
The Madeo framework
MADEO FET: Compiling for reconfigurable architectures
MADEO BET: Generic backend tools for reconfigurable

architectures

Löıc Lagadec

September 25, 2006

LESTER FRE 2734
ARCHITECTURES ET SYSTEMES
Université de Bretagne Occidentale
http://as.univ-brest.fr
mail: loic.lagadec@univ-brest.Fr

2

3

4

Contents

I MADEO BET 17

1 Starting guide 19
1.1 Flow . 19
1.2 Installation (obsolete) . 21

2 Designing an architecture 25
2.1 Principles of design . 25

2.1.1 Method of design . 25
2.1.2 Hierarchical structure 26
2.1.3 The atomic elements 27
2.1.4 Accessing and connecting elements 31
2.1.5 Additional parameters 33

2.2 Using Architecture Designer 36
2.2.1 Loading/Saving an architecture 36
2.2.2 Accessing/editing a description 38
2.2.3 Starting with a new description 39
2.2.4 Creating an architecture 39
2.2.5 Included examples . 40
2.2.6 Managing dependencies between elements 40

2.3 Generating documentation . 41
2.3.1 Principles . 41
2.3.2 Using MADEO-GENDOC 41

2.4 VHDL generation . 42
2.4.1 Principles . 45
2.4.2 Using V HDL Producer 45

3 Programming an architecture 47
3.1 Introduction . 47
3.2 Towards new needs . 47

3.2.1 Algorithms . 47

4 Tools 49
4.1 Using FPGA Editor . 49

4.1.1 Application description 50
4.1.2 Selecting BLIF/EDIF files 50
4.1.3 Placing and routing a BLIF/EDIF file 52

5

6 CONTENTS

4.1.4 Pasting the module . 52
4.1.5 Simulating the circuit 56
4.1.6 Using the window commands 56

4.2 Floor planning . 57
4.3 Drawing regular circuits . 62

4.3.1 Introduction . 62
4.3.2 Structural representation 62
4.3.3 Compatibility . 63

5 Architectural prospection 65
5.1 Introduction . 65
5.2 Tools . 65

5.2.1 Starting UIProspection 65
5.2.2 Analyzing an architecture 65
5.2.3 Selecting a BLIF/EDIF file 66
5.2.4 Modifying the value of an element 67
5.2.5 Collecting the results 68
5.2.6 Performing the prospection 69

II MADEO FET 73

6 introduction 75
6.1 Execution model . 76
6.2 Type system . 78

7 design flow and optimizations 79
7.1 design flow . 79
7.2 Possible Types . 81
7.3 Optimizations . 81

7.3.1 type inference . 81
7.3.2 code factorization . 85
7.3.3 dead code removal . 85
7.3.4 constant folding . 85
7.3.5 no op removal . 86
7.3.6 operator fusion . 86
7.3.7 Automatic decomposition 86
7.3.8 Operator flattening . 87

7.4 Logic generation . 87
7.4.1 Blif generation . 87
7.4.2 EDIF Generation . 88
7.4.3 Mixed netlist . 89

7.5 Tips . 89
7.5.1 Temporaries . 89
7.5.2 ArrayedResult . 89
7.5.3 Array . 89

7.6 the at : message . 90

CONTENTS 7

7.6.1 Comparisons . 90

8 Graphical tool 93
8.1 Tool . 93

8.1.1 Control panel . 93
8.1.2 The ToolBar . 95
8.1.3 Code menu . 96
8.1.4 Graphic representation 98

8.2 Interfacing low level tools (MADEO-bet) 100

9 Example: Defining a floating point multiplier 101
9.1 Introduction . 101
9.2 The implemented algorithm 101
9.3 Implementation . 102

9.3.1 The methods . 102
9.3.2 The types . 103
9.3.3 The resulting graph 104
9.3.4 Towards infinite precision operators 109
9.3.5 Conclusion . 110

10 Schematic design 111
10.1 Introduction . 111
10.2 Position within the flow . 111
10.3 Tool . 112

10.3.1 Example . 113
10.3.2 Composite nodes and hierarchical visiting 114
10.3.3 Conclusion . 115

III Appendix 117

A MADEO BET appendix 119
A.1 Some examples of architectures description using the gram-

mar . 119
A.1.1 First basic example . 119
A.1.2 Example 2 . 121
A.1.3 Example 3 . 123
A.1.4 Example 4 with custom representation 125
A.1.5 LPPGA . 126

A.2 Grammar . 130
A.3 Heterogeneous architectures 134
A.4 Inspecting changes over the definition of an architecture . . . 135
A.5 Textual output . 136
A.6 Changing the cost function of the placer 138
A.7 Prospection results . 139
A.8 Example of prospection . 142

A.8.1 History of prospecting result 142

8 CONTENTS

A.8.2 Average of prospecting result 143

B GenDoc results 145
B.1 LPPGAArray . 147

B.1.1 Architecture Design (Level 1) 147
B.2 LPPGACell2 . 148

B.2.1 Architecture Design (Level 2) 149
B.3 MySwitchLPPGA . 151

B.3.1 Architecture Design (Level 3) 151
Annexes . 152

Annexes 1: Sources LPPGACell2 152

C Madeo fet appendix 157
C.1 Blif vs Edif description . 157

C.1.1 smalltalk code . 157
C.1.2 Resulting EDIF . 157
C.1.3 Resulting Hierarchical Blif 160

C.2 Resulting Flatten Blif . 164

D Sis scripts 167

E Inference 169
E.1 CIR MethodGraph . 170
E.2 CIR Block . 171
E.3 CIR Operator . 173

List of examples

1.1 Launching the environment 21
2.1 The ARRAY syntax . 26
2.2 The COMPOSITE syntax . 27
2.3 The FUNCTION syntax with explicit naming 28
2.4 The FUNCTION syntax with global IOs 28
2.5 The WIRE syntax . 29
2.6 The REGISTER syntax . 29
2.7 The MULTIPLEXER syntax 30
2.8 The SWITCHBLOCK syntax 30
2.9 The REFERENCE syntax . 31
2.10 Naming the elements . 31
2.11 Accessing the elements . 31
2.12 The LINK syntax . 32
2.13 The LINK alternative syntax 32
2.14 The CONNECTION syntax 32
2.15 The alternative CONNECTION syntax 33
2.16 The PRODUCE syntax . 33
2.17 The CATEGORY syntax . 34
2.18 The REPRESENTATION syntax 34
2.19 The custom parameters syntax 35
2.20 The BASECOST syntax . 36
4.1 The floorplanner cost function 59
4.2 Setting the penalty . 59
4.3 First example . 60
4.4 Second example . 60
4.5 A serial adder . 64
5.1 Defining MV-variables . 68
7.1 Literals . 81
7.2 Intervals . 81
7.3 Radix based . 81
7.4 Unions . 81
7.5 GF16 . 81
7.6 GF128 . 81
7.7 Swapping the most/less significand four bits for an integer

ranging from 0 to 63 . 88
7.10 when comparing a value to a literal, the literal must be the

receiver . 90

9

10 LIST OF EXAMPLES

7.8 Swapping the most/less significand four bits for an integer
ranging from 1 to 63 . 91

7.9 end of the 7.8 example . 92
9.1 The entry point. Each float appears as three values : a sign,

a significand, and an exponent 102
9.2 The first operation over the exponents 102
9.3 The operations over the signs 102
9.4 The full operation over the significands, ignoring the whished

data width . 102
9.5 The significand normalization implies to shift and trucate the

value before returning it, but to answer as well the shift that
was applied in order to carry that shift over the exponent value103

9.6 First type . 103
9.7 Second type . 104
9.8 Third type, with its associated values, either fraction or float,

ranging from 1 to 2 - ε with ε = 2−3 104
9.9 The Blif description of the 9.4 table enlights two caracteristics

of the node : first, the Rout(op) reduction factor is important
as the inputs are encoded using 6 bits and the outputs only
require 4 bits, and secondily the outputs are called t39 1..3
and t40, what means the nodes owns two outputs, the first of
which requires 3 bits and the other one only one bit. 104

10.1 The equation description of the adder 113
10.2 The two bits adder . 114
A.1 An heterogeneous architecture 134
A.2 The new method generated from A.1 134
A.3 Placement information . 136
A.4 Routing information . 137
A.5 Example of cost function . 138
D.1 The 5lut.script doing the technology mapping for 5-Luts . . . 167
E.1 the infereTypes method . 170
E.2 The infereOutputsType method 170
E.3 the infereType method . 171
E.4 the infereTypes method . 171
E.5 the infereOutputsTypes method 172
E.6 The infereOutputsTypes method 173

List of Figures

1.1 MADEO BET flow . 20
1.2 Snapshot of the common environment 22
1.3 Snapshot after the installation process has completed 22
1.4 Saving your image . 23
1.5 Smalltalk menu . 23
1.6 Architecture Designer . 23

2.1 Principles of design . 26
2.2 View of the functions IOs connections 27
2.3 Global view of the model . 28
2.4 Example of action zone of wire 29
2.5 Two examples of switches . 30
2.6 Some examples of the default user interface over the basic

elements of he architecture 35
2.7 Loading an architecture description (1) 37
2.8 Loading an architecture description (2) 37
2.9 Selecting a description . 38
2.10 Choosing a category . 38
2.11 Code generated by build . 39
2.12 The tree representation of a composite 41
2.13 The GenDoc user interface . 42
2.14 The GenDoc parameters . 43
2.15 The GenDoc actions . 43
2.16 The GenDoc transcript . 44
2.17 The GenDoc html output . 44

4.1 The interface of FPGA Editor 49
4.2 The application description formalism 50
4.3 Selecting a BLIF/EDIF file from the menu 51
4.4 BLIF/EDIF File Browser . 51
4.5 selecting a BLIF/EDIF file 52
4.6 The list of available modules 52
4.7 Pasting the module on the FPGA 53
4.8 After pasting the module on the FPGA 54
4.9 Selecting the zoom factor . 54
4.10 Representing either all or only used resources 55

11

12 LIST OF FIGURES

4.11 The simulation of P&R circuits 56
4.12 Floorplanning 1 . 58
4.13 Floorplanning 2 . 58
4.14 Floorplanning 3 . 60
4.15 The result of the example 4.3 61
4.16 SCCompositeNodes . 62

5.1 Launching UIProspection . 66
5.2 Prospection Designer . 66
5.3 Viewer button . 67
5.4 Detailed view of the selected element 67
5.5 Result of a single place and route 68
5.6 Automation of prospection 68
5.8 Selecting the type of result 68
5.7 Keyboarding a new value . 69
5.9 The UIElements interface . 70
5.10 The elements to be prospected 70
5.11 Setting the number of runs for prospection 71
5.12 Latex output . 71

6.1 The modules can be either flat or hierarchical; the modules
can be composed in order to produce pipelines or can be in-
stantiated during architecture synthesis. 75

6.2 State machines can be obtained by methods operating on pri-
vate variables having known initial values. 76

6.3 Fan-in from 2 nodes with Card(fout× gout) < Card(fin)×
Card(gin). 77

7.1 MADEO BET and MADEO FET flow 80
7.2 A node links an output to some inputs, and computes the

output current value, depending on the inputs’ current value
in order to build the HL OO LUT 82

7.3 The starting code encapsulating an ArrayedResult. Note that
the code is structured automatically by extracting all nodes
that belong to the inheritance tree of the values 84

7.4 After the rewriting process, only three nodes remain. Note
the yellow color that denotes the hierarchical nodes. 84

7.5 code factorization . 86
7.6 The at: semantic . 90

8.1 The MADEO-FET launching procedure 93
8.2 User Interface . 94
8.3 Control panel . 94
8.4 Context menu . 95
8.5 Madeo-Fet toolBar . 95
8.6 Code menu . 96
8.7 CIR menu . 97

LIST OF FIGURES 13

8.8 BLIF menu . 97
8.9 SCNode menu . 98
8.10 The graph representation . 99
8.11 MADEO FET - MADEO BET interfacing 100

9.1 A small floating Point multiplier 105
9.2 The reduced 9.1 graph . 106
9.3 The 9.2 graph with operator fusion 107
9.4 The LUT of the normalizeSignificand : operator 108
9.5 The global LUT . 109
9.6 Verification over the circuit 109

10.1 Interfacing MADEO-FET and the schematic editor 111
10.2 The Schematic Editor launching procedure 112
10.3 The schematic editor . 112
10.4 The SCNode Chooser . 113
10.5 Flattening nodes . 115

A.1 Architecture viewer . 135
A.2 Analyzing the bounding box 139
A.3 Analyzing the CPU time . 139
A.4 Analyzing the number of unrouted signals 140
A.5 Analyzing the routing cost . 140
A.6 Analyzing the number of runs (20 max) 140
A.7 Analyzing several criteria . 141

14 LIST OF FIGURES

Introduction

Reconfigurable architectures offer a promising trade-off between the
ASICs’ peek performances and the flexibility the software ingeneers are used
to. Their ”tunable” nature widens their use scope, allowing to recoup the
non recurning costs and makes them financially attractive.

Unfortunately, these architectures often suffer from a poor development
environment preventing short time to market, and slowing down hardware
evolutions.

From our point of view the two major points that diserve RA are:

• First, the application designing front end does not fully exploit the
hardware capabilities; this is mainly due to the VLSI CAD domain
from which emmerged the RA CAD nearly twenty years ago. A con-
sequence is that applications are commonly described as VHDL pro-
grams that make use of C-like typed operators (8,16,32 bits operators)
that are present in libraries despites the hardware permits to imple-
ment custom operators, with better performances.

• Secondly, the back end tools, that are needed to program such archi-
tectures, are strongly linked to their target architecture, exhibit poor
reuse and bring a long development process for each new architec-
ture. This prevents the designers from testing their architectures at
an early stage, prior to any physical realisation, as these tools are the
only solution to get an accurate feed back over a design choice. In
addition, linking CAD tools to an architectural model makes architec-
tures comparisons harder, and increazes the propability of defective
software whereas resuse speeds up the development process, increazes
producitvity and software quality.

The fact is that by keeping secret the technical informations the CAD
tools designers need, the FPGAS vendors refuse third parties to bring
up their own tools.

The Madeo project is an attempt to answer to these limitations. This
project has been on since 95/96 and came after the ArMen project. One
of the concluding remarks of the ArMen project was that to be dependent
of the CAD tools the FPGAs vendors provide is higly time consuming as
no API is preserved from one generation to another. Another conclusion
was that programming a complex hardware mixing several computational

15

16 LIST OF FIGURES

models requires a high level unified front end making use of code generation
on demand. As a consequence, MADEO makes use of a non-typed functional
language when designing application, and prohibits any commercial back-
end tools; MADEO is made of two layers, as introduced below:

The top layer called MADEO-FET produces RTL logic or EDIF netlist,
from a functional code (with no types) from one hand, and a context from
another hand. A context describes the set of different values for every vari-
able. By performing types inference, and several more classical optimiza-
tions, the compilation process results in a hierarchical graph of operations
each of which owns a minimized logic description.

Implementing this graph cannot be archived based on library based op-
erators. On the contrary, this stage requires to be able to produce custom
operators, before composing them. This is done by invocating the back end
layer.

The back-end layer called MADEO-BET produces a textual ”bitstream”
from a hierarchical RTL description (BLIF, EDIF, or an internal format
supporting regular circuits) from one hand, and a modelization of an archi-
tecture from another hand. The designer benefits from a set of hardware
elements (functions, switch, multiplexers, etc. . .) that can be combined
and/or specialized to describe a given architecture. This stage is archived
through a compilation process, after the designer has described within a
private language its architecture.

A set of generic tools (P&R, floorplanner, regular editor, etc. . .) ma-
nipulates this architecture, with as main benefits, the capability to describe
any architecture and to do it fast, to share the tools between all these ar-
chitectures, and to get feedback over architectures.

It is also possible to automate this architectural variation, and to collect
feedback to drive the designer’s choices regarding a class of target application
to implement.

VHDL descriptions are to be added to offer the designer a way to go
up to the physical synthesis of its architecture. This will benefits as well
to the tools by returning after-synthesis accurate information to tune the
algorithms parameters.

This report introduces the MADEO framework from a user point of view,
starting with MADEO-BET (chapters 2 to 5) and considering MADEO-FET
as a second part.

The first chapter is a short starting guide through the installation pro-
cedure.

Part I

MADEO BET

17

Chapter 1

Starting guide

Introduction

MADEO-bet[7] [8] [6] is a framework composed of a set of back-end tools
for modeling and programming reconfigurable architectures. MADEO-bet
comes within the framework of a more general set of tools, targeting the pro-
gramming and the manipulation of reconfigurable architectures at a very
high level of abstraction, using a symbolic and non-typed environment.
MADEO-bet provides the generic back-end in this compilation flow.

This chapter does not introduce the upper stages of MADEO which are
described in part II, but focuses on practical information regarding the back-
end tools. This report is splited into several sections: the first one describes
the installation procedure. The second section introduces the modelization
stage while the next section describes its associated tool: the Architecture
Designer. The next chapter details the way to program a architecture while
the following one addresses the tool allowing to program a modelized archi-
tecture, including floorplanner and regular circuit editor. The last chapter
details how to automate the architectural prospection in front of a fixed
circuit.

1.1 Flow

CAD tools for reconfigurable architectures commonly suffer from several
lacks. First, except few tools such as VPR [2], they are dedicated to a single
architecture, or at most to a family of architectures. It’s a fact that taking
advantage of a cad tool may prevent some bad decision when designing a new
architecture. Designing an architecture meanwhile developing its associated
cad tool can lead to serious problem as illustrated by the PROTEUS project
[4].

Another point is that a tool which fits to any architecture, allows not
simply testing the architecture, but more, allows comparing several archi-
tecture. And Last, by reusing most of the code, such a tool decreases the
required amount of development time.

Secondly, CAD tools do not exhibit any feature that would allow to draw

19

20 CHAPTER 1. STARTING GUIDE

Internal Model

Estimators

Circuit drawing

Concrete Model

Abstract Model

build

compile

use

LanguageTextual description

prospect

Floorplanning

Place and Route Hardware Control

Application

...

MADEO FET

Netlist EDIF

Netlist BLIF

Figure 1.1: MADEO BET flow

1.2. INSTALLATION (OBSOLETE) 21

regular circuits, based on an existing application structuring. Designers
claim the tools must bring new functionalities such as hot debugging by
interfacing the real architecture if any, or supporting several abstraction
levels that could be mixed or exchanged one to the other, or drawing regular
circuits.

MADEO-BET focuses on these points; and provides a generic backbend
tool that can adapt to any architecture, according this architecture is de-
scribed within a custom language. In addition, by providing a stable and
common back end to a higher level compiler, MADEO BET lets MADEO-
FET benefit from accurate information when electing a design policy for an
application both depending on the hardware and the application field (see
part II).

1.2 Installation (obsolete)

Requirements In this section, we assume that Visualworks [1] has been
previously installed1. As well, we assume that all the files of the MADEO-
bet package have been copied into a local user directory.

The MADEO-bet package The MADEO-bet package is composed of
the following Visualworks files :

• MADEO-bet.pcl, madeo-bet.pst

• EDIF.pcl, EDIF.pst

• visualxx.im (where xx represents the Visualworks version number).
the 30 version runs on windows, and the 31 version runs on Linux 2.2x
kernels

• additional files such as some BLIF/EDIF files

These files are contained in an archive file name imagexx.tgz (where xx
represents the Visualworks version number).

The installation The installation process starts with launching the Vi-
sualworks environment in a similar manner than the code provided in 1.1.

$(VISUALWORKS)/bin/visualnc visualxx.im

Code Ex. 1.1: Launching the environment

Be careful of choosing as current directory the one in which the MADEO-bet
files are present.

After this is done, the user’ screen must be close to the one of figure
1.2. The upside windows is called VisualLauncher. Click then on the start
installation button to install the package.

22 CHAPTER 1. STARTING GUIDE

Figure 1.2: Snapshot of the common environment

Figure 1.3: Snapshot after the installation process has completed

After the installation completes (figure 1.3), it is recommended to save
the resulting image (figure 1.4).

Opening the graphical interface Designing a new architecture relies
on the Architecture Designer tool (figure 1.6) which is accessible through
the last icon (figure 1.5).

The full description of the FPGA takes place in this interface.

1To install Visualworks, refer to http://wwww.cincon.com

1.2. INSTALLATION (OBSOLETE) 23

Figure 1.4: Saving your image

Figure 1.5: Smalltalk menu

Figure 1.6: Architecture Designer

24 CHAPTER 1. STARTING GUIDE

Chapter 2

Designing an architecture

2.1 Principles of design

Within MADEO-bet, a reconfigurable architecture appears as a collection
of 2-D grids of identical tiles. Each of these tiles can be either an atomic
elements or a hierarchical composition of elements (figure 2.1).

The hierarchical elements contain either a 2-D grid of sub-elements own-
ing their private position or a set of sub-elements that share the same loca-
tion (e.g sub-elements within a CLB).

Atomic elements are functions, wires, switches, etc. . .

Example The architecture which serves as an example along this report
is LPPGA developed by V. George [5]. The full model of this architecture
is provided in appendix A. The FPGA appears as a 2D-grid of cells. These
cells are composed of a logical function, a switch, some wires and some con-
nections between these various elements (figure 2.2). However it’s possible
to define a more complex architecture for the elements of the table. For the
LPPGA architecture there is only one level in the hierarchic architecture
(figure 2.3).

2.1.1 Method of design

The design of a FPGA with Architecture Designer is based on a grammar
provided in the appendix B of this document or obtained while going in the
menu Help ¿ bnf description. From this grammar it’s possible to represent
the architecture of the FPGA in a detailed way.

Once the architecture description is validated, Smalltalk classes are gen-
erated (paragraph 2.1.5) which represent every level of the hierarchy.

Despite these classes provide a sufficient support for the architecture,
the developer has the opportunity to modify/optimize the produced code
by hand in a classical Visualworks way (section 4.1.6).

25

26 CHAPTER 2. DESIGNING AN ARCHITECTURE

One description reproduced in the FPGA circuit

1

2

3

1 432

Y

X

Figure 2.1: Principles of design

2.1.2 Hierarchical structure

2D-Grids

A 2D-grid describes the regular replication of a given pattern. The informa-
tion needed is the grid surface and its position on one hand, and the element
to be replicated on the other hand.

(ARRAY
(DOMAIN 1 1 x y)
element

)

Code Ex. 2.1: The ARRAY syntax

Note that heterogeneous architectures can be built by defining a set of
domain-element couples. This is illustrated by the appendix A.3.

The composite elements

A composite element enables to group several objects within a single con-
tainer in order to favor reuse/replication of elements. The composite ele-
ments do not only provide structural description but describe connections
between elements as well.

In the example, the composite element corresponds to the FPGA cell. It
recovers the list of elements as well as connections. The code representing
the creation of a composite is as follows:

2.1. PRINCIPLES OF DESIGN 27

east

south

north

west

o1
o3b1

a3

o2 a1

b2

a2

F

Figure 2.2: View of the functions IOs connections

(COMPOSITE
(

list of elements
)
list of connections

)

Code Ex. 2.2: The COMPOSITE syntax

Note: All the elements contained within a composite are accessible through
their symbolic naming, so that all of them must be provided a name (2.1.4).

2.1.3 The atomic elements

The set of available atomic elements is extensible under certain circum-
stances. This subsection does not detail the object-oriented rules the de-
veloper must conform to when creating a new kind of atomic element but
introduces the most commonly used elements.

The functions

A function is a basic element which corresponds to the logical function of the
cell. It is made up of a list of inputs and outputs and accepts potentially any
”processing unit” assuming the IOs are compatible. However, the possible
functions can be restricted to a set of symbols on demand.

28 CHAPTER 2. DESIGNING AN ARCHITECTURE

east

south

north

west

o1
o3b1

a3

o2 a1

b2

a2

F
IOB A IOB B

Figure 2.3: Global view of the model. Note that the IOBs are encapsulated
within composite elements in order to add lacking resources such as the right
most vertical channel.

It is created in two ways, according to the kind of IOs enumeration (see
codes 2.3, 2.4).

(FUNCTION
(INPUTS list of inputs)
(OUTPUTS list of outputs)

)

Code Ex. 2.3: The FUNCTION syntax with explicit naming

(FUNCTION
(INPUTS named input wire)
(OUTPUTS named output wire)

)

Code Ex. 2.4: The FUNCTION syntax with global IOs

The wires

A wire is described by its width. A wire with a unary width is a single wire
whereas a wire with a width above one can be either seen as a wire or as a
channel owning tracks. This drives the behavior of the router as using single
wire leads to global routing and using channels provides a detailed routing.

The wires do no set their range neither their population; these two char-
acteristics are computed regarding the connections (see 2.1.4).

2.1. PRINCIPLES OF DESIGN 29

cells

start point

end point

wire

Figure 2.4: Example of action zone of wire

These two examples illustrate the use of a wire versus the use of a chan-
nel:

1. WIRE (WIRE (WIDTH size of wire))

2. SIMPLE CHANNEL (WIRE (WIDTH size of wire) EX-
PANDED)

3. COMPLEX CHANNEL (WIRE (WIDTH size of wire)
EXPANDED OF (wire *))

Code Ex. 2.5: The WIRE syntax

Note that there is no restriction on sub wires. Sub wires can be simple
wires, channel or complex channels; they can be described as a link (see
further on); they can be associated an individual representation.

The registers

(REGISTER
(INPUT string describing a wire)
(OUTPUT string describing a wire)

)

Code Ex. 2.6: The REGISTER syntax

The multiplexers

The switches

The switch permits to carry out the interconnection between two wires. It
can carry out a regular interconnection or not (see fig. 2.5). In the case

30 CHAPTER 2. DESIGNING AN ARCHITECTURE

(MULTIPLEXER
(INPUTS string describing a wire *)
(OUTPUT string describing a wire)
(WIDTH width)

)

Code Ex. 2.7: The MULTIPLEXER syntax

of the LPPGA the switch is regular. The definition of the switch is based
on two parts, the first corresponds to the enumeration of the wires which
are used by the switch, the second gives all connections carried out between
different the wires used in switch. The creation of the switch is made using
the code 2.8:

(SWITCHBLOCK
(RESOURCES

(
name of wire1
name of wire2
. . .

)
)
list of connections

)

Code Ex. 2.8: The SWITCHBLOCK syntax

Regular switch Non−regular switch

Figure 2.5: Two examples of switches

In a matter of simplicity, a standard switch interconnecting wires of the
same width is assumed to be a regular switch (see figure 2.5). In case widths
differ and no particular connectivity is specified, the switch will be all-to-
all connected. Note that this can bring surprising results when performing
prospection (section 5) if the designer is not aware of linking the wires width.

2.1. PRINCIPLES OF DESIGN 31

The references

The references permit to call upon objects previously defined in another
architecture to re-use them in new architectures. As every complex object
is represented through a Smalltalk class, the name of the class acts as a
parameter for reference. More information on classes definition is presented
in the section Category (2.1.5).

(REFERENCE name of Class element)

Code Ex. 2.9: The REFERENCE syntax

2.1.4 Accessing and connecting elements

Naming the elements

Naming the elements is required when aggregating elements within a com-
posite. Note that the elements of the 2D-Grid are implicitly named by their
position within the grid.

(unamed element NAMED name)

Code Ex. 2.10: Naming the elements

Accessing the elements

A hierarchical element accesses to its sub-elements using the at: syntax.
The parameter is either a symbol or a point defining the position of the sub
element.

As all elements know their container, relative addressing is also possible.
Sending the container message to an element returns its container.

The example 2.11 addresses the element named f, contained in the same
container that the requester.

myElement container at: #f

Code Ex. 2.11: Accessing the elements

32 CHAPTER 2. DESIGNING AN ARCHITECTURE

Using aliases

For convenience some resources appear in several naming space (i.e. several
composite elements). This is done using aliases which enable to delude the
elements about the resource owning, without replicating shared resources.
For example, shared lines often take advantage of owning several names.

(
(LINK ’(self relativeAt: position of target cell) name of wire’)

NAMED name of second wire)

Code Ex. 2.12: The LINK syntax

As the architecture appears as a regular pattern replication, some problems
may happen on the borders. As an example, defining a tile made of a left
and a up routing channel will produce degenerate right and bottom borders
as some resources defined as links won’t exist. A solution is to specify an
exception to be raised on demand using an alternative syntax (code 2.13).

(
(LINK ’(self relativeAt: position of target cell) name of wire’

IFNONE definition of the alternative element)
NAMED name of second wire)

Code Ex. 2.13: The LINK alternative syntax

Another solution is to define an heterogeneous architecture (made of
several domains), what allows to tune the borders to match the regularity
requirements.

Connecting elements together

Connections are used to connect all elements of the cell. There are two types
of connections: connections related to outputs and connections related to
inputs.

(CONNECTION
’object containing output1 connect: output name 1 to: wire’
’object containing output2 connect: output name 2 to: wire’
. . .

)

Code Ex. 2.14: The CONNECTION syntax

2.1. PRINCIPLES OF DESIGN 33

(CONNECTION
’(object containing input1 at: input1) connectTo: input2 of: ob-

ject containing
input2 ’

. . .
OR
’(object containing input1 at: input1) connectTo: (ob-

ject containing input2 at: input2)’
. . .

)

Code Ex. 2.15: The alternative CONNECTION syntax

For the second connections, two equivalent writings are available:

The connections are not limited to the current cell; it is possible to reach any
cell of the circuit on demand through absolute/relative element addressing
(see 2.1.4).

2.1.5 Additional parameters

Produce

Marking out PRODUCE gives the possibility to create a Smalltalk class
which name is passed as a parameter. Note that the name of class must to
start with a capital letter.

(
(

(definition of element)
NAMED name of element)

PRODUCE Name of Class)

Code Ex. 2.16: The PRODUCE syntax

Category

Smalltalk classes are organized within categories. It’s thus significant to
group all the classes concerning the FPGA modeled in a single category.
Marking out CATEGORY permits to direct the class generated by PRO-
DUCE.

34 CHAPTER 2. DESIGNING AN ARCHITECTURE

(
(

(
(definition of element)

NAMED name of element)
PRODUCE name of Class)

CATEGORY name of Category)

Code Ex. 2.17: The CATEGORY syntax

Representation

Simple graphical representations can be generated automatically based on
some grammar informations. These informations are provided using the
REPRESENTATION syntax element that takes place between the end of
the definition of an object and the attribution of the name of this object.

(
(object definition)
REPRESENTATION

(option1 of representation)
(option2 of representation)

)

Code Ex. 2.18: The REPRESENTATION syntax

The options of REPRESENTATION are

• (COLOR color) to define the color of display of the object.

• (RECTANGLES x1 y1 x2 y2) to represent the object in form of a
rectangle defined by the coordinates of the corner in top on the left
(x1,y1) and the corner in bottom on the right (x2,y2).

• (CHANNEL x1 y1 x2 y2 vx vy) to represent the wires in the cell:
(x1,y1) is starting point, (x2,y2) is ending point of the wire. The
vector (vx, vy) represents spacing between the wires when option EX-
PANDED is used in the definition of the wire.

• (TEXT x y information to be displayed) allows to display text start-
ing from the position (x,y).

• (name of wire (LINE x1 y1 x2 y2)) used by the switch this option
gives space fixes to use to display the connected wires.

2.1. PRINCIPLES OF DESIGN 35

• (CUSTOM name of the custom method) enables to reuse custom rep-
resentation whereas the generic representation is rebuilt.

Defining custom UIG for elements

The elements of the architectures are provided default UGI as shown in
the 2.6 figure. Refining the interfaceClass parameter, associates a new
hand made interface. The parameter must provide the name of the class
describing the interface.

Figure 2.6: Some examples of the default user interface over the basic ele-
ments of he architecture

Defining customs parameters

The elements can be added some custom parameters to adapt to special
needs. These parameters can be exploited by user-defined algorithms.

(SET parameter name parameter value)

Code Ex. 2.19: The custom parameters syntax

36 CHAPTER 2. DESIGNING AN ARCHITECTURE

Defining variable parameters

When prospecting the hardware definition space, the developer benefits from
variable parameters allowing to perform loops in an automatic way. The
produced results are collected. This is described in detail in section 5.

Setting the cost of the resources

It is possible to set the cost of every individual routing resource to influence
the router’s behavior. The default cost for a routing resource is 1. Adapting
the cost of the resources depending on their range enables to favor the use
of some resources (long lines, neighbor to neighbor connections, etc. . .).

This is done by setting the baseCost parameter.

(WIRE (WIDTH size of wire (BASECOST number))

Code Ex. 2.20: The BASECOST syntax

Note that using this parameter only enables to modify the router’s behav-
ior. To change the placer’s behavior, changing the cost function is required
(see appendix A.6).

2.2 Using Architecture Designer

A convenient way to produce and use some architectural descriptions which
are grammar compliant is to open the Architecture Designer tool. This tool
facilitates common operations over textual descriptions such as compiling,
saving/loading, producing the model, etc. . . and enables to invoke some other
tools such as the user interface or the prospection automation tool.

2.2.1 Loading/Saving an architecture

There are two methods to recover an architecture contained in a file using
the menu of Architecture Designer.

The file list interface (see fig. 2.7) enables to select a file from which to
load a piece of Smalltalk code. This is the standard Smalltalk way to load
(file in) code within the environment. The code to be loaded describes an
architecture through a set of classes that have been previously generated
(section 2.2.3)

The window of figure 2.8 enables to choose a file to load as a textual de-
scription of an architecture. Opening this window is accessible through the
File ¿ load menu.

2.2. USING ARCHITECTURE DESIGNER 37

Figure 2.7: Loading an architecture description (1)

Figure 2.8: Loading an architecture description (2)

38 CHAPTER 2. DESIGNING AN ARCHITECTURE

The user is asked to provide a path (a path) and the name of the file of a
textual description to be loaded (a file description.st). The files containing
the description of an architecture have as an extension .st.

Saving your architecture is a menu operation in File ¿ save. At this point,
a filename must be provided (a file.st).

2.2.2 Accessing/editing a description

Selecting a description is done through a drop-down list in Architecture De-
signer (figure 2.9).

Figure 2.9: Selecting a description

It’s possible to restrict the search by indicating to which category be-
longs the architecture (figure 2.10). This requires to choose Options and to
validate the check box category. An new input field enables to select the
target category.

Figure 2.10: Choosing a category

2.2. USING ARCHITECTURE DESIGNER 39

2.2.3 Starting with a new description

Creating a new architecture goes through clicking on the button New . The
name of this new architecture must be provided in the input field on the
left. The architecture is described in the text editor. However the architec-
ture is not recorded in the drop-down list until the description is compiled.
Compilation starts when clicking the compile button.

2.2.4 Creating an architecture

The creation of an architecture defined in the text editor requires several
stages. These stages are accessible through the buttons panel on the bot-
tom of the window. Note that there is an inclusive relation between the
operations from left to right (except the open button).

Compiling

The first stage, compilation, was already stated in a previous paragraph.
It is represented by the button compile being on the interface, but can
also be called by the menu Operations ¿ compiles. This stage checks if the
description of architecture is grammar compliant (see appendix B).

Generating Smalltalk classes

The creation of Smalltalk classes representing the architecture described in
the text editor is done using the button build or with the menu Operations
¿ build. The name of the classes as well as the categories conform to the di-
rective provided within the textual description. This is useful for advanced
programming.

Figure 2.11: Code generated by build

The button build carries out compilation and classes’ creation. Thus it’s
useless to click on compile before clicking on build. Options concerning the
creation of the classes are available from the menu Options.

40 CHAPTER 2. DESIGNING AN ARCHITECTURE

Architecture Description
LPPGACell Heterogeneous architecture
LPPGACell2 LPPGA Simplified architecture, including ugi
LPPGACell3 LPPGA Architecture with regular function IOs
LPPGACell4 LPPGA Architecture with IOBs
LPPGACell5 LPPGA Architecture with additional resources on borders

Table 2.1: Provided examples

In case the option overwrite classes is set then each use of build gener-
ates all the classes to be crushed. In a similar way , the option overwrite
representation crushes the Draw methods (graphical representation).

It’s necessary to pay attention to the use of these two options. Any
changes made in the automatically generated code will be lost if one of both
option is selected. Preserving a hand written user interface remains possible
using the CUSTOM parameter (2.1.5)

User interface over the FPGA

For obtaining a representation of the architecture described in the text editor
you can click on the button UGI or go in the menu Operations ¿ open
UI. This button includes the functionalities of the button build, it compiles
description and builds the Smalltalk classes. In addition it calls the tool
FPGA Editor to visualize the generated architecture.

It is possible to visualize the FPGA starting from the button open, how-
ever the classes representing this FPGA must be already generated.

2.2.5 Included examples

The code comes with a set of architectures definitions to enlighten the archi-
tectural grammar structure that have been presented in the previous section.

2.2.6 Managing dependencies between elements

By defining complex elements, some dependencies are introduced. As an
example defining a channel made of several sub channels may bring archi-
tecture building failure if the sub elements are provided a name within the
channel’s container name space. This situation happens very after as soon
as multiples naming are used.

Another example is the IOs definition of multiplexers that commonly
refers to external resources. Of course, this requires those resources to be
created before the multiplexer attempts to link its IOs to the resources.

These cases require to order the elements, under the designer responsibil-
ity. The default ordering is based on ascending name sorting, nevertheless,
using the TREE VIEW, this order can be adapted by elements drag and
drop.

2.3. GENERATING DOCUMENTATION 41

The figure 2.12 illustrates that mechanism. Getting up this tree view is
got by clicking on the TREE VIEW button of the Architecture designer.

Figure 2.12: The tree representation of a composite

2.3 Generating documentation

In order to ease the architecture definition versionning, a documentation
generator is included within MADEO-Bet. This tool, called GenDoc, re-
quires a Unix like OS to run properly.

2.3.1 Principles

The main idea behind this is that writing documentation can be automated
from the UIArchitectureDesigner tool. In fact, the documentation only
provides a paper sheet with a tree view of the architecture, annotated by
some icons to easily distinguish between the different kinds of elements, and
by some comments the designer may add. The ?? appendix contains an
example of report GenDoc can produce.

Motivation This automation is especially useful for joined works. Never-
theless, when letting an architecture description evolves, this allows to trace
the evolution, as well as to set a version using the comment field (see figure
2.14).

Pre-requires The generator relies on LATEX. The report produces a LATEXfile,
with graphical commands in it. Some encapsulated postscript figures are
needed so that one of the parameters is the LATEXdirectory.

2.3.2 Using MADEO-GENDOC

GenDoc is called from the ArchitectureDesigner tool by clicking on the
right most button. This opens the 2.13 window. More complex parameter-

42 CHAPTER 2. DESIGNING AN ARCHITECTURE

ization is possible by opening the 2.14 window. Note that default settings
can be saved.

Actions The basic action is to generate the LATEXand the dvi files. A
transcript window (figure 2.16) pops up after the job completes.

Getting some additional formats requires to select the adequate options.
Several formats can be chosen as output : postscript, pdf, html. The pdf file
is produced by the ps2pdf command, the html is made by calling latex2html.
the html description (figure 2.17) includes hyper links that ease the naviga-
tion through the architecture elements.

The other actions are viewing the postscript, generating the pdf, viewing
the pdf.

Figure 2.13: The GenDoc user interface

2.4 VHDL generation

MADEO-bet allows to bring up a set of tools to program any architecture
before any hardware realization. This ensure good properties such as early
architecture evaluation, that lets SOC use of reconfigurable make sense. Re-
garding the classical design flow starting with writing a VHDL description
of the architecture before synthesizing it and finally re-writing tools to tune
them in order to apply on the new architecture, Made-bet offers an alterna-
tive flow making the tools a starting point.

Nevertheless, after the designer has defined its target hardware, as an
example by taking advantage of the hardware prospection capabilities of
MADEO-BET, the VHDL writing step still remain to be done.

2.4. VHDL GENERATION 43

Figure 2.14: The GenDoc parameters

Figure 2.15: The GenDoc actions

44 CHAPTER 2. DESIGNING AN ARCHITECTURE

Figure 2.16: The GenDoc transcript

Figure 2.17: The GenDoc html output

2.4. VHDL GENERATION 45

2.4.1 Principles

To shortcut this step within the design flow a current work aims to provide
automatic VHDL code production based on the grammar describing the
hardware.

Motivation The goal is not to compete with ”general purpose FPGAs”
vendors such as Xilinx but rather to get an output enabling physical syn-
thesis of custom dedicated FPGAs in a SOC scope.

This offer an after synthesis accurate feed-back to tune the algorithm pa-
rameters in one hand, and suppress the manual intervention of the designer
in the other hand.

Pre-requires A VHDL model has been developed that encapsulates not
only the syntax of VHDL but also supports the hierarchical approach, and
modular decomposition of the code.

The set of classes is made of three types of objects:

• the classes that match the basic constructs of the language (entity, if
then else, port, etc. . .),

• the classes that offer a support for recurrent constructs (luts, switches,
etc. . .),

• some classes that handle internal constructs (parenthesis, indexes,
etc. . .).

All the classes own a modular generation of textual representation, and are
provided with examples1.

The key issue is to validate an right instantiation of this model from
the MADEO-BET model. As the MADEO-BET model is made of atomic
objects and compositions mechanisms, the VHDL model supports atomic
constructs and complex combinations of objects through a mechanism of
port mapping.

2.4.2 Using V HDL Producer

This interface is not working at this time.

1as class methods

46 CHAPTER 2. DESIGNING AN ARCHITECTURE

Chapter 3

Programming an architecture

3.1 Introduction

This section describes what ’programming a reconfigurable architecture’
means. As well, it highlights the difficulty to route FPGAs, as compared to
ASICs.

3.2 Towards new needs

This section describes the new needs in term of flexibility (to different fam-
ilies as well as to defaulted instances of an architecture), short development
time and algorithmic quality (modularity / reuse), support for upper layers
and inter-operability.

This section argues as well that the tools must be used as early as possible
in the design process of a new architecture, as it’s the only way to get an
accurate feed back after tuning finely the architecture description; and that
tools must be decoupled from the target architecture.

3.2.1 Algorithms

This section introduces some well known algorithms and select some of them
that have been picked up to be implemented within MADEO.

47

48 CHAPTER 3. PROGRAMMING AN ARCHITECTURE

Chapter 4

Tools

4.1 Using FPGA Editor

FPGA Editor (see fig. 4.1) is a tool which makes it possible to visualize and
to handle an architecture created with Architecture Designer .

The interface is made of three parts: the first one corresponds to the
menu, the second one is a view of the FPGA and the third one is command
line zone.

Figure 4.1: The interface of FPGA Editor

49

50 CHAPTER 4. TOOLS

4.1.1 Application description

This describes the several levels of application description. The application
is described over a set of objects which support the same API but own dif-
ferent levels of abstraction. All these objects are SCNodes; they encapsulate
a computational description and own IO ports which handle dependencies
in order to support change propagation over the values they retain.

The connectivity between nodes is relevant to the IO ports’ pins.

What differentiates between the types of nodes is the kind of computa-
tional description the carry: BLIF, EDIF, Smalltalk block, etc. . . . As well
there are some hierarchical constructs, as illustrated by the 4.5 example.

The figure 4.2 illustrates this formalism.

retainedValue
output nets

Pin Net

input pinPort

Unamed portNamed port

output pin +
post processing

pre processing

List of Pins

Computation

Figure 4.2: The application description formalism

4.1.2 Selecting BLIF/EDIF files

The Modules ¿ BLIF ¿ Place and Route has BLIF description menu (see
fig. 4.3) enables to choose a file to be placed/routed on the architecture.

The appearing window lets the designer free to choose the file to place
and route, to regulate the orientation of the routing and to give a position
to start place and route.

4.1. USING FPGA EDITOR 51

Figure 4.3: Selecting a BLIF/EDIF file from the menu

Figure 4.4: BLIF/EDIF File Browser

52 CHAPTER 4. TOOLS

To select a file the user either types the name of the file with the complete
path in the input field, or clicks on the button choose. Clicking on choose
makes a file list to open (fig. 4.5).

Figure 4.5: selecting a BLIF/EDIF file

4.1.3 Placing and routing a BLIF/EDIF file

Once parameterized the BLIF file browser, clicking on the button P&R
places and routes the modules. The name of the new module appears in the
drop-down list of the menu (fig 4.6).

Figure 4.6: The list of available modules

Note that the EDIF format supports location constraints for the func-
tions. Theses constraints are added using the FPOS property field. the
location are relative to the bottom left corner of the module.

4.1.4 Pasting the module

The selected cell acts as the bottom left anchor when pasting a module. This
cell is yellow bordered and is selected using the mouse. Pasting the module
is done by choosing the correct option in the menu associated with the list
of modules (figure 4.7). The figure 4.8 shows the result of pasting a module.
Note that this action does not trigger a new place and route process but
relies on a previous place and route, that produced the module.

4.1. USING FPGA EDITOR 53

Figure 4.7: Pasting the module on the FPGA

If the display is too small, the enlarging of the FPGA can be changed
by choosing a factor in the small drop-down list. This is illustrated through
the figure 4.9.

Another representation option (depending on the grammar definition of
the architecture) allows to draw either all the resources, which is useful to
estimate the routing congestion, or only the used resources, which makes
the drawing simpler. The figure 4.10 illustrates how to swap between the
two modes.

54 CHAPTER 4. TOOLS

Figure 4.8: After pasting the module on the FPGA

Figure 4.9: Selecting the zoom factor

4.1. USING FPGA EDITOR 55

Figure 4.10: Representing either all or only used resources

56 CHAPTER 4. TOOLS

4.1.5 Simulating the circuit

Once placed and routed, a circuit can be simulated as illustrated in the figure
4.11 by using the simulate option of the module’s menu. The simulation
process does not rely on the P&R information but limits itself to analyzing
the netlist. Both simple and hierarchical descriptions can be simulated.

As an example the figure 4.11 shows a hierarchical circuit which submod-
ules’ bounding boxes are drawn, and on the right the result of simulation.
Either the global circuit (front window) and a one of its submodules (back
window) are simulated.

Figure 4.11: The simulation of P&R circuits

4.1.6 Using the window commands

The command line area of the window enables complex manipulations over
the architecture, such as in depth inspection of the resources and debugging.

here is a list of simple examples of useful commands to recover informa-
tion on the FPGA follow:

4.2. FLOOR PLANNING 57

self model
Inspecting this code (button medium of the mouse and inspect) returns the
Smalltalk object representing FPGA circuit.

self model modules values
Inspecting this code returns the list of circuits implemented within the
FPGA (each of which owns several instances).

(self model modules values at: i) benchmark
Inspecting this code returns the place&route benchmark of the ith module.

(((self model modules values at: i) instances) at: #instance1)
elements
Inspecting this code returns the placement information of the instance #in-
stance1 of the ith module

(((self model modules values at: i) instances) at: #instance1)
routes asOrderedCollection
Inspecting this code returns the routing information of the instance #in-
stance1 of the ith module

4.2 Floor planning

The floor planning is based on [12]. A floorplan is described as an assembly
of rectangles and a set of constraints regarding the relative locations of the
rectangles. Four basis operation apply on the floorplan :

rotate transposes the extent of the rectangular bounding box of a module

swap exchanges two modules

reverse reverses the relation between two modules (eg. i ⊥ j #−→ j ⊥ i
where ⊥ is either left or above and i, j are two modules)

move modifies the type of relation (eg. left #−→ above)

The floorplanner performs an annealing schedule over the floorplan, us-
ing these four operations. The cost function takes into account the global
bounding box of the assembly, the part of this bounding box which does not
match the constraint bounding box requirements and the interconnection
cost (see code 4.1).

The penalty that applies to the bounding box slowly increases as the
temperature decreases (see code 4.2). The default bounding box is computed
as the default bounding box before optimization, scaled by a factor of 0.8,
unless a bounding box is provided.

As the algorithm is not deterministic, the result can be sub optimal as
illustrated by figures 4.12 (initial positions), 4.13 (optimal floorplan) and
4.14 (sub optimal floorplan).

After the annealing process completes, the bounding box associated with
the nodes is taken as a constraint during the P&R stage.

58 CHAPTER 4. TOOLS

Figure 4.12: A circuit to be floorplanned

Figure 4.13: The expected result

4.2. FLOOR PLANNING 59

cost

| tmp |
self compact.
tmp := self boundingBox.
ˆself maxBoundingBox isNil

ifTrue: [self boundingBox area]
ifFalse:

[tmp := (self boundingBox areasOutside: self maxBoundingBox)
inject: 0 into: [:a :b | a + b area].

self boundingBox area − tmp + (self penalty ∗ tmp) ∗ 100 ∗ self
interconnectCost]

Code Ex. 4.1: The floorplanner cost function

Examples

Two examples referred as 4.3 and 4.4 are provided with the code.

The result of the 4.3 example is illustrated by the figure 4.2.

randomize: aNumberBetweenZeroAndOne

| tmp |
tmp := self copy.
tmp penalty: (1 − unNumberBetweenZeroAndOne ∗ self maxPenalty)

ceiling.
ˆ(tmp basicRandomize: aNumberBetweenZeroAndOne)

ifTrue: [tmp]
ifFalse: [self]

Code Ex. 4.2: Setting the penalty

60 CHAPTER 4. TOOLS

Figure 4.14: A non optimal result

self model exampleSamos

Code Ex. 4.3: First example

self model exampleGuild

Code Ex. 4.4: Second example

4.2. FLOOR PLANNING 61

Figure 4.15: The result of the example 4.3

62 CHAPTER 4. TOOLS

4.3 Drawing regular circuits

4.3.1 Introduction

Drawing regular circuit is useful when designing operators or in a more
general fashion, highly parallel circuits. Such circuits can be described at
an high level of abstraction such as recursive equation [11] but require to
be represented with a specific semantic and specific annotations to let the
tools operate on it. An example of such information is provided by the
Alpha language, a subset of which, called AlpaHard, express the low level
information that is needed when drawing the circuit.

The object carrying such an information in MADEO are called SCCom-
positeNode. Three types of SCCompositeNode exist:

SCCompositeNode is the more general level, which the floorplanner uses

SCComposite1DNode describes linear networks

SCComposite2DNode describes arrayed networks

The figure 4.16 illustrates the last two cases.

2D network

1D network

Figure 4.16: Both linear and arrayed network of nodes are supported

4.3.2 Structural representation

In addition to the structural description of the node (free, 1D, 2D), the
connections between elements can be of several types:

4.3. DRAWING REGULAR CIRCUITS 63

Classical Classical interconnection links a source resource to a target one

Regular Regular interconnections are replicated in the same way that the
internal nodes are replicated

With accessors interconnections with accessors allows to add a data pro-
cessing to a base connection (such as accessing a given bit of)

The example 4.5 illustrates the practical way to define a regular circuit. In
this example,the IOs ports are first described, and the SCComposite1DNode
is build by replicating the internal nodes (some SCBlif nodes that perform a
full adder). Once this is done, regular connections link the most significant
bit output (the carry) to the c input of the neighbor node for every node. In
the same time the less significant bit is routed to the output port. The last
most significant bit makes the first (most significant) bit of the result output.
The IOs connections are built using classical interconnections whereas the
internal connections are regular.

4.3.3 Compatibility

All the representations of the circuit, which can be either structural, based
on SCCompositeNode, or behavioral, based on SCBlockNode, or logical
based on SCBlifNode, are functionaly equivalent (see 4.1.1). This point
is realy important as this garantees they can be exchanged one to the other
depending on the contextual needs for more simplicity or, on the other hand,
for more in depth description of the circuit.

All of these descriptions respect the same manipulation API, so that the
real kind of description the designer uses never counts, exept on demand.

A set of translators for converting object into another formalism is ac-
cessible to the designer (asBlifNode, asSCCompositeNode, etc. . .). This
set of representations and associated translators is extendable if required,
assuming the based API is preserved.

64 CHAPTER 4. TOOLS

serialAdder: aSize

“(self serialAdder:3) open”

| tmp |
tmp := self

iPort: (SCNamedPort with: (#(#a #b)
collect: [:inputName | inputName −>

(SCUnNamedPort newInput: aSize)]))
oPort: (SCUnNamedPort newOutput: aSize + 1)
component: SCBlifNode fullAdder
indexes: (Array new: aSize).

tmp
regularConnect: ’h’ “most significand bit”
to: ’c’ “carry input”
of: −1. “backward neighbour”

tmp components keysAndValuesDo:
[:index :value |
(tmp iPort at: #a) “presenting the input ”

connect: index
to: ’a’
of: value.

(tmp iPort at: #b) “presenting the input ”
connect: index
to: ’b’
of: value.

value oPort “1 ... aSize bit of output”
connect: ’l’
to: index +1
of: tmp oPort].

tmp components first “carry”
connect: ’h’
to: 1
of: tmp oPort.

ˆtmp

Code Ex. 4.5: A serial adder

Chapter 5

Architectural prospection

5.1 Introduction

When designing a new architecture the architects need to evaluate several
architectural alternatives. This requires the test architectures to share a
common evaluation tool; and to make the prospection process fully auto-
matic.

This section describes this stage, allowing to tune an architecture by
fixing its resources; performing place/route and collecting results. This tool
is called UIProspection.

Among architectural criteria, the logical grain of functions, the width
of channel as well as the connections between elements can be modified
to produce a new variant inside the architectural family defined through a
grammar description.

The results can be collected under different criteria: routing cost, CPU
time or bounding box. As some algorithms are non deterministic, the num-
ber of runs can be fixed to smooth raw results.

5.2 Tools

5.2.1 Starting UIProspection

UIProspection launches out from the Architecture Designer in the operation
menu (figure 5.1).

The figure 5.2 represents a snapshot of the UIProspection interface.

5.2.2 Analyzing an architecture

The architecture to be prospected is the current architecture of the Archi-
tecture Designer tool. The architecture can be changed (figure 5.3) without
leaving the prospection tool open.

The architecture’s grammatical description can appear by clicking on
the button viewer. This is useful to check the changes over the description
resulting from a prospection process.

65

66 CHAPTER 5. ARCHITECTURAL PROSPECTION

Figure 5.1: Launching UIProspection

Figure 5.2: Prospection Designer

The elements that can be changed for prospection are collected after the
description of the architecture is parsed (by clicking on the parser button)
as illustrated by figure 5.41.

5.2.3 Selecting a BLIF/EDIF file

The prospection tool allows to place and route BLIF or EDIF file. The
selection of the file is done by clicking on the select button (figure 4.5).

Performing a single place and route is done by clicking on the place and
route button. In this case, for every MV-variable, only the first value is
considered. After the place and route completes, the results appear on the
window (figure 5.5).

The automation of several place and route is done by selecting the au-

1Wires are characterized by ’name:width’

5.2. TOOLS 67

Figure 5.3: Viewer button

Figure 5.4: Detailed view of the selected element

tomation combo box before clicking on the place and route button (figure
5.6).

If the architecture does not contain any MV-variable, then no automation
performs. In the contrary case, a new window called UIElements pops up.

5.2.4 Modifying the value of an element

The value of an element can be modified by double clicking on its value. A
dialog box appears in order to capture the new value (figure 5.7).

Changing the value of an element goes through defining a variable, taking
as value a collection of values (an interval or an array of values) as described
in table 5.1.

Type of collection Code
an interval x to: y with x ¿ y

x to: y by: z
an array #(x y z)

Table 5.1: Definition of an interval vs definition of an array

This kind of variable (referred as MV-variables) associated with a range
of values can be expressed using the grammar. As an example, evaluating the

68 CHAPTER 5. ARCHITECTURAL PROSPECTION

Figure 5.5: Result of a single place and route

Figure 5.6: Automation of prospection

effect of the width of a wire brings about some changes in the grammatical
description as illustrated by the example 5.1.

(WIRE (WIDTH 7)) -¿ (WIRE (WIDTH (VALUE name ’x to: y’)))

Code Ex. 5.1: Defining MV-variables

Replacing a literal value such as an integer by a MV-variable implies to
create such a variable; its name is automatically generated.

In order to force joined variation, several objects can share the same
variable. This happens when writing a string in the dialog box (figure 5.7).
This string refers to the name of a variable; that has been previously defined.
The table 5.2 illustrates the syntax for referencing a variable.

5.2.5 Collecting the results

The result of a place and route process can be analyzed according to three
criteria2 : cost of routing, CPU time, and bounding box (figure 5.8).

Figure 5.8: Selecting the type of result

2Some new criteria will be added later on

5.2. TOOLS 69

Figure 5.7: Keyboarding a new value

Definition (WIRE (WIDTH (VALUE toto ’x to: y’)))
Reference (WIRE (WIDTH (VALUE toto)))

Table 5.2: Creation vs reuse of variable

5.2.6 Performing the prospection

Once the architecture has been analyzed and the variable parameters iso-
lated, the designer is asked to select the parameters which impact must be
quantified, with regards to the chosen criterion. When using several vari-
able parameters, the way the loops over parameters are nested is within the
competence of the designer.

Setting the parameters of the prospection is done using the UIElement
windows (figure 5.9)

70 CHAPTER 5. ARCHITECTURAL PROSPECTION

Figure 5.9: The UIElements interface

Every variable parameter is associated a combo box, allowing either to
take it into account or to ignore it (figure 5.10). Note that combo boxes
refer to MV-variables, not to architectural elements using these variables; a
shared variable only appears once.

Figure 5.10: The elements to be prospected

The designer is free to define number of runs to be performed (figure
5.11). This should be a tradeoff between speed and reliability of the results,
as the collected raw results are smoothed (avg).

The results can be produced in the form of a latex documentation (figure
5.12, appendix A.8) or a graphic. The latex report contains an history of
each loop and an average.

5.2. TOOLS 71

Figure 5.11: the number of runs and the current loop

Figure 5.12: Latex output

72 CHAPTER 5. ARCHITECTURAL PROSPECTION

Part II

MADEO FET

73

Chapter 6

introduction

Applications for fine grain reconfigurable architectures can be specialized
without compromise, and they should be optimized in terms of space and
performance. In our view, too much emphasis is placed on the local per-
formance of standard arithmetic units in the synthesis tools and also in the
specification languages.

A first consequence of this advantage is the restricted range of basic types
coming from the capabilities of ALU/FPUs or memory address mechanisms.
Control structures strictly oriented toward sequentiality are another aspect
that can be criticized. As an example, programming for multimedia proces-
sor accelerators remains procedural in spite of all the experience available
from the domain of data parallel languages. Hardware description languages
have rich descriptive capabilities, however the necessity to use libraries has
led the language designers to restrict their primitives to a level similar to C.

External
Control

Input Output

Pipeline Architecture synthesis

Figure 6.1: The modules can be either flat or hierarchical; the modules can
be composed in order to produce pipelines or can be instantiated during
architecture synthesis.

Our aim is to produce a more flexible specification level with direct and
efficient coupling to logic. This implies allowing easy creation of specific
arithmetics representing the algorithm needs, letting the compilers auto-
matically tune data width, and modeling computations based on well un-

75

76 CHAPTER 6. INTRODUCTION

derstood object classes. The expected effect is an easy production of ded-
icated support for processes that need a high level of availability, or could
waste processor resources in an integrated system. To reach this goal, we
use specifications with symbolic and functional characteristics, jointly with
separate definition of data on which the program is to operate.

Sequential computations can be structured in various ways by splitting
programs on register transfers, either explicitly in the case of an architecture
description, or implicitly during the compilation. Figure 6.1 shows these two
aspects, with a circuit module assembled in a pipeline and in a data-path.
In the case of simple control loops or state machines, high level variables can
be used to retain the initial state with known values, the compiler retriev-
ing progressively the other states by enumeration [10]. Figure 6.2 shows a
diagram where registers are provided to hold state values associated to high
level variables that could be instance variables in an object.

State variables

Parameters

results

Combinational function

Figure 6.2: State machines can be obtained by methods operating on private
variables having known initial values.

At this stage, we will consider the case of methods without side effect,
operating on a set of objects. For sake of simplicity we will rename these
methods ’functions’, and the set of objects, ’values’. Interaction with ex-
ternal variables is not discussed there. The input language is Smalltalk-80,
variant VisualWorks, also used to build the tools and to describe the appli-
cation architectures.

6.1 Execution model

The execution model targeted by the compiler is currently a high level repli-
cation of LUT-based FPGAs. We define a ‘program‘ as a function that
needs to be executed on a set of input values. Thus the notion of program
groups at once the algorithm and the data description. Our program can be
embedded in higher level computations of various kind, implying variables

6.1. EXECUTION MODEL 77

or memories. Data descriptions are inferred from these levels. The resulting
circuit is highly dependent from the data it is intended to process.

An execution is the traversal of a hierarchical network of lookup tables
in which values are forwarded. A value change in the input of a table
implies a possible change in its output that in turn induces other changes
downstream. These networks reflect the effective function structure at the
procedure call grain and they have a strong algorithmic meaning. Among
the different possibilities offered for practical execution, there are cascaded
hash table accesses, and use of general purpose arithmetic units where they
are detected to fit.

Translation to FPGAs need binary representation for objects. This is
achieved in two ways, by using a specific encoding known to be efficient,
or by exchanging object values appearing in the input and output for in-
dexes in the enumeration of values. Figure 6.3 shows a fan-in case with an
aggregation of indexes in the input of function h(). Basically the low level
representation of a node such as h() is a Programmable Logic Array (PLA)
having in its input the Cartesian product of the set of incoming indexes
(fout × gout), and in its output the set of indexes for downstream.

f()

g()

h()

hin

fout

gout

fin

gin

Figure 6.3: Fan-in from 2 nodes with Card(fout × gout) < Card(fin) ×
Card(gin).

There are some important results or observations from this exchange:

1. data paths inside the network do not depend anymore on data width
but on the number of different values present on the edges.

2. depending on the interfacing requirements, it will be needed to insert
nodes in the input and output of the network to handle the exchanges
between values and indexes.

3. logic synthesis tool capabilities are limited to medium sized problems.
To allow compilation to FPGAs, algorithms must decrease the number
of values down to nodes that can be easily handled by the bottom layer
(SIS partitioning for LUT-n). Today, this grain is similar to algorithms
coded for 8-bit microprocessors.

78 CHAPTER 6. INTRODUCTION

4. decreasing the number of values is the natural way in which functions
operates, since the size of a Cartesian product on a function input
values is the maximum number of values produced in the output. The
number of values carried by edges is decreasing either in the hierarchy
structure or in a graph flow. There is no possible divergence and the
efficiency of an algorithm can be stated to be its ability to quickly
decrease the data amplitude on which the logic complexity depends.

6.2 Type system

Language types appear to the programmers as annotations for checking
code consistency and binding to architecture resources. The type system
we are using does not restrict programming to this kind of binding. It is
only intended to specify any possible set of values appearing in the program
input or inside the computation network. In the object environment, it is
supported by a set of classes supporting operations.

Implicit or explicit collections of values are denoted by intervals or sets.
Class-based types are associated either to classes having a finite number of
instances (booleans, bytes, small integers), or to user defined new function-
alities, including arithmetics. Unions are resulting from operations on the
two previous types.

Chapter 7

design flow and optimizations

7.1 design flow

The design process (see figure 7.1) starts with a code description of the task
to be implemented. This description appears as a ST80 method. Modularity
is preserved as the self pseudo-variable exists, what enables to describes a
task by composing several methods of the same class.

The MADEO FET flow ends by producing a custom application descrip-
tion that MADEO BET handles as an input. This description is then placed
and routed, floorplanned, etc . . .We assume that the architecture descrip-
tion used within MADEO BET will drive some of the optimization steps; as
an example by forcing some of the nodes to be merged together depending
on the architecture grain (LUTs, memories, etc . . .).

Restrictions: Instance variables are not supported at this time; class
variables can be used as fixed parameters (during a design process the values
are fixed).

By compiling this method, a static graph of operator is produced. At this
stage, every node matches a Smalltalk message, and the vertices represent
data flows.

This graph is re-organized regarding some optimizations (see section)
before an equivalent logic representation is built.

Based on this RTL description, a (possibly hierarchical) module is placed
and routed using the MADEO-bet generic back end tool set.

Definitions:

• a type is a set of possible values

• a variable is associated to a type

• a variable knows its producer (a node) and its consumers (some nodes)

• a producer of an input variable for a node is called parent node

• a consumer of an output variable for a node is called children node

79

80 CHAPTER 7. DESIGN FLOW AND OPTIMIZATIONS

Internal Model

Concrete Model

Abstract Model

build

build

Graph of operators

Optimizations

Application code Data range

Estimators

Circuit drawing

compile

use

LanguageTextual description

prospect

Floorplanning

Place and Route Hardware Control

Application

...

MADEO FET

MADEO BET

Figure 7.1: MADEO BET and MADEO FET flow

7.2. POSSIBLE TYPES 81

7.2 Possible Types

A type system is defined, based on a set of classes, some of which are pre-
sented below:

TYTypeLiteral new: aValue

Code Ex. 7.1: Literals

TYTypeInterval from: start to: stop

Code Ex. 7.2: Intervals

TYTypeRadix radix: aRadix digits: aNumberOfDigits

Code Ex. 7.3: Radix based

TYTypeUnion new: anArrayOfValues

Code Ex. 7.4: Unions

TYTypeGF16 new

Code Ex. 7.5: GF16

TYTypeGF128 new

Code Ex. 7.6: GF128

This set of class is extensible on demand, assuming a minimal API is pre-
serve.

7.3 Optimizations

7.3.1 type inference

By presenting some input values in front of this graph, the type inference is
performed.

Type inference consists in computing the output values of every node
(using a lazy evaluation mechanism) depending on its input values.

This is done by evaluating all n-up in the inputs (figure 7.2) and results
in a high-level object-oriented look-up table (HL OO LUT).

82 CHAPTER 7. DESIGN FLOW AND OPTIMIZATIONS

Types are propagated down within the graph so that every node carries
the knowledge of its application field. This allows to strongly reduce the
complexity of the produced logic (and frees up hardware resources).

A B

Op

Figure 7.2: A node links an output to some inputs, and computes the output
current value, depending on the inputs’ current value in order to build the
HL OO LUT

notations Let op be an operator taking ini as inputs and producing outj

• |ini| denotes the size of the ith input in term of different values

• |outi| denotes the size of the ith output in term of different values

• |opin| denotes the size of the inputs range in term of different n-up

• |opout| denotes the size of the outputs range in term of different n-up

• Rin(op) denotes the input reduction factor. This represents the im-
portance of the incompatible values among all the theoretical possible
values.

Rin(op) = 1 −
|opin|∏i=n
i=1 |ini|

(7.1)

Note that Rin(op) = 1 if and only if all the ini are independent

• Rout(op) denotes the output reduction factor.

Rout(op) = 1 −
|opout|

|opin|
(7.2)

Programming considerations The Rout(op) is a very significand metric
over the code quality as the range reduction of type of the values carried
between operators only depends on this factor.

A good programming mainly maximizes the Rout(op) factors. Note that
theses factors are multiplicative along a data path.

7.3. OPTIMIZATIONS 83

Example The type inference is done in a depth first mode in order to
manage coupled values. The OO HL LUTs are built incrementally.

Consider the following code: a ∗ b + (a ∗ c) with a,b and c ranging from
1 to 10.

In a matter of simplicity, call the first ∗ operator op1, the + operator
op2 and the second ∗ operator op3.

|op1in| = |a| ∗ |b| = 100 and Rin(op1) = 1
|op1out| = 42 and Rout(op1) = 58%. In this case, a ∗ b produces 42

different values (as well as a ∗ c).
|op1out| ∗ |op2out| = 42 ∗ 42 = 1764
As there is a dependency between the two variables a∗b and a∗c, because

they share the a variable in their inheritance tree, only 798 different values
among the theoretical 1764 values are compatibles.

|op3in| = 798 so that Rin(op3) = 1 − 798
1764 = 0.55.

So that : |op3out| = 99 and Rout(op3) = 1 − 99
798 = 0.88

These input values produces only 99 different output values.
A noticeable point is the earlier the reduction appears, the most efficient

the reduction is in term of resources freeing up .

Combinational The type inference is commonly done n-up by n-up to
ensure unused values (incompatible values) are not considered. A simple
example of this situation is to compute (a ∗ 2) + (a ∗ 3) both ways, either by
considering an operator by operator inference and by considering an input
n-up by input n-up inference. In the first case, the |+in | = |a|2 because the
two brenchs don’t seem to be linked, while in the second case | +in | = |a|.

Unfortunately this good property comes with a severe restriction that
is the number of inputs must be limited in order not to generate a large
amount of n-up. Despite the benefits that can be observed, the second case
doesn’t appear as a good candidate in two cases. First, in case the inputs
really are independent, a node by node inference is simpler and much faster.
Secondly, the application field is restricted to cases with a small number of
inputs (all the more so as the input’s types are huge).

To prevent such a bad situation, both inference algorithms are imple-
mented.

A specific case is to replicate a piece of code by, for example, unrolling
a loop by hand. In that case, using a ArrayedResult rather than an Array

to group several values as an output forces the node by node algorithm to
be used. The two following graphs (figures 7.3 and 7.4) highlight the code
rewriting.

The 7.3 illustrates this situation. The application consists in replicating
three times the same process, which makes two additions and a division. All
inputs own the same type so that

∀i ∈ 1...N , |ini| = |in| (7.3)

Rin(application) = 1 −
|applicationin|∏i=N

i=1 |ini|
(7.4)

84 CHAPTER 7. DESIGN FLOW AND OPTIMIZATIONS

Figure 7.3: The starting code encapsulating an ArrayedResult. Note that
the code is structured automatically by extracting all nodes that belong to
the inheritance tree of the values

Figure 7.4: After the rewriting process, only three nodes remain. Note the
yellow color that denotes the hierarchical nodes.

7.3. OPTIMIZATIONS 85

where
i=N∏

i=1

|ini| = |in|N (7.5)

with N the number of inputs.
If the graph can be splitted into p operators acting over q inputs each,

N = p × q (7.6)

|applicationin| = p × |in|q (7.7)

Rin(application) = 1 −
p

|in|N−q
(7.8)

In this example, p = 3, q = 3, N=9 and |in| = 7 = 23 then
Rin(application) = 1 − 3

76 = 117646
117649 .

A practical impact of this Rin(application) value is that the node by node
type inference requires ≈ 1s whereas the n-up by n-up type inference needs
several minutes to complete. Indeed, when performing a node-by-node type
inference, each node is responsible for enumerating its input n-ups based on
the input range associated to every of its input values.

7.3.2 code factorization

Common sub expression are detected and reused rather than recomputed.
This relies on the designer implementation. As an example, a ∗ b ∗ a ∗ b

cannot be simplified whereas a∗b∗ (a∗b) can (see figure 7.5). This is due to
the Smalltalk evaluating order, from left most to right most, when reducing
arithmetic expressions 1

7.3.3 dead code removal

A node with no child is designed as a “dead code node” ; it is useless and
can be removed from the graph.

Note that removing this node may bring further improvements (eg: this
node was the only child of another node, which then becomes itself a “dead
code node”).

7.3.4 constant folding

A composite type owning only one value is automatically converted into a
literal type, what implies its producer node is useless and can be removed
from the graph. Conditional nodes are special cases: in case the condition
is constant, only the one branch that makes sense is kept, replacing the
conditional node itself. In case, one of its branches is constant, the branch
is replaced by a literal.

1Basically, operations are splitted into three groups, within which no priority exists,
namely: unary operations (the one that take no parameter), binary operations (a limited
set of operations such as + − ∗ modulo) and the keyword based operations (keywords
end with the : character). Unary operations are reduced first, then binary operations, and
at the end the keyword based operations. For more information about this, please refer
to the Smalltalk documentation.

86 CHAPTER 7. DESIGN FLOW AND OPTIMIZATIONS

a) b) c)

Figure 7.5: a) this code can be simplified as some common subexpression
appear
b) the result the simplification produces
c) an equivalent expression in term of computing process that CANNOT be
simplified

7.3.5 no op removal

As the only important information is the number of different values within a
type, a bijective node appears as a “no-op node”. This operation reduces the
graph by adding the inputs of the suppressed node to its consumers. This
means that some node may own more inputs that their original message
accepts.

7.3.6 operator fusion

For all values owning only one consumer, this consumer and the producer
of the value can be merged without any information loss.

Another example is simplifying expressions over arrayed values, but re-
moving the at : nodes which aim is only to pick up a sub value of the global
value.

7.3.7 Automatic decomposition

At a starting point, the graph reflects the algorithmic decomposition. Nev-
ertheless, if the inputs type are too big, the OO HL LUT won’t fit the max
complexity limit that the logic synthesis algorithm forces.

A solution is to split the biggest type on demand, and to apply the
operator over the resulting sub-domains. This implies to check the type

7.4. LOGIC GENERATION 87

inclusion, to make a branch-bound.

a op b → if(a ∈ |a|1) then a op1 b else a op2 b (7.9)

with op, op1 and op2 equivalent operators acting over several sets of values,
which are then associated different OO HL LUTs.

7.3.8 Operator flattening

Hierarchical nodes allows to go further on when decomposing a process into
a graph of operators. The only processes that can benefit from a hierarchical
decomposition are built from some methods that the target class includes.
This limitation comes from a will to ease the decision for the compiler.
Sending messages to the pseudo variable self - which represents the object
itself - results in adding hierarchical nodes to the graph (see example 9.1).
Nevertheless, These nodes can be flatten if required.

Depending on the semantic of the operation, one can force some code
specification owning self sending messages to be considered as some atomic
nodes (as an example nodes with low fan in-fanout, but high internal com-
plexity) ; in this case the node is only associated a OO HL LUT whereas
classical hierarchical nodes are linked as well to a sub graph which nodes
are provided a OO HL LUT.

This can happen twice, either because the designer knows hierarchical
decomposition must be prevented or because of contextual information such
as the size of the OO HL LUTs.

• Methods located within the ’do not synthesize’ methods’ category pro-
duce pseudo-atomic hierarchical nodes whatever data they act over.

• In addition, when producing the logic, any hierarchical node can be
seen as a hierarchical node on demand.

7.4 Logic generation

7.4.1 Blif generation

Logic generation means to produce a RTL equivalent description back from
another description, usually of a higher level of abstraction. In the MADEO-
fet design flow, logic generation means to produces BLIF description task
from OO LUTs.

After the optimization stages, each node is provided a OO HL-LUT.
To ensure every object contained within the OO HL LUTs can be repre-

sented within the hardware, the objects are replaced by their index within
their associated type.

Another solution is to use an ad-hoc encryption process (ex: GF 16) ,
as the binary representation policy of the objects has a strong impact over
the logic density.

These new LUTs are called OO LL LUTs (OO Low Level LUTs) and
only embed binary values.

88 CHAPTER 7. DESIGN FLOW AND OPTIMIZATIONS

They are used to produced a PLA representation which is minimized
using EXPRESSO before the technology mapping stage is done by calling
some of the SIS algorithms[3].

Binarisation impact Let’s consider a simple process that swap the most
significant and less significant parts of a word. Obviously this requires no
logic as long as conventional binary representation is used.

Now consider the same operation over less data, what means the data’s
range may be preserved but |opin| reduces. By exchanging the data and their
associated index, the process complexity hugely increases because there is a
need for encoding and decoding the values/indexes couples.

The 7.7 BLIF description highlights the absence of logic when swapping
the four most and less significant bits of a char. On the opposite, the 7.8-7.9
logic description, far from being simpler that the 7.7 one, as its simpler data
range should have suggested, appears as much more complicated due to the
semantic loss the indexes generate.

.model t5

.inputs a 1 a 2 a 3 a 4 a 5 a 6

.outputs t5 1 t5 2 t5 3 t5 4 t5 5 t5 6

.clocks

.names a 1 t5 1
1 1

.names a 2 t5 2
1 1

.names a 3 t5 3
1 1

.names a 4 t5 4
1 1

.names a 5 t5 5
1 1

.names a 6 t5 6
1 1

.end

Code Ex. 7.7: Swapping the most/less significand four bits for
an integer ranging from 0 to 63

7.4.2 EDIF Generation

When using coarse grain architectures (e.g. reconfigurable datapath), it is
important to cut off the inference process as no benefits can be expected of
whereas this stage will consume a lot of time if not fail.

7.5. TIPS 89

In that case, to enable place and route, a specific policy is used, which
is to produce an EDIF netlist of operators that make references (through
symbolic naming) to some primitives that are supported within the hardware
(mult, add, etc. . .). This information must be coupled to the AMONG field
of the grammar description of the architecture within MADEO-BET. An
example is provided in appendix C.

7.4.3 Mixed netlist

A current work is going on to support heterogeneous netlist that is to allow
mixed coarse grain and fine grain operators netlist. This aims to restrict
the use of BLIF production to the operators for which a benefit can happen
while saving time by relying on some libraries of more classical operators if
not.

As an example, the control (automata) often requires only few bits and
can expect huge improvement by tuning the operators to meet their re-
quirements. On the contrary, the coarse grain controlled operators (such as
ALUs) must be kept as symbols.

We guess that lots of DSP programs could take advantages of such an
opportunity.

7.5 Tips

This section highlights several noticeable points when writing a code to be
taken as input by MADEO-Fet.

7.5.1 Temporaries

When compiling the code, if a variable reference is met, the variable is added
as input recursively to the outer context until either the context owns the
variable as input or as temporary, or the outer context is nil (top block).

As a consequence, forgetting to declare temporaries results in adding
invalid inputs, what may lead to incompatible typing. Another bad con-
sequence is that temporaries are then handled as Undeclared what slows
down the inference process.

7.5.2 ArrayedResult

One of the optimization steps is dead code removal so that the nodes with
no consumers are destroyed. Using ArrayedResult allows to group several
results into a single value. Note that this is only useful for the last operators
of the method, and that this node shall not be asked to produce a BLIF
description; the produce blif without last options is designed in this scope.

7.5.3 Array

Array is used to overcome the classical limitation of smalltalk that is only
one value can be returned. By using Array, it is possible to group values

90 CHAPTER 7. DESIGN FLOW AND OPTIMIZATIONS

within a single value. In that case the split optimization will substitute this
value by its internal values.

7.6 the at : message

The at : owns a special meaning when it applies to an array and when its
argument is constant. In this case, the operator fusion results in destroying
the node and in substituting its output by its input’s argth internal value.

i

2

Figure 7.6: On the left, indexing by a variable results in picking a line (an
n-up). On the right, indexing by a constant (or a value that became a
constant due to the optimizations options) results in picking a column, that
is extracting a subValue.

7.6.1 Comparisons

The true and false smalltalk pseudo variable can be used for typing (e.g.
within a TY TypeUnion) but if so, they will not support the ifTrue :,
ifFalse :, ifTrue : ifFalse : nor ifFalse : ifTrue : messages.

A solution is to compare the value with either true of false before calling
the conditional message.

Another interesting point regarding comparisons, is that the arguments
ordering is extremely important.

0 = 0 ifTrue:[0] ifFalse:[b / a] is correct
a = 0 ifTrue:[0] ifFalse:[b / a] is not

Code Ex. 7.10: when comparing a value to a literal, the literal
must be the receiver

In the example 7.10 the second line is not correct and the condition is al-
ways evaluated as false. This implies that the operators = and ifTrue :
ifFalse : are destroyed, and that as a consequence, b/a is evaluated when
a equals zero, leading to an unrecoverable error.

7.6. THE AT : MESSAGE 91

.model t5

.inputs a 1 a 2 a 3 a 4 a 5 a 6

.outputs t5 1 t5 2 t5 3 t5 4 t5 5 t5 6

.clocks

.names a 1 [342] t5 1
11 1

.names a 2 [383] t5 2
11 1

.names a 3 [424] t5 3
11 1

.names a 4 [465] t5 4
11 1

.names a 5 [506] t5 5
11 1

.names a 6 [547] t5 6
11 1

.names a 2 a 3 a 4 [341]
0−− 1
−0− 1
−−0 1

.names a 5 a 6 [341] [342]
0−− 1
−0− 1
−−1 1

.names a 1 a 3 a 4 [382]
0−− 1
−0− 1
−−0 1

.names a 5 a 6 [382] [383]
0−− 1
−0− 1
−−1 1

Code Ex. 7.8: Swapping the most/less significand four bits for
an integer ranging from 1 to 63

92 CHAPTER 7. DESIGN FLOW AND OPTIMIZATIONS

.names a 1 a 2 a 4 [423]
0−− 1
−0− 1
−−0 1

.names a 5 a 6 [423] [424]
0−− 1
−0− 1
−−1 1

.names a 5 a 6 [546] [465]
−−1 1
−0− 1
0−− 1

.names a 4 a 6 [546] [506]
−−1 1
−0− 1
0−− 1

.names a 1 a 2 a 3 [546]
0−− 1
−0− 1
−−0 1

.names a 4 a 5 [546] [547]
0−− 1
−0− 1
−−1 1

.end

Code Ex. 7.9: end of the 7.8 example

Chapter 8

Graphical tool

The graphical tool is accessible through an icon of the VisualLauncher tool-
bar as shown in figure 8.1

Figure 8.1: Clicking this icon opens the MADEO-FET graphical tool, as
illustrated by figure 8.2

The graphical tool (see figure 8.2) eases choosing a class and an method
as an entry point, as well as defining the inputs types; and provides the user
a graphical feed-back by drawing the operators graph. Once this is done;
the optimizations are accessible 1

8.1 Tool

8.1.1 Control panel

The upper left part of the interface includes the control panel (CP) as shown
on figure 8.3. This CP shows the selected class as well as the selected selector
(ie the entry point). Under the class/selector information are the available
environment information made of two list, and a textual field.

The left most list represents the available contexts out of which a given
context is selected. This selected context is made of several variables that are
shown in the second list. Each of these variables is associated a type, which
textual definition is presented within the input field, and which definition
can be replaced using the button next to the input field.

1Note that the dependencies between the optimizations stages are not managed yet.
Swapping two optimizations steps may result in uncontrolled changes of the overall process.

A future work will be to let the designer to choose among some optimizations scenario .

93

94 CHAPTER 8. GRAPHICAL TOOL

Figure 8.2: The MADEO FET user interface

Figure 8.3: The control panel

8.1. TOOL 95

The contexts can be saved on disk and loaded from using the context’s
menu as illustrated by figure 8.4. This menu allows as well as to perform
the mapping between the context and the data flow graph, what means the
inputs of the graph are associated a type the context looks up by its name.

Figure 8.4: The context menu

8.1.2 The ToolBar

Figure 8.5: The Madeo-Fet toolBar

The toolbar allows to launch different process. From left to right:

full run compiles code, applies context, optimizes

build compiles code, applies context but do not optimize

optimize performs the selected optimizations

view LUT opens a windows over the global OO-Lut

view indexed LUT opens a windows over the global indexed LUT

view encoded LUT opens a windows over the global encoded LUT

simple lutify builds a flatten BLIF (green spot over the nodes’ graphical
representation)

complex lutify builds a hierarchical BLIF (blue spot over the nodes’ graph-
ical representation)

complex lutify without last builds a hierarchical BLIF ignoring the last
operator of the graph

96 CHAPTER 8. GRAPHICAL TOOL

generate EDIF builds an EDIF description of the graph

check tests the resulting BLIF with regards to the original code behavior

simulate open a bit-accurate simulation window

generate method produces a structural description of the graph and sores
it as a method

save saves this structural description as Binary Object Storage System
(BOSS)

implement calls MADEO-BET in order to place and route the logic

schematic opens the schematic editor over over the graph’s equivalent
schema

made-bet opens MADEO-BET

browse opens a code browser over the target class

8.1.3 Code menu

The first item of the menu (see figure 8.6) allows either to validate a change
in the code definition or to open a bowser over the class

Figure 8.6: The code menu

The second item (see figure 8.7) allows to launch the compilation process
as well as the selected optimizations procedures.

The result can be inspected and is represented in the right side of the
window. The representation can be isolated within a stand-alone window if
desired, and the graphical parameters such as the size of the graph’s nodes
and th spacing between nodes can be tuned.

The new run item automates the code modification, type forcing, and
redraw of the resulting graph.

Also, this menu enables to open an interface over the global LUT rep-
resenting the design if this is already built. This LUT is used to check the
design accuracy.

8.1. TOOL 97

Figure 8.7: The CIR menu

The third menu item (see figure 8.8) deals with logic synthesis (BLIF
building). Three modes are available:

simple lutify takes the OO LUT associated with the global lut as an
entry point to generate a single flatten logic description.

complex lutify builds a logic description for all the nodes of the graph
and a hierarchical description of the graph itself, by calling the sub modules
associated with each node.

Complex lutify without last has the same semantic but ignores the last
in case of aggregating several results in the last node (based on the Array
class). Aggregating result prevents the dead code optimization to destroy
valid nodes.

Once the BLIF description has been made, it can be inspected and sim-
ulated.

Figure 8.8: The BLIF menu

The SCNode is the articulation formalism between MADEO FET and

98 CHAPTER 8. GRAPHICAL TOOL

MADEO bet (see section 4.3). This carries the same information than the
graph, with additional geometric properties. The figure 8.9 shows the action
regarding the SCNode representation.

Figure 8.9: The SCNode menu

The last item permits to implement the application onto a reconfigurable
target.

8.1.4 Graphic representation

As show in figure 8.10, the graph drawing makes use of coloring to distinguish
between the different classes of nodes as follows:

Light gray denotes atomic nodes ,

Dark gray denotes terminal nodes,

Yellow denotes hierarchical nodes,

Red denotes hierarchical nodes that are seen as atomic ones.

The last two cases differ from one other either because the method is placed
in the do not synthetize category or because the designer has set the flag
manually using the contextual menu associated with the nodes. This is one
of the reasons that motivated the second icon to be present in the toolbar
as this allows to select the kind of node to be used for a method before
performing the optimizations.

In the same way, the IOs of the node appear as white boxes except in
case of literal type which are red painted.

Another graphical annotation concerns the BLIF description associated
with the node, that appears either as a blue spot over the node (hierarchical
BLIF) of as a green one (simple flatten BLIF).

The graph drawing area owns a menu that enables to browse the graph’s
elements and to go through the hierarchy levels (depending on the nodes’
kind). Popping back the stack is accessible through a button in the bottom
left corner of the drawing area.

Last, the option item from the global menu allows to set some parameters
such as spacing between nodes to customize the drawing.

8.1. TOOL 99

Figure 8.10: Example: Fibonnaci process

100 CHAPTER 8. GRAPHICAL TOOL

8.2 Interfacing low level tools (MADEO-bet)

Interfacing MADEO-bet and MADEO-FET relies on two mechanisms:

Compiling a method which is responsible for producing the SCNode, is a
common mechanism to store permanently a description. This descrip-
tion is then invoked through the classical message sending mechanism,
from MADEO-bet. The low level tools and MADEO-FET, by sharing
the SCNode, may interleave subcalls.

Realizing a place and route requires to select the target architecture,
and results in a module (ie a piece of configuration) that implements
the source application onto the selected architecture.

The figure 8.11 shows the menu item that pops up the dialog window in
which the available architectures are listed.

Figure 8.11: The interfacing menu item and the architecture selection win-
dow

Chapter 9

Example: Defining a floating
point multiplier

9.1 Introduction

This chapter describes through an example how to define a new circuit. The
chosen example is a floating point multiplier.

By precisely tuning its parameters (ie the value’s range for the num-
bers), it’s possible to get custom FP multipliers that can be stored into any
operators library. The design is fully tested at high level, and is optimized
to produce a well suited logic description. Again this description is ready to
be placed and routed using the MADEO-bet layer.

This section introduces first the algorithm that we use before describing
its implementation within the framework. The graph of operators which
results from the optimizations stages is introduced and the placed and routed
logic is shown.

9.2 The implemented algorithm

We refer to the 4.8 section of the [9] book

The numbers are described using a fixed number of bits. That means the
precision is strictly known. The numbers are made of a sign, a significand
and an exponent. The sign is either 0 or 1. the significand is a fraction
ranging from 1 to 2 -ε where ε depends on the number of bits. The (biased)
exponent is a signed number ranging from −n to n − 1 depending on the
number of bits.

101

102 CHAPTER 9. EXAMPLE: DEFINING A FLOATING POINT MULTIPLIER

9.3 Implementation

9.3.1 The methods

sign: signA significand: significandA exponent: exponentA sign:

signB significand: significandB exponent: exponentB

| sign exp significand normalize |
sign := self computeSignFor: signA and: signB.
significand := self computeSignificandFor: significandA and: significandB.
exp := self computeExponentFor: exponentA and: exponentB.
normalize := self normalizeSignificand: significand.
ˆArray

with: sign
with: (normalize at: 1)
with: exp + (normalize at: 2)

Code Ex. 9.1: The entry point. Each float appears as three
values : a sign, a significand, and an exponent

This code is the entry point; it makes use of four other methods that de-
scribes internal computation stages.

computeExponentFor: exponentA and: exponentB

ˆ exponentA + exponentB

Code Ex. 9.2: The first operation over the exponents

computeSignFor: signA and: signB

ˆsignA + signB \\ 2

Code Ex. 9.3: The operations over the signs

computeSignificandFor: significandA and: significandB

ˆsignificandA ∗ significandB

Code Ex. 9.4: The full operation over the significands, ignoring
the whished data width

9.3. IMPLEMENTATION 103

normalizeSignificand: aSignificand

“This methods normalize this parameter value by extracting two sub
values. The first one is the value, shifted if needed, and truncated so that the
max number of bits to represent the value is preserved. The second value is
the shift factor that is to be added to the exponent value”

| shift string in tmp index |
string := ”.
in := 1.
tmp := aSignificand.
[tmp = 0] whileFalse:

[| a |
a := tmp // (2 raisedTo: in).
tmp := tmp \\ (2 raisedTo: in).
string := string , a printString.
in := in − 1].

index := string indexOf: $1.
shift := 2 − index.
string := string copyFrom: index to: ((index + SignificandBits) min:

string size).
ˆArray

with: (Compiler evaluate: ’2r’ , string) / (2 raisedTo: string size −
1)

with: shift

Code Ex. 9.5: The significand normalization implies to shift
and trucate the value before returning it, but to answer as well
the shift that was applied in order to carry that shift over the
exponent value

Code comments Note that most of the internal stages are simple compu-
tations. Only the normalizeSignificand : (9.5) is made of operations that
are not suited for an hardware implementation. This is handled by locating
the method in the do not synthesize category of method. As a result this
hierarchical node is considered as a simple node, owning a single LUT.

9.3.2 The types

Three types are used in this example.
The simplest type is the one associated with the signs. It’s simply a

boolean union (0 or 1). This type can be expressed either by using a simple
interval or by defining a TYTypeRadix followed by two parameters : the
radix and the number of digit (as shown in 9.6).

TYTypeRadix radix:2 digits:1

Code Ex. 9.6: First type

The second type is the one associated with the exponent. Is’s an interval
of values ranging from −n to n + 1

104 CHAPTER 9. EXAMPLE: DEFINING A FLOATING POINT MULTIPLIER

TYTypeInterval from: -7 to: 8

Code Ex. 9.7: Second type

TYTypeRadix normalizeRadix:2 digits:3
OrderedCollection (1 (9/8) (5/4) (11/8) (3/2) (13/8) (7/4) (15/8))
OrderedCollection (1.0 1.125 1.25 1.375 1.5 1.625 1.75 1.875)

Code Ex. 9.8: Third type, with its associated values, either
fraction or float, ranging from 1 to 2 - ε with ε = 2−3

9.3.3 The resulting graph

The optimizations performed over the graph are illustrated by the following
snapshots. The first snapshot represents the stating graph, which is simply
built up based on a static analyzis of the designer code.

The next snapshot (9.2) shows the graph after the type inference and
the dead code removal are finished.

.model t38

.inputs t32_1 t32_2 t32_3 t32_4 t32_5 t32_6

.outputs t39_1 t39_2 t39_3 t40

.clocks

.names t32_5 t32_6 [41] [4]

101 1

.names [41] [634] [5]

11 1

.names [4] [26] [720] [6]

1-- 1
-11 1

.names t32_1 t32_6 [41] [7]
101 1
...

Code Ex. 9.9: The Blif description of the 9.4 table enlights two
caracteristics of the node : first, the Rout(op) reduction factor is
important as the inputs are encoded using 6 bits and the outputs
only require 4 bits, and secondily the outputs are called t39 1..3
and t40, what means the nodes owns two outputs, the first of
which requires 3 bits and the other one only one bit.

By performing the operators fusions the at : access to the arrayed value
produced by the normalizeSignificand : node disapear (figure 9.3) while
this value is splited into to values (figure 9.4) that the other nodes con-

9.3. IMPLEMENTATION 105

Figure 9.1: Example: A small floating point multiplier

106 CHAPTER 9. EXAMPLE: DEFINING A FLOATING POINT MULTIPLIER

Figure 9.2: Example: The same graph after type inference and dead code
removal

9.3. IMPLEMENTATION 107

Figure 9.3: Example: The same graph after the operators fusion

108 CHAPTER 9. EXAMPLE: DEFINING A FLOATING POINT MULTIPLIER

Figure 9.4: Example: By analyzing the LUT of the normalizeSignificand :
operator, it’s easy to note that the operators has now two outputs

(see code 9.9)

sume. This strongly reduces the complexity of the cartesian product the
normalizeSignificand : produces as an output.

Once the optimizations are done, the designer gets a global LUT for the
circuit on demand

9.3. IMPLEMENTATION 109

Figure 9.5: Example: The global lut associated with the design

Figure 9.6: Example: The designer is free to check his circuit’s accuracy

9.3.4 Towards infinite precision operators

This example exhibits some good properties, one of which is that the preci-
sion loss is only due to the normalizeSignificand : method semantic rather
than being intrisic to the implementation. When designing an operation, it’s
the designer choice to round or not the value. By pointing precisely the lo-
cation within the graph at which to round the values, the designer explicits
the precision loss.

Another solution is to prevent this loss by letting the algorithms carry the
acurate values, and postponing the truncation till the logic synthesis stage.
This could be done by applying a restriction to the type encoding after the
type inference completes. This bring further optimization by reducing set
of ouput values (increasing Rout(op)).

A smart implementation of this mecanism consists in encapsulating the
target node within a custom precision reduction node which carries the
specific encoding for the output values. This is not archived yet, but is to
be done.

110 CHAPTER 9. EXAMPLE: DEFINING A FLOATING POINT MULTIPLIER

9.3.5 Conclusion

This example illustrates how to write a piece of software that will result
in designing a circuit over a reconfigurable architecture. A clear benefit
of the method we introduced is that arbitrary circuits can be specified at
a symbolic level, letting the algorithms optimize them to produced a well
suited logic, which is specialized either by the data range and possibly later
on by the target archtiecture. The algorithmic formulation can be tested at
both high level (symbolic code) and low level (RTL).

By coupling MADEO BET to this layer, the designer can tune his coding
and evaluate the impact of the changes over the produced circuit. That is,
in the same way that MADEO BET allows to prospect the hardware field in
front of fixed application, MADEO FET allows to prospect the algorithms
to be implemented in front of a fixed hardware. At this time, a promising
feature is to bring closer abstract algorithms such as efficient arithmetic op-
erators (which can benefit from non conventional number representations)
and the resulting mapping of these algorithms over reconfigurable hard-
ware. A special care must be carried to analyzing the matching between
the expected performances, based on abstract evaluation, and the mesured
performances, based on the placed and routed circuit.

Chapter 10

Schematic design

10.1 Introduction

In order to ease the definition of simple circuit, a schematic editor is pro-
vided within MADEO. However, this user interface does not support the
full semantic of the SCNodes. Mainly, the SCComposite1DNode and the
SCComposite2DNode which include regular patterns in terms of nodes and
connections cannot be expressed using this tool. Such nodes remain acces-
sible to the user so that it is possible to build more complicated circuit by
composing sub nodes with no restriction on the node’s kind.

10.2 Position within the flow

MADEO FET

build

Graph of operators

Optimizations

Application code Data range

cenvertSCCompositeNode

SCEdifNode

SCBlifNode

SCComposite2DNode

is part of design

Schematic Editor

produces

Floorplanner

SCHEMATIC EDITOR

Figure 10.1: Interfacing MADEO-FET and the schematic editor

The schematic editor can reuse any node MADEO-FET has produced, in the
same way than any other kind of node (SCBLifNode, SCEdifNode, etc. . .).

111

112 CHAPTER 10. SCHEMATIC DESIGN

Once the design is done, it results in a new node as shown in figure 10.1. The
nodes the schematic editor produces are commonly used by the floorplanner
(see chapter 4.3).

10.3 Tool

The Schematic Editor is accessible through an icon of the VisualLaunche
toolbar as shown in figure 10.2

Figure 10.2: Clicking this icon opens the schematic editor interface, as illus-
trated by figure 8.2

Figure 10.3: Example: Designing a two bit adder by composing two full
adders

The interface is splited into two sub windows. The left one shows either
the elements the library contains or the elements the design includes. The
tree representation highlights the instanciations of the modules. The right
side of the interface shows the schematic drawing. The nodes are choosen
using the SCNodeChooser interface (figure 10.4). The node chooser produces
nodes which retain the way they were created. The result of the design

10.3. TOOL 113

then produces a new composite node, because each of its subnodes can
be re-created on demand. This new node can be simulated as shown in
the snapshot and may also be inserted within this library on demand, by
providing a method’s name.

Figure 10.4: The SCNode Chooser interface enables to pick a node up and
to tune its parameter if any

10.3.1 Example

This tools is illustrated by a simple example. By combining two full adders
(+1 and +2), a simple 2 bits adder is built up.

out0 = +low
1 (a0, b0) (10.1)

out1 = +low
2 (a1, b1, +

high
1

(a0, b0)) (10.2)

out2 = +high
2

(a1, b1, +
high
1

(a0, b0)) (10.3)

Code Ex. 10.1: The equation description of the adder

The code 10.2 illustrates the coding result of the test case design (10.1)
represented in the 10.3 figure.

114 CHAPTER 10. SCHEMATIC DESIGN

twoBitsAdder

|tmp c lsb msb |

c := (Array new: 2).
c at: 1 put: (lsb := SCBlifNode fullAdder).

c at: 2 put: (msb := SCBlifNode fullAdder).

tmp := SCCompositeNode
iPort: [|tmp| tmp := SCNamedPort new:2.

tmp add: ’b’ −> ([|tmp| tmp := SCUnNamedPort new:2.
tmp add: 1 −> (SCIPin new container: tmp).
tmp add: 2 −> (SCIPin new container: tmp).] value container: tmp).
tmp add: ’a’ −> ([|tmp| tmp := SCUnNamedPort new:2.
tmp add: 1 −> (SCIPin new container: tmp).
tmp add: 2 −> (SCIPin new container: tmp).] value container: tmp).] value

oPort: [|tmp| tmp := SCNamedPort new:1.
tmp add: ’out’ −> ([|tmp| tmp := SCUnNamedPort new:3.
tmp add: 1 −> (SCOPin new container: tmp).
tmp add: 2 −> (SCOPin new container: tmp).
tmp add: 3 −> (SCOPin new container: tmp).] value container: tmp).] value

components: c.

(tmp iPort at: ’a’) connect: 2 to: ’b’ of: lsb.

(tmp iPort at: ’b’) connect: 2 to: ’a’ of: lsb.

(tmp iPort at: ’b’) connect: 1 to: ’a’ of: msb.

(tmp iPort at: ’a’) connect: 1 to: ’b’ of: msb.

lsb
connect: ’h’ to: ’c’ of: msb.
lsb
connect: ’l’ to: 3 of: (tmp oPort at: ’out’).

msb
connect: ’h’ to: 1 of: (tmp oPort at: ’out’).

msb
connect: ’l’ to: 2 of: (tmp oPort at: ’out’).

ˆ tmp

Code Ex. 10.2: The two bits adder

10.3.2 Composite nodes and hierarchical visiting

The composite nodes can be flattened in order to visit their sub nodes, as
shown in figure 10.5. The 10.5 figure illustrates the translation of the 9.3
example of the section 9, with additional IOs ports. The connections are not
any more high level connections (representing signals) but flatten bit-per-bit
connections.

In this example t28 represents the computeSignFor : and : node, t32
the computeSignificandFor : and :, t36 the computeExponentFor : and :
node, t38 the normalizeSignificand : node, and t10 the + node. Note that

10.3. TOOL 115

Figure 10.5: Example: By flattening a node, its sub nodes become accessible.
This example reflects the 9.3 example of the section 9, with additional IOs
ports

t38 owns to outputs, called t40 and t39, as illustrated in the 9.3 figure.

10.3.3 Conclusion

This tool does not claim to be as expressive as the textual grammar the
designer might use to code an operator by hand. In particular the regular
connections cannot be expressed at this time.

On the other hand, the tool neither allows to automatically tune the
operators depending on the inputs values. This can only be realized using
the MADEO-FET front end.

Nevertheless, the schematic editor enables to compose existing macros
into new ones what offer a way to build libraries of operators. By fully
supporting the SCNode formalism, the schematic editor inter operates with
the other tools of the MADEO framework, and can, as others, be extended
if needed.

Two extensions are envisaged by now: the first one consists in adding a
support for regular constructs, and the second one is to support parametrized
constructs.

116 CHAPTER 10. SCHEMATIC DESIGN

Part III

Appendix

117

Appendix A

MADEO BET appendix

A.1 Some examples of architectures description
using the grammar

A.1.1 First basic example

ex1 (
(ARRAY

(DOMAIN 1 1 10 10) “END of DOMAIN”
(

(COMPOSITE
(

(
(

FUNCTION
(INPUTS
(

(WIRE (WIDTH 4))
NAMED in) “ end of NAMED ”
)
(OUTPUTS
(

(WIRE (WIDTH 1))
NAMED out) “ end of NAMED ”
)) “END of FUNCTION”

NAMED f) “ end of NAMED ”
(

(WIRE (WIDTH 10))
NAMED h) “ end of NAMED ”
(

(LINK ’(self relativeAt: 0@1) v’) “END of LINK”
NAMED leftH) “ end of NAMED ”
(
(

(SWITCHBLOCK
(RESOURCES

(
upV
leftH

119

120 APPENDIX A. MADEO BET APPENDIX

h
v))

’self v connectTo: self h’
’self v connectTo: self upV’
’self v connectTo: self leftH’
’self h connectTo: self upV’
’self h connectTo: self leftH’
’self upV connectTo: self leftH’) “END of SWITCHBLOCK”

NAMED switch) “ end of NAMED ”

PRODUCE ExampleSwitch) “ END of PRODUCE ”
(

(LINK ’(self relativeAt: 0@1) v’) “END of LINK”
NAMED upV) “ end of NAMED ”
(

(WIRE (WIDTH 10))
NAMED v) “ end of NAMED ”

) “END of ELEMENTS”

(CONNECTION
’self v connectTo: #in of: self f ’
’(self f at:#out) connectTo: self h’

) “END of CONNECTION”
) “END OF COMPOSITE”

PRODUCE ExampleTile) “ END of PRODUCE ”
) “END of ARRAY”

PRODUCE ExampleArray) “ END of PRODUCE ”

A.1. SOME EXAMPLES OF ARCHITECTURES DESCRIPTION USING THE GRAMMAR 121

A.1.2 Example 2

ex2 (
(ARRAY

(DOMAIN 1 1 10 10) “END of DOMAIN”
(
(

(COMPOSITE
(

(
(

(FUNCTION
(INPUTS
(

(WIRE (WIDTH 4))
NAMED in) “ end of NAMED ”
)
(OUTPUTS
(

(WIRE (WIDTH 1))
NAMED out) “ end of NAMED ”
)) “END of FUNCTION”

REPRESENTATION
(COLOR red) “END of COLOR”
(RECTANGLE 10 10 30 30) “END OF RECTANGLE”

) “END of REPRESENTATION”
NAMED f) “ end of NAMED ”
(

(
(WIRE (WIDTH 10))

REPRESENTATION
(COLOR red) “END of COLOR”
(LINE 10 10 90 10 PROPORTIONAL 1) “END OF LINE”

) “END of REPRESENTATION”
NAMED h) “ end of NAMED ”
(

(LINK ’(self relativeAt: 1@0) h ’) “END of LINK”
NAMED leftH) “ end of NAMED ”
(
(

(SWITCHBLOCK
(RESOURCES

(
upV
leftH
h
v))

’self v connectTo: self h’
’self v connectTo: self upV’
’self v connectTo: self leftH’
’self h connectTo: self upV’
’self h connectTo: self leftH’
’self upV connectTo: self leftH’) “END of SWITCHBLOCK”

NAMED switch) “ end of NAMED ”

PRODUCE ExampleSwitch) “ END of PRODUCE ”

122 APPENDIX A. MADEO BET APPENDIX

(
(LINK ’(self relativeAt: 0@1) v’) “END of LINK”

NAMED upV) “ end of NAMED ”
(

(
(WIRE (WIDTH 10))

REPRESENTATION
(COLOR red) “END of COLOR”
(LINE 10 10 10 90 PROPORTIONAL 1) “END OF LINE”

) “END of REPRESENTATION”
NAMED v) “ end of NAMED ”

) “END of ELEMENTS”

(CONNECTION
’self v connectTo: #in of: self f ’
’(self f at:#out) connectTo: self h’

) “END of CONNECTION”
) “END OF COMPOSITE”

REPRESENTATION

) “END of REPRESENTATION”

PRODUCE ExampleTile) “ END of PRODUCE ”
) “END of ARRAY”
PRODUCE ExampleArray) “ END of PRODUCE ”

A.1. SOME EXAMPLES OF ARCHITECTURES DESCRIPTION USING THE GRAMMAR 123

A.1.3 Example 3

ex3 (
(ARRAY

(DOMAIN 1 1 10 10) “END of DOMAIN”
(
(

(COMPOSITE
(

(
(

(FUNCTION
(INPUTS
(

(WIRE (WIDTH 4))
NAMED in) “ end of NAMED ”
)
(OUTPUTS
(

(WIRE (WIDTH 1))
NAMED out) “ end of NAMED ”
)) “END of FUNCTION”

REPRESENTATION
(COLOR red) “END of COLOR”
(RECTANGLE 10 10 30 30) “END OF RECTANGLE”

) “END of REPRESENTATION”
NAMED f) “ end of NAMED ”
(

(
(WIRE (WIDTH 10) EXPANDED)

REPRESENTATION
(COLOR red) “END of COLOR”
(CHANNEL 20 10 90 10 0 1) “END OF RECTANGLE”

) “END of REPRESENTATION”
NAMED h) “ end of NAMED ”
(

(LINK ’(self relativeAt: −1@0) h ’) “END of LINK”
NAMED rightH) “ end of NAMED ”
(
((

(SWITCHBLOCK
(RESOURCES

(
upV
rightH
h
v))

’self v connectTo: self h’
’self v connectTo: self upV’
’self v connectTo: self rightH’
’self h connectTo: self upV’
’self h connectTo: self rightH’
’self upV connectTo: self rightH’) “END of SWITCHBLOCK”

NAMED switch) “ end of NAMED ”
REPRESENTATION “−− visual representation of the switch −−”
(COLOR gray) “END of COLOR”

124 APPENDIX A. MADEO BET APPENDIX

(h (LINE 20 10 20 20) “END OF LINE”)
(v (LINE 10 20 20 20) “END OF LINE”)
(upV (LINE 10 10 20 10) “END OF LINE”)
(rightH (LINE 10 10 10 20) “END OF LINE”))

PRODUCE ExampleSwitch3) “ END of PRODUCE ”
(

(LINK ’(self relativeAt: 0@1) v’) “END of LINK”
NAMED upV) “ end of NAMED ”
(

(
(WIRE (WIDTH 10) EXPANDED)

REPRESENTATION
(COLOR red) “END of COLOR”
(CHANNEL 10 20 10 90 1 0) “END OF RECTANGLE”

) “END of REPRESENTATION”
NAMED v) “ end of NAMED ”

) “END of ELEMENTS”

(CONNECTION
’self v connectTo: #in of: self f ’
’(self f at:#out) connectTo: self h’

) “END of CONNECTION”
) “END OF COMPOSITE”

REPRESENTATION

) “END of REPRESENTATION”

PRODUCE ExampleTile3) “ END of PRODUCE ”
) “END of ARRAY”
PRODUCE ExampleArray3) “ END of PRODUCE ”

A.1. SOME EXAMPLES OF ARCHITECTURES DESCRIPTION USING THE GRAMMAR 125

A.1.4 Example 4 with custom representation

exo4 (
(ARRAY

(DOMAIN 1 1 10 10) “END of DOMAIN”
(
(

(COMPOSITE
(

(
(

(FUNCTION
(INPUTS
(

(WIRE (WIDTH 5) EXPANDED)
NAMED in) “ end of NAMED ”
)
(OUTPUTS
(

(WIRE (WIDTH 1) EXPANDED)
NAMED out) “ end of NAMED ”
)) “END of FUNCTION”

REPRESENTATION
(COLOR red) “END of COLOR”
(RECTANGLE 30 30 40 40) “END OF RECTANGLE”

) “END of REPRESENTATION”
NAMED f) “ end of NAMED ”
(

(
(WIRE (WIDTH (VALUE myWidth ’#(10)’)) EXPANDED)

REPRESENTATION
(COLOR red) “END of COLOR”
(CHANNEL 20 10 90 10 0 1) “END OF CHANNEL”

) “END of REPRESENTATION”
NAMED h) “ end of NAMED ”
(

(LINK ’(self relativeAt: −1@0) h ’) “END of LINK”
NAMED rightH) “ end of NAMED ”
(
(

(
(SWITCHBLOCK

(RESOURCES
(
upV
rightH
h
v))

’self v connectTo: self h’
’self v connectTo: self upV’
’self v connectTo: self rightH’
’self h connectTo: self upV’
’self h connectTo: self rightH’
’self upV connectTo: self rightH’) “END of SWITCHBLOCK”

REPRESENTATION
(COLOR gray) “END of COLOR”

126 APPENDIX A. MADEO BET APPENDIX

(h (LINE 20 10 20 20) “END OF LINE”)
(rightH (LINE 10 10 10 20) “END OF LINE”)
(upV (LINE 10 10 20 10) “END OF LINE”)
(v (LINE 10 20 20 20) “END OF LINE”)

) “END of REPRESENTATION”
NAMED switch) “ end of NAMED ”

PRODUCE ExampleSwitch4) “ END of PRODUCE ”
(

(LINK ’(self relativeAt: 0@1) v’) “END of LINK”
NAMED upV) “ end of NAMED ”
(

(
(WIRE (WIDTH (VALUE myWidth)) EXPANDED)

REPRESENTATION
(COLOR red) “END of COLOR”
(CHANNEL 10 20 10 90 1 0) “END OF CHANNEL”

) “END of REPRESENTATION”
NAMED v) “ end of NAMED ”

) “END of ELEMENTS”

(CONNECTION
’self v connectTo: #in of: self f ’
’(self f at:#out) connectTo: self h’

) “END of CONNECTION”
) “END OF COMPOSITE”

REPRESENTATION

(CUSTOM myRepresentationWrittenByHand) “END of CUSTOM”
) “END of REPRESENTATION”

PRODUCE ExampleTile4) “ END of PRODUCE ”
) “END of ARRAY”
PRODUCE ExampleArray4) “ END of PRODUCE ”

A.1.5 LPPGA

(
(ARRAY

(DOMAIN 1 1 20 20) "END of DOMAIN"
(

(

(COMPOSITE
(
"--------- declaration of the function: f---------"

(
(

(FUNCTION

(INPUTS a1 a2 a3 b1 b2)
(OUTPUTS o1 o2 o3)) "END of FUNCTION"

REPRESENTATION "-- visual representation of the function --"

A.1. SOME EXAMPLES OF ARCHITECTURES DESCRIPTION USING THE GRAMMAR 127

(COLOR red) "END of COLOR"
(RECTANGLE 50 50 70 70) "END OF RECTANGLE"
(TEXT 60 40 ’function output’) "END of TEXT"

) "END of REPRESENTATION"
NAMED f) " end of NAMED "

"--------- declaration of the vertical wire: south ---------"
(

(

(WIRE (WIDTH 5) EXPANDED)
REPRESENTATION "-- visual representation of the wire --"
(COLOR gray) "END of COLOR"
(CHANNEL 14 34 14 90 4 0) "END OF CHANNEL"

) "END of REPRESENTATION"
NAMED south) " end of NAMED "

"--------- declaration of the horizontal wire: east ---------"
(

(

(WIRE (WIDTH 5) EXPANDED)
REPRESENTATION "-- visual representation of the wire --"
(COLOR gray) "END of COLOR"

(CHANNEL 34 14 90 14 0 4) "END OF CHANNEL"
) "END of REPRESENTATION"

NAMED east) " end of NAMED "

"--------- declaration of the horizontal wire: west ---------"
(

(LINK ’(self relativeAt: -1@0) east’) "END of LINK"
NAMED west) " end of NAMED "

"--------- declaration of the vertical wire: north ---------"
(

(LINK ’(self relativeAt: 0@1) south’) "END of LINK"

NAMED north) " end of NAMED "

"--------- wires for connections between a1 and o1 ---------"

"-- wire for diagonal connections --"
(

(WIRE (WIDTH 1))

NAMED a1North) " end of NAMED "
"-- wire for vertical and horizontal connections --"
(

(WIRE (WIDTH 1))
NAMED a1South) " end of NAMED "

"--------- wires for connections between b1 and o2 ---------"
"-- wire for diagonal connections --"
(

(WIRE (WIDTH 1))

NAMED a3North) " end of NAMED "
"-- wire for vertical and horizontal connections --"
(

(WIRE (WIDTH 1))
NAMED a3South) " end of NAMED "

"--------- wires for connections between a3 and o3 ---------"

128 APPENDIX A. MADEO BET APPENDIX

"-- wire for diagonal connections --"
(
(WIRE (WIDTH 1))

NAMED b1North) " end of NAMED "
"-- wire for vertical and horizontal connections --"
(

(WIRE (WIDTH 1))
NAMED b1South) " end of NAMED "

"--------- declaration of the switch: switch---------"
(
(

(

(
(SWITCHBLOCK
(RESOURCES

(
south
east

north
west

)

)
’self north connectTo: self east’
’self north connectTo: self south’

’self north connectTo: self west’
’self west connectTo: self east’
’self west connectTo: self south’

’self east connectTo: self south’
) "END of SWITCHBLOCK"
REPRESENTATION "-- visual representation of the switch --"

(COLOR gray) "END of COLOR"
(north (LINE 14 10 34 10) "END OF LINE")
(south (LINE 14 34 34 34) "END OF LINE")

(west (LINE 10 14 10 34) "END OF LINE")
(east (LINE 34 14 34 34) "END OF LINE")

) "END of REPRESENTATION"

NAMED switch) " end of NAMED "
PRODUCE MySwitchLPPGA) " END of PRODUCE "

CATEGORY LPPGA) "END of CATEGORY"

) "END of ELEMENTS"

"--------- declaration of vertical, horizontal and diagonal ----"
"--------- connections between cells ----"
"-- declaration of connections between inputs and wires --"

(CONNECTION
’self a1North connectTo: #a1 of: self f’
’self a1South connectTo: #a1 of: self f’
’self a3North connectTo: #a3 of: self f’

’self a3South connectTo: #a3 of: self f’
’self b1North connectTo: #b1 of: self f’
’self b1South connectTo: #b1 of: self f’

) "END of CONNECTION"

"-- declaration of connections between outputs and wires --"

(CONNECTION

A.1. SOME EXAMPLES OF ARCHITECTURES DESCRIPTION USING THE GRAMMAR 129

’(self relativeAt: -1 @ 1) f connect: #o1 to: self a1North’
’(self relativeAt: 1 @ 1) f connect: #o1 to: self a1North’
’(self relativeAt: 1 @ -1) f connect: #o1 to: self a1North’

’(self relativeAt: -1 @ -1) f connect: #o1 to: self a1North’
’(self relativeAt: 0 @ 1) f connect: #o1 to: self a1South’
’(self relativeAt: 1 @ 0) f connect: #o1 to: self a1South’

’(self relativeAt: 0 @ -1) f connect: #o1 to: self a1South’
’(self relativeAt: -1 @ 0) f connect: #o1 to: self a1South’

’(self relativeAt: -1 @ 1) f connect: #o2 to: self b1North’
’(self relativeAt: 1 @ 1) f connect: #o2 to: self b1North’
’(self relativeAt: 1 @ -1) f connect: #o2 to: self b1North’
’(self relativeAt: -1 @ -1) f connect: #o2 to: self b1North’

’(self relativeAt: 0 @ 1) f connect: #o2 to: self b1South’
’(self relativeAt: 1 @ 0) f connect: #o2 to: self b1South’
’(self relativeAt: 0 @ -1) f connect: #o2 to: self b1South’

’(self relativeAt: -1 @ 0) f connect: #o2 to: self b1South’

’(self relativeAt: -1 @ 1) f connect: #o3 to: self a3North’

’(self relativeAt: 1 @ 1) f connect: #o3 to: self a3North’
’(self relativeAt: 1 @ -1) f connect: #o3 to: self a3North’
’(self relativeAt: -1 @ -1) f connect: #o3 to: self a3North’

’(self relativeAt: 0 @ 1) f connect: #o3 to: self a3South’
’(self relativeAt: 1 @ 0) f connect: #o3 to: self a3South’
’(self relativeAt: 0 @ -1) f connect: #o3 to: self a3South’

’(self relativeAt: -1 @ 0) f connect: #o3 to: self a3South’
) "END of CONNECTION"

"--------- declaration of connections between outputs function ----"
"--------- and wires ----"

(CONNECTION
’self f connect: #o1 to: (self relativeAt: 1@0) south’
’self f connect: #o2 to: self south’

’self f connect: #o3 to: (self relativeAt: 0@-1) east’
) "END of CONNECTION"

"--------- declaration of connections between inputs function ----"
"--------- and wires ----"
(CONNECTION

’(self relativeAt:1@0) south connectTo: #a1 of: self f’
’self east connectTo: #a2 of: self f’
’self south connectTo: #a3 of: self f’

’(self relativeAt:0@-1) east connectTo: #b1 of: self f’
’self east connectTo: #b2 of: self f’

) "END of CONNECTION"

) "END OF COMPOSITE"

PRODUCE LPPGACell) " END of PRODUCE "

CATEGORY LPPGA) "END of CATEGORY"
) "END of ARRAY"

PRODUCE LPPGAArray) " END of PRODUCE "

CATEGORY LPPGA) "END of CATEGORY"

130 APPENDIX A. MADEO BET APPENDIX

A.2 Grammar

anytype ::= ((word)— (((string)— (((number)— (((¡variableparameter¿)— (¡vari-

ableparametercall¿))))))))

array ::= ’(’ ¡array¿ [¡interface¿] ¡domain¿ ¡element¿ + . [imagesize] ’)’

arrayproduceclass ::= ((¡arrayproduceclasswithcategory¿)— (¡arrayproduceclasswithout-

category¿))

arrayproduceclasswithcategory ::= ’(’ ’(’ ¡array¿ ’PRODUCE’ word ’)’ ’CATEGORY’ word

’)’

arrayproduceclasswithoutcategory ::= ’(’ ¡array¿ ’PRODUCE’ word ’)’

atom ::= ((¡switchblock¿)— (((¡switch¿)— (((¡function¿)— (((¡wire¿)— (((¡multiplexer¿

)— (((¡register¿)— (((¡reference¿)— (((¡tristate¿)— (¡link¿))))))))))))))))

basecost ::= ’(’ ¡basecost¿ number ’)’

channel ::= ’(’ ¡channel¿ number number number number [number number] ’)’

clock ::= ’(’ ¡clock¿ word ’)’

color ::= ’(’ ¡color¿ word ’)’

command ::= ’(’ ¡command¿ word ’)’

commonrepresentation ::= ¡representation¿ [¡color¿] [¡geometric¿] [¡squale¿] [¡text¿]

[¡offset¿] [¡custom¿]

composite ::= ’(’ ¡composite¿ [¡interface¿] [¡resources¿] ’(’ (¡flatten¿)— ¡element¿ +

. ’)’ ¡connecting¿ + . [imagesize] ’)’ [¡text¿]

concreteswitch ::= ’(’ ¡switch¿ ((¡inputswidth¿ ¡positions¿)— ¡positions¿)’)’

connecting ::= ((¡connection¿)— ¡pip¿)

connection ::= ’(’ ¡connection¿ string + ’)’

custom ::= ’(’ ¡custom¿ word ’)’

domain ::= ’(’ ¡domain¿ number number number number ’)’

donotproduceclass ::= ((¡namedelement¿)— ¡unamedelement¿)[¡parameter¿]

A.2. GRAMMAR 131

element ::= ((¡produceclass¿)— ¡donotproduceclass¿)[¡parameter¿]

flatten ::= ’(’ ¡flatten¿ ¡element¿ ’)’

function ::= ’(’ ¡function¿ ¡inputs¿ ¡outputs¿ [¡possiblefunctions¿] ’)’

functionalswitch ::= ’(’ ¡switch¿ ¡inputswidth¿ ((((’BY OUTPUT’ ¡outputresource¿ +)—

(’BY INPUT’ ¡inputresource¿ +)))— (((’BY OUTPUT’ resource +)— (’BY INPUT’

¡inputresource¿ +))’)’))

geometric ::= ((¡rectangle¿)— (((¡line¿)— (((¡channel¿)— (((¡horizontalchannel¿)—

¡verticalchannel¿)))))))

horizontalchannel ::= ’(’ ¡horizontalchannel¿ number number number number ’)’

input ::= ’(’ ¡input¿ ¡signal¿ ’)’

inputresource ::= ’(’ ¡input¿ ((string)— word)’TO’ ’(’ (string)— word + ’)’ ’)’

inputs ::= ’(’ ¡inputs¿ ¡signals¿ ’)’

inputswidth ::= ’(’ ¡inputswidth¿ number ”x” number ”y” ’)’

interface ::= ’(’ ¡interface¿ ¡signals¿ ’)’

iob ::= ’(’ ¡iob¿ ’(’ (¡iopad¿)— ¡element¿ + . ’)’ ¡connecting¿ + . ’)’

iobs ::= ’(’ ¡iobs¿ ’(’

iopad ::= ’(’ ¡iopad¿ ¡inputs¿ ¡outputs¿ ’)’

line ::= ’(’ ¡line¿ number number number number [’PROPORTIONAL’] ’)’

link ::= ’(’ ¡link¿ string [’IFNONE’ ¡element¿] ’)’

method ::= word ((¡arrayproduceclass¿)— ¡produceclass¿)

multiplexer ::= ’(’ ¡multiplexer¿ ¡inputs¿ ¡output¿ ’)’

namedelement ::= ((¡namedelementwithrepresentation¿)— (¡namedelementwithoutrepre-

sentation¿))

namedelementwithoutrepresentation ::= ’(’ ¡unamedelement¿ ’NAMED’ word ’)’

namedelementwithrepresentation ::= ’(’ ¡namedelementwithoutrepresentation¿ ¡represen-

tation¿ ’)’

132 APPENDIX A. MADEO BET APPENDIX

namedwire ::= ’(’ ¡wire¿ ’NAMED’ word ’)’

offset ::= ’(’ ¡offset¿ number number ’)’

output ::= ’(’ ¡output¿ ¡signal¿ ’)’

outputresource ::= ’(’ ¡output¿ ((string)— word)’FROM’ ’(’ (string)— word + ’)’ ’)’

outputs ::= ’(’ ¡outputs¿ ¡signals¿ ’)’

parameter ::= ’(’ ’SET’ word ((number)— word)’)’ [¡parameter¿]

pip ::= ’(’ ¡pip¿ string string string string ’)’

pipdefinition ::= ’(’ ’(’ string + ’)’ ’PRODUCE’ word ’)’

piptype ::= ’(’ ¡piptype¿ ((¡reference¿)— ¡pipdefinition¿)’)’

position ::= ’(’ ¡position¿ number number ¡piptype¿ ’)’

positions ::= ’(’ ¡position¿ + ’)’

possiblefunctions ::= ’(’ ’AMONG’ word + ’)’

produceclass ::= ((¡produceclasswithcategory¿)— (¡produceclasswithoutcategory¿))

produceclasswithcategory ::= ’(’ ’(’ ¡donotproduceclass¿ ’PRODUCE’ word ’)’ ’CATE-

GORY’ word ’)’

produceclasswithoutcategory ::= ’(’ ¡donotproduceclass¿ ’PRODUCE’ word ’)’

rectangle ::= ’(’ ¡rectangle¿ number number number number ’)’

reference ::= ’(’ ¡reference¿ word ’)’

register ::= ’(’ ¡register¿ ¡input¿ ¡output¿ [¡type¿] [¡clock¿] ’)’

representation ::= ((¡switchrepresentation¿)— (¡commonrepresentation¿))

resources ::= ’(’ ¡resources¿ ’(’ word + ’)’ ’)’

signal ::= ((((word)— string))— (¡namedwire¿))

signals ::= ¡signal¿ +

A.2. GRAMMAR 133

squale ::= ’(’ ¡squale¿ number ’)’

switch ::= ((¡concreteswitch¿)— (¡functionalswitch¿))

switchblock ::= ’(’ ¡switchblock¿ ((¡resources¿ string +)— string +)’)’

switchrepresentation ::= ¡representation¿ ¡color¿ [¡color¿] ’(’ word ¡line¿ ’)’ ’(’ word ¡line¿

’)’ + .

text ::= ’(’ ¡text¿ number number string ’)’

tristate ::= ’(’ ¡tristate¿ ¡input¿ ¡output¿ [¡command¿] ’)’

type ::= ’(’ ¡type¿ word ’)’

unamedelement ::= ((¡unamedelementwithrepresentation¿)— (¡unamedelementwithoutrep-

resentation¿))

unamedelementwithoutrepresentation ::= ((¡composite¿)— (((¡iob¿)— (((¡array¿)—

(¡atom¿))))))

unamedelementwithrepresentation ::= ’(’ ¡unamedelementwithoutrepresentation¿ ¡repre-

sentation¿ ’)’

variableparameter ::= ’(’ ’VALUE’ word string ’)’

variableparametercall ::= ’(’ ’VALUE’ word ’)’

verticalchannel ::= ’(’ ¡verticalchannel¿ number number number number ’)’

width ::= ’(’ ¡width¿ ¡anytype¿ ’)’

wire ::= ’(’ ¡wire¿ ¡width¿ [¡basecost¿] [’EXPANDED’] [¡basecost¿] ’)’

134 APPENDIX A. MADEO BET APPENDIX

A.3 Heterogeneous architectures

Defining an heterogeneous architecture goes through defining several do-
mains. Every domain is associated with an element to be replicated; all the
domains are rectangular zones of the architecture.

The following code example illustrates the creation of such an architec-
ture. In a concern of clarity the elements are described through references
to pre-existing classes.

LPPGACell (
(

(ARRAY
(DOMAIN 1 1 10 20) “END of DOMAIN”
(REFERENCE FirstElement) “END of REFERENCE”
(DOMAIN 11 1 20 20) “END of DOMAIN”
(REFERENCE SecondElement) “END of REFERENCE”
(DOMAIN 21 1 30 10) “END of DOMAIN”
(REFERENCE ThirdElement) “END of REFERENCE”

) “END of ARRAY”
PRODUCE NewArray) “ END of PRODUCE ”
CATEGORY LPPGA) “END of CATEGORY”

Code Ex. A.1: An heterogeneous architecture

The textual description presented in the table A.1 produces the method
new (code A.2).

new

“This method was generated by UIDefiner. Any edits made here
may be lost whenever methods are automatically defined.”

| col elts |
elts := (1 to: 20)

collect: [:aY | (1 to: 30)
collect: [:aX | RaNilObject position: aX @ aY]].

1 to: 20 do: [:y | 1 to: 10 do: [:x | (elts at: y)
at: x put: (FirstElement new position: x @ y)]].

1 to: 20 do: [:y | 11 to: 20 do: [:x | (elts at: y)
at: x put: (SecondElement new position: x @ y)]].

1 to: 10 do: [:y | 21 to: 30 do: [:x | (elts at: y)
at: x put: (ThirdElement new position: x @ y)]].

col := OrderedCollection new.
elts do: [:a | col addAll: a].
ˆ(self

x: 30
y: 20
with: col)
addInterface: nil

Code Ex. A.2: The new method generated from A.1

A.4. INSPECTING CHANGES OVER THE DEFINITION OF AN ARCHITECTURE 135

A.4 Inspecting changes over the definition of an
architecture

The prospection machanism impacts the architectural description as illus-
trated by the following figure.

Figure A.1: Architecture viewer

136 APPENDIX A. MADEO BET APPENDIX

A.5 Textual output

The place&route stage results in configuring the resources of the model.
This information can be written into a file (cf codes A.3, A.4) using the
modules’menu.

This information can be used on demand to produce a bitstream, assum-
ing the full bitstream structure is known.

(
’carrierCntrl’ (instance1) over LPPGAArray

%
Placement
%
clock 12 10 f
data valid 13 13 f
dv regx1x 13 10 f
first stage hold 13 11 f
inter hold 8 15 f
inv pilot 10 10 f
mc dv 13 14 f
pilot 12 15 f
prbs hold 12 11 f
reset 12 14 f
U10 11 10 f
U11 8 10 f
U12 8 12 f
U15 10 13 f
U16 9 14 f
U17 11 14 f
U18 11 13 f
U20 10 15 f
U21 10 14 f
U22 11 12 f
U24 10 11 f
U26 9 10 f
U28 12 12 f
U29 13 15 f
U32 9 13 f
U33 11 11 f
U34 8 14 f
U36 9 11 f
U41 8 11 f
U45 9 15 f
U46 9 12 f
U51 10 12 f
zeros 11 15 f

Code Ex. A.3: Placement information

A.5. TEXTUAL OUTPUT 137

%
Routing
%

carrCnt 2 :
11 12 #f #o1
10 13 10@13 #a1North
10 13 #f #a1
11 12 #f #o1
12 12 #south 4
12 13 #south 4
12 14 #south 4
11 14 #east 4
10 14 #east 4
9 14 #east 4
9 14 #f #b2
11 12 #f #o1
12 12 #south 4
12 13 #south 4
11 13 #f #a1
11 12 #f #o1
12 12 #south 4
12 13 #south 4
12 14 #south 4
11 14 #east 4
10 14 #east 4
9 14 #east 4
8 14 #east 4
8 14 #f #a2
11 12 #f #o1
12 12 #south 4
11 12 #east 4
10 12 #east 4
9 12 #east 4
9 12 #south 4
9 11 #south 4
8 11 #f #a1

data valid :
13 10 #f #o1
14 10 #south 0
14 11 #south 0
etc . . .

Code Ex. A.4: Routing information

138 APPENDIX A. MADEO BET APPENDIX

A.6 Changing the cost function of the placer

Every routing resource owns a cost that is used to compute the global routing
cost. However during placement, the placer uses an approximation called
’the cost function’ to determine the quality of a solution. This approximation
serves as a basis for the annealing schedule.

As this function drives the behavior of the placer, replacing the function
results in modifying the placer behavior, what is needed when finely tuning
the placer to match a given architecture’s requirements.

This goes through implementing a specific instance method in the class
modelizing the array. This class inherits from the RaArrayedObject in which
a common method exists.

evaluatorBlock

ˆ
[:thePlacerRouter :aRoute |
| allX allY pos sourcePosition |
allX := SortedCollection new.
allY := SortedCollection new.
aRoute destinations

do:
[:aDestination |
pos := thePlacerRouter positionOf: aDestination graphNode.
allX add: pos x.
allY add: pos y].

sourcePosition := thePlacerRouter positionOf: aRoute source graphNode.
allX add: sourcePosition x.
allY add: sourcePosition y.
allX last − allX first + allY last − allY first]

Code Ex. A.5: Example of cost function

This method must return a smalltalk block owning two parameters. The first
parameter is the placer-router which retains the placement information, as
the placement is not effective yet and cannot be accessed through the model
itself. The last parameter is the route which cost is to be computed. The
block must return a number.

A.7. PROSPECTION RESULTS 139

A.7 Prospection results

The following four figures represent different criteria that have been analyzed
with regard to the same circuit, letting the channels’ width vary from three
to height.

This enables to determine the minimum channel width that ensures the
circuit is routable, and to balance the hardware resource saving/ cpu time
tradeoff.

The bounding box’s growth indicates that the routing cannot be bounded
to the placement bounding box for the modules.

The routing cost only takes into account the signals that have been
successfully routed so that an increase in the number of unrouted signal can
result in a reduction of the global routing cost.

Figure A.2: Analyzing the bounding box

Figure A.3: Analyzing the CPU time

When several criteria are jointly selected, the order of the parameters
within the list determines the X label of the chart (see figure A.7).

140 APPENDIX A. MADEO BET APPENDIX

Figure A.4: Analyzing the number of unrouted signals

Figure A.5: Analyzing the routing cost

Figure A.6: Analyzing the number of runs (20 max)

A.7. PROSPECTION RESULTS 141

Figure A.7: Analyzing several criteria

142 APPENDIX A. MADEO BET APPENDIX

A.8 Example of prospection

Architecture: LPPGACell3
File: carrierCntrl-SnglOp.edif
Number of Loop: 5
Result on boundingBox,cpuTime,routingCost,unrouted,runs
Number Of Pins: inputs 1, outputs 1

A.8.1 History of prospecting result

Iteration : 1

’channelW’ ’value’
3 5.46518e11
4 6.62941e9
5 3.08402e9
6 2.17366e6
7 9477.4
8 2715.5

Iteration : 2

’channelW’ ’value’
3 5.26826e11
4 5.74228e9
5 3.83936e9
6 1.02325e9
7 5450.6
8 2536.0

Iteration : 3

’channelW’ ’value’
3 5.23947e11
4 6.99895e9
5 4.56927e9
6 4996.6
7 4011.5
8 2841.6

Iteration : 4

A.8. EXAMPLE OF PROSPECTION 143

’channelW’ ’value’
3 5.1847e11
4 6.89081e9
5 6.36456e9
6 21240.8
7 2613.3
8 3083.7

Iteration : 5

’channelW’ ’value’
3 6.8288e11
4 4.07851e9
5 2.71565e9
6 60279.5
7 2857.3
8 2036.0

A.8.2 Average of prospecting result

’channelW’ ’value’
3 5.59728e11
4 6.06799e9
5 4.11457e9
6 2.05103e8
7 4882.02
8 2642.56

144 APPENDIX A. MADEO BET APPENDIX

Appendix B

GenDoc results

This chapter illustrate the results of the GenDoc process through an exam-
ple.

145

146 APPENDIX B. GENDOC RESULTS

Report
Created by loic lagadec ¡loic.lagadec@univ-brest.fr¿ (July 5, 2004)

B.1. LPPGAARRAY 147

B.1 LPPGAArray

- Need : LPPGA Cell2

- Used by : none

B.1.1 Architecture Design (Level 1)

LPPGAArray

1@1 corner: 40@40 LPPGACell2

148 APPENDIX B. GENDOC RESULTS

B.2 LPPGACell2

- Need : MySwitchLPPGA

- Used by : LPPGAArray

B.2. LPPGACELL2 149

B.2.1 Architecture Design (Level 2)

LPPGACell2

ELEMENTS NAMED a3South

WIDTH 1

EXPANDED nil

MySwitchLPPGA

NAMED a1North

WIDTH 1

EXPANDED nil

NAMED b1South

WIDTH 1

EXPANDED nil

f(x) NAMED f

REPRESENTATION a RepresentationModel

INPUTS a1

a2

a3

b1

b2

OUTPUTS o1

o2

o3

NAMED a3North

WIDTH 1

EXPANDED nil

NAMED north

LINK (self relativeAt: 0@1) south

NAMED south

REPRESENTATION a RepresentationModel

WIDTH (10)

EXPANDED true

NAMED a1South

WIDTH 1

EXPANDED nil

NAMED b1North

WIDTH 1

EXPANDED nil

NAMED east

REPRESENTATION a RepresentationModel

WIDTH (10)

EXPANDED true

NAMED west

LINK (self relativeAt: -1@0) east

150 APPENDIX B. GENDOC RESULTS

CONNECTIONS self a1North connectTo: a1 of: self f

self a1South connectTo: a1 of: self f

self a3North connectTo: a3 of: self f

self a3South connectTo: a3 of: self f

self b1North connectTo: b1 of: self f

self b1South connectTo: b1 of: self f

(self relativeAt: -1 @ 1) f connect: o1 to: self a1North

(self relativeAt: 1 @ 1) f connect: o1 to: self a1North

(self relativeAt: 1 @ -1) f connect: o1 to: self a1North

(self relativeAt: -1 @ -1) f connect: o1 to: self a1North

(self relativeAt: 0 @ 1) f connect: o1 to: self a1South

(self relativeAt: 1 @ 0) f connect: o1 to: self a1South

(self relativeAt: 0 @ -1) f connect: o1 to: self a1South

(self relativeAt: -1 @ 0) f connect: o1 to: self a1South

(self relativeAt: -1 @ 1) f connect: o2 to: self b1North

(self relativeAt: 1 @ 1) f connect: o2 to: self b1North

(self relativeAt: 1 @ -1) f connect: o2 to: self b1North

(self relativeAt: -1 @ -1) f connect: o2 to: self b1North

(self relativeAt: 0 @ 1) f connect: o2 to: self b1South

(self relativeAt: 1 @ 0) f connect: o2 to: self b1South

(self relativeAt: 0 @ -1) f connect: o2 to: self b1South

(self relativeAt: -1 @ 0) f connect: o2 to: self b1South

(self relativeAt: -1 @ 1) f connect: o3 to: self a3North

(self relativeAt: 1 @ 1) f connect: o3 to: self a3North

(self relativeAt: 1 @ -1) f connect: o3 to: self a3North

(self relativeAt: -1 @ -1) f connect: o3 to: self a3North

(self relativeAt: 0 @ 1) f connect: o3 to: self a3South

(self relativeAt: 1 @ 0) f connect: o3 to: self a3South

(self relativeAt: 0 @ -1) f connect: o3 to: self a3South

(self relativeAt: -1 @ 0) f connect: o3 to: self a3South

self f connect: o1 to: (self relativeAt: 1@0) south

self f connect: o2 to: self south

self f connect: o3 to: (self relativeAt: 0@-1) east

(self relativeAt:1@0) south connectTo: a1 of: self f

self east connectTo: a2 of: self f

self south connectTo: a3 of: self f

(self relativeAt:0@-1) east connectTo: b1 of: self f

self east connectTo: b2 of: self f

B.3. MYSWITCHLPPGA 151

B.3 MySwitchLPPGA

- Need : none

- Used by : LPPGACell2

B.3.1 Architecture Design (Level 3)

MySwitchLPPGA

NAMED switch

REPRESENTATION a RepresentationModel

RESOURCES south

east

north

west

CONNECTIONS self north connectTo: self east

self north connectTo: self south

self north connectTo: self west

self west connectTo: self east

self west connectTo: self south

self east connectTo: self south

152 APPENDIX B. GENDOC RESULTS

ANNEXES

ANNEXES 1: Sources LPPGACell2

LPPGACell2 "

Method: LPPGACell2

Date: lundi 17 mai 2004

Defines classes :

- LPPGAArray

- LPPGACell2

- MySwitchLPPGA

"

(

(

(ARRAY

(DOMAIN 1 1 40 40) "END of DOMAIN"

(

(

(COMPOSITE

(

(

(

(FUNCTION

(INPUTS

a1 a2 a3 b1 b2)

(OUTPUTS

o1 o2 o3)) "END of FUNCTION"

REPRESENTATION

(DEFAULTCOLOR veryLightGray) "END of DEFAULTCOLOR"

(COLOR red) "END of COLOR"

(RECTANGLE 50 50 70 70) "END OF RECTANGLE"

(TEXT 60 40 ’function name’) "END of TEXT"

(CUSTOM drawPerso) "END of CUSTOM"

) "END of REPRESENTATION"

NAMED f) " end of NAMED "

(

(

(FUNCTION

(INPUTS

a1 a2 a3 b1 b2)

(OUTPUTS

o1 o2 o3)) "END of FUNCTION"

REPRESENTATION

(DEFAULTCOLOR veryLightGray) "END of DEFAULTCOLOR"

(COLOR red) "END of COLOR"

B.3. MYSWITCHLPPGA 153

(RECTANGLE 50 50 70 70) "END OF RECTANGLE"

(TEXT 60 40 ’function name’) "END of TEXT"

(CUSTOM drawPerso) "END of CUSTOM"

) "END of REPRESENTATION"

NAMED f) " end of NAMED "

(

(

(WIRE (WIDTH (VALUE width ’#(10)’)) EXPANDED)

REPRESENTATION

(DEFAULTCOLOR veryLightGray) "END of DEFAULTCOLOR"

(COLOR blue) "END of COLOR"

(CHANNEL 14 38 14 90 2 0) "END OF CHANNEL"

) "END of REPRESENTATION"

NAMED south) " end of NAMED "

(

(

(WIRE (WIDTH (VALUE width)) EXPANDED)

REPRESENTATION

(DEFAULTCOLOR veryLightGray) "END of DEFAULTCOLOR"

(COLOR blue) "END of COLOR"

(CHANNEL 38 14 90 14 0 2) "END OF CHANNEL"

) "END of REPRESENTATION"

NAMED east) " end of NAMED "

(

(LINK ’(self relativeAt: -1@0) east’) "END of LINK"

NAMED west) " end of NAMED "

(

(LINK ’(self relativeAt: 0@1) south’) "END of LINK"

NAMED north) " end of NAMED "

(

(WIRE (WIDTH 1))

NAMED a1North) " end of NAMED "

(

(WIRE (WIDTH 1))

NAMED a1South) " end of NAMED "

(

(WIRE (WIDTH 1))

NAMED a3North) " end of NAMED "

(

(WIRE (WIDTH 1))

NAMED a3South) " end of NAMED "

(

(WIRE (WIDTH 1))

NAMED b1North) " end of NAMED "

154 APPENDIX B. GENDOC RESULTS

(

(WIRE (WIDTH 1))

NAMED b1South) " end of NAMED "

(

(

(

((SWITCHBLOCK

(RESOURCES

(

south

east

north

west))

’self north connectTo: self east’

’self north connectTo: self south’

’self north connectTo: self west’

’self west connectTo: self east’

’self west connectTo: self south’

’self east connectTo: self south’) "END of SWITCHBLOCK"

REPRESENTATION

(COLOR gray) "END of COLOR"

(east (LINE 38 14 38 34) "END OF LINEX")

(north (LINE 14 10 34 10) "END OF LINEX")

(south (LINE 14 38 34 38) "END OF LINEX")

(west (LINE 10 14 10 34) "END OF LINEX")

) "END of REPRESENTATION"

NAMED switch) " end of NAMED "

PRODUCE MySwitchLPPGA) " END of PRODUCE "

CATEGORY LPPGA) "END of CATEGORY"

) "END of ELEMENTS"

(CONNECTION

’self a1North connectTo: #a1 of: self f’

’self a1South connectTo: #a1 of: self f’

’self a3North connectTo: #a3 of: self f’

’self a3South connectTo: #a3 of: self f’

’self b1North connectTo: #b1 of: self f’

’self b1South connectTo: #b1 of: self f’

) "END of CONNECTION"

(CONNECTION

B.3. MYSWITCHLPPGA 155

’(self relativeAt: -1 @ 1) f connect: #o1 to: self a1North’

’(self relativeAt: 1 @ 1) f connect: #o1 to: self a1North’

’(self relativeAt: 1 @ -1) f connect: #o1 to: self a1North’

’(self relativeAt: -1 @ -1) f connect: #o1 to: self a1North’

’(self relativeAt: 0 @ 1) f connect: #o1 to: self a1South’

’(self relativeAt: 1 @ 0) f connect: #o1 to: self a1South’

’(self relativeAt: 0 @ -1) f connect: #o1 to: self a1South’

’(self relativeAt: -1 @ 0) f connect: #o1 to: self a1South’

’(self relativeAt: -1 @ 1) f connect: #o2 to: self b1North’

’(self relativeAt: 1 @ 1) f connect: #o2 to: self b1North’

’(self relativeAt: 1 @ -1) f connect: #o2 to: self b1North’

’(self relativeAt: -1 @ -1) f connect: #o2 to: self b1North’

’(self relativeAt: 0 @ 1) f connect: #o2 to: self b1South’

’(self relativeAt: 1 @ 0) f connect: #o2 to: self b1South’

’(self relativeAt: 0 @ -1) f connect: #o2 to: self b1South’

’(self relativeAt: -1 @ 0) f connect: #o2 to: self b1South’

’(self relativeAt: -1 @ 1) f connect: #o3 to: self a3North’

’(self relativeAt: 1 @ 1) f connect: #o3 to: self a3North’

’(self relativeAt: 1 @ -1) f connect: #o3 to: self a3North’

’(self relativeAt: -1 @ -1) f connect: #o3 to: self a3North’

’(self relativeAt: 0 @ 1) f connect: #o3 to: self a3South’

’(self relativeAt: 1 @ 0) f connect: #o3 to: self a3South’

’(self relativeAt: 0 @ -1) f connect: #o3 to: self a3South’

’(self relativeAt: -1 @ 0) f connect: #o3 to: self a3South’

) "END of CONNECTION"

(CONNECTION

’self f connect: #o1 to: (self relativeAt: 1@0) south’

’self f connect: #o2 to: self south’

’self f connect: #o3 to: (self relativeAt: 0@-1) east’

) "END of CONNECTION"

(CONNECTION

’(self relativeAt:1@0) south connectTo: #a1 of: self f’

’self east connectTo: #a2 of: self f’

’self south connectTo: #a3 of: self f’

’(self relativeAt:0@-1) east connectTo: #b1 of: self f’

’self east connectTo: #b2 of: self f’

) "END of CONNECTION"

) "END OF COMPOSITE"

PRODUCE LPPGACell2) " END of PRODUCE "

CATEGORY LPPGA) "END of CATEGORY"

) "END of ARRAY"

PRODUCE LPPGAArray) " END of PRODUCE "

CATEGORY LPPGA) "END of CATEGORY"

156 APPENDIX B. GENDOC RESULTS

Appendix C

Madeo fet appendix

C.1 Blif vs Edif description

C.1.1 smalltalk code

The differences between blif and edif are illustrated through a simple exam-
ple. The code is as follows:

a:a b:b c:c

^(self plus:a plus:b) + (self plus:b plus:c)

where plus : plus is a method performing a simple addition, but allowing
to keep a structural decomposition. The typing is extremely simple and
symmetrical to preserve the readability:

TYTypeInterval from: 1 to: 4

What can be noticed is that the EDIF description does not require any
type inference as it makes use of references to operators. These operators
are based on the IOs of the nodes of the graph, with compaction as several
nodes linked to the same message result in a single EDIF CELL which is
instantiated several times.

On the opposite, the BLIF description cannot be obtained without going
through the type inference process. The designer is free to get a hierarchical
or a flatten BLIF. The flatten BLIF might be more compact but drives a
need to more computing power.

C.1.2 Resulting EDIF

(edif testEdif

(edifVersion 2 0 0)

(edifLevel 0)

(keywordMap (keywordLevel 0))

(status

(written(timeStamp 7 5 2004 3 54 3)

157

158 APPENDIX C. MADEO FET APPENDIX

(author "llagadec")

(program "madeofet" (version "alpha")

)

(dataOrigin "Equipe Architectures et systemes"(version "alpha")

)

)

)

(external myLibrary

(cell plus:plus:

(view cellsView

(viewType NETLIST)

(interface

(port in1

(direction INPUT))

(port in2

(direction INPUT))

(port out1

(direction OUTPUT))

)

)

)

(cell +

(view cellsView

(viewType NETLIST)

(interface

(port in1

(direction INPUT))

(port in2

(direction INPUT))

(port out1

(direction OUTPUT))

)

)

)

)

(library test

(edifLevel 0)

(cell module

(cellType GENERIC)

(view myView

(viewType NETLIST)

(interface

(port a

(direction INPUT))

(port b

C.1. BLIF VS EDIF DESCRIPTION 159

(direction INPUT))

(port c

(direction INPUT))

(port t9

(direction OUTPUT))

)

(contents

(instance t5

(viewRef myView (cellRef plus:plus:

(libraryRef myLibrary))

)

)

(instance t7

(viewRef myView (cellRef plus:plus:

(libraryRef myLibrary))

)

)

(instance t4

(viewRef myView (cellRef +

(libraryRef myLibrary))

)

)

(net t5

(joined

(portRef out1 (instanceRef t5))

(portRef in1 (instanceRef t4))

)

)

(net t7

(joined

(portRef out1 (instanceRef t7))

(portRef in2 (instanceRef t4))

)

)

(net t4

(joined

(portRef out1 (instanceRef t4))

(portRef t9)

)

)

(net a

(joined

(portRef a)

(portRef in1 (instanceRef t5))

)

)

160 APPENDIX C. MADEO FET APPENDIX

(net b

(joined

(portRef b)

(portRef in2 (instanceRef t5))

(portRef in1 (instanceRef t7))

)

)

(net c

(joined

(portRef c)

(portRef in2 (instanceRef t7))

)

)

)

)

)

)

(design MadeoFet_design

(cellRef module

(libraryRef test))

))

C.1.3 Resulting Hierarchical Blif

UC Berkeley, SIS 1.3 (compiled 19-Sep-99 at 5:55 PM)
sis¿ read blif exempleDeBlif.blif
sis¿ print stats
exempleDeBlif pi= 6 po= 4 nodes= 18 latches= 0
lits(sop)= 251

Table C.1: Hierarchical Blif statistics

.model exempleDeBlif

.inputs a_1 a_2 b_1 b_2 c_1 c_2

.outputs t4_1 t4_2 t4_3 t4_4

.clocks

.subckt t12 b_1=b_1 t11_1=t11_1 a_1=a_1 b_2=b_2 t11_2=t11_2 t11_3=t11_3 a_2=a_2

.subckt t15 c_2=c_2 t14_1=t14_1 b_1=b_1 b_2=b_2 t14_2=t14_2 t14_3=t14_3 c_1=c_1

.subckt t4 t14_2=t14_2 t14_1=t14_1 t14_3=t14_3 t4_1=t4_1 t4_2=t4_2 t4_3=t4_3 t4_4=t4_4 t11_2=t11_2

.model t4

.inputs t11_1 t11_2 t11_3 t14_1 t14_2 t14_3

.outputs t4_1 t4_2 t4_3 t4_4

.clocks

C.1. BLIF VS EDIF DESCRIPTION 161

.names t14_3 [1541] [1542] t4_1

01- 1

1-1 1

.names t14_3 [1543] [1544] t4_2

01- 1

1-1 1

.names t14_3 [1545] [1546] t4_3

0-1 1

-01 1

110 1

.names t14_3 [1547] [1548] t4_4

010 1

100 1

.names t11_1 t11_2 t11_3 t14_1 t14_2 [1541]

10-1- 1

1-01- 1

01111 1

.names t11_1 t11_2 t11_3 t14_1 t14_2 [1542]

10-10 1

1-010 1

10101 1

11001 1

01110 1

.names t11_1 t11_2 t11_3 t14_1 t14_2 [1543]

01-01 1

10-01 1

11011 1

01110 1

00110 1

01010 1

.names t11_1 t11_2 t11_3 t14_1 t14_2 [1544]

0110- 1

1000- 1

01-01 1

00101 1

01010 1

.names t11_1 t11_2 t11_3 t14_1 t14_2 [1545]

1011- 1

162 APPENDIX C. MADEO FET APPENDIX

0110- 1

101-1 1

10-11 1

-0101 1

011-0 1

0-100 1

.names t11_1 t11_2 t11_3 t14_1 t14_2 [1546]

10--1 1

-0-01 1

01--0 1

-1010 1

.names t11_1 t11_2 t11_3 t14_1 t14_2 [1547]

011-- 1

0-1-0 1

1011- 1

101-1 1

-0101 1

.names t11_1 t11_2 t11_3 t14_1 t14_2 [1548]

111-- 1

--011 1

0001- 1

00-11 1

11-00 1

10100 1

.end

.model t15

.inputs b_1 b_2 c_1 c_2

.outputs t14_1 t14_2 t14_3

.clocks

.subckt t14 c_2=c_2 t14_1=t14_1 b_1=b_1 b_2=b_2 t14_2=t14_2 t14_3=t14_3 c_1=c_1

.model t14

.inputs b_1 b_2 c_1 c_2

.outputs t14_1 t14_2 t14_3

.clocks

.names b_1 b_2 c_1 c_2 t14_1

1-1- 1

11-1 1

-111 1

.names b_1 b_2 c_1 c_2 t14_2

C.1. BLIF VS EDIF DESCRIPTION 163

001- 1

100- 1

0-10 1

1-00 1

1111 1

0101 1

.names b_2 c_2 t14_3

01 1

10 1

.end

.model t12

.inputs a_1 a_2 b_1 b_2

.outputs t11_1 t11_2 t11_3

.clocks

.subckt t11 b_1=b_1 t11_1=t11_1 a_1=a_1 b_2=b_2 t11_2=t11_2 t11_3=t11_3 a_2=a_2

.model t11

.inputs a_1 a_2 b_1 b_2

.outputs t11_1 t11_2 t11_3

.clocks

.names a_1 a_2 b_1 b_2 t11_1

1-1- 1

11-1 1

-111 1

.names a_1 a_2 b_1 b_2 t11_2

001- 1

100- 1

0-10 1

1-00 1

1111 1

0101 1

.names a_2 b_2 t11_3

01 1

10 1

.end

164 APPENDIX C. MADEO FET APPENDIX

C.2 Resulting Flatten Blif

sis¿ read blif exempleDeBlifSimple.blif
sis¿ print stats
exempleDeBlifSimple pi= 6 po= 4 nodes= 7 latches= 0
lits(sop)= 157

Table C.2: Flatten blif statistics

.model exempleDeBlifSimple

.inputs a_1 a_2 b_1 b_2 c_1 c_2

.outputs t9_1 t9_2 t9_3 t9_4

.clocks

.names a_2 c_2 [1251] [1267] t9_1

1101 1

0-1- 1

--10 1

.names a_1 b_1 b_2 c_1 [1252] t9_2

111-1 1

000-1 1

11-11 1

-1111 1

00-01 1

-0001 1

101-0 1

010-0 1

10-10 1

-0110 1

01-00 1

-1000 1

.names a_1 a_2 b_2 c_1 c_2 t9_3

1011- 1

0001- 1

0010- 1

1000- 1

1-110 1

0-010 1

0-100 1

1-000 1

01111 1

11011 1

11101 1

01001 1

C.2. RESULTING FLATTEN BLIF 165

.names a_2 c_2 t9_4

01 1

10 1

.names a_1 b_1 b_2 c_1 [1251]

111- 1

11-1 1

-111 1

.names a_1 a_2 b_2 c_1 c_2 [1252]

11111 1

01011 1

01101 1

11001 1

.names a_1 b_1 b_2 c_1 [1267]

1011 1

0101 1

0110 1

1100 1

.end

166 APPENDIX C. MADEO FET APPENDIX

Appendix D

Sis scripts

sweep; eliminate -1

simplify
eliminate -1
sweep; eliminate 4

simplify
resub -a
gkx -abt 30

resub -a; sweep
gcx -bt 30
resub -a; sweep

gkx -abt 10
resub -a; sweep
gcx -bt 10

resub -a; sweep
gkx -ab
resub -a; sweep

gcx -b
resub -a; sweep
eliminate 0

decomp -g *
eliminate -1; sweep
xl_part_coll -m -g 2 -n 5

xl_coll_ck -n 5
xl_partition -m -n 5
sweep

simplify
xl_imp -n 5
xl_partition -t -n 5
xl_cover -n 5

Code Ex. D.1: The 5lut.script doing the technology mapping for
5-Luts

167

168 APPENDIX D. SIS SCRIPTS

Appendix E

Inference

This appendix highlights some internal mechanisms used during the infer-
ence process.

inferereOutputs drives the evaluation of the operator, based on its inputs’
current values
supported by:

• CIR Block (see code E.3)

• CIR MethodGraph (build its equivalent block and subcontracts
to it or act as an atomic node (see code E.2))

• CIR Operator (Checks if there is an input owning a strong type.
Computes currentValue. See E.6)

• CIR Value (do nothing)

infereTypes enumerates the inputs’ n-up and call infereOutputsTypes
for each of those n-up
supported by:

• CIR Block (enumerates its n-up list and infere output types in a
loop. see code E.4)

• CIR BlockWithIndependentNodes (perform a node by node in-
ference)

• CIR MethodGraph (build its equivalent block and subcontract to
it. see E.1)

infereType Computes the current value
supported by:

• CIR Block (see code E.3)

• CIR GeneratedValue (calls its source operator infereOutputsType)

• CIR PseudoValue (dispatches to its realValue)

• CIR Value (do nothing)

169

170 APPENDIX E. INFERENCE

E.1 CIR MethodGraph

infereTypes

self cir isNil ifTrue: [self buildCIR].
self cir value infereTypes.
Screen default ringBell

Code Ex. E.1: the infereTypes method

infereOutputsType

“two cases:
− or the node must be seen as an atomic one, in which case a new

instance of the target class is built prior to evaluation, an the local OOLUT
is filled up with a new inValue − outIndex couple

− either the corresponding block (cir) is build on demand prior to
hierarchical evaluation”

| out inV index |
self mustSynthetize

ifTrue:
[cir isNil

ifTrue:
[self buildCIR.
self cir value name: self cir key.
self theOutputValue source: nil].

self cir value infereOutputsType.
ˆself cir value].

self infereInputsOnDemand.
inV := self currentRealInputsValue asArray.
index := self inValues indexOf: inV.
index = 0

ifTrue:
[out := TYTypeLiteral

new: (self theTargetClass new perform: theTar-
getSelector

withArguments: self currentInputsValue).
self theOutputValue currentValue: out.
self theOutputValue type add: out.
self inValues add: inV.
self outIndexes add: (Array

with: (self theOutputValue type collection set
indexOf: out) − 1)]

ifFalse:
[self theOutputValue currentValue: (self theOutputValue type

valueAt: (outIndexes at: index) first + 1)].
ˆself

Code Ex. E.2: The infereOutputsType method

E.2. CIR BLOCK 171

E.2 CIR Block

infereType

| inputsTypes |
operators do: [:oper | oper output currentValue: nil].
operators := operators collect: [:oper | oper infereOutputsType].
inputsTypes := self inputs collect: [:a | a currentValue].
self output typeInfo add: self output currentValue.
self inValues detect: [:elt | elt = inputsTypes]

ifNone:
[self inValues add: inputsTypes.
outIndexes add: (Array

with: (self output typeInfo indexFor: self output
currentValue) − 1)]

Code Ex. E.3: the infereType method

infereTypes

| inputsTypes |
inputsTypes := inputs collect: [:a | a type].
self enumerate do:

[:anInputCombination |
operators := operators do: [:oper | oper output currentValue:

nil].
anInputCombination with: self inputs do: [:a :b | b currentValue:

a].
operators := operators collect: [:oper | oper infereOutputsType].
inValues add: anInputCombination.
outIndexes add: (Array with: self output currentValueIndex −

1)].
self inputs with: inputsTypes do: [:a :b | a type: b]

Code Ex. E.4: the infereTypes method

172 APPENDIX E. INFERENCE

infereOutputsType

| inV index |
self output currentValue isNil

ifTrue:
[inputs isEmpty

ifFalse: [self infereType]
ifTrue:

[operators := operators collect: [:oper | oper output
currentValue: nil].

operators := operators collect: [:oper | oper infereOut-
putsType]]].

inV := self currentRealInputsValue asArray.
index := self inValues indexOf: inV.
index = 0

ifTrue:
[self outIndexes

add: (Array with: (self output type indexOf: self output
currentValue))].

ˆself

Code Ex. E.5: the infereOutputsTypes method

E.3. CIR OPERATOR 173

E.3 CIR Operator

infereOutputsType

“added by loic”

| in inTypes subCall strongInput |
strongInput := self inputs detect: [:a | a type forceOutputType]

ifNone: [nil].
strongInput isNil ifFalse: [self output type: strongInput type copy].
self output currentValue isNil

ifTrue:
[self selector = #ifTrue:ifFalse:

ifTrue: [self infereInputsOnDemand]
ifFalse: [self inputs do: [:a | a infereType]].

self receiver isNil
ifFalse:

[self receiver canBeEnumerated
ifTrue: [self computeOutputsType]
ifFalse:

[in := self allInputs asOrderedCollection.
in removeFirst.

inTypes := in asArray collect: [:a | a typeInfo].
subCall := CIR MethodGraph

targetClass: (Smalltalk at: self
receiver typeInfo nameClass)

targetSelector: self selector
withTypes: inTypes.

subCall buildCIR.
subCall cir value inputs with: inTypes

do: [:aParam :anAssociatedType |
aParam type: anAssociatedType].

subCall optimize.
output type: subCall cir value output type]]]

Code Ex. E.6: The infereOutputsTypes method

174 APPENDIX E. INFERENCE

Bibliography

[1] Visualworks smalltalk. http://www.cincom.com.

[2] V. Betz and J. Rose. Vpr: A new packing, placement and routing tool for fpga
research. In Field Programmable Logic and Application, LNCS, 1997.

[3] E.M. Sentovich et al. Sis: A system for sequential cirquit synthesis. Tech-
nical Report UCB/ERL M92/41, Department of Electrical Engineering and
Computer Science, Berkeley, May 1992.

[4] T. Miyazaki et al. Cad-oriented fpga and dedicated cad system for telecom-
munications. In Field Programmable Logic and Applications, volume 1304 of
LNCS, 1997.

[5] V. George. Low Energy Field Programmable Gate Array. PhD thesis, 2000.

[6] L. Lagadec. Madeo bet web page. http://penarvir.univ-
brest.fr/˜llagadec/MADEOBET.

[7] L. Lagadec. Abstraction, Modélisation et outils de cao pour les architectures
reconfigurables. PhD thesis, Université de Rennes 1, 2000.

[8] L. Lagadec and B. Pottier. Object oriented meta-tools for reconfigurable ar-
chitectures. In Conference on Reconfigurable Technology: FPGAs and Recon-
figurable Processors for Computing and Application, SPIE Proceedings 4212
in Photonics East 2000 Interna tional Symposium on Intelligent Systems for
Advanced Manufacturing, nov 2000.

[9] David A. Patterson and John L. Hennessy. Computer Organization and rD-
design: The Hardware/Software Interface. Morgan Kaufmann, harcover 2nd
edition, 1997.

[10] B. Pottier and J-L. Llopis. Revisiting smalltalk-80 blocks: A logic generator
for fpgas. In FCCM’96, 1996.

[11] P. Quinton and Y. Robert. Algorithmes et Architectures Systoliques. Masson,
1989.

[12] G.-M. Wu, Y.-U. Chang, and Y.-W. Chang. Rectilinear block placement using
B*-Trees. pages 351–356.

175

