{cases}$$



$$v = \alpha u_2$$

$$\delta = \beta u_1$$

L Distance entre les essieux avant et arrière

### Observateurs, mesures



Scénario : le buggy est dehors, capte le GPS précisément et a une boussole correcte

$$\begin{cases} y_1 &= x \\ y_2 &= y \\ y_3 &= \theta \end{cases}$$

## Remarques sur la boussole



- Sensible aux perturbations magnétiques dues aux objets métalliques de l'environnement proche (difficile à corriger mais on pourrait cartographier le champ magnétique)
- Sensible aux perturbations dues aux éléments constituant le robot (peut varier selon la vitesse des moteurs...). Les perturbations constantes peuvent cependant être facilement prises en compte

## Remarques sur le GPS



- Ne fonctionne en général pas à l'intérieur (il faut qu'il ait une bonne « vue » des satellites dans le ciel)
- Il se peut qu'il donne des positions aberrantes lorsqu'il est à la limite de ne plus capter
- Temps de démarrage (« fix ») de plusieurs minutes variable selon les conditions







# Régulation



Si on suppose que d'une manière ou d'une autre on a une estimation de x,y,theta, on peut maintenant réfléchir à la commande pour suivre un cap ou aller à une position particulière...



#### PID



- Commande proportionnelle à l'erreur, à son intégrale ou à sa dérivée
- Censée marcher assez bien dans beaucoup de cas
- Voir Wikipedia PID (page en Anglais) pour un exemple simple de pseudo-code de régulation par PID et de méthode pour trouver les coefficients (Ziegler–Nichols

method...)

#### PID



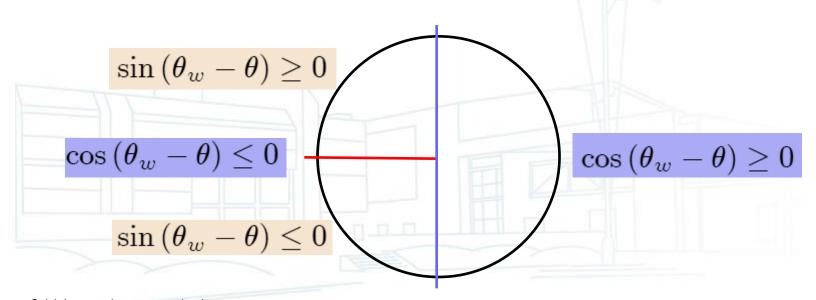
```
previous_error = setpoint - actual_position
integral = 0
start:
   error = setpoint - actual_position
   integral = integral + (error*dt)
   derivative = (error - previous_error)/dt
   output = (Kp*error) + (Ki*integral) + (Kd*derivative)
   previous_error = error
   wait(dt)
   goto start
```

# Régulation à une orientation voulue grâce à la boussole, à une vitesse arbitraire



- lacktriangle La boussole nous donne un angle au Nord en degrés  $oldsymbol{ heta}$
- Principe d'une régulation à un cap voulu  $\theta_w$  :
  - Commande bang-bang : on fait tourner le robot à la vitesse de rotation maximale lorsqu'il est tourné dans le mauvais sens par rapport au cap voulu
  - Proportionnelle à l'erreur autrement :

$$\begin{array}{rcl} u_1 & = & K_p \left( \theta_w - \theta \right) \\ u_2 & = & u_w \end{array}$$

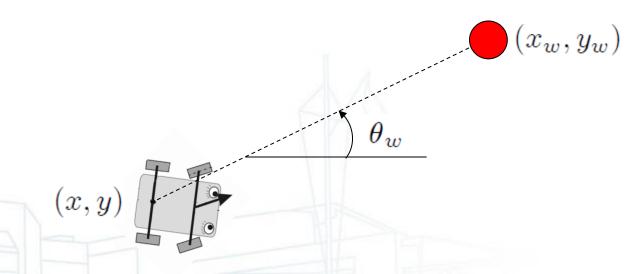

- Attention aux problèmes de modulo 2 1:
  - Utiliser des sin et cos par exemple
  - Voir aussi <a href="https://www.ensta-bretagne.fr/lebars/Share/fmod\_360.zip">https://www.ensta-bretagne.fr/lebars/Share/fmod\_360.zip</a>)

# Régulation à une orientation voulue grâce à la boussole, à une vitesse arbitraire



■ Exemple : si l'erreur de cap est  $(\theta_w - \theta)$ , une commande possible sans problèmes de modulo  $2 \text{ } \gamma$  peut être :

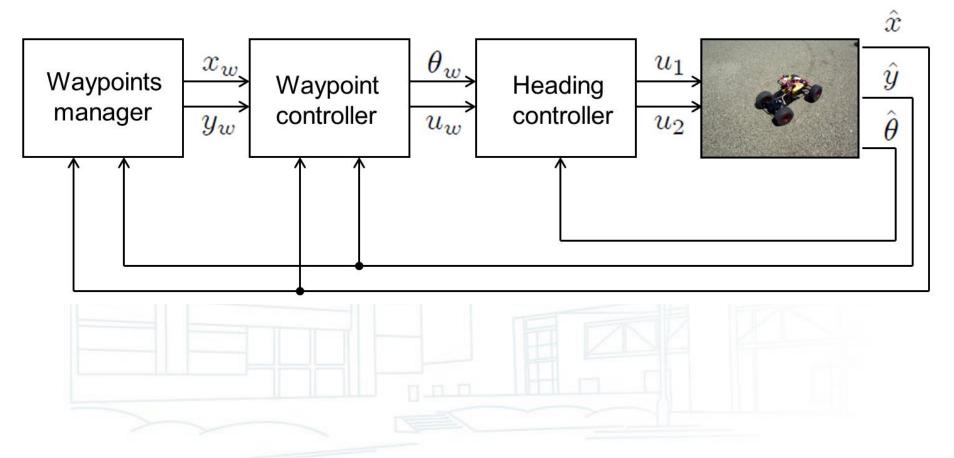
$$\delta = \begin{cases} \delta^{\max} . \sin(\theta_w - \theta) & \text{if } \cos(\theta_w - \theta) \ge 0\\ \delta^{\max} . \text{sign}(\sin(\theta_w - \theta)) & \text{otherwise} \end{cases}$$




# Suivi de waypoints GPS



On peut prendre pour cap voulu :


$$\theta_w = \arctan_2 (y_w - y, x_w - x)$$



atan2 est une fonction MATLAB comme arctan, mais qui retourne un angle dans  $[-\pi,\pi]$  au lieu de  $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ 

## Schéma du système pour le suivi de waypoints GPS











