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Introduction - Ocean and Karst exploration

Open-
environment

Atmosphere  Living things
b 026%
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Total global Freshwater Surface water and
water other freshwater

Confined-
environment -

Figure 1: Where is Water of Earth? 2
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Karst exploration - Challenges

Vector Environnment

. (LIRMM) ‘\ ’ (HSM)
Challenges for karst exploration are \ Y 4

as follows: S //W
= sw Data AQUSE NS -
Umbilical cable management - : » ﬁ
Navigation and Mapping | 9 ;
. "A"

Guidance and Control T N s

(IES)

Robustness Models
(IMAG) &F

Reactivity and adaptable autonomy

Figure 2: Karst exploration concepts (ALEYIN
B Redundancy management project): French institutes: LIRMM, HSM, IMAG,

IES
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Objectives of the thesis

The thesis focuses on Configuration in Actu-
Configuration ation System of a robot:

Static configuration (inrusters are fixed ) :

B Propose performance indices.

@ Find a Pareto optimal solution.

Simulate and carry out
experiments

Redundant
system

Reconfigurable and dynamic

Under- Fully- Over- configuration (inrusters position/direction can be
actuated actuated actuated dynamically modified):
system system system )
B Build a reconfigurable robot -
rank(Configuration) = 6 ?. Umbrella Robot.(Umebot)..
o A Propose dynamic configuration
. problem.
Figure 3: Configuration of a robot Simulate and carry out

experiments on UmRobot.
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Background - Kinematic and dynamic models

Kinematic model:

Euler formalism:
n=J(n)v (1)
where J is a matrix including rotation and transformation sub-matrices.
Qo [ 0 ] oQ
V1

Quaternion formalism: {
QoW

Ma| _
Q

Dynamic model:

M2 = Fg + Fuing + Fuave — C(v)v — D(v)v — g(n) )

where M is rigid-body mass matrix (including added mass), C is
Corriolis-Centripetal matrix, D is damping matrix, g is buoyancy force. F;,q and
Fwave are environmental forces/moments (wind and wave). 9/53



Background - Mono-objective and Multi-objective optimizations

Mono-objective: Multi-objective:
Pareto optimal | .
i fy A solution (dominated) Non-Pareto optimal

solution (non-dominated)

* L 4

* . .
¢ Feasible region

>

/7
/ g/ / <

Figure 5: Pareto optimal point and Pareto front

0

Figure 4: Mono-objective optimization
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Outline

Static configuration design
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Robot’s configuration and configuration matrix

The configuration matrix A is de-

scribed:
u; j-thruster A1
A= 3
(A) @)
57/» {Body-frame}

\

.0 X thrusters are fixed

N g S

FFF %

k-thruster i-thruster

Figure 7: Configuration matrix
Figure 6: Actuators configuration model 12/53



Performance indices

Manipulability index
Energetic index
Workspace index
Reactive index

Robustness index
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Manipulability index

\minor axis=0min

Thruster force Resulting force
space(F) space (Fs)

Figure 8: Manipulability ellipsoid with mapping

Isotropy: the robot can act equally in all directions

Manipulability index is defined as:

o
Im = Cond(A) = " (4)
O min
where omax and opmip, are the maximum
and minimum singular value of configura-
tion matrix, A, respectively.
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Energetic index

) Unit vector

Body frame

Figure 9: The unit desired vector in 3D sphere

Energetic index is defined as:

1
lo = | (WerPer + Werper)dS (5)
S

where wg and we. are weighting
scalars.

per = |AT ()|, force sphere
per = |A*(2)], torque sphere.

Us is a unit vector in 3D-sphere.
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Workspace index

//’,_‘\1

Az

Fg space for force

Vot
viT

Fr

Vor

Fg space for torque

Figure 10: Space Mapping

Workspace index is defined as:

where Vol is the volume measure of
a space (Fg-force space, Fr-torque
space), wys and wy, are weighting
coefficients.
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Reactive index

How fast the robot can change the direction of
its actuation force. Reactive index is defined
as:

lre = HA+|| (7)

Figure 11: Robot changes its motion direction

17/53



Robustness index

a,, dpd3---
Ay Ay dyy™

Cg3; A3z d33- -

anlan2an3"'

N T

Thruster - stopped
Null row

Figure 12: One or more thrusters - be stopped

Robustness index is defined as:

where A|<,_g is the A matrix with the
maximum number of columns being
zerois (m — 6).
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Problem formulation

Static configuration problem is written
as:

) . 1
minV(A) = min{/m le ™ e]”  (9)
st AcA

where A is matrix variable. A

is the constraint set including con-
straints of positions and orientations
of thrusters, and robustness index.

The problem is rewritten clearly:

min

A(u,1)

s.t

1
V(A) = min[lm7 /67 B Il’e]T
A ly
(10)
lujl| =1,i=1,2,..m
il <1,i=1,2,..m
rTui=0,i=1,2,..m
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Ball robot and Cube robot - Design

_(u,r)

. u?
R pred

.

“
+, difixed

.
.
.
\
.

Center of ball

Figure 13: Ball robot concept

i __(ur)

Ju
h
I:fixed

'
/. !
Thruster position 4! diixed

(given) \ /

'

[
Center of cube

Thruster direction
(unknown)

Figure 14: Cube robot concept
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Solution

Design a robot with m = 8 thrusters

and n = 6 DoFs (omax = 4/27).

Process of searching Pareto optimal so-

lution
. ) Index | Optimal formula and condition | Desired Value

Pha§e 1: I_:md one Pareto solution of Im O mex = Crmin 1
configuration matrix with goal A 2 |AT]| 1.0048
attainment method. I lw = lwe + Lyt 303.0303

1

Phase 2: Check robustness index of the e g 0.6124

chosen solution in phase 1. Table 1: Desired values of indices (m = 8
thrusters)
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Simulation - General case

Force space

Xl-axis

-1 -
(a) Force space attainability
0 | Yl-axis
Torque space
14 2
N
Zl-axis
2l

(b) Torque space attainability
Figure 15: Robot design (Ball robot - general case) with
8 thrusters Figure 16: Force and Torque attainable spaces 22/53



Simulations - given position case

Force space

Xl-axis 2 2

(a) Force space

Torque space

Zl-axis

(b) Torque space

Figure 17: Robot design (Cube robot - given position

case) Figure 18: Force and Torque spaces 23/53



Simulation - A comparison on Cube’s robot

(a) Cube robot in C! configuration (b) Cube robot in C? configuration

Figure 19: Cube robot in two configurations C! and C?
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Simulations- A comparison

1 Ber ‘ comparism:- between twu‘conliguvalions‘
F 1 2 161 lormal confi ]
No. | Indices C C e | | o contis

1 Im 712 2.5592 2l
2 le 3.32 2.09 B

3 lw 6511536.45 | 10919428.13 08 |
4 Ire 4.05 1.5622 06 |
5 Io ! 0 2 oa |

Table 2: Performance indices of two configurations o'z I H H |

Im le Iw Ire

Figure 20: Comparison between two configurations

Tthe maximum number of thrusters which can be failed to make sure that rank(A) = 6 25/53



Simulations - A comparison

Force space Torque space

100
Z o
N
[Ty
-100
100
Fx(N)

(a) c'(blue), C3(red) (b) c'(blue), C3(red)

Figure 21: Attainable spaces of two configurations
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Simulations - A comparison - Attainability about X-axis

Torque applied on X

0 200 400 600 800 1000 1200
time

Figure 22: Applied torque about X-axis

mMARIN

Figure 23:
and ¢?

Thruster PWM of C1 configuration (X)

2000

1800 i

|
1600 !

T
1400 I ——

I
t
1200 1
L

PWM inputs

0 200 400 600 800 ' 1000
time

(a) PwMinputs of C'

Thruster PWM of C2 configuration (X)

1
I
T
1600 1
1

PWM inputs

200 400 600 800 1000
time

(b) PwM inputs of €2

The simulation of cube rotation about X-axis for C'
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Simulations - A comparison - Attainability about Y and Z-axis

Thruster PWM of C1 configuration (¥)

Thruster PWM of C1 configuration (2)

2000
T 2000
1800 1 ]
! I
i
= 1600 ] = 1500
= + = |
& 1400 ! s
i 1000 i
1200 | |
! |
1000 L 500 4
0 200 400 600 800 1000 0 20 40 600 80 1000
time time
(a) PWM inputs of C1 (@) PWM inputs of C1
Thruster PWM of C2 configuration (Y) Thruster PWM of C2 configuration (Z)
2000 2000
T
1800 | 1800
t
= 1600 | = 1600 F——
z ! g 1000
]
1400 eSS e 1400
I
1200 1200
I
0 200 400 600 800 | 1000 0 200 400 600 80 1000

time

(b) PWM inputs of G2

time

(b) PwM inputs of c2

Figure 24: The simulation of cube rotation about
Y-axis for C' and C?

Figure 25: The simulation of cube rotation about
Z-axis for C' and C?
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Experimental results - Cube description

Figure 26: C' configuration
Figure 27: C? configuration
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Experimental results - Workspace (attainability) validation

Angular velocity about X

Angular velocity about Z
T

3 —C1
0 200 400 600 800 —C2
time
2
K
(@) Angular velocities - X axis K

Angular velocity about Y

451

0 200 400 600 800
time

Figure 29: About Z-axis for C' and C?

0 200 400 600 800 1000
time

Angular velocities - Y axis

i { b)b i 1 2
Figure 28: About X and Y-axis for C' and C
30/53



Experimental results - Energetic validation

The energetic-like criterion is computed

as: g x10* Energy ion between two configurati
7r —_— [ Current config B
E= § : / |PWMi(t) — 1500t (11) = optmar cont
6 [ 4
5+ 4
No. | Rotation Eci [ Percentage
1 P 7.2303e+04 | 6.9603e+04 3.783 % 4t q
2 q 7.5480e+04 | 1.0590e+05 | see Table 4
3 r 3.1637e+04 | 7.4350e+04 | see Table 4 3r 1
Table 3: Energy consumption of two configurations 2 ]
1r 4
No. | Rotation Ec: Ec: Percentage 0 " ” -
1 q 7.5480e+04 | 7.2715e+04 3.66 %
2 r 3.1637e+04 | 3.3312e+04 -5.08 %

Figure 30: Energetic-like consumption between

Table 4: Energy consumption of two configurations with the same time two configurations

duration

31/53



Experimental results - Robustness and reactive validations

The Depth of two configurations

50 100 150
time

Figure 31: Depth control for C' and €2 with three motors
stopped

0 200 400 600 "boo 1000 1200 1400
time

Figure 32: Angular velocity evaluation for C' and C2: diving,
rotating X-axis, and rotating Y-axis
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Reconfigurable robot design
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Reconfigurable robot - A glance

] Fi 34: Reconfigurable principle of Tortuga
Figure 33: Tortuga ROV - SubSea Tech gure ou princip ug
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Reconfigurable robot Design

The robot includes:

Two branches (front
and rear) controlled
by two DC motors

Rasp pi 2
Pressure sensor
IMU

7 thrusters

One robot - different
(b) Umbrella robot in close Conﬁgurations

Figure 35: The 3D model of UmRobot Figure 37: Umbrella robot like Torpedo
35/53



Prototype

Figure 38: A prototype of Umbrella Robot Figure 39: A prototype of Umbrella Robot in water
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Simulations-Manipulability index

Force space
Manipulabilty ndex

-100
Fy Fx

) Pyl

aphaF(degree) slptabidogme}

(a) Attainable force space
Figure 40: Manipulability index of Umbrella robot Torque space
Mty ndex

20
0
N 0
B
800 -20)
w0
20
o
0
o
T
. v i
o

7

& . 0
aphaF(degree) 9060 T —"

(b) Attainable torque space
Figure 41: Manipulability index [60° — 90°]

Figure 42: Attainable space if af = ag = 90°
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Acting ability - Umbrella Robot

2
i
‘au A, Ayg--- Ay
a a,,d,,""" da
A- 21 722 723 2m The ability of acting along DOFs.
93193 A5 Aol =6 —
- =
’ o
anlan20n3"' anm .
Figure 43: Acting ability , ’
.
s
N Aoting abilios along/about DoFs ;
—
. = 1
[
— o
25 :l‘r1 80 90
70 - 80
2 60 N 0 70
alphaB(degree) ©=w so alphaF(degree)
15
i
Figure 45: with varying af and ag
05

w W e w om =
Figure 44: with af = ag = 90°
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Acting ability - Optimization problem

Acting

No. | Variable Optimal value
1 aF 90°
2 s W5
3 il 05(m)
7 A 02(m)
5 q 023(m)
5 A 0.0914(m) N
7 A 0.15(m) as
az; = 0.6106 el =22317 [ current config
. ) . - z oo
Figure 46: Acting ability along each DOFs and deviations = e ¢ e
8 | az.el(rad) el — 2.6030 -
azs =0.1261 ek = —2.5692
azs —2.9525 el — —19817
az; = 3.0155 el =0.5724 2
s
,
0s
. I O o

. W w o w m o w
Figure 48: Optimal acting of Umbrella robot and the comparison
with current configuration




Experiment results - Yaw control

Yaw angles
200
real yaw
100 desired yaw
8
ES o
&
a
-100 l/-
-200
[] 10 20 30
time(s)
(@) Yaw angles
s Torques on Body-frame
a p-ro.ll
q-pitch
3 r-yaw
E
Z2
1
o
[] 10 20 30

time(s)

(b) Applied torques

Figure-50: Yaw control 40/53



Experiment results - Depth control

Forces on body-frame

10 | surge-u
sway-v
8 heave-w
z 6
4
2
04 Depth error ,
pp— 0 0 20 30
03 epth error time(s)
Figure 52: Applied forces
c 0.2
o1 The robot has to
open the umbrella.
0
0 10 20 30

time(s)

Figure 51: Depth error

Figure 53: Mission descriptions 41/53



Experiment results - Surge, pitch, yaw control

Euler angles

100 1580 PWM of 7 thrusters
80 1575 E
™
1570 I
60 Roll
g 40 Pitch 1565
g =
3 Yaw £ 1560
(=] 20 T
1555
0 [ A e et oo 1550
-20 1545
0 5 10 15 20 25
time(s) 1540

0 5 10 15 20 25
time(s)

Figure 54: Euler angles )
Figure 55: PWM of thrusters
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Experiment results - Integrated mission

Depth error
PWM of 7 thrusters
06 depth error
1800
0.4 !
Time for ! 1600
£ changing 1
02 configuration ' H
1 2 1400
0 .
1 1200
02 T —
o 0 40 60 80 0 20 40 60 80
time(s) time(s)
(@) Depth error Figure 57: PWM of thrusters
. 3 e Bl Sl The robot surges forward, turns
» erangles - 4 i esired denth
W back, dives to desired depth,
i Yaw
L Conguration and finally sways.
100 |~y / .
5 [
50 1 1 1 1
e \ N
Z" n;—si—lkr\.._:—\,,_-‘___
| W
50 1 1 1 !
100 1 1 1 1
1 ] 1 1
150 1 1 1 1
1 1 1 1
P L
o 0 w0 w0 w0

time(s)

D) Euler angles Figure 58: Mission descriptions
Figure 56:(Inzegrated Mission of UmRobot 9 ' P 43/53



A Toolbox

A toolbox for validating performance indices and acting abilities of a robot

Performance indices and Acting ability of different robot

[ 1 T 2 T 3 4 | 5 | & |
107071 07071 07071 0.7071 0.7071
206124 0.0000 -0.6124 0.7071 0.0000
303536 -0.7071 0.3536 0.0000 -0.7071

400424 -0.0424 -0.0424 0.0424

5 /-0.2297  0.3860 -0.2297 -0.0424

603130 -0.0424 -0.3130 0.0424

7 ]
0.7071  0.7071
-0.7071  0.0000
0.0000 0.7071
-0.0424 -0.0424 -0.0424
0.0424 -0.0424 -0.0424
-0.0424 -0.0424 0.0424

Im-Manipulability

le-Energy Iw-Workspace Ire-Reactive Iro-Robust
47.226 14.45 5628748.9807 25.2196 OK
along U along V along W about P about Q about R
35 1.75 1.75 0.0126 0.26171 0.20498
Quit Plot Act-Ability Compare

Figure 59: Toolbox for configuration evaluation: main page
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Dynamic Configuration Problem-Umbrella Robot
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Dynamic configuration problem

With capacity of varying configurations, how can we choose a proper one? A-SQP

approach
min_ J = ||Fm? (12a)
ar,ag,Fm
s.t 45% < ap,ag <90° (12b)
FneF (12¢)
F¢ — A(ar, ag)Fm =0 (12d)

where FOB’ is desired control vector (from the controller), I is a feasible set of
thrusters forces. The constraint (12b) is mechanical limitations of the Umbrella
robot.
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Simulations

-0.2

Figure 60: Simulated robot
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Simulations - Given desired control vector

Given desired control vector F$

E-fix-9090
E-fix--6070
E-fix-Opt
E-dyn

@
3

@
3

No desired control vector 40 Hi

1 Fg:[10 0 00O O]T —
2 |[F¢=[10 10 0 0 0 O]" 3=
3 Fg — [0 0 1 0 o o 0] T sampling instances

Figure 61: Evolution of energy-like criterion with different cases
Configuration with ar = ag = 90°

Configuration with o = 60° and
ap = 700

Optimal configuration (statically)

Dynamic configuration

48/53



Simulations - Path following problem

The path is parameterized as:

trajectoire trajectoire

X —60cos(0.2618s) (13 .- 5 d
y = 60sin(0.26185) (14) 5 n o .
z =5sin(0.2618s) + 5 (15) ' ‘ ' ‘

(a) trajectory of Robot in fixed (b) trajectory of Robot in dy-

cases namic case

where s is a path parameter.

Path following problem with: /
/

Configuration with ar = ag = 70° ’

0 500 1000 1500 2000 2500 ) 500 1000 1500 2000
time ‘sampling instances

Configuration with ar = ag = 90°

(C) evolution of two angles (d) Energy-like criteria for

. . . Path followi bl
Dynamic configuration. el fofowing probler

Figure 62: Path following for ellipse with different
configurations
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Simulations-Observation problem (station-keeping)

Simulations with observation mis-
siont: x =0, y=0, z=1(m)

Energy-like criteria

H
8

andp=q=r=1(rad/s) R
Fixed Configuration (a) Energy-like criterion evolution
(ar = ag = 909) o
dynamic configuration with P '
interior-point method (Fmincon s";iﬁ
function) me bt a4

5000 10000
sampling instan

dynamic configuration with o
A_SQP (b) Computational time

Figure 63: A comparison
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Conclusions and Future works

Static configuration design.

Reconfigurable robot design.

Dynamic configuration problem.
Hybrid cube:

NOYAU

Pareto front.

Experiments with dynamic
configuration problem.

Multiparametric programming.
Other reconfigurable mechanisms.

Efficient control allocation
algorithm.

B Redundancy management
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Thank you for your attention

Thank you for your attention
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