Ray tracing and stability analysis of parametric systems
Plan

1. Introduction
2. Ray tracing
3. Stability analysis of a parametric system
4. Conclusion
Introduction
Goal: Show similarities between 2 problems apparently different: ray tracing and parametric stability analysis

Use of interval analysis
Ray tracing
Ray tracing

- Description
 - Ray tracing, ray casting
 - 3D scene display
 - Method: build the reverse light path starting from the screen to the object
Ray tracing

- **Hypothesis**
 - Objects are defined by implicit functions
 - The eye is at the origin of a coordinate space R(O,i,j,k) and the screen is at z=1
 - The screen is not in the object
Ray tracing

- Problem description
 - A ray associated with the pixel
 \[p = (p_1, p_2) \in [p] \]

satisfies

\[
\begin{align*}
x &= p_1 d \\
y &= p_2 d \\
z &= d
\end{align*}
\]
Ray tracing

- **Problem description**
 - The point \((x, y, z)\) is in the object if
 \[
 f(x, y, z) \leq 0
 \]
 - A pixel displays a point of the object if the associated ray intersects the object
Ray tracing

The ray associated with \mathbf{p} intersects the object if

$$\exists d \geq 0, g(\mathbf{p}, d) \leq 0$$

with

$$g(\mathbf{p}, d) = f(p_1.d, p_2.d, d)$$
Ray tracing

- Light effects handling
 - Realism => illumination model
 - Phong: needs the distance from the eye to the object
 - We need to compute for each pixel p:

$$d^*(p) = \min_{d \geq 0} \begin{cases} d & g(p,d) \leq 0 \end{cases}$$
Ray tracing

- **Computation of** d^*
 - If
 \[
 \begin{cases}
 g([0,a]) \subset [0,\infty] \\
 g(b) < 0
 \end{cases}
 \]
 Then
 \[d^* \in [a,b]\]

Moreover, if
\[g'([a,b]) \subset] -\infty, 0]\]
We can use a dichotomy to get d^*
Ray tracing

- Computation of d^*
 - Interval computations are used to find $[a, b]$
 - A dichotomy finds d^*
Ray tracing

- Parametric version
 - $g(p, d)$ now depends on $p \in [p]$
 - If
 $$\begin{cases} g([p], [0, a]) \subset [0, \infty[\\ g([p], b) \subset] - \infty, 0] \end{cases}$$

 Then
 $$d^*(p) \subset [a, b]$$

 Moreover if
 $$\frac{\partial g}{\partial a}([p], [a, b]) \subset] - \infty, 0]$$

 We can use a dichotomy to get d^* for each p
Ray tracing

- From d^* to $d^*(p)$
Ray tracing
Stability analysis of a parametric system
Stability analysis of a parametric system

- **Stability**

\[P(s, p) \text{ stable} \iff \text{all its roots have a real part } \leq 0 \]

(Routh)

\[\iff r(p) \leq 0 \]

where \(r \) is retrieved from the Routh table
Stability analysis of a parametric system

- δ stability

$P(s, \mathbf{p})$ is δ stable \iff all its roots have a real part $\leq \delta$

(Routh)

$\iff r(\mathbf{p}, \delta) \leq 0$
Stability analysis of a parametric system

- Example: Ackermann

\[P(s, p) = s^3 + (p_1 + p_2 + 2)s^2 + (p_1 + p_2 + 2)s + 2p_1p_2 + 6p_1 + 6p_2 + 2.25. \]

is \(\delta \) stable if

\[
 r(p, \delta) = \min \left(\frac{p_1 + p_2 + 2 - 3\delta}{(p_1 - 1)^2 + (p_2 - 1)^2 - 0.25 - 2\delta((p_1 + p_2 + 2)(p_1 + p_2 + 3 - 4\delta) + 4\delta^2)}, \frac{2(p_1 + 3)(p_2 + 3) - 15.75 - \delta((p_1 + p_2 + 2)(1 + \delta) - \delta^2)}{2(p_1 + 3)(p_2 + 3) - 15.75 - \delta((p_1 + p_2 + 2)(1 + \delta) - \delta^2)} \right) \leq 0
\]
Stability analysis of a parametric system

- Stability degree

\[\delta^*(p) = \min_{\delta \geq 0} \delta \]

\[r(p, \delta) \leq 0 \]
Stability analysis of a parametric system

- Similarities with ray tracing

<table>
<thead>
<tr>
<th>Ray tracing</th>
<th>Stability degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>δ</td>
</tr>
<tr>
<td>g</td>
<td>r</td>
</tr>
</tbody>
</table>

$d^*(p) = \min_{d \geq 0} d \iff \delta^*(p) = \min_{\delta \geq 0} \delta$
Stability analysis of a parametric system
Conclusion

- Ray tracing and stability degree drawing of a linear system are similar problems.

- A common algorithm based on intervals and dichotomy has been proposed.
References

Ray tracing

\[\mathcal{L} = \{ [d_1, d_2] \} \]

\[d = [d_1, d_2] \]

\[\mathcal{L} = \{ \} \]

\[[g] ([d]) \not\in [0, \infty[\]

\[[g'] ([d]) \not\in (-\infty, 0] \]
Ray tracing

\[\mathcal{L} = \{[d_1, d_3], [d_3, d_2]\} \]

\[d = [d_1, d_3] \]

\[\mathcal{L} = \{[d_3, d_2]\} \]

\[[g] ([d]) \subset [0, \infty[\]

\[\Rightarrow a = d_3 \]
Ray tracing

\[\mathcal{L} = \{[d_3, d_2]\} \quad \rightarrow \quad d = [d_3, d_2] \]

\[\mathcal{L} = \{\} \]

\[[g]\, ([d]) \not\in [0, \infty[\]

\[[g']\, ([d]) \subset] - \infty, 0] \]

\[[g]\, ([d^+]) < 0 \]

\[\Rightarrow b = d_2 \]
Ray tracing

- Division in d
Ray tracing

- Division in d
Ray tracing

- Division in d
Ray tracing

- Division in p
Ray tracing

- Division in p
Division in \mathbf{p}
Ray tracing

- Division in p
Ray tracing

- Division in p
Ray tracing

- Division in \(p \) and in \(d \)
Ray tracing
Ray tracing

- Several objects display handling
 - We apply the previous algorithm for the function:

 \[g_{\text{min}} : (p, d) \to \min_i g_i(p, d) \]

 - Indeed, we have to consider only the first object crossed by the ray.
Ray tracing
Stability analysis of a parametric system

– Stability degree of an invariant linear system of characteristic polynomial $P(s)$:

$$
\delta^* = \min_{P(s-\delta) \text{ unstable}} \delta.
$$

– We consider an invariant linear system parametrized with a vector of parameter p:

$$
P(s, p) = s^3 + (p_1 + p_2 + 2)s^2 + (p_1 + p_2 + 2)s + 2p_1p_2 + 6p_1 + 6p_2 + 2.25.
$$
Stability analysis of a parametric system

– The stability degree becomes:

\[\delta^*(p) = \min_{P(s-\delta,p) \text{ unstable}} \delta. \]

– With

\[P(s - \delta, p) = s^3 + b_2 s^2 + b_1 s + b_0 \]

the polynomial is stable if (Routh):

\[
\begin{pmatrix}
 b_2 \\
 b_1 b_2 - b_0 \\
 b_0
\end{pmatrix} \geq 0
\]
Stability analysis of a parametric system

– If we note

\[r_{\text{min}}(p, \delta) = \min (b_2, b_1 b_2 - b_0, b_0) \]

We get

\[P(s - \delta, p) \text{ unstable} \iff r_{\text{min}}(p, \delta) \leq 0 \]

– Therefore, the stability degree is:

\[\delta^*(p) = \min_{\delta \geq 0} \delta \quad \text{subject to} \quad r_{\text{min}}(p, \delta) \leq 0 \]