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Actuation Layer
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Control functions

• Mission Control:
– Define and sequence objectives, sub-objectives…

• Sensorial layer: 
– Build current model of the environment

• Navigation:
– Estimate system state

• Guidance:
– Strategy of approach to the objective

• Control:
– Compute actions to be applied on the environment

• Actuation layer :
– Compute actuators inputs, manage redundancy (if exists)



III. Guidance and Control Design



Linear approach is inapplicable

The transposition of Unicycle solution to AUV depends on the system shape.
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The wheel, the Unicycle and the AUV
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Linear approach OK 

1. Define Kinematic Strategy



There is NO continuous control law that could stabilise a nonholonomic system [BROCKETT 83]

- Singular objective 
- A small error induces a large manoeuvre
- The linearized model is not controllable
- Trajectory : Space & Time reference

Stabilisation Trajectory Tracking
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2. Choose movement control type



There is NO continuous control law that could stabilise a nonholonomic system [BROCKETT 83]

- Singular objective 
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There is NO continuous control law that could stabilise a nonholonomic system [BROCKETT 83]

- Singular objective 
- A small error induces a large manoeuvre
- The linearized model is not controllable
- Trajectory : Space & Time reference
- The vehicle may turn back in its attemp to be at

a desired reference at a prescribed time
- Actuators may easily be pushed to saturation
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There is NO continuous control law that could stabilise a nonholonomic system [BROCKETT 83]

- Singular objective 
- A small error induces a large manoeuvre
- The linearized model is not controllable
- Trajectory : Space & Time reference
- The vehicle may turn back in its attemp to be at

a desired reference at a prescribed time
- Actuators may easily be pushed to saturation
- Danger of Stalling
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2. Choose movement control type



There is NO continuous control law that could stabilise a nonholonomic system [BROCKETT 83]

- Singular objective 
- A small error induces a large manoeuvre
- The linearized model is not controllable
- Path Following : Space & Time reference
- The vehicle may turn back in its attemp to be at

a desired reference at a prescribed time
- Actuators may easily be pushed to saturation
- Danger of Stalling

Path Following

2. Choose movement control type
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- Decoupled control u and r
- Remove temporal constraint
- Autonomous system
- ‘smooth’ convergence to the path
- Keep control on actuator saturation
- Global and Uniform Asymptotic Convergence
- Can be extended to RDV tracking
- Can be extended to formation keeping



3. Choose Guidance Strategy
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V = 1

2
⋅ s1

2 + y1
2( ) + 1

2 ⋅γ
⋅ θ −δ( )2 > 0

 

!s1 = − !s ⋅ 1− cc ⋅ y1( ) + u ⋅cosθ
!y1 = −cc ⋅ !s ⋅ s1 + u ⋅sinθ

!θ = r − cc ⋅ !s

3.a Express kinematic model in the Frenet frameVirtual Target Path Following

3. Choose Guidance Strategy

3.c Consider the Lyapunov Candidate

3.b Choose an approach angle

δ (y1) = −sign(u) ⋅arctan(Kδ ⋅ y1)

3.c.1 Derivate V
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3. Choose Guidance Strategy
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3.b Choose an approach angle
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3.b Choose an approach angle

δ (y1) = −sign(u) ⋅arctan(Kδ ⋅ y1)

3.d Then, the following control:
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Virtual Target Path Following
Extentions

PF with AS PF with AS and OA

Multi-PF with CA Multi-PF with OA and MST



4. Dynamics Backstepping

UKIN
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4.b Consider previous kinematic solution as a reference

4.a Augment system model with its dynamic state
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4.c Consider Lyapunov Candidate
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4.d Then the following control
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It is clear that if !! ! ! the resulting forces and torque 
produced by the actuation system (!!! will be bigger than !!!, 
thus questioning the operator, or control law, reactivity 
capacity.  Then we just allow !! ! !. 

The following section gives experimental results obtained 
when applying the proposed dispatcher-based approach on the 
Jack robot. 
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 The Figure 9 shows the experimentations realized on the 

Jack system in a pool.  
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In order to illustrate the performances of our solution, we 
use a basic PD yaw controller: 
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where !!is the desired heading and !! ! !"!and !! ! !!are 
positive gains. The control output is then sent to the different 
dispatchers (static, compressed or dynamic) during three 
experiments, reported at Figure 11. The desired heading 
reference has been chosen to !! ! !"#$. Initial position has 
been roughly set to 20°. At approximately 28s, the control is 
disengaged and the robot is manually oriented at 200°, thus 
simulating a similar external perturbation. Then the control is 
engaged again. 

The first experiment considers the static dispatcher (eq. 4) 
with the basic motor characteristic reported in 6(1). Results 
are drawn in blue.  

The second experiment considers the same dispatcher, but 
removes the dead-zone (compressed) from the accessible 
motor inputs, as shown in 6(2). Results are in red.  

Lastly, the third experiment considers the use of the 
dynamic dispatcher, which follows the placement algorithm 
described previously. Results are given in black.  
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Figure 10.  Experimental results 

A. Analysis of the static dispatcher response 
The blue curves on Figure 11 clearly show the limitations 

of the static dispatcher. Indeed, the control law provides 
control inputs regardless to the presence of the dead-zone. The 
motor characteristic reported on Figure 3 shows a dead-zone 
between !!!!" ! !!"!!" . Considering the control law (12), 
given !! ! !", the expected static error is!!!"#" ! !"

!" !
!!!!!"# ! !"!!"#! This corresponds to a heading error that 
won’t induce any thrusters’ reaction, as one can see on 
experimental results of Figure 11. Note that this static error is 
the result of a default of the actuation system, which is not 
able to produce low thrust. Hence the consideration of an 
integral gain in control 12 will not compensate this static 
error. 

 

B. Analysis of the compressed dispatcher response 
The red curve on Figure 11 shows the performances of the 

compressed dispatcher. This one is similar to the previous 
one, but refers to a motor response where the dead-zone has 
been contracted (Figure 6(2)), bounding the dead-zone with 
admissible values of the motor inputs such that !! !
!!""! !!" ! !"!!"" , covering the real dead-zone 

(!!!!" ! !!"!!" ). The result indicates that the static error is 
compensated but the system oscillates around the desired 
value. These oscillations are induced by the time of reaction 
of the thrusters to produce an inverted thrust. A decrease of 
the gain !! will reduce the amplitude of these oscillations, but 
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6.b Consider the following closed loop control
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where !!is the desired heading and !! ! !"!and !! ! !!are 
positive gains. The control output is then sent to the different 
dispatchers (static, compressed or dynamic) during three 
experiments, reported at Figure 11. The desired heading 
reference has been chosen to !! ! !"#$. Initial position has 
been roughly set to 20°. At approximately 28s, the control is 
disengaged and the robot is manually oriented at 200°, thus 
simulating a similar external perturbation. Then the control is 
engaged again. 

The first experiment considers the static dispatcher (eq. 4) 
with the basic motor characteristic reported in 6(1). Results 
are drawn in blue.  

The second experiment considers the same dispatcher, but 
removes the dead-zone (compressed) from the accessible 
motor inputs, as shown in 6(2). Results are in red.  

Lastly, the third experiment considers the use of the 
dynamic dispatcher, which follows the placement algorithm 
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A. Analysis of the static dispatcher response 
The blue curves on Figure 11 clearly show the limitations 

of the static dispatcher. Indeed, the control law provides 
control inputs regardless to the presence of the dead-zone. The 
motor characteristic reported on Figure 3 shows a dead-zone 
between !!!!" ! !!"!!" . Considering the control law (12), 
given !! ! !", the expected static error is!!!"#" ! !"
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!!!!!"# ! !"!!"#! This corresponds to a heading error that 
won’t induce any thrusters’ reaction, as one can see on 
experimental results of Figure 11. Note that this static error is 
the result of a default of the actuation system, which is not 
able to produce low thrust. Hence the consideration of an 
integral gain in control 12 will not compensate this static 
error. 
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The red curve on Figure 11 shows the performances of the 

compressed dispatcher. This one is similar to the previous 
one, but refers to a motor response where the dead-zone has 
been contracted (Figure 6(2)), bounding the dead-zone with 
admissible values of the motor inputs such that !! !
!!""! !!" ! !"!!"" , covering the real dead-zone 

(!!!!" ! !!"!!" ). The result indicates that the static error is 
compensated but the system oscillates around the desired 
value. These oscillations are induced by the time of reaction 
of the thrusters to produce an inverted thrust. A decrease of 
the gain !! will reduce the amplitude of these oscillations, but 
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