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Introduction - Ocean and Karst exploration

(a) Ocean

(b) Karst
Ocean and Karst 1

Figure 1: Where is Water of Earth? 2

1 Resource of Earth water

2 Water resource management
1Taylor2008hydrogeologic
2Gleick1993
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Karst exploration - Challenges

Challenges for karst exploration are
as follows:

1 Umbilical cable management

2 Navigation and Mapping

3 Guidance and Control

4 Robustness

5 Reactivity and adaptable autonomy

6 Redundancy management
Figure 2: Karst exploration concepts (ALEYIN
project): French institutes: LIRMM, HSM, IMAG,
IES
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Objectives of the thesis

Figure 3: Configuration of a robot

The thesis focuses on Configuration in Actu-
ation System of a robot:

1 Static configuration (thrusters are fixed ):

a Propose performance indices.
b Find a Pareto optimal solution.
c Simulate and carry out

experiments

2 Reconfigurable and dynamic
configuration (thruster’s position/direction can be

dynamically modified):

a Build a reconfigurable robot -
Umbrella Robot (UmRobot).

b Propose dynamic configuration
problem.

c Simulate and carry out
experiments on UmRobot.
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Background - Kinematic and dynamic models

Kinematic model:

1 Euler formalism:

η̇ = J(η)ν (1)

where J is a matrix including rotation and transformation sub-matrices.

2 Quaternion formalism:
[
η̇1Q
Q̇

]
=

Q�
[

0
ν1

]
�Q∗

1
2 Q�W


Dynamic model:

Mν̇ = FB + Fwind + Fwave − C(ν)ν − D(ν)ν − g(η) (2)

where M is rigid-body mass matrix (including added mass), C is
Corriolis-Centripetal matrix, D is damping matrix, g is buoyancy force. Fwind and
Fwave are environmental forces/moments (wind and wave).
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Background - Mono-objective and Multi-objective optimizations

Mono-objective:

Figure 4: Mono-objective optimization

Multi-objective:

Figure 5: Pareto optimal point and Pareto front
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Robot’s configuration and configuration matrix

Figure 6: Actuators configuration model

The configuration matrix A is de-
scribed:

A =

(
A1
A2

)
(3)

thrusters are fixed

Figure 7: Configuration matrix
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Performance indices

1 Manipulability index

2 Energetic index

3 Workspace index

4 Reactive index

5 Robustness index
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Manipulability index

Figure 8: Manipulability ellipsoid with mapping

Isotropy: the robot can act equally in all directions

Manipulability index is defined as:

Im = Cond(A) =
σmax

σmin
(4)

where σmax and σmin are the maximum
and minimum singular value of configura-
tion matrix, A, respectively.
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Energetic index

Figure 9: The unit desired vector in 3D sphere

Energetic index is defined as:

Ie =
1
S

∫
S
(wef pEf + weτpEΓ)dS (5)

where wef and weτ are weighting
scalars.{

pEf = ‖A+
(us

0

)
‖, force sphere

pEΓ = ‖A+
( 0

us

)
‖, torque sphere.

us is a unit vector in 3D-sphere.
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Workspace index

Figure 10: Space Mapping

Workspace index is defined as:

Iw = ωwf Vol(FF ) + ωwτVol(FT ) (6)

where Vol is the volume measure of
a space (FF -force space, FT -torque
space), ωwf and ωwτ are weighting
coefficients.
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Reactive index

Figure 11: Robot changes its motion direction

How fast the robot can change the direction of
its actuation force. Reactive index is defined
as:

Ire = ‖A+‖ (7)
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Robustness index

Figure 12: One or more thrusters - be stopped

Robustness index is defined as:

Iro = rank(A|≤m−6) = 6 (8)

where A|≤m−6 is the A matrix with the
maximum number of columns being
zero is (m − 6).
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Problem formulation

Static configuration problem is written
as:

min
A

V(A) = min
A

[Im Ie
1
Iw

Ire]T (9)

s.t A ∈ A

where A is matrix variable. A
is the constraint set including con-
straints of positions and orientations
of thrusters, and robustness index.

The problem is rewritten clearly:

min
A(u,τ )

V(A) = min
A

[Im, Ie,
1
Iw
, Ire]T

(10)

s.t ‖ui‖ = 1, i = 1,2, ...m
‖τ i‖ ≤ 1, i = 1,2, ...m

τ T
i ui = 0, i = 1,2, ...m

Iro = rank(A|≤m−6) = 6
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Ball robot and Cube robot - Design

Figure 13: Ball robot concept Figure 14: Cube robot concept
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Solution

Process of searching Pareto optimal so-
lution

1 Phase 1: Find one Pareto solution of
configuration matrix with goal
attainment method.

2 Phase 2: Check robustness index of the
chosen solution in phase 1.

Design a robot with m = 8 thrusters
and n = 6 DoFs (σmax =

√
2m

n ).

Index Optimal formula and condition Desired Value
Im σmax = σmin 1
Ie 2 ‖A+‖ 1.2248
Iw Iw = IwF + IwT 303.0303
Ire 1

σmax 0.6124

Table 1: Desired values of indices (m = 8
thrusters)
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Simulation - General case

Figure 15: Robot design (Ball robot - general case) with
8 thrusters
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Figure 16: Force and Torque attainable spaces
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Simulations - given position case

Figure 17: Robot design (Cube robot - given position
case)
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Simulation - A comparison on Cube’s robot

(a) Cube robot in C1 configuration (b) Cube robot in C2 configuration

Figure 19: Cube robot in two configurations C1 and C2
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Simulations- A comparison

No. Indices C1 C2

1 Im 7.12 2.5592
2 Ie 3.32 2.09
3 Iw 6511536.45 10919428.13
4 Ire 4.05 1.5622
5 Iro 1 0 2

Table 2: Performance indices of two configurations

Performance comparison between two configurations

Im Ie Iw Ire
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Normal config

Optimal config

Figure 20: Comparison between two configurations

1the maximum number of thrusters which can be failed to make sure that rank(A) = 6
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Simulations - A comparison
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Simulations - A comparison - Attainability about X-axis
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Figure 22: Applied torque about X-axis
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Figure 23: The simulation of cube rotation about X-axis for C1

and C2
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Simulations - A comparison - Attainability about Y and Z-axis
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Figure 24: The simulation of cube rotation about
Y-axis for C1 and C2
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Figure 25: The simulation of cube rotation about
Z-axis for C1 and C2
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Experimental results - Cube description

Figure 26: C1 configuration
Figure 27: C2 configuration
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Experimental results - Workspace (attainability) validation
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Figure 28: About X and Y-axis for C1 and C2
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Figure 29: About Z-axis for C1 and C2
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Experimental results - Energetic validation

The energetic-like criterion is computed
as:

E =
m∑

i=1

∫ T

t=0
|PWM i(t)− 1500|dt (11)

No. Rotation EC1 EC2 Percentage
1 p 7.2303e+04 6.9603e+04 3.73 %
2 q 7.5480e+04 1.0590e+05 see Table 4
3 r 3.1637e+04 7.4350e+04 see Table 4

Table 3: Energy consumption of two configurations

No. Rotation EC1 EC2 Percentage
1 q 7.5480e+04 7.2715e+04 3.66 %
2 r 3.1637e+04 3.3312e+04 -5.03 %

Table 4: Energy consumption of two configurations with the same time
duration

Energy consumption between two configurations

u v w
0

1

2

3

4

5

6

7

8
10 4

Current config

Optimal config

Figure 30: Energetic-like consumption between
two configurations
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Experimental results - Robustness and reactive validations

Figure 31: Depth control for C1 and C2 with three motors
stopped

Figure 32: Angular velocity evaluation for C1 and C2: diving,
rotating X-axis, and rotating Y-axis
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Reconfigurable robot - A glance

Figure 33: Tortuga ROV - SubSea Tech
Figure 34: Reconfigurable principle of Tortuga



35/53

Reconfigurable robot Design

(a) Umbrella robot in open-forward

(b) Umbrella robot in close

Figure 35: The 3D model of UmRobot

Figure 36: The principle diagram of UmRobot
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Figure 37: Umbrella robot like Torpedo

The robot includes:

1 Two branches (front
and rear) controlled
by two DC motors

2 Rasp pi 2

3 Pressure sensor

4 IMU

5 7 thrusters

One robot - different
configurations
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Prototype

Figure 38: A prototype of Umbrella Robot Figure 39: A prototype of Umbrella Robot in water
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Simulations-Manipulability index
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Figure 40: Manipulability index of Umbrella robot
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Acting ability - Umbrella Robot

Figure 43: Acting ability
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Figure 44: with αF = αB = 900

Figure 45: with varying αF and αB
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Acting ability - Optimization problem

Figure 46: Acting ability along each DOFs and deviations

Figure 47: variables in configuration optimization problem

No. Variable Optimal value
1 αF 90◦

2 αB 45◦

3 d 0.5(m)

4 de 0.2(m)

5 dt 0.2(m)

6 dc 0.0914(m)

7 db 0.15(m)

8 azi ,eli (rad)



az1 = 0.6106 el1 = 2.2317
az2 = 1.7060 el2 = 0.4642

az3 = −0.6106 el3 = −0.9099
az4 = −0.3754 el4 = 2.6030
az5 = 0.1261 el5 = −2.5692
az6 = 2.9525 el6 = −1.9817
az7 = 3.0155 el7 = 0.5724


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Figure 48: Optimal acting of Umbrella robot and the comparison
with current configuration
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Experiment results - Yaw control

Figure 49: Umbrella Robot at the swimming pool
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Figure 50: Yaw control
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Experiment results - Depth control
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Figure 51: Depth error
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Figure 52: Applied forces

Figure 53: Mission descriptions

The robot has to open the umbrella.

The robot has to
open the umbrella.
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Experiment results - Surge, pitch, yaw control
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Figure 54: Euler angles
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Experiment results - Integrated mission
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Figure 56: Integrated Mission of UmRobot
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Figure 58: Mission descriptions

The robot surges forward, turns
back, dives to desired depth,
and finally sways.
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A Toolbox

A toolbox for validating performance indices and acting abilities of a robot

Performance indices and Acting ability of different robot

please choose kind 
of robots

UmRobot

Front angle
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1 2 3 4 5 6 7

 0.7071  0.7071  0.7071  0.7071  0.7071  0.7071  0.7071
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Figure 59: Toolbox for configuration evaluation: main page
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Dynamic configuration problem

With capacity of varying configurations, how can we choose a proper one? A-SQP
approach

min
αF ,αB ,Fm

J = ‖Fm‖2 (12a)

s.t 450 ≤ αF , αB ≤ 900 (12b)
Fm ∈ F (12c)

Fd
B − A(αF , αB)Fm = 0 (12d)

where Fd
B is desired control vector (from the controller), F is a feasible set of

thrusters forces. The constraint (12b) is mechanical limitations of the Umbrella
robot.
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Simulations

Figure 60: Simulated robot
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Simulations - Given desired control vector

Given desired control vector Fd
B

No desired control vector
1 Fd

B = [10 0 0 0 0 0]T

2 Fd
B = [10 10 0 0 0 0]T

3 Fd
B = [0 0 10 0 0 0]T

1 Configuration with αF = αB = 900

2 Configuration with αF = 600 and
αB = 700

3 Optimal configuration (statically)

4 Dynamic configuration
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Figure 61: Evolution of energy-like criterion with different cases
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Simulations - Path following problem

The path is parameterized as:

x = 60 cos(0.2618s) (13)
y = 60 sin(0.2618s) (14)
z = sin(0.2618s) + 5 (15)

where s is a path parameter.

Path following problem with:

1 Configuration with αF = αB = 700

2 Configuration with αF = αB = 900

3 Dynamic configuration.
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Figure 62: Path following for ellipse with different
configurations
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Simulations-Observation problem (station-keeping)

Simulations with observation mis-
sion: x = 0, y = 0, z = 1(m)
and p = q = r = 1(rad/s)

1 Fixed configuration
(αF = αB = 900)

2 dynamic configuration with
interior-point method (Fmincon
function)

3 dynamic configuration with
A-SQP
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Figure 63: A comparison
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Conclusions and Future works

1 Static configuration design.

2 Reconfigurable robot design.

3 Dynamic configuration problem.

4 Hybrid cube:

1 Pareto front.

2 Experiments with dynamic
configuration problem.

3 Multiparametric programming.

4 Other reconfigurable mechanisms.

5 Efficient control allocation
algorithm.

6 Redundancy management
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Thank you for your attention

Thank you for your attention
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