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ABSTRACT 
 

Embedded systems are increasingly used in various fields like transportation, industrial 
automation, telecommunication or healthcare to execute critical applications and manipulate 
sensitive data. These systems often involve financial and industrial interests but also human 
lives which imposes strong safety constraints. Hence, a key issue lies in the ability of such 
systems to respond safely when errors occur at runtime and prevent unacceptable behaviors. 
Errors can be due to natural causes such as particle hits as well as internal noise, integrity 
problems, but also due to malicious attacks. Embedded system architecture typically includes 
processor (s), memories, Input / Output interface, bus controller and hardware accelerators 
that are used to improve both energy efficiency and performance. With the evolution of 
applications, the design cycle of hardware accelerators becomes more and more complex. 
This complexity is partly due to the specification of hardware accelerators traditionally based 
on handwritten Hardware Description Language (HDL) files. However, High-Level Synthesis 
(HLS) that promotes automatic or semi-automatic generation of hardware accelerators 
according to software specification, like C code, allows reducing this complexity. 

The work proposed in this document targets the integration of verification support in HLS 
tools to generate On-Chip Monitors (OCMs) during the high-level synthesis of hardware 
accelerators (HWaccs). Three distinct contributions are proposed. The first one consists in 
checking the Input / Output timing behavior errors (synchronization with the whole system) 
as well as the control flow errors (illegal jumps or infinite loops). On-Chip Monitors are 
automatically synthesized and require no modification in their high-level specification. The 
second contribution targets the synthesis of high-level properties (ANSI-C asserts) that are 
added into the software specification of HWacc. Synthesis options are proposed to trade-off 
area overhead, performance impact and protection level. The third contribution improves the 
detection of data corruptions that can alter the stored values or/and modify the data transfers 
without causing assertions violations or producing illegal jumps. Those errors are detected by 
duplicating a subset of program’s data limited to the most critical variables. In addition, the 
properties over the evolution of loops induction variables are automatically extracted from the 
algorithmic description of HWacc. It should be noticed that all the proposed approaches, in 
this document, allow only detecting errors at runtime. The counter reaction i.e. the way how 
the HWacc reacts if an error is detected is out of scope of this work. 
 

Keywords: High-Level Synthesis (HLS), Hardware Accelerator (HWacc), On-Chip Monitor 
(OCM), Assertions, Control Flow, Errors. 
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Embedded systems are exposed to multiple errors. This chapter illustrates the origin of those 
errors and their consequences on the behavior of embedded systems. In addition, this chapter 
presents the gap between the evolution of design approaches and the verification approaches. 
Then, it introduces the thesis contribution, and finally, presents the outline of this thesis. 
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1.1 Introduction 

Nowadays, integrated circuits (IC) are everywhere and their uses have become indispensable. 
They are used to perform complex computations and to execute critical applications. The 
human dependency with those components is more and more pronounced. Therefore, it is 
necessary to ensure a proper functionality of ICs. Actually, more than 40 processors are 
embedded inside a classic car. They drive sensitive points such as the direction and the 
braking system. In addition, the new generation of robot like Robonaut [1] has emerged to 
execute medical operation such as ultrasounds and syringes manipulation. Hence, users are 
dependent on those systems and the safety can only be guaranteed if the expected behavior of 
embedded systems is also guaranteed. Moreover, the evolution of application’s complexity 
makes the design cycle of embedded systems more complex which increases the time-to-
market. An evolution of design methods becomes indispensable to reduce this complexity. 
Hence, Electronic System Level (ESL) design approaches are gaining momentum and High-
Level Synthesis (HLS) is more and more used to design complex integrated circuits. Those 
HLS tools allow automatic generation of hardware components according to their high level 
specification and a set of constraints that are specified by the designer. Therefore, the 
execution of generated RTL architectures by those HLS tools must be checked at runtime, 
after they have been integrated in an embedded system, against different types of errors to 
ensure safety and security.  

In this chapter, we will discuss the sources and the consequences of errors which may occur at 
runtime in those embedded systems. Next, after presenting the traditional design approaches, 
we will briefly introduce the objective of HLS tools and the gap between existing verification 
approaches and those tools.  

1.2 Problematic  

Embedded systems are exposed to multiple faults that alter their behaviors. Those faults can 
be classified into two categories. The first category gathers the design and fabrication 
problems (e.g. signal integrity issues [91]). The second category regroups problems of 
disruption due to either the environment (i.e. particle hits) or malicious attacks, or aging of 
circuit (i.e. characteristics degradation).  

In this document, we only focus on the second category of faults that alter the execution of 
circuits at runtime and we assume that the generated circuits are correct by construction.  

1.2.1 Origin of errors (faults) 

1.2.1.1 Technology limits 

Aging is a well-known technological limit of integrated circuits. This problem refers to the 
deterioration of circuit performance over time. Circuits have always been aging, but it wasn’t 
significant until the latest iteration of Moore’s law, which pushed transistor channel lengths 
down to 0.18 µm. Circuit aging can infer slower speeds and irregular timing behavior [12]. As 
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consequence, the runtime constraints of applications that are implemented within IC can be 
violated.  In addition, this problem increases the power consumption of ICs [11]. Technology 
limits include also the functionality mode of transistors. Each transistor has critical voltage 
threshold: Under this threshold, the transistor is configured in locked mode and then no 
current is supplied. Hence, any modification of the source voltage can impact the execution of 
integrated circuits. 

1.2.1.2 Environment problems 

Environment is a source of radiations. Those radiations can be cosmic rays and/or solar 
particle events and/or nuclear radiations. Impacts of those radiations are usually transient, 
creating glitches and soft errors. For example, they affect the logical states of flip-flops and 
memory cells. In the worst case, those radiations lead to permanent damage which induces the 
destruction of the integrated circuits. Therefore, they present a risk that is increasing with 
respect to the reliability of the modern electronic systems.  

1.2.1.3 Malicious attacks 

In addition to technology limits and environment problems, it is now necessary to consider 
errors due to malicious attacks. In fact, embedded systems often implement safety critical 
applications making security property a more and more important aspect in their design. So, it 
is essential to consider attacks that are used to modify the behavior of a system in order to 
obtain additional rights or extract sensible data that must remain secret such as encryption key 
in credit cards [2]. Runtime and control flow integrity (CFI) attacks constitute one of the most 
severe threats to software programs. Although CFI attacks are well-known in computer 
systems, they have been recently shown to be serious problem in embedded systems as well 
[3], [4] and [5]. Moreover, there are classes of attacks that do not target the software part of 
embedded system, but the hardware component [6] instead. Such attacks include Random-
Access Memory (RAM) overwriting [7] that can be used to force the state of a static RAM 
point, optically induced faults [8] that cause a target transistor to conduct by illuminating it 
thereby inducing a transient fault and clock or power glitch attacks [9] that induce internal 
system errors by introducing glitches on clock or power supply.    

1.2.2 Consequences of faults 

Fault can remain silent for long periods of time in the case where it is in an unused part of the 
circuit, or if it is temporarily masked during the execution of the application. Otherwise, it is 
activated and alters the execution. Errors, consequences of faults, are classified into two 
categories: 

• Soft-error: error is characterized by an alteration over data or a modification of the 
current execution state. This type of error does not cause circuit destruction. In fact, 
the circuit will operate normally after removing errors. For example, soft error inside 
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hardware register disappears after rewriting inside the same register (update its 
value). However, this fault can propagate within the system causing new errors. 

• Hard-error: error causes total or partial destruction of circuit. 

1.3 Fault model 

Single Event Upset (SEU) i.e. a localized particle impact that leads to fault that altering a 
single bit has been widely considered in the existing works. In contrast, Multiple Event Upset 
(MEU) has been few addressed in state of the art. However, nowadays it must be taken into 
consideration. The impact of fault can influence several transistors associated with several 
memory cells. In that case, there are multiple effects such as Multiple Bit Upset MBU 
(usually defined as several erroneous bits in the same register) and Multiple Cell Upset MCU 
(several erroneous bits in different registers). 

In our works, we consider a general fault model with two types of alterations, Single and 
Combined, which encompass those existing models: SEU, MBU and MCU. Single alteration 
consists in performing MBU or SEU (that are a special case of MBU with the number of 
faults equal to 1) on a single element inside the architecture of the integrated circuit. 
Combined alteration consists in performing multiple alterations over several elements inside 
the architecture of the integrated circuit, like MCU. For example, we can find a SEU on an 
element and MBU on another element of integrated circuit. 

1.4 Evolution of design approaches  

The evolution of the capacity to integrate several components within the same chip, System 
On-Chip (SoC), is largely driven by the evolution of applications. Designers need CAD/EDA 
tools to support that automate tedious and error prone tasks, but also offer new functionalities. 
This became critical as the complexity grew up. 

For example, mobiles phones were only designed to receive and transmit voice (e.g. Motorola 
DynaTAC 8000X in 1983). However today, they allow viewing videos of high definition and 
executing complex 3D games. As a consequence, modern smartphones embed a system on 
Chips. 

Time-to-market pressure combined with complexity of applications require design methods to 
evolve. Figure 1-1.a illustrates the traditional design flow of integrated circuits. 
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Figure 1-1: Traditional design flow (a) and its associated verification methods (b) 

Traditionally, the design of application starts by writing the high level specification (e.g. text 
document) that describes the functionality of the application. For that purpose, an executable 
model is quite frequently created (like C code). At this stage, the application specification is 
essentially functional without hardware implementation details. It defines “what” the system 
does. The next stage is to craft an architecture to implement the desired functionality. The 
architecture defines “how” the system does the desired functionality. Finally, designers hand 
code these architectures with Hardware Description Language (e.g. VHDL) at the RTL level. 
However, finding a correct architecture is a complex task, and finding an optimized one is 
even more challenging. Fundamental issue is the manual nature of this entire design method. 
In fact, a manual intervention is a source of errors. The hand coded RTL description is tested 
and time is spent trying to hunt bugs down and to fix them.  

Therefore, the bigger the system and the more complex the application, the more probability 
to have errors and the more difficult to meet the delay.   

 
Figure 1-2 Design flow with High-Level Synthesis approach 
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High level synthesis (HLS) approaches can help to solve this problem by automatically 
producing the RTL description of an application from its high level specification (see Figure 
1-2). Moreover, it allows generating several different circuits depending on constraints that 
are specified by designers such as the latency, speed and number of hardware resource 
instances. The RTL architectures, generated by HLS tools, are composed of a control part, a 
Finite State Machine (FSM), and an operative part, the Data Path (DP). The HLS tools 
provided by industrial companies are Catapult-C [13] from Calypto, Synphony-C-Compiler 
[14] from Synopsis and the Cynthesizer [15] from Cadence Design Systems. In addition, 
several academic tools have been developed for research purposes such as GAUT [16] from 
Université de Bretagne Sud, ROCCC [17] from Jacquard computing Inc or LegUp [20] from 
the University of Toronto. In this work, we are used the last version of GAUT (this version is 
currently in its final validation phase prior to public release). 

The HLS flow splits into several steps: 

• Compilation step: it translates the high level specification into a formal representation 
(e.g. Control Data Flow Graph, CDFG); 

• Allocation step: it defines how many instances of each type of resource are required; 

• Scheduling step: it determines the control step during which operations start their 
executions. Those control steps are modeled by a Finite State Machine with Data-Path 
(FSMD); 

• Binding step: it assigns operations to operators / data to registers and allows resource 
sharing; 

• Generation step: it produces the RTL description of the hardware accelerator. 

More details of HLS flow will be provided in the next chapter. 

While design tools have been evolving, verification tools received only few evolutions. 
Hence, the gap between design tools and verification still grows up. Most of the existing 
verification methods focus on a specific level of abstraction (see Figure 1-1.b), and few 
attention has been put on portability (from one level to another). Thus, each stage of the HLS 
flow (that performs refinement over an abstraction model) owns its verification techniques. 
There is no way to set up a full validation flow by preserving the semantic down to IC (e.g. 
both C code and RTL description can be validated each, but real case RTL validation requires 
meaningful information over variables, that appears in C, and is missing in the RTL level).  

For example, high level properties used by formal verification to check the algorithmic 
specification are not supported by both industrials and academics HLS tools. They are either 
ignored or treated as common functions and then they are implemented using hardware 
resources of IC in unpredicted way. In addition, verification approaches proposed at RTL 
level cannot be used to check the execution and the timing behavior of RTL architecture 
generated by HLS tool due to the lack of information on when and where variables are 
affected.   
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Therefore, there is a lack of verification approaches to check properties at high level of 
abstraction, the timing constraints (i.e. I/O timing behavior or hang problems) or malicious 
attacks of application generated by HLS tools. 

1.5 Thesis contributions 

The objective of this thesis is to provide an approach to automatically design On-Chip 
Monitors (OCM) for Hwaccs that are generated by HLS tools. We propose to check at 
runtime the execution of those HWaccs against different types of faults to enhance embedded 
system security and to verify that there are no alterations on the expected timing behavior and 
on the internal computations. The OCMs are generated in VHDL language. The targeted 
technology depends on the verification context. For security context, generated OCMs are 
implemented either on FPGA or ASIC. OCMs constantly check the execution of HWacc. For 
debugging context, generated OCMs are only implemented on FPGA. Indeed, the OCMs will 
be removed after validating the execution and/or the integration of monitored HWaccs inside 
the embedded system. 

Errors, supported by this work, can be mainly classified into two categories: 

• Data Errors: this type of error occurs when the value of a variable, stored in memory 
or in register, is altered. 

• Control flow errors: this error occurs when the value of the next state inside the 
control part of the hardware accelerator is altered. This error affects the execution flow 
of hardware accelerator. 

In this thesis, the Input/output timing behavior of hardware accelerators is considered in order 
to check the synchronization of HWacc with the system. Today, System on Chip (SoC) are 
composed of several hardware components that communicate together to execute an 
application. So if one of those components introduces a delay in its execution due to errors, it 
may impact all the system. Also, the verification of the control flow execution is considered 
to prevent the illegal jumps and hanging problems.  

We also propose to automatically propagate the formal verification properties presented in the 
high-level model of HWacc to check the RTL description. The formal verification is defined 
by the set of specifications (properties) which the hardware accelerator must satisfy. Those 
properties are inserted inside the high-level model through the use of ANSI-C assertions. In 
addition, many synthesis options are proposed to trade-off between area overhead, 
performance and protection level. Moreover, a synchronization mechanism is introduced to 
ensure the execution of all expected assertions. 

Finally, we propose to check the problem of data corruptions. RTL architecture generated by 
HLS tool contains a control part that drives an operative part. The operative part is 
represented as a Data Path (DP) that contains a set of operators, multiplexer and registers. The 
control part is represented by a Finite State Machine (FSM) that defines the control flow of a 
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given application. Each FSM state generates a command word that drives the set of hardware 
components of the DP. Data corruptions imply modifying data transfers (the configuration of 
the Data-Path to route values between operators or registers) or stored values (inside internal 
registers or memory cells). These faults can cause the program to terminate correctly, without 
illegal jumps or hanging problems (if the altered value is not an induction variable), but by 
producing wrong results. The consequences of those faults that cannot be detected by 
assertions do not alter the execution order inside the control flow. In fact, ANSI-C assertions 
are only able to check at runtime the range of variable values or the relation between 
variables. So, they cannot verify that the value of a variable is correctly rooted inside the 
Data-Path of HWacc i.e. that the current value is extracted from the right register. Also, they 
cannot verify that a given value remains unchanged between its write cycle and the current 
cycle. We propose to tackle this limitation by checking the paths and the values of critical 
variables inside applications. Critical variables are variables that when they are altered by 
errors may impact application’s results. In addition we consider loop induction variables as 
critical variables that can also alter the execution of the control flow. In fact, errors over those 
variables can lead to hanging problems (e.g. infinite loops). A specific monitoring operation is 
proposed to check the evolution of their values in order to enhance the Control Flow 
Checking. 

Our proposed monitor synthesis flow is integrated into the new version of the HLS tool 
GAUT that uses CDFG as result of the compilation step. This tool provides the possibility to 
generate RTL description of accelerator with or without On-Chip Monitor (OCM). However, 
our synthesis flow can be integrated as an extension to any HLS tool.  
 

1.6 Thesis outline 

This thesis is organized as follows. Chapter 2 introduces the basic concepts and related works. 
It starts by presenting the traditional High-Level Synthesis flow. Then, related works targeting 
hardware monitoring are detailed. 

Chapter 3 presents our first contribution that allows designer to check automatically the 
Input/Output timing behavior as well as the control flow errors. The first part introduces the 
proposed approach to generate the On-Chip Monitor (OCM). The second part analyses 
experiment results: the error coverage and the area overhead.  

Chapter 4 introduces our second contribution that allows to automatically synthesize ANSI-C 
assertions into hardware monitors (OCM). The first part details (1) the synthesis flow of 
assertions, (2) the proposed synchronization mechanism between generated OCM and 
hardware accelerator and (3) the proposed synthesis options. The second part analyses 
experimental results: the performance impact and the area overhead according to synthesis 
options. This last part compares the proposed synchronization mechanism to previous 
techniques presented in literature. 
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Chapter 5 introduces our third contribution. It presents the unified flow to check assertions, 
I/O timing behavior and control flow errors. It starts by introducing the impact of compilation 
options over the control flow. Then, it presents the new synthesis options to trade-off area 
overhead, performance impact and protection level. Finally, it analyses experimental results 
and compares results with those presented in chapter 3 and chapter 4.    

Chapter 6 introduces our 4th contribution. It presents a solution to improve the detection of 
data errors by considering the problem of data corruption. It starts by introducing the design 
flow to identify the set of critical variables and to extract the evolution properties of loop 
induction variables. Then, it analyses experimental results. It compares the efficiency of the 
proposed algorithm to identify the most critical variables with the one proposed in the 
literature. In addition, it compares the error coverage and the detection latency with results 
presented in chapter 5.  

Finally, conclusion and perspectives are presented in the last chapter.  
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This chapter first introduces traditional High-Level Synthesis Flow. Then, it surveys a panel 
of verification techniques that can be used to check the execution of hardware accelerators. 
Finally, it discusses the limits of the related approaches.    



Background and Related Work 

-14- 
 

  



Background and Related Work 

-15- 
 

2.1 Introduction 

Electronic System Level (ESL) design approaches are gaining momentum and High-Level 
Synthesis (HLS) is more and more used to design complex hardware accelerators (HWacc). 
Those tools generate RTL architecture of HWacc from their high level descriptions. 

Hardware accelerators are more and more used to improve energy efficiency and 
performance.  Those components often implement critical applications and manipulate 
sensitive data. However, they are exposed like processors to several perturbations such as 
environment radiations or malicious attacks. Hence, security and safety are more and more 
considered as important aspect in their design.  

However, the existing techniques to validate the execution of HWacc focus on quite low level 
of abstraction, i.e. RTL. However, Assertion Based Verification (ABV) approach can be used 
at different levels of abstraction, from the high level down to the low level (C, RTL). ABV 
allows improving the detection of errors and facilitates their correction since it couples 
verification elements with design elements. 

In the following sections, we give a brief introduction on High Level Synthesis. Then, we 
discuss the different approaches proposed in literature to ensure the verification of hardware 
accelerators. Finally, the limits of those previous approaches and the contribution of this 
thesis are discussed. 

2.2 High-Level Synthesis Flow 

HLS allows designers to focus on the functionality of an HWacc and its communication 
interfaces. The HLS process consists of several steps [33] which execution order can vary. 
The set of traditional HLS steps are illustrated by Figure 2-1. The inputs of the HLS flow are 
the high-level description of the accelerator to synthesize (like C code), the set of constraints 
and the library of resources that exposes the characteristics of the target technology. From this 
information, HLS tool can chain the different steps to produce the RTL architecture of 
hardware accelerator (HWacc) as follow:  

Compilation step: it translates the specification, describing the algorithm to synthesize, into 
an intermediate representation. This formal representation can be a Data Flow Graph (DFG) 
but it is nowadays almost Control Data Flow Graph (CDFG). A CDFG is composed of two 
types of graph: Control Flow Graph (CFG) and DFG. A CFG is defined by a couple of 
<S_BB, S_A>, where S_BB is the set of Basic Block (BB) and S_A is the set of arcs A 
representing precedence constraints (i.e. execution order of) between basic blocks. BBs are 
defined to be a straight-line sequence of statements that contain no branch or internal entrance 
or exit point. For each BBi, a DFG is associated. A DFG is defined by a couple <V, E>, where 
V is the set of nodes representing atomic operations (“+”, “*”, “-“, “load”, “store”, etc.) and E 
is the set of arcs representing precedence between atomic operations. Execution of the input 
program consists of a sequential execution of basic blocks according to the control flow. For 
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example, Figure 2-2.a presents the description of the application to synthesize i.e. the C code 
of FIR filter algorithm. This specification is transformed by the compilation into the CDFG 
illustrated in Figure 2-2.b and Figure 2-2.c. CFG and DFG have been generated in this 
example by using GCC compiler version 4.7.2 with the option –O3 as front end. Figure 2-2.b 
depicts the DFG of the basic block BB4. BB4 includes the statement of line 5, the instruction 
to increment the value of the induction variable “i” of loop2 and the instruction to exit the 
loop2. Hence in order to perform the operation of line 5, the value of X[N-1-i] and the value 
of C[i] are loaded from the memory into registers. Then, multiplication of these two values is 
performed. Next, this intermediate results is added to the last result of Y[j] coming from BB3. 
The final operation stores the value of Y[j] into the memory. 

 
Figure 2-1 High-Level Synthesis flow 

The allocation step: this step defines how many instances of each type of resource are 
required. In our example, two adders (ADD#0 and ADD#1), one multiplier (MUL#1) and one 
memory bank are considered as resource constraints. 

The scheduling step: this step determines the states i.e. control steps (denoted s1, s2…) 
during which operations start their execution. To do this, scheduling process is based on the 
dependencies between data and the constraints given by designers: number and type of 
computing resources. For example scheduling algorithms can: 

• Be unconstrained like As Soon As Possible (ASAP) or As Late As Possible (ALAP) 
[34] procedures; 

• Minimize the number of control steps under resource constraint like List Scheduling 
[35] or modulo scheduling [36]; 

• Minimize the number of resources under latency constraint like Force Directed 
Scheduling [37]; 
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• Minimize the number of resources and the number of control steps like Force Directed 
List Scheduling [37].  

 
Figure 2-2 Filter example (a) Code source, (b) Data Flow Graph, (C) Control Flow Graph, (d) 

Finite State Machine with Data path. 

Once all the operations have been scheduled, the timing behavior is classically modeled as 
Finite State Machine with Datapath (FSMD). Figure 2-2.d depicts the FSMD of the FIR filter. 
FSMD handles variables and operations when the binding has not yet been done. A FMSD is 
defined as an tuple <S, I, O, V, STATUS, δ, λ>, where S= {Ssource, s1 , …, ssink} is the finite 
set of control states, I is the set of primary inputs, O is the set of primary outputs, V is the set 
of storage variables, STATUS (I x V � Boolm) is the set of transition conditions, δ (S x I x V 
� S) is the transition function (the next state) and the λ (S x I x V �V x O) is the update 
function. 

Each state of the FSMD is associated to a unique basic block (BB) and each BB can contain 
several states. Each state is associated to at least one operation and several operations can be 
scheduled in the same state. The CFG of the CDFG is still presents in the FSMD since each 
BB has only been decomposed into a set of linear states. In our example (see Figure 2-2.d), 
BB4 is split into four states: s8, s9, s10 and s11. The two load operations are performed in s8, the 
multiplication is started in s9, the increment of the induction variable “i” and the addition of 
multiplication’s result with the previous value of Y[j] are achieved in state s10. Finally, the 
check condition of loop2 and the store operation are performed in state s11.  

The binding step: this step assigns operations to operators and data to registers. Result of 
binding step can also be modeled as a FSMD wherein variables have been merged and 
replaced by storing elements (registers, etc.) and operations have been replaced by operators 
they have been assigned to. At the end of this step, the architecture of the operative part (DP) 
is completely defined and the control part can be constructed. 
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Table 2-1 illustrates the binding information for the DFG of BB4 presented in Figure 2-2.c. 
For example (see Figure 2-2.b), operations “+” are performed on operator ADD#1 and the 
data C is stored in register REG#7. 

Table 2-1: Binding results for DFG of BB4 

Operation/Variable Operator #instance 
load Load #0 
store Store #0 
+ ADD #1 
* MUL #0 
X REG #6 
Y REG #1 
C REG #7 
N-1-i REG #4 
i REG #2 
j REG #0 

 

Datapath and controller generation step: this step includes the data-path generation and the 
controller synthesis which based on the control flow (i.e. the command words) determines the 
logic to issue operations. Those results are described at the RTL level. 

 

2.3 Hardware monitoring 
Hardware monitoring at RTL level enables to extract internal signal of integrated circuit. 
Those signals are next analyzed by designer to detect alteration or faults. Several tools have 
been proposed to display the evolution of internal signals like Xilinx’s ChipScope [21], 
Altera’s SignalTap [22], F-Sight [24] and PALMiCE [23]. Those tools allow the automatic 
generation of a hardware block, referred to as Integrated Logic Analyzer (ILA). This 
hardware block can be automatically integrated in the netlist of design during the logic 
synthesis process. In addition, this block is configured by designer. In fact, designers can 
select the type of triggers and the set of signals to check. The trigger defines the condition to 
start the extraction of data. Then, if the condition is true, ILA stores the evolution of signal’s 
value to check inside a dedicated memory during a number of clock cycles defined by 
designer. Finally, signal’s values are transmitted to software tool through the JTAG 
connection, for example, as illustrated in Figure 2-3. 

 
Figure 2-3: Integrated Logic Analyzer 
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Several academic methods have been proposed to detect errors at runtime, referred to as in-
circuit monitoring. The MaMon method [18] [19] proposes to integrate a probe unit inside the 
Design Under Verification (DUV) to detect events. Those events are then transferred via a 
parallel-port link, Enhanced Parallel Port Protocol, to a host running a monitoring 
environment. This technique offers only simple conditions which limit to basic operations like 
(=, <) and logic operations like (AND, OR). In addition, like for the industrial tools, the 
selection of signals to check is performed off-line. Hence, if designer needs to extract more 
signals, he must re-design its monitor.   

The Assertion Based Runtime Debugger (ABRD) approach [25] allows resolving those 
limitations by providing the ability to configure the set of internal signals to check at runtime. 
In addition, the verification is based on assertions checkers that are implemented in a 
dedicated FPGA. Those assertions checkers are concise descriptions of complex behaviors 
that the DUV must satisfy. Next, the results of assertions checkers are transferred to an 
external terminal via a Universal Asynchronous Receiver Transmitter (UART). 

Those previous industrial tools and academic methods are limited in terms of number of 
available trace buffers and pins to extract internal signals. As solution, the technique 
introduced in [27] allows sharing the trace buffer, via the concept of distributed buffer, 
between all detected events. This is performed by assigning for each event a priority. Then, 
this technique uses the concept of data overwrite according to priority when the distributed 
buffer is full. In addition, this buffer allows sampling before and after the trigger condition is 
activated. This technique provides a holistic view of events and allows identifying the root 
cause of a bug.  

All those techniques allow detecting events and next trace internal signals to be analyzed off-
line by an external terminal in order to identify the cause of errors. On the contrary, the 
method proposed in [26] enables to detect events and to analyze them at runtime. The analysis 
process of events is provided by an integrated hardware engine. This latter includes 
MicroBlaze, BRAM, Interrupt controller and UART. When any hardware event is observed, 
the hardware engine associates an arbitrary software application to analyze results. 

In addition, there are other methods that only focus on the communication and the 
synchronization among hardware components inside a System On-Chip (SoC) to detect 
problems such as race, deadlock and livelock. The method proposed in [28] focuses on the 
AXI interconnection problems. It is based on Local Debugging Unit (LDU) and Shared 
Debugging Unit (SDU). The LDU monitors trace of transactions and detects undesired 
condition on bus. Next the SDU combines the debug traces from different LDUs and 
schedules them to trace memory. The method used in [29] is based on the transaction level 
verification to detect faults inside a SoC with a Network-on-Chip (NoC) [31] as 
communication infrastructure. A breakpoint monitor is added per NoC router to check 
network connections. Then, if there is a problem (i.e. breakpoint condition is valid), a 
breakpoint signal is generated and distributed to all the network interfaces. After stopping the 
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communication and switching off the functional clocks, a core based scan technique [30] is 
used to check the internal state of the system.  

Finally, those techniques and industrial tools only enable to detect errors and then allow 
tracing the internal state of the system. Next, a costly analysis must be performed to identify 
the cause of the malfunction. This has a negative impact on the complexity and the delay of 
the validation step. In fact, an error detected by those techniques can come from any portion 
of code that is propagated inside the system.  

In the following sub-section, we present an alternative approach that allows checking 
complex conditions in terms of operations and detecting errors closer to their sources which 
reduces the overhead that is needed to detect the cause of errors inside a system on chip. 

2.4 Assertion Based Verification 

Errors detected at the end of simulation can come from any system’s module elements. 
Hence, an error generated can sometimes circulate for a long time in the system, through 
many components, before being detected. So, finding the cause of an error is a complex 
process and can account for 70% of design time [41].  

Therefore, it is essential for designers to detect errors closest to their sources in order to 
quickly correct them. To do this, the use of assertions within the software description and 
hardware description of application allows increasing the reliability.   

Assertion Based Verification [32] (ABV) is an alternative method to monitor the execution of 
hardware component. It can be used as formal verification or functional verification. The 
formal verification checks if the proposed algorithm respects the formal specification, while 
functional verification verifies that the execution of generated circuit conforms to the 
expected one.  

Those two kinds of verification are both based on a set of assertions. Assertion is a concise 
description of a complex behavior that the system under verification must satisfy. Those 
assertions are defined during the first step of design flow. Next, those properties are used as 
monitors during the simulation process to detect the inconsistence between functional 
hypothesizes and the runtime execution of components. This allows detecting errors closer to 
their sources and avoids waiting the validation of application’s outputs to detect potential 
problems. 

Many languages and libraries for temporal assertions exist such as Property Specification 
Language (PSL)[38], System Verilog Assertion (SVA)[39] or Open Verification Library 
(OVL)[40]. Those temporal assertions are used to check the RTL description of applications.  
The most widely used language to define temporal assertions is PSL. This language consists 
of four syntax: SystemVerilog, Verilog, VHDL and GDL (General Description Language). In 
addition, it is structured in four layers as illustrated in Figure 2-4. 
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Figure 2-4 Structure of the PSL language 

The structure of PSL is composed of the following layers: 

� Boolean: includes conventional Boolean expression (e.g. not, and, or, ..), their values 
are reduced to true or false (e.g. faux is 0 and true is 1). 

� Temporal: specifies when the Boolean expressions must be valid and contains 
relationships between those expressions over time. This layer consists of three sets of 
expressions: Foundation Language (FL), Sequential Extended Regular Expressions 
(SERE) and Optional Branching Extension (OBE). The first two sets of expressions 
use logic LTL (Linear Temporal Logic) and thus OBE uses logic CTL (Computation 
Tree Logic). The LTL can be used for simulation as well as for formal verification. On 
the opposite, CTL can be used only for formal verification. 

� Verification : is used to specify how to use the property. The word “Assert” indicates 
that the property should be checked. The word “Assume” defines the behavior that 
entries must meet to perform the verification. This type of verification is used as 
generator for simulation purpose. The word “Cover” is used to measure how often the 
given property occurs during simulation. Finally, there are other keywords available as 
“Restrict”, “ Restrict_guarantee”, etc. [42]. 

� Modeling: allows defining the environment model in which the verification is 
performed. It is also possible to specify constraints on the inputs of the circuit under 
test (see line 2 in Figure 2-5.a), or to assign values to the auxiliary variables (see line 
2, the req signal, in Figure 2-6). The environment and properties are grouped in 
structure named “Vunit” . Then, the binding of this structure to RTL module is 
performed as shown in Figure 2-5.b. 

 

 
Figure 2-5 (a) Vunit (b) Connection between vunit and instance of RTL module 

Modeling

Verification

Boolean

FL SERE OBE

LTL CTL

Temporal

vunit my_unit (my_module)  {
(1) default clock = rising_edge (clk);
(2) assume never read AND write;
(3) property P1 = never (full AND write);
(4) assert P1;
(5) assert always (read -> NOT empty);

};

RTL module

vunit
inputs outputs

(a) (b)
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Figure 2-6 example of modeling layer with auxiliary variable 

However, this type of temporal assertions is limited to RTL verification. It cannot be used 
with HLS approaches. In fact, there are two problems. The first problem is the absence of the 
timing concept inside high level specification of hardware accelerator (e.g. algorithmic 
description). There is no timing constraint between variables except when the HLS tool 
supports behavioral description drive SystemC input. The second problem is that the HLS 
process merges and replaces variables by signals (hardware registers). Each register can 
contain more than one variable according to their lifetimes. This makes the manually 
integration of those temporal assertions inside the generated RTL architecture a cumbersome 
process. 

However, designers could resolve these limitations by specifying assertions in the high level 
specification. Languages of system level (i.e. C/C++, SystemC, ..) have a keyword dedicated 
to assertions, or a standard library that provides access to assertions in the form of functional 
calls. For example, the language C use the “assert()” macros to call the function 
“Assert_fail()” that stops the execution of programs when violations occur. There are two 
categories of high level assertions targeting specification and implementation. Each 
application has only one specification (i.e. functional model) but it can be implemented (i.e. 
algorithmic description, coding) in several ways. 

Then, assertion related to implementation is related to the coding style of an application and it 
allows checking the correct execution of operations or the values ranges. On the opposite, 
assertions related to specification are related to the verification team and they are independent 
of the used technique of implementation. Those assertions allow transforming the 
specifications of an application into formal properties. For example, they can check the range 
of input and/or output variables of an application and relations between them. This allows 
checking that the functional model of an application is correctly used.  

Figure 2-7 presents an example of C code of the square root, SQRT, application decorated by 
four assertions. We can notice that the two specification assertions are not related to the 
implementation of SQRT application but are related to the condition of use of this application. 
Indeed, the square root must be computed for any real positive variable (line 3), and if the 
input value, m, is greater than one, then the output value, ret, is necessary lower than this 
input value (line 18). The two implementation assertions are related to the internal variables 
of application. For example, the induction variable ‘j’ must never exceed the bound of the 

vunit my_unit (my_module)  {
(1) default clock = rising_edge (clk);
(2) Signal req;

(3) Req <= readA_req OR readB_req ;

(4) Assert always (req -> next(ack));

};
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loop (line 8) and that the value of ‘x1’ must be always different to zero (line 10) in order to 
validate the next operation, division operation, (line 11).  

 
Figure 2-7 SQRT application with assertions 

However, those high-level assertions are used only for simulation purpose. In fact, they are 
not well supported by current academic and commercial HLS tools. During HLS, assertions 
statements are currently either ignored or treated as common functions and implemented 
using hardware resources of HWacc in an unpredictable way. As a consequence, they can 
strongly degrade the HWacc performance and cannot be removed easily if needed. 

2.4.1 Synthesis of High-Level assertions 

Only few automated or semi-automated design approaches have been proposed to generate, 
from high level assertions, hardware monitors that verify at runtime the behavior of complex 
hardware accelerators that are generated by HLS tools.  

Authors of [58] propose a methodology to automatically convert system level assertions to 
hardware monitors or software monitors. Their technique is integrated in the ODYSSEY [59] 
methodology which advocates Object-Oriented (OO) modeling of embedded systems. The 
ODYSSEY methodology starts from an object oriented code in C++ which is synthesized into 
an Application Specific Instruction-set Processor (ASIP) [60] according to a set of integrated 
constraints. Hence, a part of the description is integrated by using hardware accelerators (i.e. 
the class methods are implemented as Functional Units) while the remaining part is executed 
on the processor core.  

#include assert.h

float SQRT (float m){
(1) float x1, x2, i =0;
(2) int j;
(3) assert (m>=0); // Specification assertion
(4) while(i*i <=m) {
(5) i += 0.1;
(6) x1 =i;
(7) for (j =0; j<10; j++){
(8) assert(j<10); // Implementation assertion
(9) x2 =m;
(10) assert (x1 != 0); // Implementation assertion
(11) x2 /=x1;
(12) x2 +=x1;
(13) x2 /=2;
(14) x1 = x2;
(15) }
(16)}
(17) float ret = x2;
(18)assert (m>=1 ? ret <=m : ret >m); //Specification assertion
(19)return ret;
(20)}
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Authors introduce a specific syntax for assertions. This allows describing both system level 
assertions and temporal level assertions. The system level assertions are used to describe the 
status of primitive elements. Primitive elements are methods (class operations), variables 
(class attributes or local variables inside method) and constants. In addition, there are a set of 
relational and logic operators to compare primitive elements. The temporal level allows 
defining a simple sequence of actions without requiring any clock cycle for synchronization. 
Action specifies transactions between objects. Also, it defines a method call. Temporal 
assertions are converted into Finite State Machines (FSMs) that are implemented in hardware, 
see Figure 2-8, while system level assertions are converted into software (i.e. code C++) or 
hardware (i.e. combination circuits) monitors, see Figure 2-9.  

 
Figure 2-8 A temporal assertion and its synthesis result 

 
Figure 2-9 A combinational assertion and its synthesis result 

The generated hardware monitors run concurrently to the system. The monitor’s inputs 
(variables, method calls, etc.) are provided by the interface of Method Invocation Unit (MIU) 
through its outputs signal. This unit stores the oriented-object-ASIP instruction that designates 
a method, the called object and the method arguments (operands). The synchronization 
between monitor and system is realized by the MIU. When an error is detected by the 
monitor, an interruption signal is produced by the MIU to stop the execution of the system. 

However, this technique is only understandable by the synthesis ODYSSEY methodology and 
uses a specific syntax to define the high level assertions. Then, this approach is not portable to 
any HLS tools. This represents the first condition C1 that the synthesis technique of high level 
assertion must satisfy. 
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This condition C1 is resolved by the synthesis technique introduced in [64]. This technique 
extends the conventional HLS flow to support generation of ANSI-C assertions as monitors 
for simulation purpose. It allows automatic detection and transformation of behavioral 
assertions from a high-level description into temporal RTL assertions (PSL assertions). This 
generation process is integrated inside the HLS flow as particular tasks as illustrated by the 
Figure 2-10, extracted from [64].     

The first step is the identification of assertions branches by scanning the formal representation 
of the application, result of the compilation step of the HLS flow. The formal representation is 
defined as Data flow Graph (DFG). Next, the set of detected assertion branches are removed 
from this formal representation and the set of nodes used as input of assertion branches are 
duplicated. Then, results of the allocation and binding step of HLS flow are used to bind 
assertion branches inputs to their associated registers. 

 
Figure 2-10 Assertion support in HLS flow [64] 

Next, the set of states that start the execution of assertions is detected by scanning the result of 
scheduling step. Finally, RTL monitors are generated from the assertion branches. The 
description of those monitors can be either in PSL assertions or in a set of independent VHDL 
processes.  

The proposed synchronization mechanism between RTL monitors and generated hardware 
accelerators is performed by using the FSM state of hardware accelerators as input of 
monitors. Figure 2-11, extracted from [64], illustrates the transformation of a high level 
assertion into PSL monitor. The verification of assertion condition (the right part of the PSL 
implication operator (→)) is driven by the current FSM state. The verification starts if the 
state S85 is the current FSM state.  
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Figure 2-11 Untimed C++ assertion and its temporal PSL transformation 

The generated RTL monitors produce an output signal that is activated when an assertion 
violation occurs. Hence, the identification of the cause of the error may remain difficult. For 
this reason, authors of [64] improve their proposition by introducing a synthesizable error 
handler. This latter allows extracting, during the error detection, the values of application 
variables that are selected by the designer. Those values are organized in the form of error 
reports.  Moreover, several configuration techniques are proposed to range data inside report 
in order to reduce the memory overhead. 

However, this approach uses the DFG as result of the compilation step. This formal 
representation prevents the user to use neither adaptive, dynamic, complex control statements 
nor complex applications. This represents the second condition C2 that the synthesis 
technique of high level assertions must satisfy. 

In addition, those two proposed techniques to synthesize high level assertions ([58] and [64]) 
have another limitation: the synchronization mechanism. In fact, the synchronization 
techniques proposed to drive the execution of generated monitors depend on the internal 
signals (or results) of hardware accelerators. The method introduced in [58] scans the outputs 
of the MIU unit that stores the oriented-object ASIP instructions to check a simple sequence 
of transactions or method calls. The method proposed in [64] uses FSM states of the hardware 
accelerator to start the verification of assertions. Unfortunately, those solutions prevent to 
detect hanging problem as soon as the hardware accelerators gets stuck in a state or loops over 
a subset of states (due to illegal jumps) that precede the state that triggers the next assertion. 
This represents the third condition C3 that the synthesis technique of high level assertions 
must satisfy. 

Those conditions C2 and C3 are treated by the technique proposed in [61]. This technique 
relies of the synthesis tool Impulse-C [63], developed by the Impulse Accelerated 
Technologies. This tool generates from a high-level description of an application a dedicated 
RTL architecture used as hardware accelerator for a general processor. This processor is 
designed to drive the data streams between the accelerator and the system. Impulse-C tool has 
no limitation on the accepted C code, and thus resolves the condition C2. Authors propose to 
transform behavioral assertions into synthesizable monitors through a translation from a 
behavioral assert statement to an if-then block and a notification function compatible with the 
Impulse-C tool. The if-then block allows checking the assertion condition. The notification 
function allows transferring assertion identifier to the processor when assertion violation 
occurs via a dedicated communication channel. Figure 2-12, extracted from [61], illustrates an 
example of code instrumentation.  

C++ T[34] = sqrt (2*x-b);

assert ( T[34] <a);

PSL assert always (state =s85) → prev(reg136, 63) < prev

(input1, 85)
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Figure 2-12 Converting ANSI-C assertion into code understandable by the Impulse-C tool 

If the condition is true (due to the negative logic used by the compiler), the processor is 
notified through the use of the function “co_stream_write”. This function is specific to the 
Application Programming Interface (API) of the Impulse-C. This allows passing through the 
system’s bus that an error has been detected. Then, the identifier (e.g. 17 in Figure 2-12) of 
monitor (assertion) is used to identify error location inside the high level description.  

Figure 2-13 illustrates the assertion framework. The hardware monitors (if-then blocks) detect 
errors and notify the software part through the common communication interface. Then, the 
CPU executes a dedicated function defined by designers. The Assertion Notification Function 
used in [61] writes in a file that error event occurs and gives the number of the line 
corresponding to the identifier of assertion.     

 
Figure 2-13 Assertion framework 

In order to reduce the impact of the hardware monitors (assertion checkers) on the 
application’s performance, authors perform optimization on the synthesis process of 
assertions. They start by using the ability of Impulse-C to produce parallel execution of 
operations. Impulse-C supports the concept of process similar to the objective of Hardware 
Description Language (HDL). Authors move assertions into a separate Impulse-C process. 
Then, impact over application’s performance is minored since assertions are inserted in a 
different process that runs concurrently. 
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The proposed synchronization technique between hardware monitors and accelerators 
happens through duplicating RAM memory, used to store the input data of assertions (shared 
data). This technique allows resolving the dependency of the hardware monitors with the 
internal states of the hardware accelerators. The hardware monitors (assertion checkers) 
always check their conditions over their input data that are stored inside the duplicated RAM 
memory. This is independent on the current hardware accelerator FSM state. 

Next, authors extend their in-circuit assertion methodology with a technique for timing 
analysis and hanging problem detection [62] and thus they resolve the condition C3. For 
timing analysis, they check if all the timing constraints are met. To do this, authors use the 
ANSI-C clock function that returns the current time in number of cycles. Then, to measure the 
time of a section of code, this function is called before and after that section of code. Next, the 
difference between the two times provides the execution time in terms of cycles. Finally, an 
ANSI-C assertion is used to compare the expected time (given by designer) with the measured 
time. Those ANSI-C clock functions are transformed into counters during the synthesis 
process. 

For hanging problem detection, authors propose to use watchdog timers. Two types of 
watchdog are proposed: software and hardware as illustrated in Figure 2-14, extracted from 
[62]. Software watchdog is provided to check if the call to the HLS API returns within a time 
period defined by designer. Hardware watchdog is used to check the duration between 
changes of signals that represent the state of the hardware process. Then, hanging detection is 
triggered when a state takes longer (timeout) than an expected number of cycle defined by 
designer. This timeout is reset anytime a state transition occurs. In addition, authors improve 
their technique to detect infinite loops in hardware. Since, infinite loops will not stay in a 
single state to trigger the hardware watchdog, then, authors introduce a second counter for 
each hardware process that contains loops. They allow designer to select hardware process to 
monitor and to specify the number of cycles that states must spent inside one or more loops 
(nested loop). 

 
Figure 2-14 Assertion framework supporting hang detection 
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However, the hanging problem can be caused by illegal jump. In fact, the HWacc can loop 
over a subset of states. In this case, there is no violation of timeout and then, the watchdog 
cannot detect the hanging problem.  

In addition, this technique to detect timing behavior errors has a negative impact on the area 
overhead of the generated monitors. For each timing assertion, a dedicated counter is 
implemented. Also, for each selected loop to check, a dedicated counter is used. Moreover, 
the synchronization mechanism leads to expensive area overhead due to the RAM memory 
that is duplicated. Therefore, the area overhead incurred by the generated monitors must be 
considered during the synthesis process of high-level assertions. This represents the fourth 
condition C4. In order to reduce the area overhead, authors propose to share hardware 
resources between a subset of assertions. The identification of those assertions is manual. 
Thus, they partially satisfy the condition C4.    

Moreover, the proposed synchronization mechanism reaches its limit when illegal jumps 
occur inside the control flow graph (FSM) of the hardware accelerator. Some operations of 
HWacc could be skipped due to an illegal jump. If those operations produce the values of 
assertion inputs, then assertions are checked (executed) with the previous values that are 
stored in the duplicated RAM. Hence, no assertion violation is detected. We define the 5th 
condition C5 as the insurance that the synchronization mechanism guarantees that all 
assertions are correctly executed.  

Finally, all the previous approaches allow synthesizing assertions into hardware monitors 
which run concurrently to the execution of hardware accelerators. This synthesis methodology 
has low impact on the HWacc’s performance. This defines the 6th condition C6. However, 
this methodology suffers from security drawbacks as the hardware accelerators may receive 
late detection of assertion violation (according to the complexity of assertions to synthesize). 
Therefore, the generated monitor must be reactive to prevent the propagation of errors inside 
the whole system and to enhance the security of the hardware accelerator. This represents the 
7th condition C7 that the synthesis technique must satisfy.  

The ABV approach only allows verifying if the hardware accelerator meets its specifications 
through a set of high level assertions. Those assertions are performed on variables that allow 
detecting data errors. However, this technique has a limit to check if there is illegal jump 
inside the hardware accelerator FSM. They cannot check the execution order of FSM states. 
As we explained above, this type of error, control flow errors, has a negative impact on the 
verification of assertions (condition C5). We define that detecting data errors as the 8th 
condition, C8 

In the following sub-section, we present an alternative approach that allows checking control 
flow errors such as illegal jumps and infinite loops. In the literature, this approach is referred 
as to Control Flow Checking (CFC). It consists in verifying the successive operations that are 
performed by the application. 
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2.5 Control Flow Checking 

Existing methods and approaches for control flow verification are based on the comparison 
between reference CFG (Control Flow Graph) and the control flow that is deduced during the 
execution of the monitored application. Any deviation from the expected behavior is detected 
and failure is reported. Three conditions must be checked to detect deviation: 

1. All transitions between basic blocks of a given path must follow existing arcs in the 
CFG. In the case of conditional transition (when a basic block has more than one 
successor), transition must validate the condition related to its arc. 

2. Operations associated to each node (Basic Block) are the same than those associated 
to the nodes of the reference CFG. 

3. Operations associated to each node (Basic Block) are correctly executed.  

After a comprehensive literature search, we found no previous work related to control flow 
checking for hardware accelerators. Only control flow checking for software processors has 
been proposed.  

However, existing verification methods are limited to the identification of illegal jumps 
(condition 1) and the verification that operations are correctly driven (condition 2). The 
verification that the operations of the control flow are correctly executed (condition 3) is not 
supported by existing methods. 

There are two categories of verification approaches: methods that consist in applying 
signature analysis and methods that consist in checking system call sequence. 

2.5.1 Control flow checking using signature analysis 

The verification of control flow consists in extracting a huge quantity of information from the 
reference CFG. In order to reduce the area overhead, it is necessary to use a more compact 
representation designed by signature. To do this, a compactor circuit must be located between 
the monitored circuit and monitor to compute the corresponding signature. There are three 
types of compactors: 

� Spatial compactor: it allows having every cycle a signature corresponding to a 
function of various observed signals; 

� Temporal compactor: it allows obtaining a signature for each signal according to a 
sequence of value obtained during a given number of clock cycles; 

� Hybrid compactor: it allows computing both temporal and spatial signature. 

The analysis process relies on the following approach: reference signatures are first generated 
off-line to serve as a comparison basis. Runtime signatures are then computed on-line and 
checked against the references. Any deviation from the expected behavior is detected and 
failure is reported. Analysis approaches can be classified into two categories according to how 
the runtime and the reference signatures are computed and stored respectively: 
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� The Embedded Signature Monitoring (ESM) approaches: they add in the main 
program data related to signature as parameters for the reference signatures and also 
add specific instructions for signature generation and comparison. 

� The Disjoint Signature Monitoring (DSM) approaches: they store the reference 
signatures and the control flow graph (CFG) of the application is an external memory. 
The CFG must be stored to identify at runtime when the generation and the 
comparison of signatures must be performed. Signatures generation and comparison 
are handled by an external hardware component, called monitor or watchdog.    

2.5.1.1 Embedded Signature Monitoring  

Verification methods consist in modifying the program to be verified by adding instructions 
to compute and compare signatures online. This process can be made during compilation or 
during a preprocessing phase. Recent methods, such as Control Flow Checking by Software 
Signature [65] (CFCSS), Enhanced Control Flow Checking Using Assertions [66] (ECCA) 
and Control Error Detection through Assertions [67] (CEDA), allow automatic insertion of 
those instructions by modifying compiler. These methods differ on the insertion they insert.  

CFCSS [65] uses a Global Signature Register (GSR) dedicated to store the runtime signature 
Gi associated to the block Vi being executed. A unique signature Si computed offline prior to 
the execution is associated to each block Vi. Then, the execution of control flow is considered 
correct, if Si is equal to Gi. The runtime signature Gi is computed using the previous runtime 

signature Gj, referred to the block being executed Vj, signatures Sj of previous block Vj (Vj ∈ 
prev(Vi)) and a specific parameter di, defined during the compilation step. 

�� = ��⨁�� = ��⨁(	�⨁	�) 
 
( 2-1) 

ECCA [66] divides the program into a set of blocks, called Branch Free Identifiers (BFI). A 
unique prime number larger than 2 called Block IDentfier (BID) is assigned to each BFI. 
Next, two assignments of code are inserted into each block. The first assignment is executed 
when entering the block. The assignment is as follows: 

�� ← 
��
(��	���	
��) ∗ (��	���	2) 

 
(2-2) 

Where id is a global integer variable which is updated during execution time upon entry into 
and exit from each block. 

The second assertion is also an assignment; it is placed at the end of the basic block. The 
assignment is as follow: 

��	 ← ���� +	(�� − 
��) 
 
(2-3) 
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Where NEXT is an integer variable generated at preprocessed time (off-line) and it is equal to 
product of accessible block’s BID from the current block (its direct successors). 

Those two assertions allow identifying illegal jumps when detection division by zero (id mod 

2 = 0 or	��	���	
�� = 0). 

CEDA [67] approach proposes to classify the set of blocks inside CFG into two categories: A 
and X. A block is identified as A if it has at least one disjunction block (a disjunction block is 
a block that has more than one successor) that belongs to its predecessors. Each block 
(referred to as node) is characterized by two parameters d1 and d2 and is identified by two 
signatures: Node Signature (NS) and Node Exit Signature (NES). All the parameters and 
signatures are computed off-line. Then, the current path is considered as correct if for each 
executed node “i” of the CFG, the following two conditions are verified: 

	 = �	� during the execution of the node i and  	 = ��	� at the end of the node i. 

Where S is a global signature computed at runtime and is updated during the execution upon 
entry into and exit from each node using the following equations: 

 

Type of node Entry Exit 

A S = S and d1(Ni) S = S xor d2(Ni) 

X S = S xor d1(Ni) 

All those previous techniques have a purely software methods: the generation and the 
comparison instructions of signatures are performed inside the main program. This process 
increases the cost of memory to store the set of reference signatures.  

Technique proposed in [68] allows exploiting a low-cost infrastructure Intellectual Property 
(I-IP) core, called Pandora, that works in cooperation with a software based approach. The 
software part is used to track the execution flow of a program by inserting ad-hoc instructions 
at compile time. Those instructions are able to inform the I-IP about which block of the 
application is currently being executed using the processor bus. In fact, they send information 
to I-IP upon entry into and exit from each basic block of application by using those two 
assertions respectively: IIPtest and IIPset. 

The I-IP constantly listens to the processor bus and when it receives an assertion instruction 
(IIPtest or IIPset) from the software code to check it starts operation according to the received 
assertion. Hence if the assertion is: 

� A test assertion (IIPtest(V j)), it checks if there is an illegal jump. The basic block Vj 
belongs to the list of predecessors of the current basic block. To perform this, it 
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controls if the signature Bj, associated to Vj differs from the current value of 
program’s signature it stores. 

� A set assertion (IIPset(V i)), it updates the program’s signature (runtime signature) by 
using the following equation: 

Σ = (Σ	&	�1 !)⨁�2 ! 
 
(2-4) 

where ∑ is the runtime signature, M1 represents a constant depending on the signature of 
basic block that belongs to the set of predecessors of Vi, pred(Vi), while M2 represents a 
constant depending on both signatures of the current basic block Vi and those of the basic 
block belonging to pred(Vi). Those two constants are computed at compile time using the 
algorithm proposed in [69]. 

All ESM methods that have been proposed until now are based on vertical signatures. In fact, 
those methods consist in inserting assertions at the entry or/and at the exit of each basic block 
inside the CFG. Then, they use specific instructions to generate and compare signatures 
against reference signatures. However, those approaches do not detect errors if the processor 
never meets the test instruction (or assertion) due to an illegal jump. Moreover, the use of 
vertical signatures has often a very long latency. This latency depends on the location of the 
test instruction. Thus, those approaches do not satisfy the condition C7 (reactivity).  

All those problems have led researchers to propose new signature-based approaches that use 
horizontal signatures. Figure 2-15, extracted from [70], illustrates the h bits added 
horizontally to each instruction. The function H produces for each instruction “j” a horizontal 
signature by operating on the instruction sequence from the path’s beginning through 
instruction “j”.  

 
Figure 2-15 Horizontal signatures [70] 

In addition, there are techniques that combine horizontal and vertical signature referred to as 
Continuous Signature Monitoring (CSM) [71][72]. Those techniques allow reducing the 
detection latency without decreasing the error detection coverage (detection of illegal jumps 
between basic blocks). However, they are not able to detect all the errors linked to illegal 
jump inside basic blocks. In addition, they increase the memory overhead due to horizontal 
signatures. 
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Finally all those ESM approaches have a common drawback: the performance impact 
(Condition C6). In fact, monitor instructions are embedded within the program to check. In 
the following sub-section, an alternative approach is presented to remove this problem.   

2.5.1.2 Disjoint Signature Monitoring  

Disjoint Signature Monitoring (DSM) approaches execute the generation of runtime signature 
and the comparison with reference signature in an external hardware component, named 
watchdog or monitor. They are therefore compatible with the requirements of norms such as 
IEC 61508 [73] that imposes the use of different resources for error detection. However, those 
methods cause an important memory overhead to store the reference signature and 
information about the structure of executed control flow. In addition, they need a complex 
hardware monitor to generate the runtime signatures and to extract the reference signatures 
from memory. Due to those limits, only few works have been proposed. 

The most well-known DSM approach is the Watchdog Direct Processing (WDP) [74]. It 
consists in controlling the executed programs through address checking by using a dedicated 
watchdog. This watchdog allows detecting sequencing errors and especially illegal jumps. 
This enables to reduce the propagation of the errors in the system. Moreover, the path 
followed through the control flow graph during the execution is identified. To do this, the 
watchdog classifies the nodes reached by the processor into 7 categories which define the set 
of singularities of program:  

• I0: Initialization node 

• I1: Destination node 

• I2: Sequence node with conditional jump 

• I3 :Sequence node with unconditional jump 

• I4: Sequence node with conditional jump to sub-program 

• I5: Sequence node with unconditional jump to sub-program 

• I6: Sequence node that return from sub-program 

In addition, WDP uses signature analysis to detect bit errors over program instructions. The 
information associated to singularities are their addresses in the program to verify, their types 
and a value that allows analyzing signatures. Those values are stored in an external memory. 
The type of singularity corresponds to an instruction executed by the watchdog (i.e. the 
watchdog program contains one instruction for each node in the application program). Each 
watchdog instruction contains three fields:  

• Opcode   

• Address of program instruction 

• Reference  



Background and Related Work 

-35- 
 

Reference can contain the value of the node’s signature when the node is identified as 
destination node (I1). In the case of sequence node, the reference corresponds to hash result of 
the node’s signature with the address of node destination in the watchdog.   

The opcodes of each watchdog instruction depends on the address reached by the main 
program:  

• When the processor arrives on the destination node (i.e. basic block) then the 
watchdog operates depending on the manner to reach this node. This node may be 
reached either after a conditional branch (if-then) or linear transition. In the first case, 
the address reached by the main program is compared with the value of the second 
field in the watchdog instruction. Then, the reference field is loaded into the signature 
register and the Watchdog Program Counter (WPC) is incremented. In the second 
case, the current signature is compared with the reference field and the WCP is 
incremented.  

• When the processor performs a sequence transition, the watchdog computes the 
address of the destination node by using the value of the runtime signature and the 
reference field of the current node. Then, it loads the destination node. Next, when the 
processor performs the transition, the watchdog compares the address of the 
destination node taken by the processor with its loaded address. 

However, this technique has several drawbacks. The first one is the high detection latency due 
to the use of vertical signatures. The second one is the impossibility to detect illegal jumps 
inside a basic block. Finally, this technique is not able to check if the conditional branch is 
correct. 

The method proposed in [77] allows resolving those limitations except the verification of the 
branch condition. It starts by using the continuous signature monitoring approach to reduce 
the detection latency: for each executed instruction, the watchdog computes the horizontal 
signature and compares it to the reference signature stored in its internal memory. Due to the 
high memory overhead, authors of [77] propose to perform the horizontal signature only for 
frequently executed instructions. They define a singularity as a frequent instruction or the 
block end (which satisfies the condition C4). In addition, they allow detecting illegal jumps 
inside a block by comparing the relative address of the current instruction with the address of 
the previous instruction. If the difference between those two addresses is greater than the size 
of one instruction then the watchdog detects an unexpected sequence break. Moreover, they 
allow the watchdog to differentiate a start of a given exception from a control flow error 
without modifying the main program. In contrast to WDP technique that tags the start of an 
exception by a specific instruction, the new technique consists in checking the access to the 
interruption vector by using only addresses of program’s instructions. Once the watchdog 
identifies an exception event, it stores the current signature and the program counter of the 
watchdog to be able to restore the system at the end of the exception handling. 
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Those two previous techniques need to store information about the structure of executed 
control flow inside their internal memories of the monitors which has a negative impact on 
the area (memory) overhead. In addition, they generate reference signatures and identify 
application blocks at compile time. This can be a source of errors (during the generation of 
reference signatures) and can be a cumbersome process with complex applications. 

The On-Line Signature Learning and Checking (OSLC) method allows resolving those 
previous problems. The OSLC identifies blocks and generates the reference signature during 
the normal execution of program. The watchdog processor is asynchronous compared to the 
execution of the application programs. It can easily be extended to a system containing 
several application processors (AP1, .., APN). Figure 2-16, extracted from [75], illustrates a 
typical hardware configuration of a system using OSLC. A component named Signature 
Generator (SG) is added to each application processor (AP). SG detects the beginning and the 
end of each application block executed by AP and then sends the computed signature to the 
watchdog processor (Checker). Thus, the watchdog does not require to store extensive 
information about the control flow of the monitoring program inside its internal memory 
which reduces the memory overhead.  

 
Figure 2-16 General Configuration For OSLC [75]. 

The OSLC approach consists of two main steps: Learning and checking. 

During the learning step, both the identification of application blocks and the reference 
signatures generation are performed. The signature learning is accomplished during the final 
test of the software application. As the reference signa-tures are automatically generated, each 
program block must be executed at least once during the final test. Then, the program is 
divided into basic blocks that are associated to a given number of signatures generated by SG. 
Each block is identified by its start address and its end address. Next, generated signatures are 
sent to the watchdog processor (checker) with the address of the last executed instruction in 
the block. Those signatures are stored in the local memory of the checker. 
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During the checking step, the verification of the control flow is performed. The execution is 
considered correct if the generated signature (runtime signature) corresponds to the reference 
signature associated to the memory segment that contains the last instruction of the block. 
Otherwise an error is detected. 

In general, Control Flow Checking using signature analysis approaches need complex 
software (e.g. CFCSS [65]) or hardware (e.g. WDP [74]) monitors to generate the runtime 
signature and to extract the reference signatures from memory. This has a negative impact on 
memory overhead and on the detection delay due to latency of the generator and the 
comparison of signatures. 

In the following sub-section, we present alternative approaches to check Control Flow 
execution that allow reducing the complexity of the generated monitors and improving the 
detection latency. 

2.5.2 Control Flow Checking using system call sequence analysis 

The Monitoring System Call Sequence (MSCS) approach is an alternative technique to check 
the execution of the control flow. It relies on properties and makes sure any faulty behavior 
violates one or many properties. Those properties are extracted through a static program 
analysis that outputs a Finite State Machine (FSM) which enumerates the legal sequences of 
system call. In addition, the generated monitor has no impact on the execution of monitored 
processor. 

The technique introduced in [78] proposes a dedicated hardware monitor to enforce 
permissible behavior as program executes. The permissible behavior is identified by a set of 
properties. Those properties capture both coarse-grained (inter-procedural properties are 
represented by function call graph) and fine-grained (intra-procedural properties for each 
function are represented by basic block control flow graph) program behavior in a hierarchical 
manner. In addition, those properties allow to check the integrity of the instruction code 
within each basic block. Figure 2-17, extracted from [78], shows the architecture of the 
proposed monitor. The monitor’s inputs are the program counter (PC), which represents the 
next instruction that would be executed, and the instruction register (IR), which represents the 
current instruction being executed. 

For inter-procedural verification, the function call graph with N functions is translated into a 
FSM with N+1 states: one state associated to each function in the main program and an 
additional INVALID state. The transition process between FSM states (except INVALID 
state) represents a valid transfer control (call or return) generated by the main program. The 
INVALID state is used when the violation of function call or return occurs. In fact, the 
technique consists in storing function start and return indices. Then, it checks for each 
transition if the incoming function index is equal to the index of one of the valid next states. 
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For intra-procedural verification, the control flow within a function is translated into a basic 
block information table (TABbb). The verification consists in checking the transition between 
basic blocks within the same function. The index of the first basic block for a given function 
is computed by using the special field in TABstart : “ptr. To BB #0” (see Figure 2-17).  

For the integrity of the executed instruction, it has the same objective as signature. Authors 
propose to use cryptographic hash functions at compile time to compute a message for each 
basic block. Then those messages are loaded into the monitor when the application is loaded 
for execution. Next, runtime messages are compared with reference messages. 

 
Figure 2-17 Architecture detail of the runtime monitor [78] 

Therefore, this technique allows detecting illegal jump between basic blocks at the current 
execution cycle and checking the execution order of function calls.  

2.5.3 Discussion 

All those previous approaches allow detecting control flow errors such as illegal jumps. 
However, they do not provide any verification support to detect data errors like data 
corruption. This problem can alter the values of variables during their storage in memory or 
during their extraction from the memory. Therefore, the verification technique must be robust 
against any type of data errors. This defines the 9th Condition (C9) that the verification 
approach must satisfy. 

The basic solution consists in duplicating all program variables in an auxiliary memory and 
then checking their values at each read operation. However, it is not possible to duplicate all 
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application’s variables due to the memory overhead and because systematic comparison 
greatly reduces application’s performance. Therefore, it is wiser to select the most critical 
variables to check.  

In the following section, we present the main approaches proposed in literature to define and 
compute criticality metrics. 

2.6 Identification of the most critical variables 

Critical variables are variables that, when altered by faults, may strongly impact the 
application results. The identification of critical variables requires the definition and the 
computation of criticality metrics. Those metrics differ from one approach to another. 
However, the most widely used metrics are the “lifetime” and “fanout” (the number of 
descendent). In fact, variables with higher lifetime have higher probability of being corrupted. 
In addition, variables with a lot of descendants, when they are altered by fault, propagate 
errors to a large number of other variables. Several ways exist to compute those metrics.  

The first phase in the RECCO [80] tool, a Source-to-Source compilation, that allows 
computing the reliability-weight for each variable takes into account the variable lifetimes and 
their functional dependencies with other variables. To compute the lifetime of a variable, 
RECCO counts the number of lines of code starting from a write operation and ending with 
the last read operation on the same data or the end of the program execution. Next, the second 
metric, functional dependencies, is defined as the set of descendant of a given variable. 
Authors of [80] define descendant of a given variable v as any variable resulted from an 
expression which includes v. Then, the reliability-weight (RelWeight) associated to each 
variable is given by the following linear equation:  

"#$%#�&ℎ() = *+ ∗ $�,#(��#) + *- ∗ 	."#$%#�&ℎ(/01203/4351()) (2-5) 

Where Kl and Kw are coefficients that can be used to focus more on one metric than the other. 

The proposed technique to compute the variable lifetime takes into account neither recursivity 
nor iterations. Moreover, it neglects the latency to execute an instruction according to the 
target architecture or to reach data from an external component. It is performed prior to the 
compilation step. 

The approach introduced in [81] proposes a new definition of the lifetime metric in order to 
resolve the limitations of the technique proposed in RECCO [80]. Authors define the lifetime 
after the compilation step. They represent the source code as the Dynamic Dependency Graph 
(DDG) which is generated according to an assembler code and execution scenarios.  DDG is a 
directed acyclic graph that captures the dynamic dependencies among the values produced 
during the execution of program. In the DDG, a value is a dynamic assignment of a variable 
or a memory location used by the application at runtime. Hence, a value can be read many 
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times, but it is written only once. Then, the lifetime of a given variable is the maximum 
distance in terms of dynamic instructions between the definition and the use of this variable. 

In addition, experimental results presented in [81] show that nodes having high fanout and 
propagation are responsible for propagating errors to a large number of locations inside the 
DDG and it is likely that at least one of the propagated errors causes a crash of the system. 
The definition of those two metrics is as follow: 

• Fanout: the fanout of node is the set of all immediate successors of the node in the 
DDG. 

• Propagation: the propagation of a given node is the number of nodes to which an error 
in this node propagates before causing a crash. In contrast to the metric fanout that 
considers only the first level of error propagation, this new metric, propagation, 
considers error propagation across multiple levels. 

This technique depends on the execution scenario (e.g. inputs values) in order to generate the 
DDG representation. Hence, the values of those metrics are not constant and can vary 
according to the current execution scenario. 

The method introduced in [82] allows reducing the complexity to estimate the lifetime metric 
which is referred to as vulnerability. This complexity is due to the path-dependent nature of 
the vulnerability computation. This method defines the Register File Vulnerability (RFV) of a 
program as the sum of lifetimes of all registers during the program execution. The 
vulnerability of a register is the total time during which it holds a useful data. The technique 
introduced in [82] starts by computing the vulnerability for each register per basic block by 
using the following equation: 

6 = 7� +	72 ∗ 8 
 
(2-6) 

where vi is the intrinsic vulnerability, vc is the conditional vulnerability and s is the probability 
of the next access to the register being a read, called register liveness. This value is computed 
either through profiling or through static analysis. vi and vc are constants derived from the 
current basic block. The vi is computed as the average of the length of read-finished intervals, 
[write operation – read operation] within the current basic block. The vc is the length of the 
last interval until basic block boundary.  

Next, the RFV of a given register is computed by summing all the basic block vulnerabilities 
as shown in the following equation:  

"96: =	.,�6�
�

=.,� ∗ (7�� + 7�2 ∗ 8)
�

 

 
 
(2-7) 

Where fj is the execution frequency of the basic block “j” and Vj is its vulnerability.  
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In addition to those previous metrics, a novel metric has been proposed in [83], named 
importance. This new metric allows capturing the importance of variables in dependable 
software systems. The dependability [84] of a system is the ability to avoid operation failures 
by using Error Detection Mechanisms (EDMs) and Error Recovery Mechanisms (ERMs). In 
fact, dependability encompasses the following attributes: availability, reliability safety, 
confidentiality, integrity and maintainability.  The importance metric is based on two related 
metrics: the spatial impact metric and the temporal impact metric. 

• Spatial impact: it defines the diameter of the affected area when a given variable v in a 
given component C is corrupted. The spatial impact of variable v of component C is 
the maximum of spatial impact in a cycle r, denoted as σ v,C. 

;),= = maxA;),=B C , ∀E (2-8) 

• Temporal impact: it computes the amount of time the program remains affected 
whenever a variable v in a component C is corrupted. The temporal impact of variable 
v of component C is the maximum of temporal impact in a cycle r, denoted as τv,C. 

F),= = maxAF),=B C, ∀E (2-9) 

The function used to compute the Importance metric of variable v in component C, denoted as 
Iv,C, with variable specific system failure rate f is provided in [85].  

�),= = 1
(1 − ,)G ∗ (

;),=
;HIJ + F),=

FHIJ ) 
 
 
(2-10) 

Finally, method introduced in [86] proposes new techniques to compute the lifetime metric 
and the functional dependencies metric of each variable. Those new techniques resolve 
limitations of other approaches in literature including the functional dependency evaluation 
and the computation of lifetime metric. In addition, authors allow checking the execution of 
control flow by considering the data weight in conditional branches. Authors validated their 
method by quantitative comparisons with fault injection results. 

The lifetime metric is computed by analyzing the control flow graph generated by the 
compiler. The proposed process to compute variable lifetime starts by identifying, for each 
instruction, the set of used variables Use(i) (variable appears in the right side of an 
assignation, parameter of function call, or involved by conditional branch) and the set of 
defined variables Def(i) (variable appears in the left side of an assignation or result of 
function call). Then, it identifies, for each instruction, the set of alive variables at the entry, 
denoted as In(i), and the set of  alive variables at the exit, denoted Out(i), by using the 
following rules: 

�,	K7	 ∈ LM((�)N	OP�	KQ ∈ 8MRR(�)N	(ℎ#P	7	 ∈ �P(Q) 
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�,K7	 ∈ S8#(�)N	(ℎ#P	7 ∈ �P(�) 

�,	K7	 ∈ LM((�)N	OP�	(7	 ∈ def(�))(ℎ#P	7 ∈ �P(�) 

Based on those rules, the two following equations are deduced to compute the final sets, In(i) 

and Out(i), for each instruction, i: 

LM((�) = 	W�P(Q)	(Q	 ∈ 8MRR(�))
�

 

 
 
(2-11) 

�P(�) = S8#(�)W(LM((�) ∖ �#,(�)) 
 
( 2-12) 

 

Then, a variable “v” is considered alive in the edge eij if 7	 ∈ LM((�) ∩ �P(Q). Hence, the 
lifetime, denoted as Cl, is the number of all edges that satisfy the previous condition.   

For functional dependencies metric, authors of [86] start by identifying the set of direct 
descendants for each variable v, denoted as DD(v). Then, the set of descendants of a variable 
v is computed by using the following recursive equation: 

�#8R#P�OP((7) = ��(7)	 W �#8R#P�OP((Z)
-	∈	[[())

 

 
(2-13) 

The technique used to compute the functional dependencies metric consists in producing a 
matrix M with dimension NxN where N is the program variables number: A cell (M(v,w) >0) 
means that “v” is descendant of “w”. The proposed algorithm, to produce M, consists of two 
steps: initialization and computation. 

• The initialization step allows identifying all directed descendants of a given variable v: 

�,KZ	 ∈ ��(7)N	(ℎ#P	�\(Z, 7) ← �\(Z, 7) + 1 

• The computation step allows finding all descendants of a variable other than its direct 
descendants by using the following approach: first, the matrix obtained in the 
initialization step, M0, is multiplied by a coefficient, degree_coef, to give more weight 
to direct descendants. Then, for each variable v, this step takes into account the direct 
that belongs into the DD(v) by using the previous value from the matrix. Next, it 
multiplies the matrix by the degree_coef at each dependency level. This process is 
repeated until the convergence of the matrix M.  

The number of participations of variables in branch condition is referred as Cw. 
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Finally, authors propose a generic function, Criticity_Coef, to compute the criticality of each 
variable depending on their lifetime, functional dependency and their weight in branch 
conditions as follow:  

 

 
 
 
(2-14) 

Where Kl, Kw and Kd are coefficients that can be used to focus more on one metric rather than 
the others depending on the designer needs. 

Once the value of criticality of each variable is computed, designers can either set a critical 
threshold above which a variable is considered critical or select the N most critical variables. 
In general, those most critical variables are duplicated in an auxiliary memory. However, 
method of [85] introduces two thresholds to select a subset of the most critical variables for 
replication. Those two thresholds allow fixing the number of duplicated, λd, and triplicated, λt, 
variables. They can be computed as a portion of the variables in a component. 

2.7 Discussion  

In this chapter, we have presented different techniques and methods related to the hardware 
monitoring and control flow checking. Several approaches are proposed to check the 
execution of integrated circuits at RTL description. However, most of them (e.g. integrated 
logic analyzer) cannot be used to check at runtime the behavior of integrated circuits 
generated by HLS tools: HLS tools may encrypt or obfuscate generated RTL architectures. In 
addition, there is no relation between signals within the generated RTL architectures and their 
associated variables within the high level specification (e.g. C code) due to the register 
sharing technique used by the binding step of HLS tools. 

Only few approaches have been proposed to allow the verification of RTL architectures that 
are generated by HLS tools. From those approaches, we have identified nine conditions which 
the verification technique must satisfy. They are summarized in Table 2-2.  

All the existing approaches focus on data errors (C8). They are understandable by specific 
HLS tools except the technique introduced in [64]. In fact, this technique extends the 
traditional HLS flow to automatically transform the high level assertions into RTL assertions. 
Thus, it satisfies the first condition (C1). However, this technique prevents designer to use 
adaptive, dynamic or complex control statements (C2) due to the use of DFG as the result of 
the compilation step.  

In addition, those approaches have limits to detect hanging problem (C3) except the technique 
presented in [62] that allows partially resolving this issue. It only detects the problem of 

 ]E�(�R�(^]�#, (7) = *$ ∗ ]$(7) + *Z ∗ ]Z(7) + *� ∗ 
. ��7, Z
 ∗ �*$ ∗ ]$�Z
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infinite loops and stuck in a state by introducing a watchdog and a counter per loop. However, 
this approach has a negative impact on the area overhead.  

Table 2-2: verification conditions 

Condition Definition 

C1 Portable to any HLS tools 

C2 Support dynamic and static applications behavior 

C3 Hanging problem detection 

C4 Low area overhead 

C5 Efficiency (illegal jumps detection) 

C6 Low performance impact 

C7 Reactive 

C8 Data Error Detection 

C9 Consistency 

For the low area overhead condition (C4), we only found the technique introduced in [61] that 
allows manually sharing hardware resources between subset of assertion checkers. Finally, all 
those previous approaches have no impact on the HWacc’s performance (C6). However, there 
is no verification approach that considers the efficiency (C5), the reactivity (C7) and the 
consistency (C9) conditions during the generation of hardware monitors.  

In literature, control flow checking approaches for software program are proposed to ensure 
that there is no illegal jump during the execution. This satisfies the efficiency condition C5. 
However, most of them check the execution at a coarse-grained program behavior. They 
check the sequence of function calls or/and the jump between basic blocks for each function. 
Only technique proposed in [77] allows checking the linear execution inside each basic block. 
In addition, those approaches are unable to detect hanging problems (C3) like infinite loops. 
In fact, their techniques are always initialized when entering a new basic block (e.g. by 
uploading the reference signature). 

However, Control Flow Checking approaches cannot easily be used with RTL architecture 
generated by HLS tools. There are two mains limitations. First, the bit-width of FSM state’s 
command word (HWacc) is much higher than the size of instruction’s opcode in pure 
software execution. This increases the complexity of generated monitors (to generate and to 
compare signatures) and their area overhead. Second, the lack of information about FSM 
states sequences and their associated basic blocks is problematic. This information are 
necessary to compute the signatures of basic blocks. 
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We propose several techniques to resolve the limitations of previous approaches to check the 
execution of the RTL architecture generated by HLS tools against data error and control flow 
errors. For control flow errors, we propose to automatically generate monitors that allow 
checking the timing behavior (e.g. Input/output timing) and detecting illegal jumps and 
hanging problems (e.g. infinite loops). For data errors, we propose a new technique to 
synthesize high level assertions that overcomes the limitations of the existing methods. This 
new technique supports both static and dynamic behavior and uses several synthesis options 
to make tradeoff between area overhead, performance impact and protection level. Also, a 
new synchronization mechanism is proposed to make the generated monitors independent of 
the internal execution of HWacc.  

In addition, we consider the problem of data corruption during the generation of hardware 
monitor. We extend the algorithm introduced in [86] to identify the most critical variables 
taking into account their lifetime inside loops or/and nested loops. Finally, we propose a 
specific monitoring operation to check the evolution of loop inductions variables in order to 
enhance the reactivity of generated monitors to detect control flow errors. 

The following chapters detail:  

• the design flow to check the control flow execution (chapter 3)  

• the assertion synthesis flow (chapter 4)  

• the unified flow to check both data errors and control flow errors (chapter 5)  

• the critical variable verification flow (chapter 6). 
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This chapter details the first contribution we propose to enhance the verification process of 

hardware accelerators that are generated by High Level Synthesis (HLS) techniques. This 

methodology automatically generates On-Chip Monitor (OCM) during the HLS of hardware 

accelerators. Generated OCM allows checking at runtime the hanging problem (C3) and the 

problem of illegal jumps (C5). In addition, it checks the Input/Output timing behavior of its 

associated accelerator with others components. The proposed methodology is portable to any 

HLS tools and support both static and dynamic application’s behaviors. 
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3.1 Introduction 

HLS tools generate descriptions of RTL architectures for hardware accelerators. Typical 
description contains a control part that drives an operative part (see Figure 3-1). The operative 
part is represented as a Data Path (DP): a set of operators, multiplexers and registers. The 
control part is represented by a Finite State Machine (FSM) that defines the control flow of a 
given application. Each FSM state can start the execution of more than one operation 
according to the available resources.  

 
Figure 3-1 Architecture of hardware accelerator generated by HLS tool 

Existing approaches to monitor RTL architectures focus on the logic and/or temporal relations 
between internal signals of the operative part (DP). Also, they allow checking the 
synchronization of some portions of the HWacc by monitoring a sequence of events (e.g. 
using SERE properties, see page 21). However, they do not allow checking the execution of 
the control flow which drives the set of operation inside the DP.  

Unfortunately, runtime errors can modify the execution of the control flow of hardware 
accelerator which leads to possible leaks of valuable information like encryption key. 
Deviation of control flow can be faults in branch instructions (e.g. conditional or 
unconditional jumps between basic blocks extremities: entry and exit) or in non-branch 
instructions (e.g. jump to the middle of another basic block), see Figure 3-2. Therefore, their 
resulting errors can suspend the execution of hardware accelerators and up to all the system 
by causing, for example, infinite loops or by skipping (illegal jump) the FSM state that drives 
the communication between an accelerator or the others components inside the system. 

When using HLS, the number of FSM states and their expected transitions depend on the 
scheduling algorithm and on the set of constraints specified by the designer. Existing 
verification methods cannot be easily  used with HLS tools because when the FSM is 
automatically generated, designer cannot extract any information. 
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Figure 3-2 Control flow errors 

In this chapter, we propose a new design approach that allows, at runtime, detecting control 
flow errors and checking the synchronization of generated Hwacc with the system. This 
allows satisfying hanging problem detection (the condition C3) and the illegal jumps 
detection (the condition C5). 

The proposed design flow is integrated into the HLS tool of our research group, GAUT. This 
flow is introduced as a set of steps realized concurrently to the HLS flow of HWacc. 
Important application’s information is automatically determined during HLS, from which the 
architecture of the generated On-Chip Monitor is finally produced. This architecture is 
composed of a FSM controller and a Data-Path. 

The proposed On-Chip Monitor Synthesis (OCMS) flow steps are implemented by using the 
Software Engineering process to be extensible and adaptable to the evolution of the proposed 
design specifications during this thesis. We use the process of V-model to well implement the 
design specification. The V-model allows detecting the limits of the proposed design flow by 
performing a set of unitary testing. Then, optimizations are performed to correct the proposed 
design. In this chapter, the design specification consists in producing an On-Chip Monitor that 
allows checking the execution of the control flow of HWacc.  

In the following, we start by presenting the On-Chip Monitor Synthesis (OCMS) flow. Then, 
we detail each step of the OCMS flow. Finally, experimental results are presented and 
analyzed.     

3.2 On-Chip Monitor Synthesis Flow  

The proposed design flow to check the execution of the control flow of HWacc is presented in 
the right part of Figure 3-3. This flow splits into several steps: 

1 CDFG Analysis step - analyzes the formal representation generated by the 
compilation step of the HLS flow in order to detect Control Structures (loop and 
conditional constructs), to extract their parameters and to identify input and output 
data of the HWacc.  
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2 FSMD Annotation step - analyzes and annotates a copy of the HWacc FSMD_s 
generated by the scheduling step of the HLS flow. This step identifies all the states 
(later referred to as notable states) that require particular attention such as fork/join 
states or states reading input and/or writing output data. This information is used to 
verify at runtime that I/O timing behavior and jumps between BBs are correct. 

3 The ID Generation step - assigns to each state of the FSMD_s a unique identifier in 
order to later detect illegal jumps inside BBs (intra-BB).  

4 The OCM Generation step - couples the annotated FSMD_s with the results 
provided by the binding step of the HLS flow to produce the RTL description of the 
monitor as Finite State Machine and Data Path. 

 
Figure 3-3 Proposed design flow to check the execution of control flow of hardware 

accelerators generated by HLS tool 

3.2.1 Basic definitions 

In this subsection, we present some basic concepts and definitions that are necessary to 
understand the proposed algorithms of the OCMS flow. 

The CDFG generated by the compilation step of HLS flow contains a set of BB and each BB 
contains a set of nodes, V, and a set of edges, E. Edges represent precedence constraints 
between nodes. Nodes represent the set of application’s variables and operations. Hence, V is 

divided into Vvar and Vop, where V = Vvar ∪  Vop and Vvar ∩ Vop =∅. Each operation node is 
always preceded and followed by variable nodes, except LOAD and STORE operation nodes. 
The LOAD (resp. STORE) operation node reads (resp. writes) data from (resp. in) memory. 
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The following two equations illustrate the set of input nodes, VIop, and the set of output nodes, 
VOop, for a given operation node, i: 

6abc(�) = {Q	 ∈ 6)4B; 	∃	#�,� ∈ �} 
 
(3-1) 

6hbc(�) = {Q	 ∈ 6)4B; 	∃	#�,� 	 ∈ �} 
 
(3-2) 

The set of variable nodes, Vvar, is traditionally composed of three subsets of nodes:  

• V io is the set of variable nodes that represents the application’s inputs and outputs,  

• V inter is the set of variable nodes that represents the intermediate results of operation 
nodes, 

• Vconsts is the set of variable nodes that represent the constants used by the application. 

Definitions 

• Disjunction BB (resp. state) is a BB (resp. state) that has more than one outgoing arc. 

• Conjunction BB (resp. state) is a BB (resp. state) that has more than one incoming arc. 

3.2.2 CDFG Analysis  

CDFG analysis is the first step of the OCMS flow. Analysis starts after the CDFG has been 
generated by the compilation step of the HLS flow. Both input and output data of HWacc and 
Control Structures (CS) are detected. CS parameters are also identified. Control structures and 
associated parameters are: 

• Loop constructs (for, while, do-while…): initialization, test condition and increment; 

• Conditional constructs (If-else, switch-case…): operands and test condition. 

All these information are stored in a dedicated database DB (see Figure 3-3). 

Loop constructs are detected when identifying back arcs in the CDFG. Thus, the first step in 
the CDFG analysis is to find back arcs. For this reason the basic blocks BB of the CDFG are 
numbered by using a Depth-First Search (DFS) algorithm [88], presented in Figure 3-4: each 
BB has a unique DFS-number D, as illustrated in the left part of Figure 3-5. Given that BBs 
are numbered in preorder, back arcs are identified by using the following criterion: for each 
disjunction BB (see section 3.2.1), if there is a BB among its immediate successors that has a 
DFS-number less than or equal to its own DFS-number, then a back arc is detected.   

Each loop has one entry BB named header and back arcs named latch arcs starting from an 
inner BB of the loop construct and reaching the header BB. The sink BB of a back arc is 
referred to as Loop Header (LH) and the source BB of a back arc (i.e. the disjunction BB) is 
referred to as Loop Latch (LL). The disjunction BB that does not satisfy the previous 
condition is referred to as Condition Block (CB). In addition, if there is a disjunction BB that 
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satisfies the previous condition and only contains one operation, then it is also referred to as 
CB.  Figure 3-5 illustrates the CDFG of our FIR filter example (see Figure 2-2.a, page 17). 
The set of disjunction BB is {BB0, BB1, BB4, BB5}. According to the previous criterion, the 
set of LL is {BB4, BB5}, the set of LH is {BB3, BB4} and the set of CB is {BB0, BB1}.  

 
Figure 3-4 Algorithm of Depth-First Search 

 
Figure 3-5 Identification of control structures 

The next step of the CDFG Analysis extracts the parameters of each detected control 
structure. In details, loop constructs are classically modeled in the CDFG by three parameters: 
initialization, test-condition, and increment statements [87]. Initialization parameter is the 
initial value of the induction variable of the current loop; it can be constant or variable. In FIR 
filter example, (see Figure 2-2.a, page 17) initialization parameter is equal to “0” for the 
induction variable “i” of loop2. The increment statement is the function that increments the 
induction variable. In the FIR filter example, increment parameters are the adder “+” and the 
constant “1”. Test-condition statement is modeled as 3-tuple <f1, f2, CMP> where f1 and f2 
are the operands of the comparison operation and CMP is the operation that compares f1 and 
f2. When detecting a back arc, f1 is identified as the basic induction loop variable and f2 is 
identified as the loop bound (that can be constant or variable). In the FIR filter example, for 
loop2, f1 is the induction variable “i”, f2 is the variable “N” and CMP is the comparator “<”. 

 Current = 0; 
D[*] = 0; 
DFS(start); 
Function DFS(n)  

(1) D[n] = Current ++; 
(2) For each m in Succ(n) do 
(3)    If  (D[m] ==0) then 
(4)       DFS(m); 
(5)    End If ; 
(6) End For; 
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The proposed algorithm to extract loop parameters is presented in Figure 3-7. The extraction 
process of the test-condition of the current loop starts by analyzing the Loop Latch BB to find 
the operation node that produces the value of the conditional jump (e.g. the value of out in 
Figure 3-6). To do this, the proposed algorithm checks the set of output variable nodes, VOop, 
for each operation nodes starting from the last operation node of the current loop latch BB 
(step 1). If an operation node contains in its VOop the variable node of the jump condition, then 
this operation node is identified as Condition Node. Hence, the CMP parameter is the operator 
of this Condition Node and the f2 parameter is one of the variable nodes that belong to the set 
of input variable nodes, VIop, of this Condition Node. In fact, the set VIop of a Condition Node 
(CN) only contains two variable nodes, the loop’s bound and the induction variable. The 
induction variable will be used as input by the Update Induction Node inside the Loop Header 
BB of the current loop. The Update Induction Node (UIN) is an operation node, PHI node, 
that allows updating the value of loop’s induction variable each time entering the loop (see 
Figure 3-6). Then, the following equation allows identifying f2 among the element of VIop of 
the detected Condition Node (CN): 

,2 = 6abc(]�) ∖ (6abc(]�)⋂6abc(S��)) 
 
(3-3) 

Therefore, the proposed algorithm scans the set of operation nodes inside the Loop Header 

BB starting from the first operation node to detect the Update Induction Node (step 2). For 
each operation node, algorithm checks if the intersection of the set VIop of the current 
operation node with the set VIop of the detected Condition Node is not the empty set. In this 
case, the Update Induction Node is detected. 

 
Figure 3-6 the compilation of loop constructs 

Afterwards, the algorithm searches for the initialization parameter by scanning the detected 
Update Induction Node (UIN) inside the Loop Header BB. In fact, this node has two arcs: the 
first one comes from its Loop Latch BB, referred to as Latch Arc. The second one comes from 
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outside of the loop body which defines the value of the initialization parameter (step 3). Then, 
the value of initialization parameter is identified by using the following equation: 

�P�(�O$�jO(��P	kOEO�#(#E = 6abc(S��) ∖ (6	abc(S��)⋂6abc(]�)) 
 
(3-4) 

Next, the algorithm extracts the increment information i.e. all the operation nodes and 
variable nodes (constant or variable) that are used to compute the next value of the induction 
variable. To do this, the algorithm finds the operation node that generates the induction 
variable associated to the detected Latch Arc (e.g. i2 in Figure 3-6) (step 4). Staring from this 
node, all operation nodes and variable nodes are extracted until border nodes are found (step 

5). Border nodes refer to the set of input variable nodes and the previous induction variable 
which is the output of the Update Induction Node (e.g. i1 in Figure 3-6). 

Conditional constructs (if-else and switch-case) are simply modeled by a test-condition. Like 
loop constructs, the algorithm starts by analyzing the Condition Block BB to find the 
operation node that produces the value of the conditional jump. Then, f1 and f2 parameters 
are the two variable nodes that belong to the set VIop of the detected operation node and CMP 
is its operator.  

The last step of the CDFG Analysis detects Input and Output data of hardware accelerator. 
Those data are identified inside the CDFG as communication variable nodes, VC. Those 
variables belong to the set of application’s inputs and outputs variables, Vio, and also variable 
nodes that precede or follow memory access operation nodes: store and load, respectively.  

6= = 6�b ∪ 6hbc(lLm�8) ∪ 6abc(	�L"�8) 
 
(3-5) 

In our FIR filter example (see Figure 3-6), the set of Input and Output data is {N, C, X, Y, 
X[N-1-i], C[i], Y[j] and Y1}.  

Finally, Input and Output data of hardware accelerator and parameters of each control 
structure detected during the CDFG analysis step are stored in database (see Figure 3-3). In 
addition, each parameter and each BB (Loop Latch and Loop Header) is associated to a given 
control structure via a unique control identifier Control_ID (one Control_ID per control 
structure). This number is later used during FSMD annotation step. 

3.2.3 FSMD Annotation 

FSMD Annotation starts after the FSMD_s has been generated from the CDFG by the HLS 
scheduling step. The objective of this step is to prepare the synchronization between the 
hardware accelerator and the generated monitor. To do this, the FSMD_s is analyzed and a set 
of states that require a particular attention is identified. Those states are identified as notable 
states. Notable states are the initial and the final states of the hardware accelerator FSMD_s 
and the states that include Input/Output data. In addition, some notable states serve as support 
for the control flow description. 
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Algorithm L oop Detection :Find Loop and its parameters 
Input: The result of the compilation step. 
Output: the set of loop parameters, initialization, test-condition and increment statement. 
Method:  

(1) Current = 0; 
(2) D[*] = UNIVISITED (-1); 
(3) DFS(entry B); 
(4) For each bb in BB do 
(5)     If  (card(Succ(bb) >1) then 
(6)         For each s_bb in Succ(bb) do 
(7)             If  (D[s_bb] ≤ D[bb]) then // Loop detection (if D[s_bb]=D[bb] that means that s_bb = bb) 
(8)                                      --------step 1----------- 
(9)                    CJ = the variable node of the conditional jump of bb 
(10)       Condition Node = the last operation node inside bb. 
(11)       While ( CJ ∉	VOop(Condition Node))  
(12)            Condition Node = Pred (Condition Node); 
(13)        End while; 
(14)  
(15)                           --------step 2----------- 
(16)       Update Induction Node = the first operation node inside s_bb. 
(17)       While (VIop(Update Induction Node) ∩ VIop(Condition node) = ∅) 
(18)              Update Induction Node  = Succ (Update Induction Node); 
(19)  
(20)        End while; 
(21)                          --------step 3----------- 
(22)       Induction Variable = (VIop(Condition Node) ∩ VIop(Update Induction Node) ; 
(23)       f2 = VIop(Condition Node) \ Induction Variable; 
(24)       Initialization  = VIop(Update Induction Node) \ Induction Variable; 
(25)  
(26)                          --------step 4----------- 
(27)        Generate Induction Variable = Pred(Condition Node);  
(28)        While (Induction Variable ∉	VOop(Generate Induction Variable))  
(29)              Generate Induction Variable = Pred(Generate Induction Variable); 
(30)        End while; 
(31)  
(32)                          --------step 5----------- 
(33)        Border Node = Application’s inputs ∪ Vconsts ∪ VOop(Update Induction Node) 
(34)        Extract_Increment_Function (Border Node, Generate Induction Node);  
(35)  
(36)      End if ; 
(37)     End for; 
(38)   End if  ; 
(39) End for ; 
Function Extract_Increment_Function (Border, Node) 
(1) Extract operator of the Node 
(2) For each v in VIop(Node) do 
(3)    If  v ∈ Border then 
(4)       Extract v 
(5)    Else 
(6)       Pred_node =  node that generates v (v ∈ VOop(Pred_node)) 
(7)       Extract_Increment_Function (Border, Pred_node); 
(8)    End if; 
(9) End For; 

Figure 3-7 Algorithm of loop detection and parameters extraction 
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More precisely, notable states are:   

• The initial and the final state of the FSMD_s which are used to synchronize the 
execution of the OCM and the HWacc it is associated to; 

• The Communication States (ComS): the set of states where an input data is read for the 
first time in a control path and/or where an output data is written; 

• The Loop Increment Function State (LIFS): the set of states that perform one or more 
operations of the loop increment function extracted from the database; 

• Control flow states, as itemized below. 

The control flow is composed of a set of paths which are interconnected. The Figure 3-8.b 
illustrates the set of paths of the FSMD_s. Each path starts either by a successor disjunction 
state (see section 3.2.1) or by a conjunction state (see section 3.2.1) and is ended by a 
disjunction state. Hence, notable states that serve as supports for the control flow description 
are: 

• Control Flow State (CFS): the set of disjunction state; 

• Control Successor State (CSS): the set of successor disjunction state; 

• Conjunction State (CjS). 

 
Figure 3-8 FSMD_s and its characteristics (a) FSMD_s (b) Control flow path (c) Annotated 
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Figure 3-8.c shows the annotated FSMD_s of the FIR filter example (see page 17). The set of 
ComS is {s1, s5, s7, s8, s11}, the set of CFC is {s0, s1, s11, s13}, the set of CjS is {s4, s8, 
s14}, the set of CSS is {s1, s2, s4, s8, s12, s14} and the set of LIFS is {s10, s12}. 

The next step in the FSMD Annotation identifies the set of loop states. More precisely, each 
loop has a single entry state, named Header State (HS), and a single exit state, named Latch 

State (LS). Those states are used later by the monitor to check the execution of loops and to 
detect the problem of infinite loops. By definition, the Header State has two incoming arcs: 
the first one comes from outside of the loop body and the other one from the loop body. The 
Header State belongs to the set of Conjunction States.  

The Latch State has two outgoing arcs: the first one goes to the Header State and the other 
one goes outside of the loop body. The Latch State belongs to the set of Control Flow States. 
Each state is associated to a unique basic block (see Figure 3-8.a). Then, the identification of 
HS and LS is based on the following condition: If the basic block associated to the Control 
Flow State (resp. Conjunction State) is tagged as Loop Latch (resp. Loop Header), then the 
Control Flow State (resp. Conjunction State) is identified as Latch State (resp. Header State). 
In the Figure 3-8.a, the set of LS is {s11, s13} and the set of HS is {s4, s8}. 

The design software of this step is presented by the Figure 3-9. The FSMD Annotation step is 
an abstract interface which leads to have more flexibility on the implemented algorithm to 
find notable states (e.g. Find_NS()). In fact, if there is new definition of notable states, we 
only need to implement the algorithm that identifies those new notable states inside the 
FSMD_s without modifying the existing algorithms. This is the objective of the Agile 
methodology. The notation of our Unified Modeling Language (UML) designs presented in 
this thesis is introduced in Annex UML notation. 

 
Figure 3-9: The design of the FSMD Annotation step 

Finally parameters of control structures are identified and extracted from the database thanks 
to their identifier Control_ID.  
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3.2.4 ID Generation 

The execution of the ID Generation step starts after the generation of the FSMD_s by the 
HLS scheduling step. The ID Generation allows checking that no illegal jump has been done 
inside a Basic Block (BB). To do this, this step produces for each FSMD_s state a unique 
identifier (ID) by using the DFS algorithm (see Figure 3-4). Once each state has been 
processed, the updated FSMD_s is classically used as input by the allocation and binding step 
of the HLS flow as shown in Figure 3-3. ID is later used during the generation of the RTL 
architecture of the hardware accelerator by concatenating its binary value to the command 
word of the HWacc FSM state it is associated to.     

Once CDFG Analysis, FSMD Annotation and ID Generation have been carried out, notable 
states have been detected and control structure parameters have been extracted and stored in 
the database. Hence, all the information needed to generate an On-Chip Monitor able to check 
the I/O timing behavior and the control flow of hardware accelerator have been collected. 

3.2.5 OCM Generation 

The OCM Generation is the last step of the OCMS flow. This step couples the annotated 
FSMD_s from OCMS with the results provided by the binding step of the HLS flow and with 
the library of operators to design the OCM architecture. It generates the RTL description of 
the OCM including a Data-Path (OCM DP) and a FSM controller (OCM FSM).  

This step starts by building the FSM of the OCM. The algorithm proposed to generate the 
OCM FSM is presented in Figure 3-10. The approach used by this algorithm is as follows: the 
annotated FSMD_s of the HWacc, generated by the FSMD Annotation step, is traversed and 
each time a new notable state is visited, a new state, MS, is created in the OCM FSM. Then, 
this new created state is associated to the proper monitoring operations, according to the type 
of the current notable state. Next, starting from the current visited notable state, a value “T”, 
MS.T, is created and set to zero. This value is incremented during the traveling process among 
the annotated FSMD_s states until a new notable state is reached (see step 2 in Figure 3-10). 
If the value of “T” is non-null, then a loopback arc is added to the current OCM FSM state, 
MS, (step 2). Indeed, loopback arc is annotated with a delay T to indicate how many idle (i.e. 
realize no operation, NOP) steps are required. Then, monitoring operation of the current state 
is executed only when entering OCM FSM state for the first time. 

The next step in the algorithm, step 3, identifies the set of Header State Predecessors, HSPs. 
For each created OCM FSM state, the algorithm checks if the set of the next notable states, 
next_S, contains a state that is identified as a Header State (HS). In this case, the algorithm 
checks if this HS is not already visited (the HS is a conjunction state, it can have more than 
one predecessor state.). If not, the current OCM FSM state is tagged as a Header State 
Predecessor.  
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Algorithm MSG : Monitor state Generator  
Input : the Annotated  FSMD_s model <S, I, O, V, STATUS, δ, λ> and the set of Notable State 
NS 
Method:  

(1) Visited [*] = 0; 
(2) Let OCM_FSM be the empty set; 
(3) MS  = Create_Monitor_State (SSource);  
(4) MSG (SSource, MS); 

Function MSG (S, MS) // s is a notable state 
(1)          ----------------step 1---------------- 
(2) Visited[S] = 1;  
(3) MS = S;  
(4) MS.T = 0; 
(5)            
(6) next_S = δ(S, STATUS);// the next state is the subset of state 
(7) While (next_S ∩ NS = ∅) // the next state is not a notable state  
(8)    MS.T ++; 
(9)    next_S = δ(next_S, STATUS);// Card (next_S) =1 
(10) End while; // next_S is the subset of the set NS (Notable State) 
(11)           
(12)            ----------------step 2---------------- 
(13) If  (MS.T != 0) then 
(14)    ∆MS

�
MS =  Create_Monitor_Transition (MS, MS, MS.T); 

(15)    OCM_FSM = OCM_FSM	∪ {MS}; 
(16) End if;  
(17)          ----------------step 3---------------- 
(18)   If  ( next_S ∩ HSs ≠ ∅ ) then //check if the next notable state is a header  
(19)     If ( Visited[next_S] == 0) then // we check if the header state is not already 

visited   
(20)         S is tagged as Header State Predecessor 
(21)     End if ; 
(22) End if ; 
(23)         
(24)          ----------------step 4---------------- 
(25) For m in next_S do  
(26)      If  (visited[m] ==0) then 
(27)           Next_MS = Create_Monitor_State (m); 
(28)           ∆MS

�
Next_MS =  Create_Monitor_Transition (MS, Next_MS, STATUS); 

(29)           MSG(m, Next_MS); 
(30)      Else 
(31)           ∆MS

�
Next_MS =  Create_Monitor_Transition (MS, Next_MS, STATUS); 

(32)      End if ; 
(33) End for; 

Return OCM_FSM; 
 

Figure 3-10 Algorithm to build the OCM FSM 

Finally, for each next notable state (next_S), that has not yet been visited, a new OCM FSM 
state is created. In addition, a new transition is created between the current OCM FSM state 
and the new one according to the transition condition coming from the hardware accelerator 
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(through STATUS). If the next notable state is already visited, then only a new transition is 
created, step 4. Hence, OCM FSM state transition is valid as soon as the state has completed 
all its idle/monitoring operations and that the transition condition, STATUS, is verified. FSM 
inputs are the STATUS signals coming out from the hardware accelerator and comparison 
results provided by OCM DP. 

The monitoring operation of each OCM FSM state depends on its associated notable state. 
Hence, if the notable state is: 

• a Communication State, then the corresponding monitoring operation checks that the 
related load signals of the HWacc registers containing I/O data are correctly driven; 

• a Header State Predecessor, then the corresponding monitoring operation sets the 
loop’s induction variable stored inside the OCM to its initial value (initialization 
parameter). If the initial value is a constant, then it is hardwired in the OCM DP, 
otherwise it is read from the hardware accelerator register it has been assigned to 
during the binding step of HLS flow; 

• a Loop Increment Function State, then the corresponding monitoring operation applies 
the increment function to the stored loop’s induction variable; 

• a Latch State, then the corresponding monitoring operation compares, by using  a 
CMP operator, the stored loop’s induction variable and the loop’s bound f2. If f2 is a 
constant, then it is hardwired in the OCM DP, otherwise it is read from the hardware 
accelerator register it has been assigned to during the binding step of HLS flow; 

• a Control Flow State, then the corresponding operation compares the operands of the 
condition transition (i.e. f1 and f2) by using a CMP operator; 

• a Control Successor State, then the corresponding monitoring operation verifies the 
results of the comparison realized in the associated Control Flow State or Latch State 
with the STATUS signal provided by the hardware accelerator, disables the check 
operations of Basic Block Control Unit (the description of this unit, BBCU, is 
provided in the next sub-section) and uploads the ID Control Successor State inside 
the BBCU; 

• a Conjunction State, then the corresponding monitoring operation disables the check 
operations of BBCU and upload the ID Conjunction State inside the BBCU.  

Figure 3-11.b illustrates the results of OCM FSM when the OCM Generation step is applied 
to the annotated FSMD_s of Figure 3-8.c. For example, states s2 and s3 have been merged to 
create OCM FSM state MS2 with a loopback that is annotated by T=1. In addition, MS1 has 
also been tagged as Header State Predecessor because the successor of s3 is tagged as Header 

State during the FSMD Annotation step.   
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Figure 3-11 OCM FSM Generator (a) Annotated FSMD_s (b) OCM FSM 

The design of this build OCM FSM step is presented in Figure 3-12. We use the concept of 
template method and abstract class. This concept provides a generic template to produce the 
OCM FSM. The OCM_FSM_Build class defines the execution hierarchy of the proposed 
algorithm but it does not implement all of the behavior it defines. In fact, the step3 of the 
proposed algorithm is not implemented inside the abstract class because this step is specific to 
check the execution of the control flow. Then, it is implemented inside the class 
Execution_Checking. This allows using the same template method for other types of 
verification by updating some steps. 

 

Figure 3-12: The design of the OCM FSM Build step 

The next step in the OCM Generation extracts RTL information needed by each monitoring 
operation which are the inputs of the OCM DP. Variables defined in the CDFG are replaced 
by registers inside the RTL architecture. Next, the binding step of HLS flow is aware of 
variable lifetimes which allows reusing the memory spaces (registers) when the variables are 
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no longer used. Hence, each variable is associated to a specific memory location at a specific 
cycle. Then, those two following information are needed to perform monitoring operations: 

• The name (identifier) of registers that contain the values of variables used by the 
OCM, 

• Dates, in terms of FSMD states, when those variables are stored in their corresponding 
registers. 

All the variables needed by the OCM DP are related to monitoring operations and then are 
related to notable states that are FSMD_s states. Thus, only extracting the corresponding 
registers of every needed variable per notable state provides all the required information to 
execute the monitoring operations.  

Finally, the OCM Generation step instantiates and configures different OCM DP blocks.  
Those OCM DP blocks are extracted from a hardware template (see Figure 3-13). This 
template defines the behavior of the different hardware blocks. Also, it provides the ability to 
modify the implementation (the RTL description) of those hardware blocks according to the 
intended design. In fact, each block is designed as an Abstract Interface class and several 
implementations can be proposed. The configuration of those hardware blocks is performed 
by using the results of the previous design steps (like the number of registers that store the 
value of input and/or output data). Finally, the interconnection between those hardware blocks 
is build and the OCM DP is created. 

 
Figure 3-13 the design of the OCM DP Build step 

Figure 3-14 presents the architecture of generated OCM. The OCM DP consists of four 
blocks: Basic Block Control Unit (BBCU), Input/Output Control Unit (IOCU), Delay Control 
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Unit (DCU) and Jump Control Unit (JCU). All those blocks run in parallel to the execution of 
hardware accelerator (HWaccs). 

 
Figure 3-14 On-Chip Monitor Architecture 

Basic Block Control Unit (BBCU): 

This block verifies that no illegal jump appears in the current basic block. Figure 3-15.b 
shows the architecture of the BBCU. For all HWacc FSM states that belong to the same basic 
block, it compares the identifier of the current state ID, named CID, extracted from the 
command word COMMD signal with the one of the previous state PID by using the following 
equation: 

]�� − o�� = 1 (3-6) 

In fact, all IDs are generated by a DFS algorithm in preorder which means that the difference 
between two consecutive state IDs is equal to 1. States belong to the same basic block are 
linearly executed. Form those two rules; if the difference between these two identifiers (CID 

and PID) is not one, the BBCU recognizes an illegal jump inside the current BB.  

However, during the test step (unitary testing) of our V-model, we detected a false positive. In 
fact, the BBCU indicated that an illegal jump was present, but it is not in fact present. This 
problem arises when the current state is a Control Successor State, CSS, (i.e. presented by the 
blue color) or a Conjunction State, CjS, (i.e. presented by the red color). Figure 3-15.a 
illustrates an example of HWacc FSM. If the current state is “s9” then CID = 9 and the PID 
=3. By using the previous equation, BBCU recognizes an illegal jump. This is a false positive. 
The same problem occurs when the current state is “s7” and the previous state is “s10”. To 
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solve this problem, we updated the design of the BBCU. The proposed solution consists to 
update the value of PID when the current state is CSS or CjS by the correct one. This solution 
is implemented as follow: the execution of BBCU is controlled by the signal “enable_check” 
coming from the OCM FSM Command (see Figure 3-14). Then, if the current state is a CSS 
or a CjS, the execution of the BBCU is interrupted and the value of PID is loaded by the 
identifier ID of the CSS or CjS (see CSS_CjS_ID in Figure 3-14) that is extracted from the 
OCM FSM Command at runtime.  

Those IDs of CSS and CjS are stored inside the OCM FSM during the ID Generation step of 
the OCMS flow (off-line). In the next cycle, the execution of the BBCU is resumed with the 
new value of the CID that can be the successor of a CSS or a CjS.   

 

 
Figure 3-15 Basic Block Control Unit (a) example of HWacc FSM (b) BBCU Architecture 
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Input/Output Control Unit (IOCU) 

Each register within the RTL architecture generated by the HLS tool has a LOAD signal that 
drives the writing operation into its registers. Those LOAD signals are activated when data 
that must be stored in their associated registers are ready. Then, those LOADs signals are used 
by the block IOCU as references to spot the timing behavior of the hardware accelerator.  

For that purpose, IOCU checks that LOAD signals associated to I/O registers are driven in 
time by the HWacc. This is realized by comparing the LOAD signals coming from the HWacc 
with those provided by the OCM FSM states (by using the mask signal see Figure 3-14). The 
execution of this block depends on the current OCM FSM state. The verification is performed 
only when the current OCM FSM state is tagged as Communication State (CS). To do this, 
each OCM FSM state uses an enable signal that is activated when it is a CS.  

As explained above, the binding step allows sharing registers between variables. It is 
important to notice that. The LOAD signals can change their values during the time interval 
between the current OCM FSM state and the next one. For this reason, all the monitoring 
operations are executed only when entering OCM FSM state for the first time. To do this, the 
execution of the IOCU block is also guarded by the output signal of the Delay Control Unit: 
the signal done. The output of this block, named DetectionIO, is defined by the following 
equation:   

�#(#R(��P�L = ]ℎ#Rpl�O�	�E	#POq$#rrrrrrrrr	�E	��P#rrrrrrr 
 
(3-7) 

where the CheckedLoad is the output signal of the comparison between the signal mask and 
the LOAD signals of HWacc. 

Jump Control Unit (JCU) 

This block verifies that there is no illegal inter-BB jump. It consists in checking the 
conditional jump between basic blocks. To do this, it duplicates all the functions responsible 
for generating the signal STATUS that drives the conditional jump. Then, it compares its 
results with the one coming from the HWacc DP.  

Figure 3-16 presents the architecture of the Jump Control Unit. This block contains a set of 
Data Register (DR), Function Unit (FU) and Check Unit (CU). The DR stores the induction 
signals of loop constructs. In fact, each loop construct has a dedicated DR to store the value of 
its induction variable. The DR has two input signals: initialization signal (coming from the 
HWacc when it is not constant) and the update value of induction signal (coming from the 
FU). The writing process inside the DR is controlled by the signal Incr_update coming from 
the OCM FSM. The FU contains a set of registers and operators to perform the loop’s 
increment function, LIFU, and the condition functions, CMP. The configuration of this unit is 
provided through the signal LIFS_cmd and the signal CMP_ID coming from the OCM FSM. 
The LIFU’s inputs are the set of data signal coming from the HWacc and DR’s output 
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(Induction) signals. The inputs of the condition functions depend on the current disjunction 
state. If the state is tagged as Latch State, then the inputs are the induction signal stored inside 
the OCM registers and the signal f2 coming from the HWacc DP (if it is not a constant). 
Otherwise the inputs are the signal f1and the signal f2 both of them coming from the HWacc 
(if they are not constants). 

The results of the Function Unit are the value of the signal STATUS and the new value of 
induction value to be stored within its associated register DR. Next, the value of STATUS is 
compared with the State_ID signal (represents the results of STATUS signal coming from the 
HWacc), coming from the OCM FSM, inside the CU to check inter-BB jumps. Then, if those 
two signals are not equal, the JCU recognizes an illegal inter-BB jump. 

 
Figure 3-16 Jump Control Unit architecture 

 

3.3 Experimental results 

In this section, we present the synthesis results of the proposed flow to design On-Chip 
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(MatMult), Sum of Absolute Difference (SAD) of the MPEG-2 application, Fast Fourier 
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(Blowfish and AES) and Adaptive Differential Pulse Code Modulation Application 
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All those applications have been written in C language. In addition, they have been kept 
parameterized i.e. the sizes of the structured data (array, etc.) are variable. Table 3-1 gives an 
overview of the application complexity in terms of number of C code lines, loop constructs, 
conditional constructs and I/O parameters (the input of the application, C code). Benchmarks 
range from simple (1 loop, 1 if-else and 3 I/O) to more complex (23 loops, 50 if-else and 5 
I/O) applications. 

The design flow we used is presented in the Figure 3-17. This flow is composed of three 
steps: HLS, Logic Synthesis (Bit Stream generation step) and Implementation (FPGA 
configuration).  

Table 3-1 Application Characteristics 

Application #C code 
lines 

#loop 
constructs 

#conditional 
constructs 

#I/O 

FIR 17 2 0 4 
DCT-2D 56 4 2 3 

MatMult 20 3 0 6 
SAD 22 1 1 3 

FFT 55 5 1 2 

Conv 22 6 0 6 
Sobel 82 4 11 4 

Blowfish 201 11 1 7 
AES 213 19 2 5 

ADPCM 1097 23 50 5 

 
Figure 3-17: The design flow for experiments 
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For the HLS tool (GAUT) the compilation step relies on the compiler GCC 4.7.2 to translate 
the input specification into the formal representation CDFG, referred to as CDFG_GCC. All 
CDFGs are generated by using the optimized compilation option O3. Next, those 
CDFG_GCC are modeled by the Compiler step of GAUT to produce the models of 
CDFG_GAUT. Then, in order to design hardware accelerators, one functional unit has first 
been allocated for each type of operation type (i.e. addition, subtraction, etc.), and List 

Scheduling algorithm has been used. 

Finally; the hardware description of the input application has been synthesized by using the 
64-bit ISE 14.5 suite form Xilinx with a Virtex 5, Device XC5VLX110T (package FF1136) 
as target. 

ISE is an integrated collection of several tools. Logic synthesis engine (XST), which supports 
VHDL and Verilog languages and produces a netlist integrated with constraints and then 
transforms the RTL description into a gate-level description; Translate tool (NGDBuild), 
which converts all input design netlists and then writes the results into a single merged file, 
that describes logic and constraints; Mapping tool (MAP) which takes a netlist and maps the 
logic on device components and groups the logical elements into CLBs and IOBs 
(components of FPGA); Place And Route tool (PAR) which places FPGA cells and connect 
them; Bitstream generation tool (BITGEN) which takes as input the output of PAR to produce 
a configuration file (bitstream) to the target FPGA and programming tool (IMPACT) which is 
used to configure the target FPGA. We have scripted all those previous steps for all 
applications by using the Tool Command Language (TCL) script. 

For the architecture characteristics, Table 3-2 presents the CDFG, the FSMD_s and the 
annotated FSMD_s characteristics in terms of number of basic blocs, states and notable states. 
Results show that our technique to build OCM FSM allows reducing the number of states by 
51% on average compared to the basic technique: duplicate the HWacc FSM. This allows 
reducing the complexity of the generated monitor and its area overhead as shown latter. 

Table 3-2 CDFG and architecture characteristics 

Application #Basic Block #State #Notable State  
FIR 7 25 12 

DCT-2D 13 31 19 

MatMult 12 43 23 
SAD 5 23 12 

FFT 15 52 31 
Conv 21 70 41 

Sobel 28 127 45 

Blowfish 76 179 66 
AES 13 558 76 

ADPCM 124 871 358 
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For the synthesis time overhead, Table 3-3 summarizes the synthesis times running the HLS 
flow alone and the HLS flow with the OCMS flow. As stated, the overhead ranging from 
0.14% to 1.85% (1% on average) is negligible. In addition, results show that this overhead 
decreases when the application’s complexity increases (e.g. AES and ADPCM applications). 

Table 3-3: Synthesize time overhead 

Application HWACC without OCM 

(ms) 

HWACC with OCM 

(ms) 

%Time 

Overhead  

FIR 1521 1544 1.51% 

DCT-2D 1354 1379 1.85% 

MatMult 1567 1584 1.08% 

SAD 1728 1747 1.10% 

FFT 1472 1493 1.43% 

Conv 1561 1582 1.35% 

Sobel 1578 1604 1.65% 

Blowfish 7997 8048 0.64% 

AES 120411 120623 0.18% 

ADPCM 104541 104684 0.14% 

 

3.3.1 Error Coverage Analysis 

To evaluate the error coverage of the proposed OCM against control flow errors, a fault 
model has been developed. The hardware description of the control flow, i.e. the HWacc 
FSM, is modeled by the following components: 

• State Register (SR) which stores the value of the next HWacc FSM state;  

• STATUS signals represent signals that drive the conditional jump between basic 
blocks. They are used by disjunction state; 

• Command words (COMMD) represent the control bits associated to each HWacc FSM 
state to drive and to configure the HWacc DP; 

• State Identifier (ID) represents the binary value of a state. It is generated during the ID 
Generation step of the OCMS flow;  

Next, the fault model has been configured to produce two types of alterations: Single and 
Combined.  

• Single alterations consist in performing multiple alterations but on a single element. 
For example, single alteration modifies the value of SR but with no impact on 
STATUS, COMMD and ID. 
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• Combined alterations consist in performing multiple alterations over several elements 
at the same time (e.g. they can alter the value of SR and ID simultaneously).   

Those alterations are performed by using the technique of bit-flip. This technique consists in 
flipping randomly bits in the data of the four components introduced above. Then, the fault 
model is configured to inject single (SEU) or multiple (MBUx; x={2, 3, 5, 10, 20}) bits upset 
with each type of alterations. 

Finally, the validation of the generated monitor is performed by executing the fault model in 
conjunction to the set of parameters associated to each application. Parameters are the number 
of states, the binary identifier of each HWacc FSM state after logic synthesis, the command 
word of each FSM state and the set of transition inside the HWacc FSM. The identifier of 
FSM state that will be stored inside SR is one-hot encoded. The one-hot encoding manner 
consists in identifying each state by using only one bit set to ‘1’within SR. This type of 
encoding is specified during the logic synthesis (XST option). 

Once the fault injection is performed, if the alteration is not detected, the undetected error 
number is incremented by one. This mechanism is repeated 104 times (in order to have 
representative average values) for each Hwacc FSM state. The Undetected Error Rate (UER) 
formula is presented by the following equation: 

S�" = 	∑ 	#EE�E=4B/(tu422	vwx)
ROE�(y%ORR	9	�)  

 
 
(3-8) 

	#EE�E = SP�#(#R(#�	�EE�E8	
10z × m$(#EO(��P8  

 
 
(3-9) 

Results are given according to the type of the alterations: single or combined. 

Single Alteration 

For single alteration, results show that all alterations are detected. The detection rate is 100% 
(UER =0). This result was expected since the detection approach proposed in this thesis is 
based on the redundancy approach. Figure 3-18 shows how redundancy allows detecting any 
inconsistency. 

The verification of intra-Basic Block jumps consists in storing inside the OCM DP the 
previous state’s identifier (ID), and computing the current ID (extraction from the COMMD 
related to SR). Then, if the modified value of the ID or SR comes to be locally inconsistent 
(case 1 in Figure 3-18), our solution immediately detects the alteration (e.g. when the state’s 
identifier is greater than IDmax or when the value state within the SR is incorrect). Since states 
within SR are one-hot encoded, at any time odd number of bit flips in SR leads to illegal 
states. In addition, in some cases, even number of bit flips leads to illegal states, if this 
number is greater than 2.  
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Figure 3-18 Redundancy approach 

On the contrary, be the faulty value correct within its type (case 2), the inconsistency is 
globally detected based on the redundancy with other unaltered three elements. Figure 3-19 
illustrates two examples of alterations that are correct within their type: 

• SR alteration consists in modifying the value inside SR by two bit flips: one to reset 
the current hot bit and another one to set a new bit. This alteration leads to illegal jump 
from s1 to s3. As ID is not altered (single alteration) but incorrect because it is 
calculated from an altered value of SR (case 3 in Figure 3-18), the inconsistency is 
detected by using the ID evolution property (IDc –IDp =1, where IDc is the ID of the 
current state within SR and IDp is the ID of previous state within SR).  

• ID alteration consists in modifying the value of the current state identifier ID without 
altering the value within the SR. As the altered ID is associated to the correct value 
within the SR, then the inconsistency is detected by using the previous ID evolution 
property. 

For the verification of inter-basic block jumps, the OCM duplicates all the functions 
responsible for generating the signal STATUS that drives the conditional jump in its DP (case 

4 in Figure 3-18). This technique impacts the area overhead added by OCM which will be 
presented in the next sub-section. The two values of the STATUS signal generated by the 
OCM DP, STATUSOCM, and the HWacc DP, STATUSHWacc, are compared at runtime to detect 
inconsistency. 
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Figure 3-19 Intra-basic block alterations 

In addition, results show that all illegal jumps inside the control flow that are caused by a 
single alteration are immediately detected after two clock cycles except for the two following 
special cases which need three clock cycles to be detected: 

• Illegal jumps from the end of a disjunction basic block (see definition in page 51) to 
the middle of one of its successors; 

• Illegal jump from the end of a predecessor of a conjunction basic block (see definition 
in page 51) to the middle of its successor.   

Figure 3-20.a shows an example of SR alteration that causes illegal jump from the end of the 
disjunction basic block BB0 to the middle of its successor BB1. The OCM FSM associated to 
this example is presented in Figure 3-20.b. The detection of this type of SR alteration is based 
on the following approach. Each OCM FSM state that is tagged as Successor Control State 
(e.g. MS2) stores the state identifier ID of its associated HWacc FSM state (e.g. ID_S4). Then, 
when the current HWacc FSM state is a disjunction state (the end of a disjunction basic 
block), the OCM FSM state’s transition is performed according to the STATUSHWacc. As there 
is no alteration over the STATUSHWacc, the OCM stops the execution of the Basic Block 
Control Unit (BBCU) by using the Enable_check signal and uploads inside the PID register 
the state identifier associated to the current state in the OCM FSM state. Then, by using the 
ID property (see equation (3-6), the alteration is detected. This process is shown in Figure 
3-20.c. Therefore, this approach needs one extra clock cycle to update the value within the 
PID register each time a Successor Control State is reached compared to other types of SR 
alterations.     
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Figure 3-20 (a) example of SR alteration (b) associated OCM FSM and (c) the execution of 

the Basic Block Control Unit 

Combined Alteration 

For combined alterations, results show that the only undetected cases are either alteration of 
commands in notable states or a combination of state’s identifier ID and SR alterations which 
mask each other. 

However, the approach proposed in this chapter consists in checking the control flow errors 
and the Input/Output timing behavior of the generated hardware accelerators (HWacc). Thus, 
command words of HWacc FSM states that are not identified as notable states cannot be 
protected against faults. Those faults can be detected thanks to data based assertions (e.g. PSL 
assertions) (see next chapter).   

Combined ID and SR alterations are handled by our approach. As explained in the previous 
section, dedicated Single Alteration, the only case to produce legal states after altering the 
value within SR is performed by injecting 2 bits flips (the worst case). This SR alteration is 
detected in Single Alteration by using the ID property. Hence, if the ID associated to the 
altered value of SR is also altered to match this new state, then we have a silent error. Thus, 
the higher number of alterations over ID, the higher chance to hide the faulty behavior. 

Figure 3-21 shows an example of combined ID and SR alteration that cannot be detected by 
our approach. After 2 bit flips, the value of the next state stored in SR is changed from s2 to 
s3. Next, the identifier ID associated to s3 is also changed to the expected ID, the identifier 
associated to state s2. Hence, the verification of the ID evolution property does not recognize 
an illegal jump. 

Figure 3-22 shows the results of the Undetected Error Rate for each application. The error 
detection capability of the OCM slowly decreases with the number of alterations over ID. 
Moreover, results show that the UER depends on the application’s complexity. 
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Figure 3-21 Combined alteration: ID and SR 

It decreases when the application gains in complexity (e.g. Blowfish, AES and ADPCM). In 
fact, IDs are concatenated to the state’s command word. Hence, with complex application that 
needs larger command words, the probability to modify the value of ID is less than the one 
with application of lower complexity. For example, the SAD application stores 23 bits within 
its command words (including the binary ID) and the AES application stores 821bits within 
its command words (including of the binary ID). Hence, with 5 bits flips (MBU5) the SAD 
application leads to 2,02 10-3 UER while the AES application leads to 3.58 10-7 UER. Then, 
the UER with AES is 104x smaller than the one associated to SAD. Finally, the minimum 
error detection capability, that is independent of the application’s complexity, is 99.75%. 

 
Figure 3-22: Error Detection mismatch 
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For speed optimization, the overhead can go up to 27% while for area optimization the 
overhead is at most 20%. The area overhead is impacted by three characteristics: 

• The complexity of loop’s increment function: this function must be computed twice 
to detect single error over STATUS signal. This is the objective of the Jump Control 
Unit presented in the previous section. Then, peak overheads are obtained when 
considering OCM DPs that implement complex loop increment functions like 
multiplication (e.g. FFT) 

• The number of loop constructs: In fact, for each loop construct a dedicated register 
and a multiplexer are instantiated inside the OCM DP and a set of control bits are 
stored inside the OCM command words. For example, with the same loop’s 
increment function complexity, the DCT application has two additional loop 
constructs compared to the FIR application. This increases the area of OCM 
associated to DCT (OCMDCT) by 28.5% for FF and 63% for LUT compared to the FF 
and LUT used by the OCM associated to FIR (OCMFIR) when the speed optimization 
option is selected. However, the overhead incurred by the OCMFIR is greater than the 
one caused by the OCMDCT (see Figure 3-23). This difference is due to the 
application’s complexity the last point that impacts the OCM overhead. 

• The application’s complexity in terms of number of operators (ADD, MUL, etc.), 
number of multiplexers and registers: Results show that HWaccs that implement low 
complexity application, with only one functional unit for each type of operation, 
exhibit high overhead (e.g. FIR). On the contrary, the OCM overhead is less than 4% 
for applications of higher complexity like AES, ADPCM and Blowfish despite their 
associated OCMs areas (Table 3-4). 

 
Figure 3-23: Area overhead incurred by OCM 
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brings potential parallelism. Hence, we modified the scheduling algorithm to allocate as many 
functional units as required to fully exploit this parallelism by using the ASAP algorithm. 

  
Table 3-4: OCM area characteristics  

 Logic Synthesis option 
Application Speed Area 

FF LUT FF LUT 
FIR 49 58 49 56 

DCT-2D 63 95 63 91 
MatMult 60 93 60 80 

SAD 38 44 38 42 
FFT 78 165 78 145 
Conv 96 154 96 139 
Sobel 96 171 96 163 

Blowfish 90 132 90 103 
AES 126 140 126 127 

ADPCM 250 315 250 314 

Figure 3-24 presents the area overhead of OCM after unrolling loops. Results are given for 
the three high level specifications of each application: without unrolling (WU, we use the List 

Scheduling algorithm), unrolling by a factor of 4 (U4) and unrolling by a factor of 8 (U8). 
Results show that the overhead of OCM generated from U4 and U8 is decreased compared to 
the original specification (WU).  

For the speed optimization, the overhead of OCM is reduced by 1.88x with the U4 and by 
2.78x with U8 while for area optimization the overhead is reduced by 1.71x with U4 and by 
2.70x with U8 on average compared to previous results (WU). Then, the overhead can go up 
to 15% (the peak overhead).   

 

 

Figure 3-24: OCM overhead with partial loop unrolling 
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Finally the generated OCM has no impact on the HWacc’s performance. In fact, it runs in 
parallel to the execution of HWacc. It only extracts some internal signals to perform the 
verification. This reduces the clock frequency of Hwacc by 0.12% on average (up to 4% in 
the worst case) which is negligible.  

3.4 Conclusion 

This chapter has presented an automated approach to generate On-Chip Monitors (OCM) 
during High-Level Synthesis (HLS) of Hardware accelerators (HWacc). The proposed 
method runs concurrently to the HLS flow. It is an extension of the traditional HLS flow 
which is portable to any HLS tools. Hence, it satisfies the first condition C1. In addition, the 
input of the proposed design flow to generate OCM is the Control Data Flow Graph (CDFG) 
which represents the formal representation of the application to check. This representation 
supports both static and dynamic behaviors which satisfies the second condition, C2. 

The generated OCM analyzes at runtime the timing behavior of Hwacc by monitoring its 
Input/Output. OCM allows checking the control flow errors like illegal jumps and infinite 
loops. Moreover, the monitor’s architecture is composed of a Data-Path and control Part 
which is an optimized copy of the original HWacc FSM. This control part allows OCM to be 
independent of the HWacc’s execution to prevent any hanging problems. Experimental results 
shown that the error coverage on the control flow ranges from 99.75% to 100%. The proposed 
methodology satisfies the 3th and the 5th conditions, C3 and C5. Also, results shown that in 
average the OCM area overhead is less than 10% and decreases when the application gains in 
complexity. In addition, the synthesis time overhead is 1% on average which is negligible. 
Finally, OCM has no impact on the HWacc’s performance satisfying the condition C6. It only 
reduces the functional clock frequency by 0.12% on average which is also negligible.  

However, the proposed methodology is limited to the verification of the control flow. In 
addition, it only checks command words of notable states. Those notable states are 
automatically identified from the FSMD_s resulting from the HLS scheduling step. Moreover, 
this methodology cannot detect problem of data errors (condition C8). The next chapters 
introduce some optimizations inside the design flow to detect data errors and to allow 
designers defining new notable states. The approach presented in this chapter has been 
published in [89]. 
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In the previous chapter, we have presented a new methodology to check the execution of 

HWacc generated by HLS tools against control flow errors. The proposed technique is based 

on notable states that are automatically detected. This chapter proposes a new approach to 

synthesize ANSI-C assertions during the HLS of hardware accelerators. This proposal allows 

detecting data errors. In addition, it allows reducing the area overhead by introducing 

assertion synthesis options. Finally, it improves the reactivity of generated monitors. 
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4.1 Introduction 

The first contribution presented in the previous chapter allows checking at runtime the control 
flow of a hardware accelerator generated by HLS tools. Experiment results have shown that 
this contribution allows detecting illegal jumps and infinite loops. In addition, the generated 
On-Chip Monitor is independent of the monitored HWacc which prevents any hanging 
problems coming from the HWacc. 

However, hardware accelerators face faults that can modify values of internal signals without 
impacting the execution of control flow or the input/output timing behavior. For example, a 
wrong value of a given input (that does not belong to the range of expected values) can 
modify the internal results, and finally infects the value of application’s outputs.  

To detect data errors, a designer, using HLS, can use Assertion-Based Verification (ABV), a 
well-known technique in Electronic Design Automation (EDA), as an alternative to check 
HWacc behavior by executing an application that contains assertions against a testbench. 
ABV allows checking logic and/or temporal behaviors against a priori known properties 
through signals/registers spying. It relies on two types of conditions named pre- and post-
conditions. Pre-condition must always be true just prior to the execution of some sections of 
code and post-condition must always be true after the execution of some sections of code. 

Unfortunately, during HLS, high level assertion (e.g. ANSI-C with C code) statements are 
currently either ignored or treated as common functions and implemented using hardware 
resources of generated hardware accelerator (HWacc) in unpredicted way. As consequence, 
they strongly degrade HWacc performances and cannot be removed easily if needed. Thus, 
the basic solution is to manually translate those High Level assertions into RTL assertions. 
Finally, those RTL assertions are used during the post-synthesis RTL simulation.   

Unlike HLS tools, designers can hardly get information about register names where variables 
are stored or FSM states during which variables are accessed. Thus, the integration of RTL 
assertions in the architectures generated by HLS tool is a cumbersome process. 

Automatic propagation of high level assertions statements inside the HLS flow to produce 
their RTL descriptions allows resolving those limitations. Existing techniques [61][62][64] 
have several limitations. They only focus on synthesizing high level assertion into RTL 
circuits (see section 2.7, page 43).  

In this chapter, we propose a new approach to automatically synthesize ANSI-C assertions 
into hardware monitor during the HLS of HWacc. The proposed approach allows resolving all 
previous limitations: synchronization mechanism, area overhead and protection level. The 
synchronization mechanism is based on the approach introduced in the previous chapter. The 
synchronization is performed by defining new notable states. The tradeoff between protection 
level and area overhead is performed by proposing two assertion synthesis options: speed and 
area.  
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Since the approach we propose in this chapter is based on the technique introduced in the 
previous chapter, it is portable to any HLS tools and supports both static and dynamic 
behaviors. The execution of the assertion checkers is also independent of the internal states of 
the monitored HWacc.  

4.2 Assertion Synthesis Flow (On-Chip Monitor Synthesis flow) 

This section describes how the ANSI-C assertions are modeled inside the CDFG after the 
compilation of a C code decorated with assertions. Next, it introduces the proposed 
techniques to analyze, identify, extract information and annotate different models generated 
by traditional HLS flow in order to generate the RTL implementations of ANSI-C assertions.    

The Assertion Synthesis flow we propose consists of several steps that are realized 
concurrently to the traditional HLS flow as illustrated in the right part of Figure 4-1:   

1. Assertion Extraction step- starts after the HLS has compiled a C code with assertions 
(through the use of the assert.h library). This step analyses the formal representation 
of application including assertions (referred to as CDFG_A in Figure 4-1) in order to 
detect the assertion statements and to extract their parameters. Next, it removes the 
assertion branches from the CDFG_A and generates for each detected assertion a new 
Control Data Flow Graph (CDFG_x). Then, the scheduling step of HLS flow operates 
with the new version of the formal representation (CDFG_WA) 

2. FSMD annotation step- analyses and annotates a copy of the Hwacc FSMD_s. This 
step is similar to the one introduced in the previous chapter (see page 50). Moreover, 
considering assertion synthesis requires to identify new notable states such as states 
that start the execution of assertion verifications.  

3. Assertion Checker step- produces the RTL architectures of assertions using HLS 
tool. The generation process of RTL descriptions is based on the OCM option. Finally, 
this step stores all the generated RTL architectures as operators in a dedicated 
database. 

4. OCM Generation step-couples the annotated FSMD_s with the results provided by 
the binding step of the HLS flow and with RTL architectures stored in the library of 
operators to produce the RTL description of the monitor as Finite State Machine and 
Data-Path. 
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Figure 4-1: Assertion Synthesis flow (OCMS flow) 

The proposed synthesis flow offers two synthesis options, speed and area. The speed option is 
non-intrusive as it does not affect the HWacc execution unless an assertion violation occurs. It 
can check several assertions concurrently like the previous works in literature. On the 
opposite, the area option is potentially intrusive and freezes the Hwacc execution when an 
assertion must be verified. This allows sharing hardware resources between assertions 
checkers (AC). The following sub-sections detail our flow. 

4.2.1 Assertion Extraction 

Assertion Extraction is the first step of the assertion synthesis flow. It starts after the 
compilation step of the HLS flow that generates the intermediate representation of the 
application, including assertions, CDFG_A (CDFG with Assertions). This step identifies the 
branches and the basic blocks related to the assertions, extracts their parameters and removes 
assertion instructions from the CDFG_A to produce a new formal representation CDFG_WA 
(CDFG without Assertions). Then, it produces a set of CDFG_x from those assertions 
instructions. Next, those CDFG_x are synthesized using traditional HLS flow by the Assertion 

Checker step (see section 4.2.3). In contrary to our first contribution (i.e. CDFG Analysis 
step) the Assertion Extraction step modifies the intermediate representation that results from 
the compilation step of the HLS flow and produces a new set of CDFGs.  

An assertion is modeled in the CDFG_A by a set of basic block (BBs) named Assertion 
CONDition BBs (ACOND BBs) and one Assertion STATEment BB (ASTATE BB).  
ACOND BB executes operations and evaluates the condition of assertion it is related to. If the 
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condition is true (due to negative logic used by the compiler), a branch to the ASTATE BB is 
realized. ASTATE BB calls the “Assert_Fail()” function to stop the program execution. This 
function provided by the assert.h library is unique in the CDFG_A (i.e. it is common to and 
shared by all the assertions) and is used to log violations and to abort program execution. 

Figure 4-2.a illustrates the source code of the FIR filter application including one assertion 
(see line 5). Figure 4-2.b presents the compilation result, i.e. the CDFG_A. The ASTATE BB 
of the assertion is presented in Figure 4-2.e (basic block BB7). The BB7 has only one 
operation node which performs a function call to the function “Assert_Fail()”. The ACOND 
BB is presented in Figure 4-2.d (basic block BB5). This basic block contains assertions 
statements, variable and operation nodes to perform the assertion condition and application 
statement. The variable node, “As1” represents the condition output of ACOND BB. Red 
nodes (variable and operation) represent all the nodes used by ACOND BB.  

 
Figure 4-2: FIR filter decorated with ANSI-C assertion (a) Source code with assertions (b) 

CFG (c) DFG of BB6 (d) DFG of BB5 (e) Assert Function Call 

The extraction process of assertion statements from the formal representation CDFG_A starts 
by detecting ASTATE BB. To do this, the algorithm scans the CDFG_A and for each basic 
block, it checks if there is an operation node that performs a call to the Assert_Fail() function. 
Then, each time an ASTATE BB is detected, a new Control Data Flow Graph, CDFG_x, is 
created and is labeled by a unique number, x, that represents the number of the current 
detected assertion. 

The next step in the extraction process is the identification of ACOND BBs. As explained 
above, the branch to ASTATE BB is controlled by the result of ACOND BB. ACOND BB is 
the direct predecessor of an ASTATE BB. Once ACOND BB is identified, all its nodes 
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(variables and operations are moved into the new created graph CDFG_x) associated to the 
current assertion, starting from the last node until a border node is found. Border nodes, VB, 
are variable nodes and are classified in two types: communication variables, VC, and internal 
variables, VI. 

• The set of communication variable nodes, VC, is the same as the one introduced in the 
previous chapter (see page 55). 

• Internal variable nodes are variable nodes that have at least one output arc going to an 
operation node that performs a HWacc’s computation and an output arc that is 
connected an ACOND node.  

Our algorithm that identifies the set VI of internal variable nodes is presented in Figure 4-3. 
The input of this algorithm is the set of communication nodes, VC, and the set Vinter which is 
the set of variable nodes that represent the intermediate results of operation nodes inside the 
CDFG_A (including assertions statements). This set, Vinter, contains internal results of 
assertion operation nodes and HWacc operation nodes. The algorithm starts by removing 
from the set Vinter all the variable nodes that belong to the set VC. Then, it checks for every 
variable node that has more than one output arcs, if there is at least one of its successors that 
belongs to the set of VC. If so, the current variable node is identified as border node.  

Then, when border nodes are reached by the extraction process of ACOND BBs, they are 
duplicated in the CDFG_x, associated to the current assertion and tagged as input assertion 
inside the CDFG_A. In addition, each border node is associated to a given assertion through 
an assertion identifier (Assert_ID) and is added to the list of inputs of the current assertion. 
Border node can be associated to more than one assertion. All those information are stored in 
a dedicated database “Assertions”, see Figure 4-1. 

Once CDFG_x is created, the related ASTATE BB is removed from CDFG_A since no call to 
the “Assert_Fail()” function must remain in the HWacc. 

Figure 4-4 illustrates the CDFG resulting from the assertion extraction process: CDFG_WA. 
All BBs, nodes and arcs attached to assertion statements (see Figure 4-2.d) are removed from 
the CDFG_A except BB5 and its output arc. In fact, BB5 contains border nodes {X[N-1-i], 
C[i]}. For this reason, CDFG_WA is scanned to merge unused BBs. Then, BB5 and BB6 are 
merged to have one basic block for the statement of line 6 in Figure 4-2.a. 

Once all assertion branches have been removed from the CDFG_A, the scheduling step of the 
HLS flow operated with the new version of the formal model, CDFG_WA: CDFG Without 
Assertion to generate the FSMD_s.  
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Algorithm Border Node Identification :   
Input: the set Vinter \ VC 
Output: the set VI 
Method: 

(1) For each node in Vinter\VC do 
(2)    Visited[*] =0; 
(3)    Next_Operation Node = Succ(node); 
(4)    If(Card(Next_Operation_Node) >1) then 
(5)       If(Scan_Border(Next_Operation_Node)) then 
(6)          Add node to VI; 
(7)       End if 
(8)    End if; 
(9) End for; 

Scan_Border (Next_Operation_Node) 
(1) Scan_output = false; 
(2) For each operation in Next_Operation_Node do 
(3)    If(Visited[operation] =0) then 
(4)       Visited[operation] =1 
(5)       Output_Node = VOop(operation); 
(6)       If(Output_Node ∈ VC ) then 
(7)          Scan_output = true; 
(8)          Break; 
(9)       Else 
(10)       Operation_Node = Succ(Output_Node); 
(11)       Scan_output = Scan_Border(Operation_Node); 
(12)       If(Scan_output) then 
(13)            Break; 
(14)       End if; 
(15)     End if; 
(16)   End if; 
(17) End for; 
(18) Return Scan_output; 

Figure 4-3: Algorithm of Border Node Identification 

 
Figure 4-4: Assertion Extraction result: (a) CDFG_WA, (b) DFG of BB5 and BB6 
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4.2.2 FSMD Annotation 

FSMD Annotation starts after the FSMD_s has been generated from the CDFG_WA by the 
HLS scheduling step. The objective of this step is to synchronize the execution of assertion 
verification with the execution of HWacc. In fact, this step allows identifying, for each 
assertion, the control step when the execution of assertion must be started. In addition, it 
allows the generated monitor to be independent of the execution of HWacc in order to start its 
operations. To do this, the FSMD_s is analyzed and new sets of notable states are identified. 
We use the same Interface class FSMD_Annotation presented in the previous chapter (see 
Figure 3-9). However, we propose a new implementation to automatically detect the new 
notable states that are associated to the assertion verification technique which was not 
considered in the previous chapter (Chapter 3). 

Notable states are: the initial and the final states of the HWacc FSMD_s; the control flow 
states and the states that include statements relative to the data used by the assertions. The 
latter define the new notable states compared to definitions that are introduced in the previous 
chapter (see section 3.2.3).  

More precisely, the new notable states are:   

• The Input Assertion States (IAS): the set of states that hold the data corresponding to 
input variables of a given assertion; 

• The Start Assertion States (SAS): the set of states that start assertion verification that 
means hold the data corresponding to the last given assertion input variable. 

The identification of IAS and SAS is based on the relation between FSMD_s, the CDFG_WA 
and the set of information stored inside the database “DB:Assertion”. Each state of the 
generated FSMD_s is associated to at least one operation and several operations can be 
scheduled in the same state. We identify for each state the set of input variables, VIstate and the 
set of output variables, VOstate. The two following equations illustrate these two sets for a 
given state “s”: 

6a15450(8) = W 6abc(Lo)
h|∈hc0B45�b3_b~(1)

 

 
 
(4-1) 

6h15450(8) = 	 W 6hbc(Lo)
h|∈hc0B45�b3_b~(1)

 

 
 
(4-2) 

The proposed algorithm to detect assertion states (IAS and SAS) is presented in Figure 4-5. It 
consists of two steps. The first one focuses on the implementation properties (properties that 
check the results, outputs, of Data-Path operators, see page 22) of the application. This step 
scans the set of output variables, VOstate of each FSMD_s state. If the visited variable is tagged 
as input assertion during the Assertion Extraction step, then each direct successor state of the  
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Algorithm Assertion State Identification :  
Input: the FSMD_s, Assertion Input (Ass_Input).  
Method: 

(1) VisitedVar[*]=0 
(2) VisitedS[*] =0; 
(3) Assertion_State_Identification (SSource); 

Function Assertion_State_Identification (state) 
(1)   VisitedS[state] =1;       
(2)           --------------Step1------------------ 
(3)    For each variable in VOstate(state) do 
(4)       If(variable is tagged as input assertion) then 
(5)          VisitedVar[variable]=1; 
(6)          Next_state = δ(state, STATUS); 
(7)          For ns in Next_State do 
(8)             ns is tagged as IAS; 
(9)             Add variable to the set of input assertion associated to ns; 
(10)          End for; 
(11)          Find_Start_State (Next_State, variable); 
(12)       End if; 
(13)    End for; 
(14)  
(15)             --------------Step2------------------ 
(16)    For each variable in VIstate(state) do 
(17)      If (variable is tagged as input assertion) then 
(18)         If(visitedVar[variable] =0) then 
(19)            state is tagged as IAS; 
(20)            Add variable to the set of input assertion associated to ns; 
(21)            Find_Start_State (state, variable); 
(22)         End if; 
(23)       End if; 
(24)    End for; 
(25)  
(26)    For m in Next_state do 
(27)       If(VisitedS[m] =0) then 
(28)          Assertion_State_Identification(m); 
(29)       End if; 
(30)    End for; 

 
Function Find_Start_State(S, variable) 

(1) For each id in variable(Assert_IDs) 
(2)    Remove variable from the set Ass_Input[id] 
(3)    If Ass_Input[id] is empty then 
(4)       For each state in S do 
(5)          state is tagged as SAS; 
(6)           Add id to the set SAS[state] 
(7)       End for; 
(8)    End if; 
(9) End for; 

 
Figure 4-5: algorithm of assertion states identification 
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current state is tagged as Input Assertion State (the value of this variable is always ready in 
the next cycle ) and the current variable is added to its set of input assertion. Then, this step 
checks if this variable is the last assertions input variable. To do this, for each Assert_ID 
associated to the current variable, it removes the current variable from the set of input 
assertion corresponding to the current Assert_ID. Next, if this set is empty, then direct 
successors states are identified as Start Assertion State and Assert_ID is added to their sets of 
start assertion. 

The second step of the proposed algorithm focuses on the specification properties of the 
application (the relation between application’s inputs and outputs). On contrary to the first 
step, this step scans the set of input variable, VIstate, of each FSMD_s state. Next, if the visited 
variable is tagged as input assertion, then the current state is tagged as Input Assertion State 
and not its directed successors. Next, if the current variable is the last assertion input variable 
(the same technique presented in the first step is used) the current state is tagged as Start 

Assertion State.  

Figure 4-6 shows the result of the FSMD Annotation step, Annotated FSMD_s, associated to 
the FIR filter application (see Figure 4-2.a) and its relation with the CDFG_WA. The 
FSMD_s is generated using the List Scheduling algorithm for which one functional unit and 
one memory bank have been considered as resource constraint.  

The set of Control Successor State is {s3, s17, s8, s16}, the set of Conjunction State is {s1, s6}, 
the set of Input Assertion State is {s10, s12} and the set of Start Assertion State is {s12}. The 
state s12 is tagged as SAS because the last input variable of the inserted assertion in the FIR 
filter, X[N-1-i], will be ready in s12.  

 

Figure 4-6 (a) CDFG_WA (b) Annotated FSMD 
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4.2.3 Assertion Checker 

Once the Assertion Extraction step has generated the set of CDFG_x, (x= {1,2, .., n} where n 
is the number of assertions inserted inside the specification) and that the FSMD Annotation 
step has identified the set of Start Assertion State (SAS), the generation of RTL Assertion 
Checker starts producing the RTL architecture of the generated CDFG_x. The generation 
process depends on the OCM option i.e. speed vs. area. Those two synthesis options are 
independent from those used by the HLS tool to synthesize application. 

The design of this step is presented in Figure 4-7. The Assertion Checker step is an abstract 
interface class and each synthesis option is implemented in separate class. Then, depending 
on the selected synthesis option, only one of these classes is instantiated as the service 
provider. This is the objective of the strategy pattern. In addition, this design supports adding 
extra synthesis options on demand. 

 
Figure 4-7: The design of Assertion Checker step 

The Speed option consists in generating for each CDFG_x a dedicated RTL architecture. All 
the previous approaches in literature use the Speed option philosophy. This option constitutes 
thus the reference in which the optimizations proposed by our method are evaluated. 

The objective of the proposed Area option consists in merging all the CDFG_x to get a unique 
CDFG_M by using the switch case technique. In fact, each case represents an assertion 
through the identifier Assert_ID. The merging process is performed in two steps. The first 
step consists in merging all the synchronized assertions. Synchronized assertions are 
assertions which executions are driven by the same Start Assertion State. Then, the 
identification of those assertions is based on their Start Assertion States, which result from the 

FSMD Annotation step. Each assertion owns a unique state which may start the execution of 
one or many synchronized assertions.  

Once synchronized assertions are identified, a new CDFG is created per set of synchronized 
assertions. The algorithm of this step is presented in Figure 4-8. It starts by scanning the 
annotated FSMD_s. Then, for each visited Start Assertion State with more than one 
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Assert_ID, all its associated CDFG_x are moved to a set of synchronized CDFG, 
Synch_CDFG. Next, all the content (i.e. basic blocks and nodes) of each CDFG_x that 
belongs to the set Synch_CDFG is moved into a new CDFG. This new CDFG is associated to 
the current state through its first Assert_ID, CDFG_FID. Finally, a new operation node, 
“BIT_OR”, is added to the new CDFG to compute the output of all synchronized assertions. 
The inputs of this operation node are the output variable nodes of each merged CDFG_x.   

Once the set of merged CDFG_FIDs are generated, the second step of the merging process 
consists in merging all CDFG_FIDs with the rest of the set of CDFG_x by using the switch 
case technique to produce the unique CDFG_M. 

In order to merge all the assertions using the switch case technique, the following property 
must be satisfied: only one assertion is checked at a time. To satisfy this condition, the 
monitor must freeze the execution of HWacc each time a new assertion must be verified. 
Once the verification of assertion is completed, the HWacc’s execution resumes.  

 

Algorithm Merging Synchronized Assertion  
Input: the annotated FSMD_s, the set of generated CDFG_x  
Output: the set of new CDFGs 
Method: 

(1) For each state in FSMD_s do 
(2)    If  state is tagged as SAS then 
(3)       If (card(Assert_ID(state)) >1) then 
(4)          Initialize the set of synchronized CDFG (Synch_CDFG) 
(5)          For each ID in Assert_ID(state) do 
(6)             Synch_CDFG = Synch_CDFG ∪ CDFG_ID; 
(7)          End for; 
(8)          FID = the first ID inside the Assert_ID(state); 
(9)          CDFG_FID = Merge_Synchronized_CDFG (Synch_CDFG, FID); 
(10)          Remove all ID from Assert_ID(state) expect FID; 
(11)          Remove the set of Synch_CDFG from the set of generated 

CDFG_x; 
(12)          Add the CDFG_FID to the set of generated CDFG_x; 
(13)       End if; 
(14)    End if ; 
(15) End for; 

Figure 4-8: Merging Synchronized Assertion algorithm 

Finally, the RTL architecture of CDFG_M (when the area option is selected) or of each 
CDFG_x is automatically generated by using the HLS tool. Those generated RTL 
architectures are stored in a library of operators to be later used during the OCM Generation 
step. 



Assertion Based Verification for High Level Synthesis 

-92- 
 

4.2.4 OCM Generation step 

OCM Generation step is the final step of the OCMS flow. It couples the annotated FSMD_s 
with the results provided by the binding step of the HLS and also with the RTL architectures 
stored in the library of operators. Finally, it generates the RTL description of the OCM.  

This step starts by generating the control part of the monitor (OCM FSM). The proposed 
algorithm to generate the FSM is the same one as that proposed in the previous chapter except 
for the step that identifies the Header State Predecessors, HSP, (see step 3 in Figure 3-10). In 
this chapter, we are only interested by synthesizing ANSI-C assertion. Thus, the identification 
of HSP states doesn’t provide any useful information. For this reason, we implement the 
modified algorithm in a separate class to update the template method introduced in the 
abstract class OCM_FSM_Build. 

As explained in the previous chapter, each OCM FSM state has a dedicated monitoring 
operation according to its associated notable state. New monitoring operations are introduced 
in this chapter compared to operations that were introduced in previous chapter (see section 
3.2.5, page 59). Hence, if the notable state is: 

• An Input Assertion State, then the corresponding monitoring operation authorizes to 
write data corresponding to the input of assertion inside OCM registers. 

• A Start Assertion State, then the corresponding monitoring operation starts the 
verification of assertions. 

Finally, the OCM FSM inputs are the STATUS signal coming out from the HWacc and the 
comparison results provided by the OCM DP. The OCM DP results depend on the selected 
OCMS option (i.e. speed or area).  

Figure 4-10.b illustrates the results of OCM FSM when the OCM generation step is applied to 
the annotated FSMD_s of Figure 4-10.a. For example, states s1 and s2 have been merged to 
create OCM FSM state MS1 with a loopback T=1. 

Once the binding step of HLS flow is performed, each variable of the CDFG_WA is 
associated to a dedicated register according to their lifetimes. Then, the OCM Generation step 
extracts from the result of the binding step the register associated to each variable that belongs 
to the sets of assertion inputs, like in the previous chapter. 

Finally, this step instantiates and configures different OCM DP blocks according to the 
selected synthesis option. To do this, we use the Strategy Pattern with the previous hardware 
template introduced in the previous chapter (see Figure 3-13). This hardware template allows 
instantiating and configuring predefined (off-line) blocks like Delay Control Unit (DCU). In 
this chapter, we update this hardware template to instantiate the set of RTL architectures that 
are automatically generated during the design time and to configure the interconnection 
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between them according to selected synthesis option. Figure 4-9 illustrates the new design of 
the OCM DP build step. 

Figure 4-11 presents the architecture of generated OCM to check assertions violations. The 
OCM DP consists of two main blocks: Delay Control Unit (DCU) and the Assertion Checker 
Unit (ACU). The synchronization between those blocks and the execution of HWacc depends 
on the selected synthesis option.  

For speed option, the OCM DP runs in parallel to the execution of HWacc while with area 
option the HWacc’s execution is interrupted each time the ACU starts execution.  

 
Figure 4-9 the new design of the OCM DP build step 

 
Figure 4-10 (a) Annotated FSMD_s (b) OCM FSM 
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Figure 4-11: OCM architecture to check assertions violations (a) synthesis speed option (b) 
synthesis area option 
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signal Reg_enable coming from the OCM FSM. Each bit inside this signal is associated to a 
dedicated register DR. This allows updating more than one value at the same time.  

In contrary to the level 1, the part 2 depends on the selected synthesis option. When the speed 
option is selected, the ACU contains, in this part, the set of RTL architectures that are 
associated to the set of CDFG_x. Those architectures run concurrently to the execution of 
HWacc and the beginning of their execution is driven by the signal Assert_start coming from 
the OCM FSM. Similar to the signal Reg_enable, each bit of the Assert_start signal is 
associated to the start signal of a dedicated RTL architecture. All output signals of RTL_x 
architecture valid_x are combined together to produce the ACU’s output signal Valid. This 
signal is connected to the signal enable of the HWacc FSM (which authorizes the state 
transition) in order to stop it when an invalid condition is encountered. In addition, it is 
connected to the enable signal of the OCM FSM. This allows identifying the current OCM 
FSM state when assertion violations occur. 

 

 
Figure 4-12: Assertion Control Unit architecture (a) speed option (b) area option 
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Figure 4-13. In addition, the Delay Control Unit and the OCM FSM are also stopped to keep 
OCM and HWacc synchronized.   

 
Figure 4-13: The execution runtime with area option 
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The number and the type of assertions we inserted inside in each application are presented in 
Table 4-1. 

Table 4-1: Assertion categories 

Application #Assert 
Simple 

#Assert 
Combined 

#Assert 
Conditional 

#Assert 
Procedural 

#Assert 
Total 

FIR 3 2 1 2 8 

DCT-2D 4 5 1 2 12 

MatMult 3 3 1 3 10 

SAD 3 1 1 2 7 

FFT 5 4 1 3 13 

Conv 4 6 1 5 16 

Sobel 4 4 2 9 19 

Blowfish 7 11 2 10 30 

AES 7 18 4 24 53 

Table 4-2 presents the CDFG, the FSMD_s and the OCM FSM characteristics in terms of 
number of basic blocks, states and notable states. Results provide a snapshot of the OCM 
FSM complexity (the number of notable state) according to the application complexity and 
the number of inserted assertions. The evolution of the number of OCM FSM states compared 
to results of Table 3-2 (see page 69) mainly depend on the number of states that are identified 
as IAS and/or SAS (see page 87). 

Table 4-2: Architecture characteristics 

Application Basic Block State Notable State  

FIR 8 23 15 

DCT-2D 20 51 31 

MatMult 11 37 23 

SAD 9 32 14 

FFT 19 52 30 

Conv 20 71 43 

Sobel 45 171 66 

Blowfish 39 209 86 

AES 64 342 141 

Figure 4-14 shows the synthesis time overhead, the delay added by the proposed Assertion 
Synthesis flow to the synthesis times running the HLS flow alone. Results are given for the 
two assertion synthesis options. The delay added by the generation process of RTL 
architectures during the Assertion Checker step is included in those results. Results are given 
for the two assertion synthesis options.  

For the speed option, the synthesis time overhead ranges from 0.32% to 4% (2.25% on 
average) and decreases with application of high complexity (e.g. AES). For the area option, 
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results show that this overhead is increased by less than 1% on average compared to the speed 
option. This extra overhead is due to the algorithm detecting synchronized assertions and 
merging all the assertions. Indeed, the selected synthesis option configures the execution of 
the Assertion Checker step. When the speed option is selected, this step has no specific 
operation on the set of generated CDFG_x. It only generates the RTL architecture. While with 
the area option, this step extracts the set of Assertion State Starts from the annotated FSMD to 
identify synchronized assertions. Next, it merges synchronized assertions to generate 
CDFG_FID. Then, it merges the set of CDFG_FID with the rest of CDFG_x. Hence, this 
additional delay depends on the number of inserted assertions.  

Finally, the peak overhead is 4.46% which is negligible compared to the complexity of the 
addressed problem. 

4.3.1 Performance overhead analysis 

The impact of OCM on the execution time of HWacc is presented in Figure 4-15. Results are 
given for the two proposed OCM synthesis options. Results show that there is no performance 
impact when the speed option is selected. This result was expected since the speed option has 
been designed not to affect the HWacc execution unless an assertion violation occurs. 

 
Figure 4-14: Assertion synthesis time overhead 

However, results show that the OCMS Area option impacts the HWacc’s performance. 
Indeed, area option interrupts the HWacc’s execution each time an assertion must be verified. 
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average). The first characteristic that impacts the performance overhead is the complexity of 
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execution of HWacc. In fact, assertion inside nested loops is executed as many times as the 
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loop iterates. For all those reasons, peaks overhead are obtained with application of high 
complexity in terms of loops (e.g. Conv has 4 nested loops with complicated assertions).  

 
Figure 4-15: Execution runtime overhead 
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Figure 4-16: Area overhead of OCM to check assertion 

Finally, in order to evaluate the interest of the proposed synchronization mechanism between 
OCM and HWacc, we compare the number of executed assertions when an illegal jump in the 
HWacc is performed to the excepted one. To do this, we have enhanced the fault model 
introduced in the previous chapter (see page 70) to compute the number of unexecuted 
assertions due to alterations.  

First, fault injections (bit-flips) have been performed on the HWacc State Register. This is 
used to perform illegal jumps. As we explained in the previous chapter, states within SR are 
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number of assertions that should be executed between the current state and the incorrect state 
(result of the illegal jump) or that should be executed after an infinite loop. This number 
represents the number of unexecuted assertions due to alteration. This process is repeated for 
each alteration and the average of Unexecuted Assertions is computed per State, UAS. The 
following equation presents the Unexecuted Assertion Rate (UAR) for each application: 
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Figure 4-17 presents the UAR due to illegal jumps of each application according to the used 
synchronization mechanism (i.e. our technique and the techniques proposed in previous works 
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[59][61]). Results show that there is unexecuted assertion only when the previous techniques 
from [59][61] are used. The UAR ranges from 12.69% to 64.71% (38.23% on average). Peaks 
of UAR are obtained when considering HWaccs that implement low complexity applications 
in terms of FSM states and that contain several assertions to check.   

Figure 4-18 presents the UAR due to the problem of infinite loops. Results show that our 
synchronization technique cannot always ensure the execution of all assertions like techniques 
from [59][61] when the STATUS signal is altered. Indeed, our technique depends on the 
STATUS signal to exist loops. UAR peaks depend on the application’s complexity in terms of 
loops and on the number of assertions to check after altered loops. For simple application like 
SAD that has only one loop, the UAR is equal to zero. 

Hence, the proposed synchronization technique allows resolving the impact of illegal jumps. 
However, it doesn’t provide enough efficiency to resolve the impact of hanging problems 
when it is caused by infinite loops. 

 
Figure 4-17: Unexecuted Assertion Rate due to illegal jumps 

 

Figure 4-18: Unexecuted Assertion Rate due to infinite loops 
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4.4 Conclusion  

This chapter has presented an automated approach to translate ANSI-C assertions into On-
Chip Monitors (OCMs) during the HLS of hardware accelerators. The proposed approach is 
portable to any HLS tools hence satisfying our first condition, C1. In addition, it supports 
static and dynamic behaviors hence satisfying our second condition, C2.  

ANSI-C assertions are used to detect data errors, making the proposed approach satisfying the 
8th condition, C8. Besides, the proposed synchronization technique relies on the contribution 
of the Chapter 3, which makes generated Assertion Checkers independent of the internal 
states of the monitored HWacc.  

Experiment results shown that the proposed synchronization technique fixes the problem of 
illegal jumps satisfying this way the 5th condition, C5.  

The proposed synthesis flow enables designers to select assertions synthesis option out of 
Speed and Area, according to their need in terms of area overhead and runtime constraint. The 
Area option allows reducing the area overhead by 2.37x on average compared to Speed option 
and it enhances the protection level. Then, this proposed assertion synthesis flow satisfies the 
4th condition, C4, and the 7th condition, C7.    

However, the proposed technique exhibits some weaknesses. First, it only resolves hanging 
problems resulting from illegal jumps (e.g.  HWacc loops over a subset of states) while an 
infinite loop may prevent some assertion to evaluate. In addition, the Area synthesis option 
has a negative impact on the HWacc’s performance (the execution runtime). Finally, the 
proposed design flow doesn’t provide any verification support to detect control flow errors 
like illegal jumps. It only resolves their impacts (except for infinite loops) on the execution of 
assertion checkers. 

The next chapter introduces some optimizations and extensions of the works in order to detect 
both data errors and control flow errors in a unified flow. The approach proposed in this 
chapter has been published in [90]. 
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This chapter presents a unified design flow that considers ANSI-C assertions, control flow 
checking and I/O timing behavior during High Level Synthesis of hardware accelerators to 
automatically generate On-Chip Monitors. It also improves the previous assertion synthesis 
options to better trade-off area overhead, performance and protection level and also 
improves the portability of the approach. 
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5.1 Introduction 

The verification techniques of hardware accelerators generated by HLS tools proposed in the 
two previous chapters and in literature can be classified in two categories: algorithmic 
verification and control flow checking. The algorithmic verification allows checking 
functional properties through a set of assertions introduced within the high-level specification 
of hardware accelerators. The control flow verification allows checking the execution of the 
control flow and the Input/Output timing behavior. However, no previous work allows 
performing at the same time those two types of verification. Results of previous chapters 
show that each type of verification is considered as a complementary approach to the other 
one.  

In this chapter, we propose a unified hardware-assisted paradigm to check at runtime both 
algorithmic properties, control flow errors and I/O timing behavior errors. In addition, 
optimizations are proposed for the two previous assertion synthesis options (Speed and Area). 
Moreover, the proposed approach addresses the portability issue of the proposed algorithms to 
check the control flow errors by supporting several compilation options (i.e. CDFG forms). 
Finally, this chapter introduces new technique to improve the detection of control flow errors 
compared to previous results. 

5.2 Unified On-Chip Monitor Synthesis flow 

The proposed Unified On-Chip Monitor Synthesis (U_OCMS) flow starts after HLS has 
compiled a C code including assertions (through the use of the assert.h library). The 
U_OCMS flow is split into several steps as illustrated in the right part of Figure 5-1. First, 
Assertion and Control Structure Extraction (ACSE) step analyzes the formal representation of 
application including assertions (CDFG_A) in order to detect the assertion statements and to 
extract their parameters. Next, it removes the assertion branches from the CDFG_A and 
generates for each detected assertion a new Control Data Flow Graph (CDFG_Assx). This 
operation is like the one of the Assertion Extraction step proposed in the previous chapter. 
Once the assertion branches have been removed from the CDFG_A and that a CDFG without 
Assertion (CDFG_WA) has been generated, ACSE step analyzes CDFG_WA to detect 
Control Structures (Loop and Conditional constructs), to extract their parameters and to 
identify I/O data of the HWacc. Similarly to assertion statements, Control Data Flow Graphs 
CDFG_CSy are created for each control structures. The impact of compilation options on the 
control flow are taken into consideration during the detection process and the parameters 
extraction process. This is an evolution compared to the techniques that were introduced in 
the CDFG Analysis step, our first contribution (Chapter 3, page 52). 

The scheduling step of HLS flow operates with the CDFG_WA and generates a FSMD_s. 
Next, FSMD Annotation step analyzes and annotates a copy of the HWacc FSMD_s. This 
step still addresses the synchronization between HWacc and generated monitor. It combines 
the two sets of notable states that were proposed in the previous chapters (Chapter 3 and 
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Chapter 4). Afterward, the ID Generation step assigns to each state of the FSMD_s a unique 
identifier in order to later detect illegal jumps inside BBs. Two coding styles (binary or one-
hot) are proposed to encode identifiers according to the designer needs as it will be shown 
later.  

The set of generated CDFG_Assx and CDFG_CSy can next be merged into CDFG_M or a set 
of CDFG_ME depending on the selected OCM synthesis option (OptArea or OptSpeed). 
Those synthesis options represent optimized versions compared to the ones introduced in 
Chapter 4. RTL architectures of the OCM components are generated by using HLS tool. 
Finally, the OCM Generation step couples the annotated FSMD_s with the results provided 
by the binding step of the HLS flow and with the OCM RTL components to produce the RTL 
description of the complete OCM as Finite State Machine and Data Path. 

Three colors are used in Figure 5-1 to present the differences between the approach we 
propose in this chapter and those proposed in the previous chapters (Chapter 3 and Chapter 4). 
The red color is used to identify the steps we reuse from the design flow proposed in Chapter 
4. Modified steps used in both Chapter 3 and Chapter 4 appear in purple. Original 
contributions are depicted in orange. 

 
Figure 5-1: Unified On-Chip Monitor Synthesis flow 

5.2.1 Assertion and Control Structure Extraction 

Assertion and Control Structure Extraction (ACSE) is the first step of the unified OCMS 
flow. It detects assertion branches, input/output data and control structures of the application. 
It starts after the compilation step of the HLS flow once the formal representation of the 
application including assertions (CDFG_A) has been generated. 
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In the following subsections, the context is first introduced before the extraction process of 
the ACSE step is detailed.  

5.2.1.1 Context 

Compiler front-end transforms source code into formal representation (e.g. CDFG) which 
organization depends on the compilation options. There are two categories of compilation 
options: standard (e.g. O0 in GCC) and optimized (e.g. O3 in GCC). Standard option simply 
translates the source code into a formal representation. In this case, the CDFG that is 
produced reflects the skeleton of the source code exactly. Optimization options realize 
successive passes to improve the program’s performance. Theses code transformations can 
widely modify the structure of the original CDFG. For example, in GCC, loop constructs (for, 
while) can automatically be fully unrolled to remove the condition instructions to exit when 
the loop’s bound is a constant (static loop). When loop constructs are parameterized (the 
value of loop’s bound is variable), compilers transform the loop construct into a condition 
construct (if-else) and another loop construct (Do-while). The loop’s bound is compared to 
the loop’s initialization before starting the loop’s body execution and the exit instruction is 
performed at the end of loop’s body instructions. 

Figure 5-2 presents the set of generated CDFG for the FIR filter (see Figure 2-2.a, page 17). 
Figure 5-2.a and Figure 5-2.d illustrate the CDFG when the standard option O0 and when the 
optimized option O3 are selected with GCC respectively. Our FIR filter has two loops with 
the same variable bound (N). One can notice that the current value of each loop’s induction 
variable is checked before starting the loop’s body execution when the standard option O0 is 
selected (see Figure 5-2.c). However, with the optimized option O3, the verification of the 
value of the current loop’s induction variable is performed during the loop’s body execution 
(see Figure 5-2.e) and a new condition is added to the CDFG to compare the loop’s bound, 
“N”, with the loop’s induction variable initialization, “0”, (see Figure 5-2.f). Therefore, the 
set of control structures depends on the compilation option. Hence, considering the FIR filter 
example, GCC –O0 and GCC -O3 generate a CDFG including two loops only and a CDFG 
including two loops and one condition construct respectively. 

In addition to code transformations that are automatically realized by compilers, inserting 
assertions into a source code (e.g. through the use of assert.h library if we consider C 
language) modifies the application’s CDFG: a new set of arcs and basic blocks are added 
according to the assertions (as shown in Chapter 4). 

Figure 5-3.a illustrates the source code of the FIR application including two assertions. Figure 
5-3.b presents the compilation result after adding the two assertions (with standard 
compilation option O0). Modifications can be observed by comparing the corresponding 
application’s CDFG before (Figure 5-2.a) and after (Figure 5-3.b) assertions are added. For 
the FIR example, four basic blocks are added into the original CDFG with two new 
conditional constructs which do not belong to the set of the original application’s conditional 
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constructs. Moreover, some nodes have been moved into the assertion’s basic blocks (the two 
load operations inside BB6). 

 
Figure 5-2: FIR filter (a) CFG-O0, (b) DFG of BB05 with -O0, (c) loop2's condition, (d) CFG 

with -O3, (e) DFG of BB4 with -O3, (f) loop's bound checking 

 

 
Figure 5-3: CDFG with assertions (a) source code with assertions, (b) CDFG_A, (c) 
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Therefore, extraction of assertion statements must be realized prior to the Control Structure 
Extraction step. Moreover, the extraction process of control structures must be generic and 
independent of the compilation options. 

5.2.1.2 Extraction process 

As explained in the previous sub-section, the first step in the ACSE identifies branches, basic 
blocks and nodes related to the assertions in order to extract and build a CDFG_Assx for each 
assertion. Then, it extracts their parameters and removes assertion statements from the 
original CDFG_A. We use the same model of assertion, definition of border node and 
technique of Assertion Extraction step, introduced in previous chapter, to detect assertions, 
(see page 82). Figure 5-3.c illustrates the CDFG resulting from the assertion extraction 
process: CDFG_WA. All BBs, nodes and arcs attached to assertion statements are removed 
from the CDFG_A except BB6 and its output arc. In fact, BB6 contains border nodes {X[N-1-
i], C[i]}. For this reason, CDFG_WA is scanned to merge unused BBs. Then, as shown in 
Figure 5-3.a, BB6 and BB7 are merged to have one basic block for the statement of line 7.  

Once assertion statements and their conditional constructs are removed from the CDFG_A, 
the next step of the ACSE analyzes the CDGF_WA to detect the Control Structures (CS), to 
extract their parameters and then to generate the set of CDFG_CSs. In addition, input/output 
data of HWacc are identified.  

Control Structures are Loop Constructs (for, while, do-while) and Conditional Constructs (if-
else, switch-case). The proposed approach to detect the loop constructs is based on the 
previous one (in CDFG Analysis step page 52).  

However, unit testing (that is used to both validate elementary functionalities in our flow, and 
also to prevent any regression during evolution) pointed out that the loop constructs are not 
detected by using the previous technique when the compilation option is configured to be the 
standard one (i.e. O0).  

In this chapter, we introduce a new method to identify loop constructs independently of the 
selected compilation option. The proposed technique is as follow:  

For each disjunction BB (see page 51), if there is a conjunction BB (see page 51) among its 

successors that has a DFS-number D less than or equal to its own DFS-number D, then a 

back arc is detected.  

Next, the Loop Header and the Condition Block are identified based on the technique 
presented in the Chapter 3 (see page 52), while the Loop Latch is identified as the disjunction 
BB that satisfies the previous condition and not the source BB of back arc as introduced in 
Chapter 3. 

In the FIR filter example, when the standard option O0 is selected (see Figure 5-2.a), the set 
of disjunction BBs is {BB02, BB04}. According to the previous condition, back arcs are 
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detected in the subset of disjunction BBs {BB04, BB02}. For example, the BB02 has two 
conjunction BBs inside its successors, BB02 and BB04, but BB02 is the first and the only 
conjunction BB which validates our condition. Therefore, the set of LL is {BB04, BB02} and 
the set of LH is {BB04, BB02}. When the optimized option O3 is selected (see Figure 5-2.b), 
the set of disjunction BB is {BB1, BB4, BB5}. Then, back arcs are detected in the subset of 
disjunction BBs {BB4, BB5}. For example, BB5 has two conjunction BBs inside its 
successors, BB3 and BB4, which validates our condition, but BB3 is the first conjunction BB. 
Therefore, the set of LL is {BB4, BB5}, the set of LH is {BB3, BB4} and the set of CB is 
{BB1}. BB01 and BB0 are not considered as disjunction BBs because they are empty BBs 
(only used to start the execution of application). 

Once a control structure is detected, one or more associated CDFG_CS are created (referred 
to in Figure 5-1 as CDFG_CSy; y={1,2, .., p}). Indeed, in the case of loop constructs, two 
CDFG_CS are created. As presented in Chapter 3, Loop constructs are classically modeled in 
CDFG by three parameters: initialization, test-condition and increment statements. Hence, 
two new CDFG_CSs are created: one for test-condition and another one for the increment 
function.  

The proposed algorithm to extract loop’s parameters and to generate the CDFG_CSs for each 
loop is presented in Figure 5-4. It is based on the previous algorithm introduced in Figure 
3-7. 

The extraction process of the test-condition starts by scanning the Loop Latch BB by using 
the step 1 of the previous algorithm. Then, it copies the node that produces the value of the 
condition jump, referred to as Condition Node, inside the CDFG_CS associated to the test-
condition of the current loop.  

The extraction of increment statements starts by searching for the Update Induction Node ( 
UIN) (i.e. the PHI node) inside the Loop Header. Contrary to the previous algorithm, the 
identification process of UIN depends on the selected compilation option. A new technique is 
proposed to identify UIN when the standard compilation option is selected (see step 2’ in 
Figure 5-4). This technique is based on the following condition: 

If the intersection of the set VOop of the current operation node with the set of VIop of the 
detected Condition Node is different to the empty set. 

When the optimized compilation option (O1, O2, O3) is selected, the technique introduced in 
Chapter 3 is used (step 2 of Figure 3-7).  

Once the UIN is identified, the algorithm finds the node, referred to as Generate Induction 
Variable in Figure 3-7, that generates the Induction Variable which is one of the input 
variable nodes of the detected Update Induction Node.   
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Algorithm Loop construct extraction: extract CDFG_CS parameters 
Input: The result of the first step of ACSE: CDFG_WA 
Input: GCC compilation option 
Output: the set of CDFG_CSy 
Method:  

(1) DFS(entry B); 
(2) Index =0; 
(3) For each bb in BB do 
(4)     If  (card(Succ(bb) >1) then 
(5)         s_BB = Find_Loop(bb);// new condition to detect back arc 
(6)         If (s_BB != Null) then 
(7)              Index++; 
(8)             CDFG_CS_Index = Create_New_Graph (); 
(9)                                      --------step 1’----------- 
(10)                                   Do step 1 of Figure 3-7. 
(11)           Extract_ConditionNode (CDFG_CS_Index); 
(12)           Index++; 
(13)           CDFG_CS_Index = Create_New_Graph (); 
(14)                                     --------step 2’----------- 
(15)           If  (standard compilation) then  
(16)              Update Induction Node = the first operation node inside s_BB; 
(17)              While (VOop(Update Induction Node) ∩ VIop(Condition node) = ∅) 
(18)                   Update Induction Node = Succ(Update Induction Node); 
(19)               End while; 
(20)           Else // 
(21)                                      Do Step 2 of Figure 3-7. 
(22)           End if; 
(23)                                    --------step 3’----------- 
(24)           Update Induction = VOop(Update Induction node); 
(25)           For each v in VIop(Update Induction Node) do 
(26)              If  DFS of the basic bloc associated to v is greater than DFS of s_BB then 
(27)                 Induction Variable  = v; 
(28)                 Break; 
(29)              End if ; 
(30)           End for ; 
(31)           Initialization  = VIop(Update Induction Node) \ Induction Variable; 
(32)  
(33)                                    --------step 4’----------- 
(34)                                       Do Step 4 of Figure 3-7. 
(35)           Condition Variables = Application’s inputs  ∪ Vconsts ∪ Update Induction; 
(36)           Build_Increment_Function(Condition Variables, Generate Induction Variable, 

CDFG_CS_Index); 
(37)       End if ; 
(38)    End if ; 
(39) End For;   

Figure 5-4 Evolution of the algorithm of loop detection and parameters extraction 

New technique to identify Induction Variable is proposed to be independent of the 
compilation option (see step 3’ in Figure 5-4). This technique consists in detecting the Latch 

Arc from the set of inputs of UIN. Next, starting from the detected Generate Induction 
Variable, the extraction process duplicates nodes and BBs that are used to compute the next 
value of the induction variable inside the second graph, until condition variables are found. 
Condition variables refer to communication node, VC, (see page 52) and induction variable 
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(the output variable of the update induction node). Finally, the initialization parameter which 
represents the input of updated induction node is extracted.  

In the case of conditional constructs, one CDFG_CS is created. Conditional constructs are 
simply modeled by test-condition. Hence, ACSE duplicates the last node inside the Condition 
Block (CB) and moves it to the new created graph, associated to the current CB. 

Finally, each border node (resp. condition variables) is associated to a given assertion (resp. 
control structure) through a Control identifier (Control_ID, it can have more than one function 
identifier) and is added to the input list of the current assertion (resp. control structure). 

The input list of assertion and control structures and initialization parameters of loop 
constructs are stored in a dedicated Database (see Figure 5-1). The function identifier is later 
used during the FSMD Annotation step. 

5.2.2 FSMD Annotation 

FSMD annotation starts after the FSMD_s has been generated from the CDFG_WA by the 
HLS scheduling step. The objective of this step is to prepare the synchronization between 
HWacc and OCM. It merges all the algorithms that are proposed in the previous chapters 
(Chapter 3 and Chapter 4) to identify notable states. 

More precisely, notable states in this unified flow are: 

• The initial  and the final state of the FSMD_s which are used to synchronize the 
execution of the OCM and its HWacc; 

• The Communication States (ComS): the set of states where an input data is read for the 
first time in a  control path and/or where an output data is written; 

• The Input Checker States (ICS): the set of states that handle data used as operands by 
assertions and/or control structures; 

• The Start Checker States (SCS): the set of states that handle the last data required to 
execute assertions and/or control structures. SCS is a subset of ICS;  

• The Control Flow States (CFS): the set of states having more than one outgoing arc; 

• The Control Successor States (CSS): the set of states whose predecessors have more 
than one outgoing arcs; 

• The Conjunction States (CjS): the set of states having more than one incoming arc. 

Figure 5-5.a illustrates the annotated FSMD_s of our FIR filter example when the standard 
option O0 is selected in the compilation step of HLS flow. The set of ComS is {S6, S11, S13, 
S16}, the set of ICS is {S0, S2, S3, S11, S13, S17}, the set of SCS is {S0, S2, S3, S8, S13, 
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S17}, the set of CFS is {S0, S3, S8}, the set of CSS is {S1, S18, S4, S9, S17}, the set of CjS 
is {S2, S7, S18}.  

Finally, this step identifies loop states: Header State (HS) and Latch State (LS). Those states 
are identified by using the relation between FSMD_s and CDFG_WA (see page 55) 

 
Figure 5-5: (a) annotated FSMD_s (b) OCM FSM 

5.2.3 ID Generation 

Similarly to the FSMD Annotation step, ID generation step starts after the FSMD_s has been 
produced by the HLS flow. This step produces for each FSMD_s state a unique identifier (ID) 
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binding step of HLS flow. IDs are later used during the generation of HWacc architecture by 
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check that no illegal jump has happened inside a BB. The design of the Basic Block Control 
Unit (BBCU) has been updated to support both coding styles, see section 5.2.5). 
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the generated CDFG_Assx and CDFG_CSy. Similarly to the design of Assertion Checker step 
introduced in Chapter 4, the generation process depends on the selected U_OCMS option.  

However, new designs of the previous synthesis options are proposed in this chapter: OptArea 
and OptSpeed. Those implementations allow improving and resolving the limitations of the 
previous synthesis options. In the rest of this chapter, assertion statements and control 
structure statements are referred to as Checker Cores.  

The OptArea option is an enhancement of the Area synthesis option proposed in Chapter 4 
where the HWacc are frozen each time an assertion had to be checked. In this chapter, 
contrary to Chapter 4, HWacc and OCM can execute concurrently. However, OCM can run 
only one checker core operation (operation can be assertion or control flow statement) at a 
time. Hence, HWacc can run concurrently to OCM until  a second checker core operation 
must be executed which reduces the impact on the HWacc’s performance. For that purpose, 
all CDFG_Assx and CDFG_CSy are merged to get a unique CDFG_M by using a switch-case 
modeling technique. The merging step is based on the algorithm proposed in section 4.2.3. 

Figure 5-6 shows the impact on the execution runtime according to the selected option: Area 
and OptArea. Figure 5-6.a presents the execution of the HWacc without any OCM. We 
identify two control steps F1 and F2. The timing delay between those two control steps is 
presented by T. To evaluate the impact on the execution runtime, we assume that F1 and F2 
drive two checker cores. Checker core can implement assertion or control structure operation.  

 
Figure 5-6: Execution time impact of OptArea option compared to Area option 

Figure 5-6.b illustrates the execution runtime of the HWacc with the Area option. The impact 
on the execution time is the sum of latency of all the checker core operations to execute. On 
the opposite, with the OptArea (Figure 5-6.c and Figure 5-6.d), the impact depends on the 
timing delay T between the Start Checker States (F1 and F2) of those two checker cores. 
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Then, if the latency of F1 is greater than this T (Figure 5-6.c), the impact is only the 
difference between the latency of F1 and T. On the contrary, if the latency of F1 is less than or 
equal to T (Figure 5-6.d), then there is no impact on the execution runtime.   

In addition, with the OptArea option, designer is able to instantiate many hardware resource 
for each type of operator (e.g. MUL, ADD) in OCM. This allows reducing the latency 
required to execute CDFG_CSy and CDFG_Assx so that the time during which the HWacc 
stalls is reduced. Finally, those CDFGs are synthesized using list-scheduling algorithm.  

The OptSpeed option is an improvement of the Speed synthesis option proposed in Chapter 
4. Both options stop the execution of the HWacc if and only if a violation occurs (assertion or 
control flow) which does not impact the HWacc’s timing performance. OCM can thus check 
several properties concurrently. However, contrary to Chapter 4, OptSpeed option allows 
sharing hardware resources between OCM checker cores that are mutually exclusive so that 
the area overhead is reduced. 

To merge the checker core modules, the following tasks are realized:  

• The latency of each CDFG_Ass and CDFG_CS is determined after their FSMDs are 
generated by the scheduling step of HLS flow by using an As Soon As Possible 
(ASAP) algorithm i.e. with no resource constraint.  

• Start Checker State (SCS) of each checker core is identified inside the annotated 
FSMD_s thanks to the identifier Control_ID (generated in the first step of OCMS 
flow, ACSE).  

• The list of Start Checker States is sorted by using the operation’s latency as criteria. In 
the case where a Start Checker State has more than one checker core, the longest 
latency is considered. 

Once those information are ready, the merging process used in OptSpeed can start its 
operations. Figure 5-8 presents its algorithm. It is based on two main steps. The algorithm 
first scans the sorted list of SCS, named S-SCS, to generate a list of Merged States (MS). MS 
is a collection of SCS which checker cores are mutually exclusive. Two checker cores CC1 
and CC2 are mutually exclusive when the delay between their respective SCS is greater than 
the latency of CC1 (see Figure 5-7.a). In addition, if those two checker cores are executed 
inside a loop’s body, the delay between their respective SCS starting from the SCS of CC2 
must be greater than the latency of CC2 (see Figure 5-7.b). 
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Figure 5-7: Mutually exclusive (a) in linear transition (b) inside loop's body 
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(14)              End If  
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Figure 5-8: Merging process algorithm used in the OptSpeed option 
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i.e. the area required by additional multiplexers due to sharing is estimated. The following 
equation represents the total overhead (TO) of each checker core: 

�L = 	 . 2 × mE#OL,K�S�3�(hc)N	
hc	∈w�4B0/	bc0B45bB1

 

 
 
(5-1) 

Where nb(Op) defines the number of times the shared operator Op is used. MUXX represents a 
multiplexer with x inputs. 

If this overhead added to the area with sharing is greater than the area with no sharing, then 
the SCS is removed from MS and added back into the ordered list of SCS. Checker cores 
associated to SCS remaining in MS are merged to get a unique model CDFG_MEx (by using 
the switch-case modeling technique, see section 4.2.3). Finally, the algorithm restarts from 
step (1) with the new sorted set of SCS. 

Last, the RTL architecture of CDFG_M when considering OptArea or of each CDFG_MEx 
when considering OptSpeed is automatically generated by using HLS tool. These RTL 
architectures are stored in a library of operators (see Figure 5-1) to be later used during the 
OCM Generation step. 

5.2.5 OCM Generation 

OCM generation is the final step of the unified OCMS flow. It couples the annotated HWacc 
FSMD_s with results provided by the binding step of HLS flow and with the RTL 
architectures stored in the library of operators to design the OCM architecture. Then, it 
generates its RTL description including a Data Path DP and a FSM controller.  

The approach to generate an OCM FSM is based on the algorithm presented in chapter 3, see 
Figure 3-10. We updated this algorithm to define a new monitoring operation according to the 
selected U_OCMS option: OptArea or OptSpeed. When the OptSpeed option is selected, we 
use the same algorithm without any modification. When, the OptArea option is selected, we 
introduce a new step, Step3’, inside the previous algorithm before the Step4 (see Figure 5-9). 
This step allows identifying the Predecessor of Start Function state. This state will be used 
later to drive the execution of the Transition Control Unit (TCU).  

Figure 5-9 illustrates the new design of this step. We introduce the concept of Strategy pattern 
to modify the execution of this step according to the selected synthesis option. 

Like in the previous chapters, each created OCM FSM state is associated to the proper 
monitoring operations to be performed when entering this state for the first time. Those 
monitoring operations are advanced compared to those introduced in the previous chapters. 
Hence, if the visited FSMD_s state is: 

• a Communication State, then the corresponding monitoring operation checks that the 
related load signals of the HWacc registers containing I/O data are correctly driven; 
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• a predecessor of Header State i.e. PHS, then the associated monitoring operation sets 
the loop’s induction variable to its initial value; 

• a Control Successor State, then the associated monitoring operation verifies the result 
of the comparison realized in the Checker Control Unit (CCU) with the STATUS 
provided by the HWacc, disables the check operations of Basic Block Control Unit 
(BBCU) and upload the ID Control Successor State inside the BBCU; 

• a Conjunction State, then the associated monitoring operation disables the check 
operations of BBCU and upload the ID Conjunction State inside the BBCU; 

• An Input Checker State, then the corresponding monitoring operation authorizes to 
write data corresponding to the input  checker core (assertion or control structure) 
inside the OCM registers; 

• A Start Checker State, then the corresponding monitoring operation starts the 
execution of checker core; 

• A predecessor of Start Checker State i.e. PSC, then the associated monitoring 
operation enables the operation of Transition Control Unit (TCU);  

 
Figure 5-9: the new design of the OCM FSM build step 

Figure 5-5.b illustrates the results of OCM FSM when the OCM generation step is applied to 
the annotated FSMD_s of Figure 5-5.a. Notable states are presented by the red color. For 
example, the OCM FSM state ms5 is tagged as Predecessor Header State because the 
successor of its associated state, s6, inside the HWacc FSM is a Header State. In addition, s11 
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and s12 have been merged to create OCM FSM state ms9 with loopback (T =1). This OCM 
FSM state, ms9, has also been tagged as Predecessor of Start Checker State because the 
successor of s12 is a Start Checker State. 

Once the OCM FSM model is generated and the set of variables that are needed by each 
monitoring operation are identified, OCM Generation step analyzes the results of the binding 
step of the HLS flow to extract the RTL information related to those variables.  

Finally, the OCM Generation step instantiates and configures different OCM DP modules. 
We updated the previous hardware template to generate OCM DP introduced in previous 
chapter (see Figure 4-9). We implemented a new class for each synthesis option. In addition, 
we add a new predefined hardware block, Transition Control Unit. Moreover, we propose 
new RTL description of the BB_Control. This architecture will be used when the One-Hot 
encoding style is selected by designer. 

Figure 5-10 presents the architecture of generated OCM. The OCM DP consists of five 
modules: Basic Block Control Unit (BBCU), Input/Output Control Unit (IOCU), Delay 
Control Unit (DCU), Checker Unit (CU) and Transition Control Unit (TCU). All those blocks 
run in parallel to the execution of hardware accelerator. The TCU module is used only when 
the OptArea option is selected to synchronize the execution between OCM and HWacc. 

 
Figure 5-10: Architecture of Unified OCM 
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The Delay Control Unit and the I/O Control Unit have the same functionalities and the same 
architecture as those introduced in chapter 3. In the following, we present the architectures of 
the modified modules compared to those described in the previous chapters and we describe 
the architectures of the new modules.    

Basic Block Control Unit (BBCU) 

The Basic Block Control Unit (BBCU) has the same functionality as the one introduced in 
Chapter 3 (see page 64), except for the comparison between identifiers. In this chapter, the 
comparison process depends on the encoding approach used for the identifier in the ID 

Generation step. When ID is binary encoded, the technique proposed in Chapter 3 is used: the 
difference between IDs must equal to one (see Figure 5-11.a). When One-Hot encoding 
approach is used for ID as proposed in this chapter, the verification process consists in 
performing a right logic shift in the current ID and to compare the result with the previous one 
(stored inside OCM DP or coming from the OCM FSM), see Figure 5-11.b. This new solution 
allows to greatly improve error coverage as shown in the experimental results section. As 
soon as the two identifiers differ, BBCU recognizes an illegal jump inside a BB. 

 
Figure 5-11: Basic Block Control Unit (a) Binary coding style (b) one-hot coding style 
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check (Assertion_Bit signal) and the value of the Done signal which informs whether a 
checker core is running. Then, Condition_bit signal is compared with the State_ID signal 
(presents the results of STATUS signal), coming from the OCM FSM, inside the CJU to 
check inter-BB jumps. 

Transition Control Unit (TCU) 

The Transition Control Unit (TCU) drives the state transition process inside the OCM FSM 
and the HWacc FSM by controlling their respective enable signals. This is used when the 
OptArea synthesis option is selected. Contrary to Area option, the TCU does not interrupt the 
HWacc’s execution when a new checker core operation must be executed. The HWacc’s 
execution is interrupted only when a new checker core operation must be performed while 
there is a checker core operation that is running within the CU. In fact, if the current OCM 
FSM state has completed its NOP operations (Delay_Done = true) and a conflict is detected. 
A conflict happens when the next OCM FSM state is a Start Checker State (NSCS = true) and 
the current checker core operation is still running (Done = false). Then HWacc is frozen and 
the transition inside the OCM FSM is also interrupted. To do this, the enable signal of the 
OCM FSM and the HWacc FSM is controlled by the following equation: 

#POq$# = �#$O^_��P#	�E	�	]		�E	��P# 

 
(5-2) 

5.3 Experimental results 

In this section, we discuss the interest of the unified synthesis approach proposed in this 
chapter. Like the previous design flow, the unified On-Chip Monitor Synthesis flow has been 
implemented by using java and EMF. We use the same benchmarks presented in the previous 
chapters. In addition, we use the same assertions that are inserted inside each application (see 
section 4.3).  

The HLS tool compilation step uses the compiler GCC 4.7.2 to generate the formal 
representation CDFG. All CDFGs are generated using both compilation standard option, O0, 
and optimized option, O3. Then, in order to design the hardware accelerator, one functional 
unit has been first allocated for each type of operator and a List Scheduling algorithm has 
been used. 

Figure 5-12 presents the synthesis time overhead, the delay added by the U_OCMS flow in 
order to generate the OCM architecture. To evaluate the worst case and realize fair 
comparisons, we present results when the OptSpeed synthesis option is selected. The 
algorithm of OptSpeed has higher complexity than OptArea. OptSpeed checks mutually 
exclusive property between checker cores. Next, it computes the cost to merge checker cores. 
Finally, it merges checker cores according to their benefits in terms of hardware overhead. 
Instead, OptArea only merges checker cores. Results are given for the two compilation 
options: O0 and O3.  
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As stated, the extra delay ranges from 2.12% to 22.90%. We noticed that the optimized 
compilation option enables to reduce the time overhead (e.g. Blowfish). This reduction comes 
from unrolled static loops which decreases the number of control structures to check. In 
addition, with the optimized option, loops (back arcs) are immediately detected. For example, 
when the standard option is selected (Figure 5-2.a), the loop1 is detected after checking 
BB03, BB04 and BB06, whereas, the optimized option (Figure 5-2.d) enables to detect loop1 
only by checking BB3. 

Peaks overhead are obtained when considering a high number of checker cores (assertions and 
control structures) to synthesize (e.g. AES). Therefore, the higher this number, the higher 
latency. The second factor that impacts the overhead is the application complexity. For 
example, the synthesis time overhead of the MatMul application is less than those of the FIR 
application while it has more properties and more control structures to check. This overhead 
reduction only depends on the synthesis time associated to each application.  

 
Figure 5-12: Synthesis Time overhead according to compilation option 

Table 5-1 presents CDFG, FSMD_s and Annotated FSMD_s characteristics in term of 
number of basic blocks, states and notable states. Results are given for the two compilation 
options. As previously explained, the choice of the compilation option modifies the CDFG 
(see Figure 5-2) and then FSMD_s characteristics. Results show that the optimized option can 
reduce, in some cases, the complexity of CDFG and FSMD_s. The evolution of OCM FSM 
complexity in term of states (the number of notable states) naturally depends on the number 
of assertions to synthesize and on the application complexity but also on the selected 
compilation option.     

The next subsection represents experimental results that evaluate the benefit and the overhead 
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• OptArea#1: one instance is authorized for each needed hardware resource like in 
chapter 4, [90]. 

• OptArea#2: two instances are authorized for each needed hardware resource.  
  

Table 5-1: Application characteristics according to the compilation option 

Application 
Standard Compilation Optimized Compilation 

Basic 
Block 

State Notable State 
Basic 
Block 

State 
Notable 

State 
FIR 8 23 19 7 25 17 

DCT-2D 20 51 35 13 31 27 
MatMul 11 37 29 12 43 26 

SAD 9 32 17 5 23 11 
FFT 19 52 36 15 52 35 
Conv 20 71 47 21 70 46 
Sobel 45 171 106 28 127 78 

Blowfish 39 209 112 76 179 109 
AES 64 342 152 13 558 147 

 

5.3.1 Performance overhead analysis 

There is no performance impact in the two following cases: checking the control flow 
execution when no violation of control flow properties occurs, and checking assertions in the 
Speed option proposed in Chapter 4 or OptSpeed option proposed in this chapter when no 
assertion violation occurs. Indeed, in none of these cases the HWacc’s execution is stopped.  

 
Figure 5-13: Execution runtime overhead compared to Chapter 3 and Chapter 4 
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option from Chapter 4 and cconsidering complex applications in terms of nested loops (e.g. 
Conv has 4 nested loops with complicated assertions to synthesize). This is due to the Area 
option which interrupts the HWacc’s execution every time an assertion must be verified.  

In addition, results show that OptArea#1 reduces the execution runtime overhead by 2.76x on 
average compared to the Area synthesis option. This illustrates that the HWacc’s execution is 
interrupted only if some checker cores execute concurrently. Moreover, results show that 
using the previous condition with more than one hardware resource to instantiate, allows extra 
minimization of the runtime execution overhead. OptArea#2, with only two instances of each 
type, reduces the overhead by 1.75x compared to OptArea#1, and then by 4.5x compared to 
Area option from Chapter 4. Peak overhead (e.g. Conv overhead) is reduced by 4.7x when the 
OptArea#1 is used and by 7.3x when the OptArea#2 is selected. This gain comes from the 
faster execution of checker cores which minimizes the probability to have overlapping 
executions of checker cores (see Case 2 in Figure 5-6). 

5.3.2 Area overhead Analysis 

The area overhead incurred by OCMs generated by the approach proposed in this chapter is 
analyzed according to the monitor’s features. First, the slice overhead incurred by monitors 
that check only assertion violations is presented and compared with the results of Chapter 4. 
Next, the slice overhead incurred by monitors that check control flow execution and timing 
behavior of I/O data is analyzed and compared with the results of Chapter 3. Finally, the 
hardware overhead of monitors that check assertion violations, control flow execution and 
timing behavior of I/O data is analyzed and compared with previous results of Chapter 3 and 
Chapter 4. 

5.3.2.1 Area overhead caused by assertions 

Figure 5-14 presents the hardware overhead in number of slices when the OCM is generated 
through assertion synthesis only. For comparison purpose, results are given for the two new 
synthesis options presented in this chapter, OptSpeed and OptArea, and for the two options 
previously presented in (Chapter 4, Speed and Area). The area overhead comes from two 
blocks: the Checker Control Unit (CCU) and the Synchronization Block (SB). The 
Synchronization Block consists of the OCM FSM, Delay Control Unit and Transition Control 
Unit. According to the results of runtime impact, we classify synthesis options into two 
categories: Non-Intrusive (Speed and OptSpeed) and Intrusive (Area, OptArea#1 and 
OptArea#2). Therefore, the results of area overhead are presented and analyzed per category.  

For Intrusive mode, we start by comparing OptArea#1 and Area. Results show that the area 
overhead of CCU remains constant. This result was expected since OptArea#1 instantiates 
one hardware resource of each needed type as Area option does. However, with OptArea#1, 
the area overhead caused by SB increases by 0.54% on average (ranges from 0.23% to 
1.13%). This extra overhead is used to implement and to drive the Transition Control Unit 
(TCU). Therefore, OptArea#1 enables reducing the runtime impact by 2.76x on average, with 
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a negligible extra-overhead. By comparing OptArea#2 and Area, results show that the area 
overhead of CCU increases by 9.61% on average. OptArea#2 slightly increases the area 
overhead because it instantiates two hardware resources for each type of functional unit (i.e. 
addition, multiplication, etc.). Two characteristics can impact this extra-overhead. The first 
one is the complexity of assertions to synthesize in terms of operators and their dependences. 
The second factor that impacts the hardware overhead is the number of synchronized 
assertions. Synchronized assertions are assertions that have the same Start Checker State. 
Hence, the higher number of synchronized assertions, the higher chance to instantiate two 
hardware resources per type of functional unit. Moreover, OptArea#2 increases the hardware 
overhead of SB by 0.54% on average as it uses the TCU to interrupt HWacc like does 
OptArea#1. Therefore, OptArea#2 enables reducing the runtime impact by 4.5x on average 
compared to Area but with an extra-overhead. Thus, designers can select the synthesis options 
according to their need, runtime impact or hardware overhead. 

 
Figure 5-14: Assertion OCM Slice overhead compared to Chapter 4 

For Non-Intrusive mode, results show that the proposed OptSpeed mode reduces the area 
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the hardware overhead caused by CCU. This increase is caused by the evolution of command 
word’s length when the OptSpeed option is used. In fact, more bits are used to drive the 
execution of checker cores. Hence, the OptSpeed option enables reducing area overhead, 
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5.3.2.2 Area overhead caused by control flow checking (CFC) 

Figure 5-15 presents the area overhead in number of slices when OCM checks the control 
flow and the timing behavior of I/O data. It should be noticed that the technique proposed in 
the Chapter 3 supports neither the standard option nor the one-hot coding style of ID. In order 
to compare results of the proposed unified flow with results from Chapter 3, we have 
configured the ID generation step of the unified OCMS flow to binary encode identifiers. In 
addition, we consider the optimized compilation option O3 of GCC for fair comparison.  

Results show that the area overhead of OCM generated by the unified flow increases by 
1.19% on average (the worst case is inferior to 4%) compared to the previous results. These 
increases are due to the new proposed technique to generate OCM; more control bits 
(Enable_Function, Enable_Reg, etc.) are added to the command word of each OCM FSM 
state compared to the approach presented in Chapter 3. In addition, the set of checker cores 
instantiated inside the RTL OCM architecture is generated automatically from their CDFG 
using a HLS tool which did not exist in the approach presented in Chapter 3. This causes a 
small rise in terms of used slices per checker core. 

 
Figure 5-15: CFC OCM Slice overhead compared to Chapter 3 
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Figure 5-16 presents the hardware overhead in number of slices when the OCM allows 
checking Control flow properties, I/O timing behavior and assertions. Results show that the 
unified flow reduces the hardware overhead by 10.74% on average (from 5.43% to 19.45%) 
compared to the overhead incurred by OCMs generated by the approaches presented in 
Chapter 3 and Chapter 4. This result is obtained thanks to the proposed OptSpeed synthesis 
option that allows sharing hardware resources between mutually exclusive checker cores. In 
addition, using the same OCM FSM for the synchronization of both assertions verification 
and control flow checking enables to further reduce the area overhead. Therefore, according 
to the number of assertions to synthesize, their complexity and their location inside the 
application, the area overhead can be reduced. 

 

 
Figure 5-16: Unified OCM Slice overhead 
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DCT-2D, MatMul, SAD, FFT and Conv) compared to the optimized option. As shown in 
Figure 5-2.d, when the optimized option is selected, a new conditional construct is added per 
loop’s bound variable. This new conditional construct checks the coherence between the 
loop’s bound and the loop’s initialization parameters. Thus, more slices are used to synthesize 
new checker cores (conditional constructs). Moreover, the length of OCM FSM state’s 
command word increases to drive the new checker cores. 

Finally, we analyze the impact of the compilation options on the OCM area itself in terms of 
slices. Figure 5-18 presents the occupied slices of generated OCM according to the 
compilation option. Results show that the area of OCM slightly depends on the compilation 
option. In fact, the variation of OCM area according to the compilation option doesn’t exceed 
16 slices on average. Hence, the gap between results presented in Figure 5-17 mainly comes 
from the HWacc which area strongly depends on the compilation option (e.g. AES). 

 
Figure 5-17: Compilation option impact 

 

Figure 5-18: The occupied slices of OCM according to compilation options 
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5.3.4 Error Coverage Analysis 

In this sub-section, we analyze the error coverage of the OCM generated by the approach 
proposed in this chapter. We use the fault model introduced in Chapter 3 after being updated 
by including assertion checking in Chapter 4.  

Two evaluation scenarios, with and without assertions, have been proposed to present the 
contribution of this chapter compared to results of Chapter 3, control flow errors detection 
rate. Results are only given for the combined type of alteration (see page 74). In fact, with 
single alteration, experiment results validate our approach by an error detection rate of 100% 
thanks to the redundancy approach used by our technique (see Figure 3-18).  

Like in Chapter 3, the only undetected cases are either alteration of command words in non-
notable states or a combination of ID (the identifier of HWacc FSM state) and SR alterations 
which masks each other. However, alteration of command words in non-notable states is out 
of the scope of this chapter as we focus on control flow and HWacc’s properties introduced 
by the designer. The basic solution to detect those errors (introduced in Chapter 3) consists in 
inserting more assertions. Notable states are states that serve as support for control flow 
description and states where assertions must be checked. Therefore, the higher number of 
assertions to synthesize the higher number of notable states. Thus, designers can specify the 
level of the error coverage by the effectiveness and the number of assertions to synthesize. 
Then, they can use one of the proposed synthesis options to reduce the area overhead 
according to their needs in terms of performance. 

In the following, results illustrate the error coverage of OCM when combined ID and SR 
alteration occurs.  

5.3.4.1 Error coverage without assertions 

Figure 5-19 shows the Undetected Error Rate (UER) (see page 71) without taking into 
account errors detected by using assertions verification technique when the one-hot coding is 
selected. In contrast to previous results (Chapter 3) (see Figure 3-22), all illegals jumps are 
immediately detected when Single fault (SEU) is injected on the ID and COMMD words. 
These results are expected since modifying one bit leads to incorrect ID (definition of One-
Hot coding). Moreover, results show that the higher number of alteration over ID and 
COMMD words, the fewer chance to hid the faulty behavior. This interpretation is inversed 
when the binary coding is selected. In fact, Figure 3-22 shows that the higher number of 
alteration over ID, the higher chance to have silence error.  

In addition, the peak of error detection mismatches with one-hot coding (obtained with the 
application SAD) is 13x less than its corresponding value when the binary coding is selected, 
see Figure 3-22 and Figure 5-19. It is reduced from 1.6*10-3 down to 1.23*10-4.  
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Figure 5-19: UER when One-Hot coding is selected (without assertions) 

As explained in the OCM Generation step of the unified OCMS flow, the architecture of the 
Basic Block Control Unit (BBCU) depends on the manner to encode ID. Therefore, the area 
overhead incurred by the one-hot encoding is analyzed and compared to previous results. 
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7.29% on average compared to the binary coding style. In fact, the added hardware overhead 
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terms of states. This evolution of the slice overhead is caused by the increase of the ID size to 
be stored within the HWacc FSM states command words and the OCM FSM states command 
words (with conjunction states and control successor states) and of the size of the comparator 
used in the testing function inside BBCU.  

 
Figure 5-20: CFC OCM slice overhead depending on the selected coding manner (binary or 

one-hot) 
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5.3.4.2 Error coverage with assertions  

Figure 5-21 presents the same example illustrated in Chapter 3 (see Figure 3-21) but when 
assertions are enabled in the unified OCMS flow. We assume that S2 is tagged as Start 

Function State (to check an assertion). Therefore, the silence error, when the state S4’s 
identifier (ID_S4) is altered to match the S2’s identifier (ID_S2), is detected thanks to the 
detection of assertion violation (related to results of HWacc FSM S2’s command execution). 
In this case, the latency to detect silence error depends on assertions complexity and on the 
selected U_OCMS option to synthesize assertions (OptSpeed or OptArea). 

 

 

Figure 5-21: illegal jump scenario with assertion 

Figure 5-22 shows the Undetected Error Rate (UER) when assertions are considered during 
the synthesis of OCM. Results demonstrate that assertions enable to improve the detection of 
control flow errors without modifying the form of the curve presented in Figure 5-19. 
(UER(SEU) =0 and UERx>10(MBUx)�0). In fact, the UER is decreased by 17.68% on 
average compared to the UER when One-Hot coding is used without assertion verifications. 
In addition, the peak of error detection mismatches (obtained with SAD application) is 
decreased by 24% compared to its corresponding value when assertion verifications are not 
considered, and then it is 16x less than its corresponding value when the binary coding is 
selected (as proposed in Chapter 3). This reduction of UER is dependent on the number of 
inserted assertions and their efficiency. It should be noticed that in this manuscript we are not 
interested in the effectiveness of assertions, but we have shown the importance of inserting 
assertions inside the high-level specification of application to improve the verification of 
control flow errors.   
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Figure 5-22: UER when the One-hot coding is selected and the assertion verification results 

are considered 

5.4 Conclusion 

This chapter presents a unified hardware-assisted paradigm to check at runtime both 
algorithmic properties (C8), control flow errors and Input/Output timing behavior errors (C3 
and C5). In addition, the proposed unified design flow offers some optimizations on the 
synthesis options provided in previous chapter, Chapter 3. Those optimizations allow 
designers to make tradeoff between area overhead (C4), performance impact (C6) and 
protection level (C7). 

Table 5-2 illustrates the evolution of the proposed synthesis options according to our 
conditions. 

Table 5-2 Synthesis options vs. Conditions 
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The proposed unified flow improves the contribution of Chapter 3 by addressing the problem 
of the compilation options and their impact on the control flow. Moreover, this flow allows 
designers to select the encoding style (binary or one-hot) of state identifier according to their 
need in term of area overhead and error coverage.  

Experimental results shown that error coverage on the control flow errors is improved by 16x 
compared to previous works while the hardware overhead is reduced by 10.74%. The 
OptSpeed synthesis option allows reducing hardware overhead up to 17.48% without any loss 
in performance compared to previous techniques, while the OptArea option allows reducing 
the performance impact by 2.76x without any extra-area overhead compared to the previous 
technique. 

The unified flow provides a parameterized platform to be used for different usage profiles.  
Designer with timing constraints, should use the Speed synthesis option and the One-hot 
encoding style that leads to the higher error coverage. However, if area is a strong constraint, 
we recommend to use the OptSpeed synthesis option and the binary encoding style. Designers 
focusing on small area overhead with no runtime constraints should use the Area synthesis 
option and the binary encoding style.  

The proposed design flow allows detecting control flow errors and data errors through a set of 
assertions. However, when a malicious attack alters the value of loop’s induction variable, the 
detection happens at the theoretical end of loop’s iteration (through the comparison of the 
STATUS signals). This lets errors propagate inside the system leading potentially to 
vulnerability issues. Hence, the monitor must be reactive to detect errors at the current cycle 
and near to their sources. 

 For other kind of variables, faults can alter the value of data without causing control flow 
errors or assertion violation. For example, when the value of a given variable is altered within 
its expected range values (no properties violation) before the next write operation, it cannot be 
detected. As a consequence, internal results are also altered due to the propagation of errors. 
Hence, checking the consistence of application’s variables is a key issue for monitor design. 

The next chapter updates and extends our framework to fix those previous limitations: 
improve the reactivity (C7) of monitor to check as soon as possible control flow errors and 
check the consistency of application’s variables (C9). 

The approach proposed in this chapter has been submitted to [95]. 
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This chapter addresses the consistency of the generated monitor to detect new type of data 

errors, data corruption. It introduces a new algorithm to identify the most critical variables. 

In addition, it presents a new technique to enhance the reactivity of monitors to quickly detect 

loop problems.  
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6.1 Introduction 

The unified flow proposed in the previous chapter (Chapter 5) allows designing OCM to 
check at runtime both control flow errors and data errors. For the detection of data errors, the 
proposed technique uses ABV technique allows checking relations between variables and the 
ranges of variables values. However, some other issues must be considered. For example, the 
values of constants must never change, the values of variables must remain constant between 
two write operations and the evolution of loop induction variables values over time must be 
correctly performed. This type of data errors can cause the program to terminate correctly, 
without illegal jump or property violation, but to silently produce wrong results (output 
values). The former solution doesn’t provide any support to check such properties.  

The basic solution to detect those errors consists in using the modular redundancy approach 
like Dual-Modular Temporal Redundancy (DMTR) [92]. However, this method leads to high 
area overhead. In order to avoid this problem, the duplication technique can be performed 
only for the most critical variables, critical configuration bits and specific operations. Critical 
variables are variables that, when altered by faults, may have an impact of the application 
results. Critical configuration bits are a subset of FSM state command word bits, limited to 
those that configure the data-path when critical variables are used by the application. Specific 
operations are loop increment functions. The duplication of loop increment functions alone is 
not sufficient to prevent the propagation of errors inside the system. The technique introduced 
in chapter 5 duplicates loop increment functions, but it detects problem of infinite loops at the 
end of loop iterations. To avoid this limitation, duplicated loop increment functions can be 
used to verify the derivation of loop induction variables values at the current cycle. 

In this chapter, we propose to consider the detection of data corruption for hardware 
verification. This allows OCM to be robust against any types of data errors. The proposed 
approach aims at checking at runtime the values and the paths of critical variables. The 
proposed algorithm to identify critical variables is improved compared to the previous 
approaches. In addition, we enhance the reactivity of generated monitors to detect loop 
problems (e.g. infinite loops) as soon as possible. We propose to check at runtime the 
evolution function of loop induction variables. In the rest of this chapter, the evolution 
function of loop induction variable is referred to as Rule.  

 

6.2 On-Chip Monitor Synthesis Flow for critical variabl es 

The proposed On-Chip Monitor Synthesis (OCMS) flow for critical variables consists of 
several steps as illustrated in the right part of Figure 6-1: 

• Rule Extraction step- starts after the HLS has compiled the high level specification 
of application. This step analyzes the formal representation in order to identify loops 
and then extracts the rules of loops induction variables. 
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• Critical Variables Identification step-analyzes the HWacc FSMD_s generated by 
the scheduling step of HLS flow. This step computes the criticality of application’s 
variables and identifies the set of the most critical variables. 

• FSMD Annotation step-analyzes and annotates a copy of the HWacc FSMD_s. This 
step is similar to the one introduced in the three previous chapters (see pages 50, 82 
and 105). In this chapter, it identifies new notable states such as states that read or 
write critical variables or states that start the verification of the derivation rules. 

• Path Extraction step-analyzes the annotated FSMD_s after the binding information 
have been generated by HLS flow in order to extract the path of each detected critical 
variable. These information are used to verify at runtime that the data transfer process 
is correct.  

• OCM Generation step-couples the annotated FSMD_s with the results provided by 
the binding step of the HLS flow and with RTL architectures stored in the library of 
operators to produce the RTL architecture of the monitor as Finite State Machine and 
Data-Path. 

Finally, all those steps are realized concurrently to the HLS flow of HWacc. The following 
sub-sections detail the OCMS flow for critical variables. 

6.2.1 Rule Extraction 

Rule Extraction is the first step of the OCMS flow. It starts after the intermediate 
representation of the application is generated by the compilation step of HLS flow. This step 
identifies loops and extracts the rule of each loop's induction variable. All those information 
are stored in a dedicated data base named DB:loops. 

Loop constructs are detected when identifying back arcs in the CDFG as presented in Chapter 
5. Once a back arc is detected, a new Control Data Flow Graph, referred as Rulex in Figure 
6-1, is created and is labeled by a unique number, x, that represents the number of the current 
detected loop. Next, the sink BB (i.e. the conjunction basic block) of detected back arc is 
referred to as Loop Header (LH) and its source BB (i.e. the disjunction basic block) is 
referred to as Loop Latch (LL). Those two types of BB are associated to a given loop through 
a loop identifier Loop_Id. In addition, each basic block located between LH and LL is tagged 
as Loop Body (LB) and the current Loop_Id (associated to the LH and LL) is added to list of 
loops of the current basic block. This information is later used during the Critical Variables 

Identification step.  
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Figure 6-1: Proposed design flow for critical variables 

The next step in the Rule Extraction extracts the rules of each loop's induction variable. This 
rule defines the evolution value of a given induction variable value over times (during loop 
iterations). In general, the rule of a given loop’s induction variable k is as follow: 

p5 = ,(p5��, . . ) 
Where kt is the value of the variable k at the current iteration, t, kt-1 is its value at the previous 
iteration and f is a function that has at least one input which is kt-1. This function represents 
the loop increment function: the rule. As explained in the previous chapters, each loop’s 
induction variable has two variables nodes inside the generated CDFG: Update Induction, the 
output of the Update Induction Node, and Induction Variable, the input of the Update 
Induction Node, (see Figure 5-4). Hence, the Update Induction represents the value of kt-1 and 
the Induction Variable represents the value of kt. 

The extraction process of Rules is based on the algorithm presented in Figure 5-4 (we only 
replace the set of CDFG_CSx by the set of Rulex (see Figure 6-1)). Each visited Condition 
Variables (see Figure 5-4), during the extraction process, and the Induction Variable are 
associated to the current loop through the loop identifier Loop_Id. 
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Finally, the RTL architecture of each Rulex is automatically generated by using HLS tool. 
These RTL architectures are stored in a library of operators to be later used during the OCM 

Generation step. 

6.2.2 Critical Variable Identification 

Critical Variable Identification step starts after the FSMD_s has been generated by the 
scheduling step of HLS flow. This step computes the criticality of application's variables and 
identifies the set of critical variables according to designer’s needs. The proposed algorithm to 
compute the criticality of each variable is based on the following function [86]: 

]E�(�R�(^(7) = *+ ∗ �+(7) + *2 ∗ �2(7) + *-
∗ . �(7, Z) ∗ (*+ ∗ �+(Z) + *2 ∗ �2(Z))
-⊂/012())

 

Where Dl defines the lifetime, Dc defines the number of participations in branch conditions 
and M(v,w) defines the dependency weight between “v” and “w”. Kl, Kc and Kw are 
coefficients that can be used to focus more on one criterion than the others according to the 
designer needs. 

The algorithm we use to compute variable lifetimes is inspired from the definitions and rules 
that are proposed in [86]. Figure 6-2 presents the algorithm to compute the set of alive 
variables at the entry, In(), and the set of alive variables at the exit, Out(), for every state 
inside the FSMD_s (for more details see section 2.6, page 41). 

Once those two sets are computed, a variable v is alive in state “a” if there is at least one edge 

eab where v ∈ Out(a)∩In(b). Then, the lifetime of v is computed by counting all states that 
satisfy this condition. However, this process doesn’t take into consideration variables lifetime 
inside nested loops iterations. In fact, if there is a state that satisfies the previous condition for 
a given variable and that is located inside nested loops, it will be counted only once 
whichever the number of loop iterations.  

Unfortunately, variables that are preserved in registers for a long period of time have more 
risk to be altered. For this reason, we propose to enhance the algorithm that computes the 
variable lifetime by checking the lifetime inside nested loops. 

Our proposal tackles this limitation by using the following compiler GCC feature: if the 

variable is rewritten, it is treated as a new variable. This technique is known as SSA (Static 

Single Assignment). According to this previous feature, each variable has a unique FSMD_s 
state that produces its value, referred to as Mother State. 
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Algorithm Compute variable lifetime 
Input: The FSMD_s. 
Output: the set of In() and the set of Out() for each state inside the FSMD_s 
Method:  

(1) For each state in FSMD_s do 
(2)    In [state] ={} and Out[state] ={} 
(3) End for 
(4) Repeat 
(5)    Condition =false; 
(6)    For each state in FSMD_s do 
(7)       In1[state] = In[state]; 
(8)       Out1[state] = Out[state]; 
(9)       In[state] = VIState(state) ∪ (Out[state]\VOState(state)); 
(10)      For each next in Succ(state) do 
(11)         Out[state] = Out[state] ∪ In[next]; 
(12)      End for; 
(13)      If  In1[state] = In[state] and Out1[state] = Out[state] for all states then 
(14)         Condition = true; 
(15)      End if ; 
(16) Until  Condition; 

Figure 6-2: Compute variable lifetime algorithm 

Thus, the proposed algorithm (see Figure 6-3) starts by identifying Mother State for each 
variable. A state “s” is tagged as a Mother State for a given variable “v” if the following 
condition is satisfied: 

7 ∈ 6hw5450(8) 
Next, for each variable, the states in which this variable is alive are identified by using the 
technique proposed in [86] (referred to as Alive_States in Figure 6-3). Then, the algorithm 
analyzes those states to compute variable lifetimes inside nested loops by using the following 
approach: for each identifier Loop_Id of the basic block associated to the current state (thanks 
to the relation between CDFG and FSMD_s), if this identifier doesn’t belong to the list of 
Loop_Id of basic block associated to the Mother State of the current variable, then the current 
state is added to the list of State’s Loops, SLv associated to the current variable. Therefore, the 
lifetime of each variable is computed using the following equation: 

�+(7) = . � Pq(�)
�∈w��(1)1∈�+�)0_w54501())

 

 
 
(6-1) 

Where nb(i) is the number of iterations of the loop with identifier Loop_ID equal to “i”.  

However, due to the high complexity of some loops increment function, it can be extremely 
difficult to automatically define the number of iterations. Moreover, when the loop’s bound is 
defined as an application’s input (e.g. N in Figure 2-2.a see page 17), the number of loop’s 
iteration cannot be statically estimated (i.e. after the compilation step). 

  



On-Chip Monitor for Critical Variables 

-142- 
 

Algorithm Compute State lifetime inside nested loops 
Input: The FSMD_s. 
Output:  
Method:  

(1) For each v in Vvar do 
(2)    Mother State = Find_Mother_State (v); 
(3)    Mother_BB = Basic block associated to Mother State; 
(4)    Alive_States = Find_Alive_State(v) ; 
(5)    For each state in Alive_States do 
(6)       BB = Basic block associated to the current state; 
(7)       For each ID in Loop_ID(BB) do 
(8)          If  (ID ∉ Loop_ID (Mother_BB)) then 
(9)             State_Loop (state) = State_Loop (state) ∪ ID; 
(10)         End if;  
(11)      End for; 
(12)    End for; 
(13) End for;  

Figure 6-3: compute variable lifetime inside nested loops 

Hence, in the worst case, we simplify the previous equation by assuming that all loops have a 
constant iteration number referred to as NL. Currently, this number is specified by the 
designer as an input of our synthesis flow. However, in future works, it could be 
automatically computed as the average of all detected numbers of iterations that are constant 
after the compilation step. The new equation to compute the lifetime of each variable is as 
follow: 

�+(7) = 	 . �l1��0_b~(w��(1))
1⊂�+�)0_w54501())

 

 
 
(6-2) 

Finally designers can either set a critical threshold above which a variable is considered 
critical or select the N most critical variables. Then, the set of variables that are identified as 
the most critical ones are stored in a dedicated data base named DB:Critical V. 

6.2.3 FSMD Annotation 

Once the set of the most critical variables is identified and the set of derivation rules is 
extracted from the CDFG, FSMD Annotation prepares the synchronization between OCM and 
Hwacc. This is performed by analyzing the copy of Hwacc FSMD_s and by defining a new 
set of notable states.  

Notable states are the initial and the final states of the HWacc, the states that read or write one 
or several critical variables, states that hold data corresponding to derivation rules and control 
flow states. 

New notable states compared to previous chapters are: 

• The Loop Induction Evolution Function (LIEF): the set of states that start the execution 
of the derivation rules; 
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• The Generate Induction State (GIS): the set of states that generate the new value of 
loop's induction variables; 

• The Write State (WS) : the set of states that write one or several critical variables; 

• The Read State (RS): the set of states that read one or several critical variables. 

In addition, each Conjunction State which is associated to a basic block that is tagged as Loop 

Header is identified as Update Induction State (UIS). 

The identification of GIS and WS is based on the results produced in the previous steps of 
OCMS flow (Critical Variable Identification and Rule Extraction). The Write State is the 
Mother State of a critical variable. The Generate Induction State is the Mother State of an 
Induction Variable. The identification of Read State is based on the following condition: a 
state is tagged as Read State, if it has at least one variable among its set of input variables that 
is identified as critical variable. 

Finally, the identification process of LIEF is similar to the technique that is proposed in 
Chapter 5 to identify Input Function State and Start Function State.    

Figure 6-4.a shows the annotated FSMD_s of our FIR filter example, when the optimized 
compilation option is selected, with the 4 most critical variables. The set of UIS is {s4, s8}, 
the set of GIS is {s10, s12}, the LIEF is {s10, s12}, the set of WS is {s2, s8} and the set of 
RS is {s3, s9}.  

 
Figure 6-4: (a) Annotated FSMD_s with 4 Critical variables (b) OCM FSM 
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6.2.4 Path Extraction 

Path Extraction starts after the RTL information has been generated by the Allocation and 

Binding step of HLS flow and the annotated FSMD_s has been generated by the FSMD 

Annotation step of OCMS flow.  

Once HLS Binding step is performed, each state inside the FSMD_s has a dedicated command 
word (a set of bits). Those command words are used at runtime by the control part of the 
HWacc to configure the operative part (Data-Path). More precisely, those command words 
configure the set of multiplexers to route values of variables to operators.  

This step allows checking that no alteration happened during the transfer of values of critical 
variables between registers and operators. To do this, this step analyzes the annotated 
FSMD_s. Then, for each Read State, it extracts the path of its critical variables from the 
results of the HLS Binding step. The critical variable’s path represents the set of configuration 
bits stored inside the command word associated to the current Read State. Those bits are used 
to configure the set of multiplexers to route the value of critical variable(s) to operator(s). 
Next, those paths are used at runtime by OCM to check that no alteration happened during the 
signal routing inside the RTL architecture of HWacc. 

Once Rule Extraction, Critical Variable Identification, FSMD annotation and Path Extraction 
have been carried out, notable states have been detected; rules and critical variables are 
extracted and stored in dedicated databases. Hence, all information needed to generate the On-
Chip Monitor has been collected.   

6.2.5 OCM Generation 

OCM generation is the last step of OCMS flow. It couples the annotated FSMD_s with the 
binding results and with the RTL architecture stored in the library of operators (see Figure 
6-1). Then, it produces the RTL architecture of the OCM.  

Like in the previous chapter (Chapter 5), this step starts by generating the control part of the 
monitor, OCM FSM. The generation process is based on previous algorithm. However, there 
are new monitoring operations compared to previous chapter. Those monitoring operations 
depend on the visited notable state. 

Hence, if the visited FSMD_s state is: 

• An Update Induction State, then the associated monitoring operation authorizes to write 
the previous value of induction variables inside the OCM registers; 

• A Loop Induction Evolution Function, then the associated monitoring operation starts 
the execution of inductions variables evolution function; 
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• An Generate Induction state, then the associated monitoring operation authorizes to 
write the new values of induction variables generated by the HWacc DP inside the OCM 
registers and starts the verifications of induction variables evolution rules; 

• A Write State, then the associated monitoring operation authorizes to write the data 
corresponding to critical variables inside the OCM registers and checks that the related 
load signal of the Hwacc registers containing critical variables is correctly driven; 

• A Read State, then the associated monitoring operation compares the value  of the critical 
variables with the copies stored inside the OCM and checks that the critical variables 
paths are correctly configured. 

Figure 6-4.b illustrates the OCM FSM when the OCM generation step is applied to the 
annotated FSMD_s of Figure 6-4.a. 

Once the OCM FSM model is generated and the set of variables (critical variables or/and 
rules input variables) that are associated to each notable state are identified, then this step, 
OCM Generation, analyzes the results of the HLS Binding step to extract the RTL 
information related to those variables.  

Finally, the OCM Generation step instantiates and configures different OCM DP modules. 
Once again, the hardware template to generate the OCM DP is updated. We implement new 
predefined hardware blocks. 

Figure 6-5 presents the architecture of generated OCM. The OCM DP consists of five 
modules: Delay Control Unit (DCU), Write Control Unit (WCU); Path Control Unit (PCU), 
Critical Control Unit (CCU) and Induction Control Unit (ICU). All those blocks run in 
parallel to the execution of hardware accelerator (HWacc).  
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Figure 6-5: Architecture of OCM for Critical Variables 

The Delay Control Unit has the same functionality and the same architecture as those 
described in the previous chapters (Chapter 3 and Chapter 5). For the remaining modules, 
their architectures are detailed:   

Write Control Unit 

This module checks that LOAD signals associated to critical variable’s registers are driven in 
time by the HWacc. This is realized by comparing the LOAD signals coming from the HWacc 
with those provided by the OCM FSM states (using the write_mask signal see Figure 6-5). 
The execution of this block depends on the current OCM FSM state. The verification is 
performed only when the current OCM FSM state is tagged as Write State (WS). To do this, 
each OCM FSM state has an En_write signal that is activated when it is a WS.  

As the Binding step allows sharing registers between variables, then the LOAD signals can 
change their values during the period when staying in the current OCM FSM state. This 
period represents the value of T, see Figure 6-4.b. For this reason, all monitoring operations 
are executed only when entering OCM FSM state for the first time. To do this, the execution 
of the WCU module is driven by the output signal if the Delay Control Unit, Done. The 
output of this module, WriteCV, is presented by the following equation:   
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(6-3) 

where the CheckedLoad is the output signal of the comparison between the write_mask signal 
and the HWacc LOAD signals. 
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Path Control Unit 

This module verifies that there is no alteration when routing the value of critical variables to 
operators inside the HWacc DP. This is realized by comparing the Path_bits with those 
provided by the OCM FSM states, using the Path_mask signal. The Path_bits signals are 
extracted from the command word of HWacc FSM. It is the concatenation of all configuration 
bits that are associated to critical variables. The verification is driven by the En_path signal 
which is activated when the current OCM FSM state is a Read State. 

Similarly to the Write Control Unit, the execution of this module is also driven by the output 
signal of the Delay Control Unit, Done. The output of the PCU, CheckPath, is illustrated by 
the following equation: 

]ℎ#RpoO(ℎ = ]ℎ#Rp
�(8	�E	�P_kO(ℎrrrrrrrrrrr	�E	��P#rrrrrrr 
 
(6-4) 

where the CheckBits are the output signals of the comparison between the Path_mask signals 
and the Path_bits signals. 

Critical Control Unit 

This module verifies that there is no alteration inside registers containing critical variables. To 
do this, it stores the values of critical variables inside the OCM DP registers once they are 
computed inside the HWacc DP. Then, each time the value of a critical variable is read by the 
HWacc DP, it is compared with the one stored inside the OCM DP associated to the critical 
variable. 

Figure 6-6 presents the architecture of the Critical Control Unit. This module contains a set of 
Data Registers and a set of equal operators. Each DR stores the value of a given critical 
variable. The writing process inside the DR is controlled by the En_reg signal coming from 
the OCM FSM. Each equal operator has two inputs: the stored value coming from the DR and 
the current value coming from the HWacc DP. The comparison is controlled by the En_check 
signal coming from the OCM FSM.  

 
Figure 6-6: Critical Control Unit architecture 
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Induction Control Unit 

This module verifies that no derivation rule of loop’s induction variable failed due to an 
alteration. To do this, it instantiates RTL architectures, stored inside the operator data base, 
associated to loops increment functions that are extracted from the CDFG. Then, it stores the 
current value of a given loop’s induction variable, coming from HWacc DP, inside the OCM 
DP register. Next, it executes the RTL architecture, associated to the current loop, with as 
input the stored value. Then, it compares its results, the new value of the induction variable 
with the new one generated by the HWacc DP.   

Figure 6-7 presents the architecture of the Induction Control Unit. This module contains two 
set of data registers (DR and DR’), a set of RTL architectures associated to rules and one 
equal operator. The DR (resp. DR’) stores the current value (resp. the new value) of the loop’s 
induction variable computed inside the HWacc. Each loop construct has two data registers, 
DR and DR’, to store the value of its induction variable. The writing process inside the DR 
(resp. DR’) is driven by the signal En_Update_reg (resp. En_New_reg) coming from the 
OCM FSM when the current state is an Update Induction State (resp. Generate Induction 
State). The execution of RTL architecture is driven by the signal ID_rule coming from the 
OCM FSM when the current state is a Loop Induction Evolution Function. Finally, the equal 
operator checks if the output of a given RTL architecture and the output of its corresponding 
register DR’ have the same value. 

 
Figure 6-7: Induction Control Unit architecture 
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CDFG. All CDFGs are generated by using the standard compilation option, O0, and the 
optimized one, O3.  

Table 6-1 shows the characteristics of the generated CDFGs, result is from the compilation 
step of the HLS flow, in terms of number of variables and basic blocks. Results are given for 
the two compilation options: standard and optimized. In the previous chapter, results shown 
that the compilation option did impact the control flow in terms of number of basic blocks. 
Results presented in Table 6-1 demonstrate that compilation option impacts also the number 
of variables of CDFG. For example, the number of variables of CDFG associated to the 
application AES when O3 is selected is 2.22x greater than the one generated with O0. This 
evolution of number of variables comes from the unrolling of all static loops (loop bounds are 
constant) which increases the number of SSA variables (see GCC feature page 140).  

 
Table 6-1: CDFG Characteristics according to compilation options 

Application 
Standard option O0 Optimized option O3 

Variables Basic block Variables Basic block 

FIR 29 8 29 7 
DCT-2D 51 20 50 13 

MatMul 62 11 58 12 

SAD 35 9 22 5 
FFT 64 19 60 15 

Conv 95 20 91 21 
Sobel 237 45 128 28 

Blowfish 341 39 342 76 
AES 488 64 1084 13 

Table 6-2 provides a snapshot of the evolution of OCM FSM complexity in terms of notable 
states. Results are given for three amounts of most critical variables, N (ranging from 10% to 
30% of the number of variables) and with standard compilation option (e.g. O0).  They show 
that the complexity of OCM FSM depends on the application’s complexity, the number of 
states that serve as support for the control flow execution. In addition, it depends on the 
number and the position of critical variables. In fact, HWacc FSM state can contain more than 
one critical variable. In some cases, we notice that the number of notable states remains 
constant when increasing the number of critical variables (e.g. DCT-2D).   

Before analyzing the area overhead and the error coverage of the generated OCM, we start by 
comparing the results of our algorithm that compute the criticality of each variable with those 
produced by the algorithm introduced in  [86]. 
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Table 6-2: Architecture characteristics with critical variables 

Application Basic 
Block 

State Notable State 

N (10%) N (20%) N (30%) 

FIR 8 23 12 12 15 
DCT-2D 20 51 28 28 28 

MatMul 11 37 20 22 28 
SAD 9 32 14 17 19 

FFT 19 52 30 30 34 

Conv 20 71 46 47 47 
Sobel 45 171 97 108 119 

Blowfish 39 209 90 109 115 
AES 64 342 188 208 216 

6.3.1 Variable Criticality Analysis 

Figure 6-8 presents the extra delay added by our algorithm to compute the criticality of each 
variable compared to the execution time of the algorithm proposed in [86]. Results are given 
for the two compilation options. For O0, results show that our algorithm increases the 
execution time by 20.07% on average and, in the worst case, up to 30.15% compared to [86]. 
While when O3 is selected, the overtime added to the execution time of the previous 
algorithm decreases down to 15.14% on average. These gaps were expected due to the extra-
time added to compute the lifetime of variables inside loops which does not exist in [86]. The 
optimized compilation option allows reducing this gap through unrolling all static loops (e.g. 
AES) (so that, the number of nested loops is decreased) or by reducing the number of 
variables (e.g. Sobel).  

However, accurate identification of the most critical variables advocates a careful use of the 
extra-area used to check critical variables.  

 
Figure 6-8: Execution time compared to [86] 
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To evaluate the gain of our technique to compute the criticality of each variable, we compare 
our results with those produced by the algorithm introduced in [86].  

This comparison consists in checking the set of the N most critical variables that results from 
our algorithm and the sorted set of variables using the criticality coefficient generated by the 
[86] as criteria. This comparison is based on the following approach: For each variable that 
belongs to the set of the N Most Critical Variables, N_MCV (resulting from our algorithm), its 
position P is extracted from the sorted set of variables (resulting from [86]). So, if P is greater 
than N, then more variables, MV, are needed to be selected as critical variables with previous 
algorithm to have the set of the most critical variables that are selected by our algorithm. The 
MV is presented by the following equation:  

�6 =	 max)∈�_x= ,|())��o(7) − 	� 
 
(6-5) 

Where N_MCV is the set of the most critical variables (the result of our algorithm) and N is its 
cardinality (ranging from 10% to 100% of the number of variables).  

Figure 6-9 presents the results of MV when the standard compilation option is selected. 
Results show that the number of the most critical variables must be increased by 10 variables 
on average (up to 26 variables) in order to select variables that are alive or one of their 
descendants that are alive inside loops when the previous algorithm [86] is used. In addition, 
results show that the fewer most critical variables to be considered (e.g. <35%), the higher 
yield difference compared to [86]. In real cases, we duplicate the fewer number of the most 
critical variables in order to limit the extra-area needed to check them. This overhead will be 
analyzed in the next sub-section 6.3.2. Moreover, the peaks of MV depends on the complexity 
of applications in terms of nested loops (e.g Conv 4 nested loops) and variables after 
compilation step (e.g. AES 488 variables). In addition, the number of nested loops impacts the 
evolution of MV. We notice that when the number of nested loops increases, the number of 
MV slowly decreases (e.g. Conv, DCT-2D and MatMul).    

However, when the optimized compilation option is selected, results indicate that the number 
of MV is reduced, 5 less variables on average (see Figure 6-10). This degradation is due to the 
modification of the control flow graph as shown in the previous chapter (Chapter 5). For 
example, all nested loops (static loops) inside the application AES are unrolled: Thus there is 
no difference compared to the results of [86], MV =0. O3 option also impacts the number of 
variables and their descendants. For example, the number of variables of the application Sobel 
is reduced by near to 50%, then the evolution of MV is greatly modified compared to standard 
compilation.  
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Figure 6-9: Identification of the most critical variable vs. [86] when standard compilation 
option is selected 

 

Figure 6-10: Identification of the most critical variables vs. [86] when optimized compilation 
option is selected 

Figure 6-11 summarizes the synthesis time overhead incurred by the proposed synthesis flow 
to generate the OCM architectures. Results are given for three numbers of the most critical 
variables (N). Results show that the overhead ranges from 4.14% to 15.97% (8.55% on 
average) depending on the application’s complexity. In addition, the overhead increases when 
the number of most critical variables increases. In fact, the more critical variables to check, 
the more time to find states that read and/or write critical variables.  
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Figure 6-11: Synthesis time overhead according to the number of critical variables 

6.3.2 Area Overhead Analysis  

The area overhead in number of slices when the OCM is added to the HWacc is presented in 
Figure 6-12. Results are given for three amounts of the most critical variables. Those numbers 
are the percentages of the number of variables for each application: 10%, 20% and 30%. We 
organized the OCM area overhead in three categories: Synchronization Block (SB) overhead, 
Rules Block (RB) overhead and Critical Block (CB) overhead, in order to analyze the area 
overhead in a clear way.  

The Synchronization Block consists of OCM FSM and Delay Control Unit. The Rules Block 
consists of Induction Control Unit. The Critical Block consists of Path Control Unit, Write 
Control Unit and Critical Control Unit. For the Rules Block, results show that the area 
overhead ranges from 3.84% to 12.30% (7.35% on average) and decreases when the 
application’s complexity increases. This overhead depends on the number of loop constructs 
and on the complexity of loop increment functions. Those functions are implemented inside 
the OCM DP to check their results with those generated by HWacc through derivation rules. 
In addition, the application’s complexity impacts this overhead. HWaccs that implement low 
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overhead (e.g. FIR). On the contrary, the OCM overhead decreases to 5% with application of 
high complexity (e.g. AES, Blowfish). For Synchronization Block, results show that overhead 
is less than 8% on average and slightly increases (less than 1%) when the number of most 
critical variables grows up. This extra-area overhead is due to the evolution of the number of 
notable states (see Table 6-2) and of the number of OCM FSM state’s command word 
(path_mask, write_mask, etc.). 
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Figure 6-12: slice overhead according to the number of critical variables 

For the Critical Block, results show that the area overhead mainly depends on the number of 
critical variables to check. Area overhead increases when the number of the most critical 
variables increases. In addition, results demonstrate that the complexity of application impacts 
the area overhead. Although the number of the MCV is increased, HWaccs that implement 
applications of high complexity exhibit low CB overhead. For example, with 10% of 
variables of FIR application (low complexity) i.e. 3 variables, the CB overhead is 26.54% 
while with 10% of variable of Blowfish application (high complexity) i.e. 30 variables, the 
CB overhead is 24.78%. Hence, the number of most critical variables is increased by 10x but 
the CB overhead is decreased by 6.63% thanks to the complexity of the application.  

Finally, the cost of the N most critical variables can be modeled by the following function:   

]�8((�) = 	 . (
%(7) + m�(7))
)∈�_x= 

+ ℇ 

 
 
(6-6) 

Where N_MCV is the set of N most critical variables, BW(v) is the bits width of variables, 
AE(v) is the area (in terms of slices) of the equal operator depending on the BW(v) and ε is the 
cost to check critical variable paths and load signals of registers that contain critical variables. 
This parameter depends on the technique used to share resources (registers and operators) and 
also on the selected scheduling algorithm (ASAP, List Scheduling, etc.).  
In order to evaluate the impact of the selected scheduling algorithm on ε, we configured the 
scheduler of the HLS flow to use the ASAP algorithm. Then, we compared the areas for the 
Critical Block and the Synchronization block with those produced when the List Scheduling 
algorithm is used. The area of the Rule Block is not considered because it only depends on the 
number of loop constructs. The results of this comparison are presented in Table 6-3.  
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Table 6-3: Area of monitor according to the scheduler algorithms 

    List Scheduling ASAP Diff 

Application 
Critical 

variables 
CB SB CB SB CB SB 

FIR 

10% 82 29 82 29 0 0 
20% 129 30 129 30 0 0 
30% 205 34 201 31 4 3 

DCT-2D 

10% 131 50 131 48 0 2 
20% 258 54 255 50 3 4 
30% 377 59 374 54 3 5 

MatMul 

10% 161 44 159 40 2 4 
20% 306 48 304 46 2 2 
30% 473 54 472 50 1 4 

SAD 

10% 103 28 103 27 0 1 
20% 173 31 173 26 0 5 
30% 265 32 265 29 0 3 

FFT 

10% 160 50 157 48 3 2 
20% 301 53 301 47 0 6 
30% 448 64 444 61 4 3 

Conv 

10% 268 73 259 69 9 4 
20% 489 79 475 75 14 4 
30% 718 89 697 78 21 11 

Sobel 

10% 709 148 684 148 25 0 
20% 1258 161 1234 159 24 2 
30% 1835 179 1822 177 13 2 

Blowfish 

10% 766 160 758 136 8 24 
20% 1462 185 1457 176 5 9 
30% 2185 200 2179 193 6 7 

AES 

10% 1430 276 1337 237 93 39 
20% 2643 315 2538 265 105 50 
30% 3827 359 3726 297 101 62 

Results show that the ASAP algorithm allows reducing the area of those two blocks. For CB, 
the area is reduced by 16 slices on average up to 105 slices (6.5%). For SB, the area is 
reduced by 9 slices on average up to 62 slices (17.27%). This reduction is manly related to the 
diminution of the bit width of signal path_mask since the scheduler allocates as many 
functional units as required which reduces the number of multiplexers inside the HWacc DP. 
Hence, fewer bits are stored inside the OCM FSM state’s command words and the size of the 
comparator used inside the Path Control Unit is also reduced.  
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Hence, designers can trade-off area of low overhead but adapting N which represents the 
number of the most critical variables according to their needs in terms of area-overhead. For 
example, if the List Scheduling algorithm is used with one functional unit and if the bit width 
of variables is 16, then a 10% area overhead enables checking the most critical variable with 
FIR and 9 most critical variables with AES.  

Finally, the proposed methodology does not impact the performance of HWacc as the OCM is 
implemented separately from HWacc. 

6.3.3 Error Coverage Analysis  

In order to evaluate the gain of checking the derivation properties of loop induction variables, 
we enhanced the fault model to alter the loop increment functions including errors on the 
value of loop induction variables. Then, we compare the error coverage and the detection 
latency of the approach proposed in this chapter with the one introduced in Chapter 5 (the 
unified OCMS flow).  

Results show that the Derivation Rules (DR) approach allows detecting all errors over 
induction variables thanks to the verification of the evolution of loop induction variables. 
Results also indicate that the error detection rate is 100% as for the previous technique. This 
result was expected since any alterations over the loop induction variables or/and over loop 
increment functions impact the value of the signal STATUS.  The monitoring operation of the 
previous technique consists in comparing at runtime the value of STATUS generated by the 
HWacc with the one generated by OCM. Then, alterations are detected when the value of the 
STATUS signal is not equal to the expected one.  

However, the alteration of loops induction variables may take a long time to impact the value 
of the signal STATUS.  

Table 6-4 illustrates the latency in terms of clock cycles to detect errors according to the 
number of injected faults. Results show that the detection latency with the previous 
contributions of Chapter 3 and Chapter 5 (using the objective of the Control Flow Checking 
approach, CFC) increases when the application gains in complexity and decreases with higher 
number of injected faults. Peak latencies are obtained when injecting a single fault (SEU). 
This result was expected due to the presence of infinite loops, making the value of induction 
variables constant during the loop’s iterations. The CFC approach detects this problem after 
covering all expected iterations. Hence, the latency to detect infinite loops is in the order of 
IxM clock cycles, where I is the number of iterations and M is the latency to compute the 
loop’s body. The value of M depends on the complexity of the application in terms of the 
number of operations inside loops and of the number of nested loops.  

The bit width also impacts the detection latency. The wider bit-width, the less detection 
latency as the probability to get a constant induction variables goes down. Moreover, when 
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the number of injected faults increases, the detection latency decreases as the probability to 
reach the loop’s bound is increased.    

Instead, the contribution proposed in this chapter that checks the derivation rules, allows 
detecting alteration only after two clock cycles whichever the number of injected faults and 
the complexity of application. Therefore, the derivation rule approach reduces the latency to 
detect infinite loop problem by 99.89% on average compared to CFC approach. In general, 
our approach reduces the error detection latency by 99.57% on average.     

Table 6-4: Error Detection Latency (clock cycles) 

Application 
 

SEU MBU2 MBU3 MBU4 MBU8 

DR Chapter 5 DR Chapter 5 DR Chapter 5 DR Chapter 5 DR Chapter 5 

FIR 2 190 2 56 2 17 2 4 2 4 

DCT-2D 2 4734 2 1444 2 471 2 4 2 4 

MatMul 2 835 2 258 2 70 2 4 2 4 

SAD 2 46 2 17 2 8 2 4 2 4 

FFT 2 757 2 189 2 58 2 4 2 4 

Conv 2 4274 2 1311 2 456 2 4 2 4 

Sobel 2 90 2 28 2 12 2 4 2 4 

Blowfish 2 2889 2 188 2 38 2 21 2 4 

AES 2 1845 2 447 2 113 2 61 2 6 
 

6.4 Conclusion 

This chapter presented an automated methodology to enhance HWacc safety by preventing 
data corruption from altering the execution of HWacc. This methodology satisfies the last 
condition proposed in this manuscript, i.e. C9. The proposed design flow consists in 
identifying the most critical variables. The generated monitor checks at runtime their values 
and their transfer processes. Moreover, the proposed method enhances the reactivity, i.e. C7, 
of the generated monitors against loop problems and especially the problem of infinite loops. 
This is performed by automatically deducing the properties of the evolution function of loop 
induction variables that are checked at runtime.   

Experimental results have shown that the proposed algorithm to identify critical variables 
enables to improve the detection of the most critical variables by taking into consideration 
their lifetimes inside loops. This allows identifying variables that are alive or/and have 
descendants that are alive inside loops. Results shown that the existing algorithm [86] needs 
to increase the number of most critical variables by 10 on average (up to 26 variables) 
compared to the one specified by the designer in order to identify those variables. However, 
this increase of the most critical variables has a negative impact on the area overhead.  
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Finally, results shown that the error coverage on the loops induction variable is 100% and that 
the derivation rule approach reduces the detection latency by 99.57% on average compared to 
previous approach while in average it causes 7.35% of extra-area.  

The approach proposed in this chapter has been submitted to [96] 
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CONCLUSION AND PERSPECTIVES 
 

 

The ever growing complexity of applications in the world of embedded systems has led to 
new challenges. Particularly, time-to-market, security and safety emerged as key issues in 
those systems. Hardware accelerators are master pieces in embedded systems, when 
improving energy efficiency and performance is a central concern. These systems have been 
complex to design for long, restricting such devices to expert users. Electronic System Level 
(ESL) design approaches and High-Level synthesis (HLS) are now changing this situation. 

The aim of HLS tools is to design RTL architectures that fit the specified constraints, while 
minimizing the hardware area. HLS tools promote short cycles (design is now a matter of 
hardware compilation) and reduce “time-to-market”. Unfortunately, they neither address 
verification (checking the execution of generated RTL architectures) nor readability. In fact, 
HLS tools may encrypt or obfuscate generated RTL architectures. In addition, there are no 
relations between signals within those architectures and their associated variables within the 
high level specification (e.g. C code) due to some optimizations performed by HLS tools like 
the resource sharing. Therefore, existing monitoring approaches targeting the RTL level (e.g. 
Integrated Logic Analyzer) do not apply to such architectures. 

Validation, however, remains critical. Even if the designs are supposed to be correct by 
construction, several scenarios exist that motivate the need for a strong verification: ageing, 
aggressive environments, malicious actions, etc. Validation happens at several points: some 
structural information can be extracted to generate monitors, but also the designer should be 
in the loop, as he is the one with a full knowledge of the system (failure risk). Different 
approaches have been proposed in literature to improve the verification support within HLS 
tools by enabling to transform high level assertions (e.g. ANSI-C assert) into hardware 
monitors. Nine limits have been identified as presented in Table 2-2, page 44.  

In this manuscript, we proposed a new design approach to automatically generate On-Chip 
Monitor (OCM) during the HLS of hardware accelerator. The proposed design flow takes into 
consideration these nine conditions. 

The proposed design flow extends traditional High Level Synthesis flow. One key feature is 
its HLS tool independence, satisfying the first condition C1. The input of the design flow is 
the Control Data Flow Graph (CDFG) which defines the intermediate representation of the 
application to check. This representation supports both static and dynamic behaviors, 
satisfying the second condition C2. 

Alterations over the execution can either impact the control flow or corrupt data. The 
generated monitor (OCM) allows checking the timing constraints of generated hardware 
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accelerator by monitoring the control flow execution against errors such as hanging problem 
(e.g. infinite loops), satisfying the third condition C3, or illegal jumps (intra or inter-basic 
blocks), satisfying the 5th condition C5. In addition, monitor checks the input/output timing 
behavior of the hardware accelerator. Execution of OCM is performed concurrently to the 
execution of hardware accelerator. Thus, it has no impact of HWacc’s performance which 
satisfies the 6th condition, C6. 

 In addition, the proposed design flow enables to automatically translate high level assertions 
(e.g. ANSI-C asserts). Those assertions allow detecting data errors making the proposed 
design flow satisfying the 8th condition, C8. The design flow proposes several synthesis 
options to trade-off area overhead (4th condition, C4), performance (6th condition, C6) and 
protection level (7th condition, C7). 

Moreover, we enhanced the proposed design flow to satisfy the last condition C9 by resolving 
the problem of data corruption. This problem cannot be detected by simply checking the 
control flow execution or/and checking assertions. The proposed technique automatically 
identifies the most critical variables and then checks at runtime their values and their 
configuration paths. A new algorithm is proposed to compute the criticality of each variable 
taking into consideration its lifetime inside loops. 

Finally, the proposed design flow has been improved to detect as soon as possible the problem 
of infinite loops which allows further increasing the reactivity (the 7th condition C7) of 
generated monitors. This is performed by automatically extracting derivation properties of 
loops induction variables to check at runtime.  

The proposed design flow is integrated into the new version of the HLS tool of our research 
group, GAUT. The first step of this version of HLS tool transforms the high level 
specification into a Control Data Flow Graph, CDFG. All the proposed algorithms in this 
manuscript are based on graph analysis coming from different steps of HLS flow (e.g. CDFG, 
FSMD, etc.). Thus, any HLS tools that provide the possibility to present the results of their 
synthesis steps under intermediate format (e.g. .txt, .dot, etc.) can benefit from our works. 

To show the interest of the proposed OCMS approaches, several experiments have been 
carried on by using well-known HLS benchmarks, DSP domain and encryption standard. 
Experimental results shown that the error coverage on the control flow ranges from the 
99.75% to 100% while in average the area overhead incurred by the corresponding monitor is 
less than 10% and decreases when the application gains in complexity.  

In addition, results shown that synthesis optimizing timing performance allows sharing 
resource between mutually exclusive assertion checkers and reducing area overhead up to 
17.48% without any impact on the hardware accelerator’s performance. Moreover, results 
shown that the proposed synchronization mechanism between OCM and HWacc ensures that 
all assertions are executed. This reduces the rate of unexecuted assertion by 38.23% on 
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average (up to 64.71%) compared to previous mechanisms proposed in literature while in 
average the synchronization area overhead is less than 6%.  

The proposed algorithm to identify the most critical variables allows improving detection of 
variables that are alive or/and have descendants alive inside loops. Results shown that the 
previous algorithm needs to increase the number of most critical variables by 10 on average 
(up to 26 variables) compared to the one specified by designer in order to identify those 
variables. Obviously, such an increase has a negative impact on the area overhead (which 
depends primarily on the number of variables).   

Furthermore, considering derivation properties of loops induction variables improves the 
detection latency of control flow errors. In fact, it allows speeding up the detection of infinite 
loops by 99.89% on average compared to control flow checking and assertion verification 
approaches. In general, it reduces the error detection latency by 99.57% on average while in 
average it causes 7.35% of area overhead. Finally, results shown that the generation process 
of OCMs is independent of the selected compilation option and that the OCMs area overhead 
slightly depends on the selected compilation option.  

PERSPECTIVES 
In this manuscript, generated OCMs are intended to detect errors. Then, be an error detected, 
OCM warns designer to start a counter reaction. The counter reaction is out of the scope of 
our work.  

The first reaction is to prevent errors to propagate and/or induce disasters. In a second phase, 
the designer looks for the cause of malfunction. This identification is the key of bug fixing. 
However, designers can hardly analyze the RTL architecture generated by HLS to found the 
source of bug or to localize the detected error. This comes from the optimizations that are 
performed by HLS tools, and the lack of readability and end-to-end semantic preservation (as 
an example, there is no relation between variables within the high level specification and 
signals within the RTL architecture). Then, two short term perspectives can be proposed. 

To develop hardware debugger, we could enhance the functionality of generated OCM by 
identifying the operation and the line inside the source code of an application when a 
violation of a property (assertion or control flow) occurs during the execution inside FPGA. 
The goal is to improve backward tractability. 

To do this, we propose to integrate inside the OCM architecture a new module that allows 
analyzing the internal parameters of OCM. The principle is as follows: When an error is 
detected, the execution of the OCM and HWacc would be interrupted. Then, this new module 
would extract the value stored inside the State Register of the OCM FSM unit to identify the 
current OCM FSM state when an error occurred. Next, it would extract the current value 
inside the Delay Counter Unit. Then, the current state being executed inside the HWass FSM 
would be identified by adding the value extracted from the Delay Control Unit to the 
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identifier of the corresponding HWacc FSM state of the current OCM FSM state. The 
corresponding HWacc FSM states (notable states) of OCM FSM states would be stored in a 
dedicated data-base during the generation processes of OCM. Once, the current HWacc FSM 
state is identified, the corresponding line inside the source code would be identified by 
analyzing the set of operations that are performed during this HWacc FSM state. In addition, 
if the OCM checks the execution of HWacc through a set of assertions, then the new module 
extracts the identifier of the current assertions being checked.  

To identify the root causes of detected errors, we would develop the Error handler. The error 
handler would have to automatically identify the monitored variables associated to the 
verification approaches (ABV approach or/and control flow checking) used by OCM. It will 
also have to trace their values by using a circular memory. The use of circular memory 
provides a holistic view of the evolution of variables values (past, present and future). 
Monitored variables are all variables used by OCM to detect errors. For example, all assertion 
inputs are considered as monitored variables.  

In addition, error handler provides more flexibility to enhance the visibility of internal signals 
of HWacc by automatically identifying the most critical variables that influence the values of 
constraints monitored variables. The identification of those critical variables depends on the 
designer needs in terms of area overhead. All the stored values of critical variables or 
monitored variables are labeled by the name of their associated variables inside the high level 
specification to be understandable by designers.  

Then, designers can identify the root causes of errors by analyzing the evolution of the values 
of the stored variables. 

In the future , another technique to improve the error coverage of generated monitor would 
be to automatically deduce properties for critical variables. Those properties are different 
from those introduced by designers (i.e. ANSI-C assertions) or control flow properties. Those 
properties are based on the binary width of critical variables and on the analysis of data values 
produced during the execution of application (i.e. profiling) for a set of representative inputs. 

Another interesting perspective would be to introduce the debugging capability [93] within 
the generated OCM. Debugging means abstract analysis (high level of RTL description), 
controllability (halt, resume, step-by-step, etc.), introspection (full visibility over variables) 
and fast changes (agility, short cycles). The abstract analysis is offered by the error handler 
perspective. Designers can use assertions inside the high level specification as hardware 
breakpoint to check the execution of a portion of code (controllability). Then, we need to add 
capability to store the execution context when violation occurs. In addition, we need to add 
the capability to modify the value of some variables when the execution is interrupted (fast 
changes). Due to area overhead concern, we are not talking about providing such a support for 
all variables. Target variables could be specified by using a specific pragma inside the C code 
or could be automatically identified as the input of assertion statements. Modifying variables 
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relies on multiplexers that are inserted in the inputs of registers that contain the values of the 
selected variables. Then, debugging capability would allow designers to stop and to resume 
(step-by-step) the execution context of hardware accelerated under debugging or modifying 
some values without the need to start from the beginning.      

Enhancement over the generation process of OCM would allow supporting dynamicly 
reconfigurable architectures. Some portions of the OCM are application independent. Hence, 
designing OCM should rely on such partitioning between versatile and constant portions. The 
different modules of monitor’s data-path will be implemented as predefined hardware block 
within FPGA. The control part, OCM FSM, of monitor which is versatile will be 
implemented using a processor (i.e. MicroBlaze). Each FSM state’s command word will be 
defined as a specific instruction that starts or configures those predefined hardware blocks. 
Then, when the application of hardware accelerator would be updated, we would only need to 
reconfigure the processor in order to update the execution of monitor. Moreover, the 
generation process of OCM would be updated to map the predefined hardware blocks within 
Coarse-Grained Reconfigurable Architecture, CGRA. Several algorithms [94] that are 
proposed in our research group to optimize the mapping of application inside CGRA could be 
merged with our monitor generator algorithm. 

Finally , we propose to address the scalability issue. System On-Chip can contain one or many 
hardware accelerators. Faulty inter accelerator communication can be a cause of errors. As an 
example, an output can be valid from the producer point of view whereas violating a property 
at the receiver side. The verification mechanism over the I/Os prevents such a situation by 
detecting invalid designs. In this case, the generated OCM could halt the full system. 
However, those hardware accelerators may be updated at runtime (i.e. Dynamic Partial 
Reconfiguration, DPR). During the reconfiguration phase, the accelerators are not in nominal 
mode. Therefore, we need to improve monitors in order to differentiate the configuration 
mode from the execution mode. In particular, handling violations differs between the two 
modes.   

When a violation over an input data occurs, the OCM must check the mode of the component 
that generates this input data, before taking decision. If the producer is on execution mode, we 
fall back to the default behavior, and the system is halted. On the opposite, if the mode is 
configuration, OCM waits until the component switches back on execution mode. Only the 
consumer is halted. As a consequence, this mechanism offers a smart support for an OS 
management of DPR. 
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ANNEX SYNTHESIS OF RTL  ASSERTIONS 
 

Several techniques and tools have been proposed to transform RTL assertions into 
synthesizable monitors. Generated monitors perform the same verification compared to their 
associated assertions during the execution (at runtime) of circuits. This is similar to the 
objective of integrated logic analyzer (ILA). On contrast to ILA, those monitors can check 
complex properties. In fact, the set of logic and temporal operators provided by language of 
temporal property (such as PSL assertions) allow synthesizing integrated monitors that are 
more powerful and more sophisticated compared to integrated logic analyzers.   

The first result of the research related to the transformation of RTL assertions into hardware 
monitors is the tool RuleBase [43]. This tool has been developed by the company IBM and is 
only used for formal verification purpose. The input of this industrial tool is the set of 
temporal properties described by using the RCTL (Region Computing Tree Logic) [44] 
language. This language is based on the CTL expressions as well as adding the regular 
expressions [45] similar to those used with PSL. The Figure 0-1 shows the difference between 
an assertion described by CTL and the same one described by RCTL. The assertion consists 
on checking that the signal write must be followed by the read signal in the next two clock 
cycles. CTL imposes to specify each possibility individually, like formal verification 
approaches. RCTL allows making assertion’s condition more compact and more 
understandable than CTL.  

 
Figure 0-1 CTL vs. RCTL 

The specific version of RCTL language used by RuleBase is named Sugar [46]. It has been 
standardized by IEEE in 2005 to be the PSL language. Then, the first tool, to the best of our 
knowledge, used to transform assertions, described by the Sugar language, into RTL 
description has been developed by IBM, is named FoCs (Formal Checkers) [47]. This tool is 
an extension of RuleBase to allow functional verification in addition to formal verification. 
However, FoCs translates assertions into monitors (hardware description) for simulation 
purpose only. Figure 0-2, from [47], shows the verification flow in which FoCs operates. The 
designers provide the RTL description of an application, as well as a set of formal 
specifications and a set of test programs. Then, FoCs translates those formal specifications 
into a set of checkers. During the simulation, those checkers indicate if properties violations 
occur.  
 

CTL: AG (write → AX (read) ||  AX (AX(read)))
RCTL: AG (write→ next_event_f(clk) [1..2] (read))
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Figure 0-2 FoCs Environment 

Authors of [50] propose a new tool, Horus [51][52], to synthesize PSL assertions. The 
proposed technique to synthesize assertions is based on a modular approach which consists of 
implementing each PSL operator in a dedicated module (hardware component). Then, those 
modules are connected to each other to produce the PSL assertion. Figure 0-3 shows the 
monitor generated by this approach for the following property P:  

 

The overall monitor takes as input the master clock (Clk) and the reset (Reset_n) signals. It 
observes the signals A, B, C.   

In general, those modules (PSL operators) have a predefined interface including an activation 
signal (start), operands and output signals (checking, valid, etc.). Compared to FoCs, this tool 
generates more compact architectures from complex assertions. However, this efficiency 
slightly decreases for simple assertions. Finally, this tool has been validated by the PVS 
(Prototype Verification System) formal verification tool [53], which ensures the validity and 
the reliability of generated circuits. 

 
Figure 0-3 Property monitor for P 

In addition, the modular approach is used to automatically generate on-line test vectors by 
synthesizing PSL assertions with keyword assume [54]. This type of PSL assertion defines the 
set of constraints that the inputs of a given system must satisfy.   

Formal Spec 
RCTL

Design
(e.g. VHDL)

Test 
Programs

FoCs Checkers
(e.g. VHDL)

Simulator+

Failed?

Property P assert always (A → next![2] (B before! C))
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Hence, this approach allows reducing the time that is spent to model scenarios and to generate 
a set of test-benchs. Circuits generated by this technique are named Generators. The 
generation process of those generators is the same as the one used to generate monitors. The 
difference comes only from their library of modules (hardware components). A new module 
is proposed to produce generators named gnt_signal. This module is used to generate the 
operands for PSL operators. It contains a LSFR (Linear Feedback Shift Register) to generate a 
random number. This number defines the size of the Shift Register that is used to store the 
prediction made for the generation of the operands. The generation of operands begins when 
the start signal of the module is activated. Figure 0-4 shows the architecture of the generated 
circuit, Generator, for the following PSL assertion: 

 

 
Figure 0-4 Generator architecture for property H 

The generator presented in Figure 0-4 produces three signals to specify the behavior of two 
components during data transmission. It assumes that when a request for data transmission is 
received (Req signal) by component C1, then this component switches to transmission mode 
(by activating the Busy signal) until the second component C2 completes the transfer (by 
activating the signal Ack).      

However, the modular approach has limits with a subset of PSL operators, more precisely 
with the expression SERE of the temporal layer of PSL (see page 20). In fact, it only 
translates SERE properties that contain repetition operators for signals (e.g. next[N] A) and 
not for sequences (e.g. {S[*N]}). Moreover, SERE properties should not contain 
parallelization operators for sequences (e.g. “&&”). 

The tool proposed in [55] by Marc Boule, named MBAC, resolves this limitation of the 
modular approach. This tool is based on a full-automata approach which allows an entire 
assertion to be represented by a single automaton. This solution allows optimization that 
cannot be done in a modular approach where hardware components are only created for PSL 
operators. The full-automata approach is based on special treatment on the left and the right 
part of an implication, and a set of rewrite rules. Those rewrite rules are used to translate FL 

Property H: assume always (Reg→ (Busyuntil! Ack))
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operators into SERE operators. An example of rewrite of an FL operator (until) is shown in 
Figure 0-5. The set of rules and more examples of rewrite are presented in [56]. 

 
Figure 0-5 Rewrite example 

This approach uses a library of pre-defined automata associated to the set of SERE operators. 
The generation process of the full automaton for a given property starts by scanning the 
syntax tree of the PSL expression and performing rewrite rules if necessary. Next, each node 
is translated into an automaton coming from the library. Then, the parent of nodes builds its 
own sub-property automaton from its children automaton. The transition conditions are the 
expressions of the Boolean layer (see 20). Finally, those automata are recursively combined 
according to the operators used in a sequence (e.g. |, :, &&  ). Figure 0-6, extracted from [56], 
shows an example of an automaton generated from a given assertion. 

 
Figure 0-6 Generation process of an automaton for a given property [56] 

Next, the generated automaton is transformed into circuits using the One-Hot encoding [57] 
scheme.  

All those previous approaches are used to synthesize PSL assertions. However, the syntax of 
SVA (System Verilog Assertion) assertion is different from the one of PSL assertion.  

The approach introduced in [48] allows transforming SVA assertions into hardware monitor 
using the BSV (Bluespec SystemVerilog) language. BSV implements the Bleuspec semantic 
model in SystemVerilog. The Bleuspec [49] is a high-level synthesis tool that use atomic 
actions as inputs. In fact, it models the hardware component as a sequence of states. Then, 
designers specify operations to be performed on state element through rules. The example 
presented in Figure 0-7 , extracted from [48], shows a rule for a cache-controller. This rule 
iterates through all cache locations, and then writes back into the memory all the dirty 

FL: P until B
≡

SERE: {(~B)[+]:{P}}

Assert always {~a; a} |→ {b [*0:1]; c}
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locations. This operation is performed only if the current state of the cache controller is 
Synchronize. The execution of a given rule is controlled by the current state of the system.  

 
Figure 0-7 Cache-controller with BSV 

The technique proposed in [48] consists in transforming the SVA assertions into Bluespec 
modules (rules). Then, those modules are synthesized into hardware monitors by using the 
HLS. Each assertion is converted as a set of Finite State Machine (FSM): the main FSM 
controls the temporal sequence of steps given by the assertion, and the secondary FSMs are 
used to drive steps. 

   

//write back all contents of the cache
rule sync_cache (state == Synchronize);

case (cache[index]) matches
taggedvalid {.tag, .data., .isDirty}:

if (isDirty) begin
writeToMemory ({index, tag}, data);
notDirty(index);

end
default:

noAction;
endcase
state<= (index == ‘MAX_ADDRESS)?

Ready : Synchronize;
index <= index +1;

endrule
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ANNEX UML  NOTATION  
 

 

 

Aggregation relationship indicates that one class is a part of another class. It refers to a 
special type of association in which the objects are assembled or configured together to create 
a more complex object. 

Inheritance refers to the ability of one class (Concrete SubClass) to inherit the identical 
functionality of another class (Abstract class), and then can add new functionality.  

 

Interface class is used to describe functionality without implementation. It is just like a 
template where defines different functions and not the implementation. Interface class must 
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have at least one class that implements it. For class to implement interface it implements the 
functionality as per requirement.  
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