UMIVETS1té de bretagne
occidentale

THESE / UNIVERSITE DE BRETAGNE OCCIDENTALE présentée par

sous le sceau de I'Université européenne de Bretagne M Oh am ed Be N H AM M O U D A

pour obtenir le titre de

DOCTEUR DE L’UNIVERSITE DE BRETAGNE OCCIDENTALE
Mention : STIC

Ecole Doctorale SICMA

Lab-STICC

A Design Flow to - ieminsr 2o
AUtomatlcaIIy Generate On- M. Frédéric Pétrot
Chip Monitors during High- s oo

M. Sébastien Pillement

Level Synth eSiS Of Professeur, Ecole polytechnique Nantes / rapporteur
Hardware Accelerators . regiseveugie

Professeur, Université de Grenoble, Grenoble-INP / président

M. Loic Lagadec
Professeur, ENSTA-Bretagne / Directeur de thése

M. Philippe Coussy
Professeur, Université de Bretagne Sud / Encadrant

M. Yannick Teglia
STMicroelectronics/ Examinateur

This dissertation is dedicated to my beloved family
My mother Fathia
My father Abdel Kader
My sister Fatma
My Brother Bachir

My wife Malek

ACKNOWLEDGMENTS

| address my sincere thanks to M. Frederic PetndtM. Sebastien Pillement for reviewing
this thesis and providing their valuable advisesould like also to thank M. Régis Leveugle
and M. Yannick Teglia for participating to this #iecommittee.

I would like to express my gratitude to my two syeors Philippe Coussy and Loic Lagadec
for their constant support, friendly encouragemgnéat advices and guidance. You have
given me the opportunity to value my work througmsars and conferences.

I would like to thank Mickaél Lanog, research eeginat Université de Bretagne Sud, for his
constant support as we worked on the same HLSGAUT.

I would like to thank all my friends in ENSTA-Brege, in Université de Bretagne Sud and
in Université de Bretagne Occidentale.

Finally, 1 would like to express my gratitude to pgrents and my wife to their support and
love.

<Table of Contents

Table of Contents

TabIe Of CONENLS ...t e e e e e e e e e e eees [
LISE OF FIQUIES .ttt e e e e e e e e e e e e e e e e eeeeeebnnnnns %
LISt OF TADIES ... e e e e e e e e e e e e e e e s IX
LIS O ACTONYIMIS ... et errmm e e e e e e et ettt e e et s s e e eeeeaa s e e e e e eeeaeeeeeeeeensesnnnnns Xi
LY 0153 1 = ox S PP PPPPPPPPPPPPRR
(O F=T o (= g A Y o AV £ [ISP 3
0 R [o1 o o [¥ o 1o o PP TTRPPPPPP 5
R e (0] o] =70 o =[PP PTPPPPPP 5
1.2.1 Origin of errors (faultS)ccoiiiiiiiiiccceere e 5
1.2.2 Consequences Of faUltSccoovvei i e 6
1.3 FAUIE MOELeeiiiiiiiiiiiiiceee e ettt e e e e e 7
1.4 Evolution of design approaches...........coceeeeeeiiiiiie e eeeee e 7
1.5 ThesSiS CONIIDULIONS.. ...ttt 10
1.6 THESIS OULIINE.....uiiiiiiiiiiiiiiiiiie et ettt e e e e e e e bbb e eee s 11
Chapter 2 Background and Related WOrKoo oo ee i 13
P20 R [01 1 Yo [To{ 1 0] o O PSSP PUPRPUPPRRTTR 15
2.2 High-Level SYNthesiS FIOWcccooiiiiiii e 15
2.3 Hardware MONITOMNGoooiiiiiiiiieeies ettt a s e e e e e e e e e e e e e eaeeaeaaaaeeeees 18
2.4 Assertion Based VerifiCatiON e eereuetniaaaeaeeeeeeeeeeeeeeeessnsnsnmnnnnsennnes 20
2.4.1 Synthesis of High-Level assertions......... oo 23
2.5 Control FIOW CRECKINGuutieiiiiiii e s 30
2.5.1 Control flow checking using signature analySiS.......cccovveeeeeeiiiiiiiiiiiiiiinnns 30
2.5.2 Control Flow Checking using system call sequen@yarsccceee... 37
2.5.3 DISCUSSION ..cceiiiiitiiiiiia s e e e e e e e e e ettt e aeeeeeeeeaettbaa e e s s e e e e e e eeaeeeeeeesesssssnnnnnsssennnnns 38
2.6 Identification of the most critical variablesccccviiiiiiiiiii e, 39
FZ A B 1ol U = [o U 43
Chapter 3 On Chip Monitor SYNthesis FIOW.............. o eeeeeeeeeeeiiiiiiiiiineee e eeeeaaad AT,
I 0 A 1 11 {0 To [T 1[0] IO PP PPPPUPPPPPR 49

<Table of Contents

3.2 On-Chip Monitor SYNthesiS FIOW...........uuimmm e eeeeeeeeeeeeeeveiines e eeenee e 50
3.2.1 BaSIC AefiNItIONS ...ttt ie e e e et e e e e e e e e e e e e e e e e 51
3.2.2 CDFG ANAIYSIS ...ciiiie ettt mmmmme e et naaana e 52
3.2.3 FSMD ANNOTALION ...cevviiiiiiiieee et e e e s 55
.24 ID GENEIALION ...ttt e e e e e e e e+ e e et et ettt et e e e e e e e e e e anaaaaeeeaaaas 59
3.2.5 OCM GENEIALION ...ceeiiiiiiiiiiiiiaie e e e e eemmmm e e e e e e e e e e et e eeeeeareb b e e e e eeeaaae s 59

3.3 EXPerimental rESUILScooeiiiiiiiieee e 67
3.3.1 Error Coverage ANAIYSIScoouuiiiiiuiiiiiiiaeae ettt ena s 70
3.3.2 Areaoverhead ANAIYSISoooouiiiiiiiiiimm e 75

I S o [ox [1] o] o USSP 78

Chapter 4 Assertion Based Verification for High Level Syntlges............cccevvviviviniennnn. 79

7t R | 11 (0o U Tod 1 o] o ISP 81

4.2 Assertion Synthesis Flow (On-Chip Monitor Synthéki®y)cooeevviieeiiinnnnee 82
4.2.1 ASSErtion EXIrACHONiiiii it ae e e e 83
4.2.2 FSMD ANNOTALIONcooiiiiiiiieiiiiiii e e e s 87
4.2.3 ASSErtion CRECKETccooiiiiiiii ettt 90
424 OCM GENEIatiON SEEP ...uiieiiieeeeeeeeeeeee s e setassnasseeeaeeaaaaeseaeeeesssrennnnes 92

4.3 EXPerimental FESUILScovviiiiiii i e e e e e e e e e e e e e e 96
4.3.1 Performance overhead analySiS...........ooccceeeeeieiiiiiiiiieere e 98
4.3.2 Areaoverhead analySiS..........cccoviiiiiieeuiiiii e 99

4.4 CONCIUSION ...ttt sttt et e e e e e e e e e e e e e e e s s s bbbt nneeeeeeeeeesesannns 102

Chapter 5 On-Chip Monitor OptimIZatiONScoiiiiceee e eeeeaa) 03L

5.1 INTrOAUCTION ...ttt e e et rn e e e e e e e e e e e e e e nan 105

5.2 Unified On-Chip Monitor Synthesis flow ..o, 105
5.2.1 Assertion and Control Structure EXtraction ..cceeee..coooeeeeeiiiiiiiiiiiiiiiiiinenee, 106
5.2.2 FSMD ANNOLALION ...t e e e e e e e e e e 112
A T | B € 1= o [T = 1[0 o 113
5.24 RTL CheCKer COIES....cccuiiiiiiiiiiiiiiie st ittt e e e e e e e eeeeeeeeaennsnnnnans 113
5.2.5 OCM GENEIAtIONcciiiiiiiiiiiiiiiiiea e eeeeemiaaa s e e e e e e e e e e e e eeeeeeeeesesennnn e 117

5.3 EXperimental reSUILSoooiiiiiiiiiiiii e 121
5.3.1 Performance overhead analySiS...........coocoiiiiiiiiiiiiii 123
5.3.2 Areaoverhead ANAIYSISoouuuuuiiiiiii e 124
5.3.3 Impact of the compilation OPtIONS...........ceeemmniiiiieiiiiiiiiee 127

<Table of Contents

5.3.4 Error Coverage ANAIYSISuuuuuiuiiiiiiiiieeeeeeeeeeeeeeeeeseiisne e e e e e e e e e e e aaeens 129
5.4 CONCIUSION ..ttt sttt et et e e e e e e e e e e e e s e s e ettt bn e e e eeeeeeeeanennnns 132
Chapter 6 On-Chip Monitor for Critical Variables........cccccceeeiiiiiniiiiiiiiieee, 135
6.1 INTrOAUCTION ...ttt rrr e e e e e e e e e e e e 137
6.2 On-Chip Monitor Synthesis Flow for critical vari@il................cccccvviiiiininnn. 137
6.2.1 RUIE EXIrACONuuiiiiiiiii et 138
6.2.2 Critical Variable ldentification.............ccuuuuiiiiin e 140
6.2.3 FSMD ANNOLALIONuuuiiiiiiiee ettt a e e e e e e e aeeeees 142
6.2.4 Path EXIraCtionccooiiiiiiiiiiiiiiitceemmm et 144
6.2.5 OCM GENEIALION .. .coiiiiieiiiieieitit e e e e ee e e e e e e e e e e e e e eeeeeeeeseann e 144
6.3 EXperimental reSUILSoooiiiiiiiiiiii e 148
6.3.1 Variable Criticality ANAlYSISccouuiuiiummiiiiiieee e e 150
6.3.2 Area Overhead ANalYSIS..........cooiiiiiiiiicemmmmeiae e e 153
6.3.3 Error Coverage ANalYSIScoouiiiiiiiiiiiiiiiiie e 156
G @] o o1 U1 [0 o PP PUPPPPPRTR 157
CoNClUSION aNd PEIrSPECLIVESee e e evesttnaeassaaeeeaeeaaseeeeesssssnnnnnsessssnnnnnnes 159
Annex Synthesis Of RTL @SSEIMTIONSvuucceeeeiieeeeiiiiiiiiiise e e e e e e e e e eeeeeeeeeeeeeneeeeeeeennnnn 165
ANNEX UML NOTALION ...eiiiiiiiiiiieieee e ceeee ettt s s e e e e e e e e e e e e e e nnaes 171
=1][ToTe =T o] 0 /28U ESSPPPUPPRP 173

<Table of Contents

-iv-

List of Figures

List of Figures

Figure 1-1: Traditional design flow (a) and its@sated verification methods (b) 8...
Figure 1-2 Design flow with High-Level Synthesigapachoooovviiiiiiiiiiiiie e, 8
Figure 2-1 High-Level Synthesis flow ... 16
Figure 2-2 Filter example (a) Code source, (b) Bddav Graph, (C) Control Flow Graph, (d)
Finite State Machine with Data path. ... e 17
Figure 2-3: Integrated LOgQIC ANAIYZET ... 18
Figure 2-4 Structure of the PSL lanQUAQJE ...ccoom oo 21
Figure 2-5 (a) Vunit (b) Connection between vunidl énstance of RTL module................... 21
Figure 2-6 example of modeling layer with auxiliagfriablecooeeiiiiiiiiiiiiiiiceeenes 22
Figure 2-7 SQRT application With @SSEIMIONS ceeiveeieiiiiiiiiiiie e ee e eeveeeeee e 23
Figure 2-8 A temporal assertion and its Synth@SSlt................cccoevveeeieieeiiiieeees e 24
Figure 2-9 A combinational assertion and its sysi1BesUlt..............cooevviviiiiiii e 24
Figure 2-10 Assertion support in HLS flOW [64].......eiiiiiieiiiieeeeeeee e 25
Figure 2-11 Untimed C++ assertion and its tempBB&iL transformationccccccceeeen. 26
Figure 2-12 Converting ANSI-C assertion into codderstandable by the Impulse-C tool.. 27
Figure 2-13 ASSertion frameWOrKooouuuueiiiiiieee e 27
Figure 2-14 Assertion framework supporting han@abn...............ooevvvviieiiiiiinnneeeeee 28
Figure 2-15 Horizontal Signatures [70]cceeeeiuiiiiiiiiiiiiiie e e eeee e e 33
Figure 2-16 General Configuration FOr OSLC [78]...ccoviiiiiiieiiiiieeeeeese e 36
Figure 2-17 Architecture detail of the runtime mon{78] ..o 38
Figure 3-1 Architecture of hardware acceleratoregated by HLS tool 49.
Figure 3-2 Control flOW ©ITOISiioii e cceeeee e e ee e e e e e e e e e e e e e e e eeeeananes 50
Figure 3-3 Proposed design flow to check the execwf control flow of hardware
accelerators generated DY HLS tOO] ... e 51
Figure 3-4 Algorithm of Depth-First Search ..., 53
Figure 3-5 Identification of CONtrol StrUCIUIES. coc......ccooiiiiiiee e 53
Figure 3-6 the compilation Of |00 CONSEIUCES. caaeevvvvviiiiiiiiiie e 54
Figure 3-7 Algorithm of loop detection and param&BXtractioncccceeeeeeeeeeeeeees 56
Figure 3-8 FSMD_s and its characteristics (a) FSsI[b) Control flow path (c) Annotated

F S S ittt ———— 111144444 bbbttt e e e e e e e e e bbbt e e e e 57
Figure 3-9: The design of the FSMD AnNotation SteP.......ccoovveeireiiiiiiiieeiiiiiiiieeens 58
Figure 3-10 Algorithm to build the OCM FSMccccoiiiiiiiic e 60
Figure 3-11 OCM FSM Generator (a) Annotated FSM®)OCM FSM............ccoovvvvviinnns 62
Figure 3-12: The design of the OCM FSM BuUild SIEP.........cuvviiiiiiiiiiiiieieeeeeeeeeeeieeeee 62
Figure 3-13 the design of the OCM DP BuUild Step.cc....cevvvvveiiiiiiiiiiiieee e 63
Figure 3-14 On-Chip Monitor ArChite@CIUrecceeeeiiieiieeiiiiccee e eeee e 64
Figure 3-15 Basic Block Control Unit (a) example-iivacc FSM (b) BBCU Architecture 65
Figure 3-16 Jump Control Unit arcChit@Cturecccc......oovvvviiiiiiiie e 67
Figure 3-17: The design flow for eXperimentS ... 68
Figure 3-18 Redundancy approach ... 72

List of Figures

Figure 3-19 Intra-basic block alterationscccc...eevieiiiiii e 73
Figure 3-20 (a) example of SR alteration (b) asgedi OCM FSM and (c) the execution of
the Basic BIOCK CONrOl UNIT.......ooooi e 74
Figure 3-21 Combined alteration: ID and SR ..cccceeeiiiiiiiiiiiiireeeee e 75
Figure 3-22: Error Detection MISMALCRcceeeeeiiieiie i eeee e e 75
Figure 3-23: Area overhead inCUrred DY OCM . caaeiieeiiiiiiiiiiiieee e eee e eeeeeeveeeeeeeeeeees 76
Figure 3-24: OCM overhead with partial loop UNITL..........cccoovriiiiiiiiiiiieee e 77
Figure 4-1: Assertion Synthesis flow (OCMS fIOW).cc...coooiieiiiiiiiii e, 83
Figure 4-2: FIR filter decorated with ANSI-C assamt(a) Source code with assertions (b)
CFG (c) DFG of BB6 (d) DFG of BB5 (e) Assert FunctiCallcoooviiiiiinnininnnnnd 84
Figure 4-3: Algorithm of Border Node Identification................uuuiiiiiiiinniee e 86
Figure 4-4: Assertion Extraction result: (a) CDFGAWb) DFG of BB5 and BB6............... 86
Figure 4-5: algorithm of assertion states iderdti@n................cccceeeeiiieeiiieee e ccceeeeeee e 88
Figure 4-6 (a) CDFG_WA (b) Annotated FSMDccc..oooiiiiiiiiiiieeee e 89
Figure 4-7: The design of Assertion Checker StepP.....ccccovviieiiiiiiiieece e 90
Figure 4-8: Merging Synchronized Assertion algamth...............ccccceeeiiiiii e, 91
Figure 4-9 the new design of the OCM DP build Step.......cccooeeeiiiiiiiiiiiiiiieees 93
Figure 4-10 (a) Annotated FSMD_S (D) OCM FSMueeeiiiiiaiiieiiiiieiiieeiiiiii s 93
Figure 4-11: OCM architecture to check assertiaoktions (a) synthesis speed option (b)
SYNENESIS @rea OPLION ... e e e et e e e e e e e e e e e e e e e e b e as 94
Figure 4-12: Assertion Control Unit architecturg §peed option (b) area option 95
Figure 4-13: The execution runtime with area OpLioN..............ciiiiiiiiieii e reeeeeee e, 96
Figure 4-14: Assertion synthesis time overN@ad .ccc........ccoovvvvviveeiiiiiiiiiie e 98
Figure 4-15: Execution runtime overhead......cccccccoooiiii i 99
Figure 4-16: Area overhead of OCM to check asS®@rtiQ.............euveiiiiiiieeeeiiiiieeiiieeen, 100
Figure 4-17: Unexecuted Assertion Rate due toall@gmps...........coooviviiiiiiiiiiiiininns v 101
Figure 4-18: Unexecuted Assertion Rate due tO MefllOOPScevvieeiieeeiiiiiiiiiiiiieeens 101
Figure 5-1: Unified On-Chip Monitor Synthesis flow............ccccooeoiiiiiiiiiiiiiiiis 106
Figure 5-2: FIR filter (a) CFG-00, (b) DFG of BB@&th -O0, (c) loop2's condition, (d) CFG
with -O3, (e) DFG of BB4 with -O3, (f) loop's bourtdeckingcovvvviiiiciiiiieeeees o 108
Figure 5-3: CDFG with assertions (a) source codh assertions, (b) CDFG_A, (c)
(1B T TP PP PP PPPPPPPRRR 108
Figure 5-4 Evolution of the algorithm of loop ddien and parameters extraction 111
Figure 5-5: (a) annotated FSMD_S (D) OCM FSM.....cciiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 113
Figure 5-6: Execution time impact of OptArea optampared to Area option.................. 114
Figure 5-7: Mutually exclusive (a) in linear trainsn (b) inside loop's body.................. 116
Figure 5-8: Merging process algorithm used in tipeéSpeed optionccevvvvviinnnens 116
Figure 5-9: the new design of the OCM FSM buil@Ste...........ceviiiiiiiiiiiiiieiieeeeeevieee 118
Figure 5-10: Architecture of Unified OCMcoeiiiiiiiiiiiiiiiire e ee e 119
Figure 5-11: Basic Block Control Unit (a) Binaryding style (b) one-hot coding style 120
Figure 5-12: Synthesis Time overhead accordingtopslation optioncccceeeeeeeenn.. 22
Figure 5-13: Execution runtime overhead compareditapter 3 and Chapter 4................. 123
Figure 5-14: Assertion OCM Slice overhead compaoedhapter 4cccceeeieiiiieneeeeenn. 512
Figure 5-15: CFC OCM Slice overhead compared toqp@&neccoevvvviiiiviiiiiinnnnn. 126

-Vi-

Figure 5-16: Unified OCM Slice overhead ...t 127

Figure 5-17: Compilation Option IMPACT ..o eeeeeiiiiiiiiiiiiiiiir e e 128
Figure 5-18: The occupied slices of OCM accordmgdmpilation options 128
Figure 5-19: UER when One-Hot coding is selecteithmut assertions)cccceeeeeeenn... 130
Figure 5-20: CFC OCM slice overhead depending erstiected coding manner (binary or
(0] = T]) SO 130
Figure 5-21: illegal jump scenario With aSSErtion..............evvveviiiiiiiieiie e e eeeeeeeeee 131
Figure 5-22: UER when the One-hot coding is setkatel the assertion verification results
=TI o 0] 0K 0 [T 1= o HA PP 132
Figure 6-1: Proposed design flow for critical VAEEScoooiiiiiiiiiiiiiii e 139
Figure 6-2: Compute variable lifetime algorithm 141
Figure 6-3: compute variable lifetime inside NedBIPSceeiiiieriiiiiiiee e 142
Figure 6-4: (a) Annotated FSMD _s with 4 Criticatiahles (b)) OCM FSM 143
Figure 6-5: Architecture of OCM for Critical Varibs...............ccoovvvveveiiiinnneee e s 146
Figure 6-6: Critical Control Unit arChiteCtUre..............oovvvveviiiiiiiiiii e eeeeee e, 147
Figure 6-7: Induction Control Unit arChiteCtUre. ce.......oovvvvvviiiiiiiieiee e, 148
Figure 6-8: Execution time compared t0 [86] ..cceem . iiiiiiiiiiiiiiiiiiiiiiee e 150
Figure 6-9: Identification of the most critical \adle vs. [86] when standard compilation
OPLION IS SEIECLEM ...t ee e e e e s s e e e e e e e e e e e e eeeeseeebnnnas 152
Figure 6-10: Identification of the most criticalnables vs. [86] when optimized compilation
(o] o110 o I ESTEST= 1Yo U= o S UPSPPPPPURR 152
Figure 6-11: Synthesis time overhead accordingeaumber of critical variables............. 153
Figure 6-12: slice overhead according to the nuroberitical variables 154
FIQUIE 0-1 CTL VS. RCT L ceiiiiiiiiiiiiiiis s s s s s e e e e e e e e e e e e e e e eee e see e e e a e e e e e aaa e 165
Figure 0-2 FOCS ENVIFONMENT.....uuiiiiii ettt e e e e e e e e e e e e e e eeeeeeeeeeeeeeenennnnes 166
Figure 0-3 Property MONitor fOr P ... e eee e e e 166
Figure 0-4 Generator architecture for property.H...........ooooiiiiiii e, 167
Figure 0-5 ReWIrite @XamPIeo 168
Figure 0-6 Generation process of an automaton fiiven property [56]............ccoevvrennnnd 681
Figure 0-7 Cache-controller With BSV ..o eeeeeiiiiiiieesin e eenaaa e e 169

-Vii-

-Viii -

List of Tables

List of Tables

Table 2-1: Binding results for DFG Of BBA4.....ccccoiviiiiiiiiiiiiiiieeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeees 18
Table 2-2: verification CONAITIONSooiiiiiiiiiii s 44
Table 3-1 Application CharacCteriStiCS........cuuuuririiiiiiiiiie e s 68
Table 3-2 CDFG and architecture characteristiCS..........oooovviiiiiiiiiiiiiiiiiiiiceee e e 69
Table 3-3: Synthesize time OVErhead o eereriiiiiiiiiee e 70
Table 3-4: OCM area CharaCteriStiCS.........couuviuuiiiiiiiiiiiiiiieieee e 77
Table 4-1: ASSErtioN CAtEQOIIESuuvvtceeemrneuiieeeeeeeeeeeeateererearrrrnnn e aaaaaaees 97
Table 4-2: Architecture CharaCteriStiCSccceaeirrrrmiiiiiiiee et 97
Table 5-1: Application characteristics accordinghte compilation option....................... 231
Table 5-2 Synthesis options VS. CONAItIONSuueuieiiiiiiiiiiiie e 132
Table 6-1: CDFG Characteristics according to coatjgh OptionSccoeeeevvvieeeveennns 149
Table 6-2: Architecture characteristics with cativariables..............cccccoiiiiiiiicmmmmnnne 150
Table 6-3: Area of monitor according to the schedalgorithmscccccceeeeiiiiiiion 155
Table 6-4: Error Detection Latency (Clock CYCI@S).........cvviiiiiiiiiiiiiiiiieeiae 157

-iX-

List of Tables

List of Acronyms

ALAP

ASAP

ASIP

A
As Late As Possible
As Soon As Possible

Application-Specific

Integrated-Processor

ABV
Verification

API
Interface

CFlI
CDFG
CFG
CFC

CTL

DP
DFG
DUV

DSM
Monitoring

DDG
Graph

DFS

DMTR

Redundancy

Assertion Based

Application Programming

C

Control Flow Integrity
Control Data Flow Graph
Control Flow Graph
Control Flow Checking

Computation Tree Logic

D
Data-Path
Data Flow Graph
Design Under Verification

Disjunction Signature

Dynamic Dependency

Depth-First Search

Dual-Modular Temporal

-Xi-

ESL

ESM
Monitoring

SEU

EDA
Automation

EMF
Framework

FSM

FSMD
Data-Path

FPGA
Array

HDL
Language

HLS

ILA

LTL

List of Acronyms

E

Electronic System Level

Embedded Signature

Single Event Upset

Electronic Design

Eclipse Modeling

F

Finite State Machine

Finite State Machine with

Field Programmable Gate

H

Hardware Description

High-Level Synthesis

Integrated Circuit

Integrated Logic Analyzer

L

Linear Temporal Logic

M

List of Acronyms

MBU Multiple Bit Upset
MSCS Monitoring System Call
Sequence

N
NoC Network On-Chip

@)
OVvL Open Verification Library
OBE Optional Branching
Language

)
PSL Property Specification
Language

NOTATIONS |INDEX

A
AC Assertion Checker, P83
ACOND Assertion Condition, P83
ACSE Assertion Control Structure
Extraction, P105
ACU Assertion Checker Unit, P93
ASTATE Assertion Statement, P83
B
BB Basic Block, P15
BBCU BB Control Unit, P63
C
CB Condition Block, P52

CCU Checker Control Unit, P118

RAM

RTL

SoC
SVA

SSA

UART

R

Random-Access Memory

Register Transfer Level

S

System On-Chip
System Verilog Assertion

Static Single Assignment

U

Universal Asynchronous

Receiver Transmitter

UML

ccu
CDFG_A

CDFG_WA
P83

CFS
Cjs
CN
ComS
CS

CSS

DCU

Unified Modeling Language

Critical Control Unit, P145
CDFG with Assertion, P83

CDFG Without Assertion,

Control Flow State, P57
Conjunction State, P57
Condition Node, P54
Communication State, P57
Control Structure, P52

Control Successor State, 57

D

Delay Control Unit, P63

F

List of Acronyms

FID

GIS
P143

HS

HSP
P59

HWacc

IAS
ICS

ICU
P145

IOCU
P63

JCU

LH

LIEF

First Assert_ID, P91

G

Generate Induction State,

H

Header State, P58

Header State Predecessor,

Hardware Accelerator, P1

Input Assertion State, P87
Input Checker State, 112

Induction Control Unit,

Input/Output Control Unit,

J
Jump Control Unit, P64
L

Loop Header, P52

Loop Induction Evolution

Function, P142

LIFS

State, P57

LL

LS

MS

Loop Increment Function

Loop Latch, P52

Latch State, P58

M

Merged States, P115

OCM

OCMS
P50

PCU

RS

SAS
SB
SCS

SR

TCU
P117

UAR
P100

UER
UIN

uIS
P143

WCU

WS

O
On-Chip Monitor, P1

On-Chip Monitor Synthesis,

P

Path Control Unit, P145

R

Read State, P143

S

Start Assertion State, P87
Synchronization Block, P99
Start Checker State, P112

State Register, P70

T

Transition Control Unit,

U

Unexecuted Assertion Rate,

Undetected Error Rate, P71
Update Induction Node, P54

Update Induction State,

W

Write Control Unit, P145

Write State, P143

List of Acronyms

Abstract

ABSTRACT

Embedded systems are increasingly used in varimldsflike transportation, industrial
automation, telecommunication or healthcare to @beecritical applications and manipulate
sensitive data. These systems often involve firsdrand industrial interests but also human
lives which imposes strong safety constraints. lde@ackey issue lies in the ability of such
systems to respond safely when errors occur ainmeréind prevent unacceptable behaviors.
Errors can be due to natural causes such as pahiitd as well as internal noise, integrity
problems, but also due to malicious attacks. Eméedystem architecture typically includes
processor (s), memories, Input / Output interfdnes controller and hardware accelerators
that are used to improve both energy efficiency pedormance. With the evolution of
applications, the design cycle of hardware acctlesabecomes more and more complex.
This complexity is partly due to the specificatioihhardware accelerators traditionally based
on handwritten Hardware Description Language (HbBe}. However, High-Level Synthesis
(HLS) that promotes automatic or semi-automatic egation of hardware accelerators
according to software specification, like C cod&ves reducing this complexity.

The work proposed in this document targets thegmateon of verification support in HLS
tools to generate On-Chip Monitors (OCMs) during thigh-level synthesis of hardware
accelerators (HWaccs). Three distinct contributians proposed. The first one consists in
checking the Input / Output timing behavior err@gnchronization with the whole system)
as well as the control flow errors (illegal jumps iofinite loops). On-Chip Monitors are
automatically synthesized and require no modiftratin their high-level specification. The
second contribution targets the synthesis of heyell properties (ANSI-C asserts) that are
added into the software specification of HWacc. tBgsis options are proposed to trade-off
area overhead, performance impact and protectiai. I&he third contribution improves the
detection of data corruptions that can alter tloeest values or/and modify the data transfers
without causing assertions violations or produdllegal jumps. Those errors are detected by
duplicating a subset of program’s data limitedhe tost critical variables. In addition, the
properties over the evolution of loops inductiomiables are automatically extracted from the
algorithmic description of HWacc. It should be wetl that all the proposed approaches, in
this document, allow only detecting errors at nmati The counter reaction i.e. the way how
the HWacc reacts if an error is detected is ostcope of this work.

Keywords: High-Level Synthesis (HLS), Hardware AccelerafidiWacc), On-Chip Monitor
(OCM), Assertions, Control Flow, Errors.

Abstract

Motivation

Chapter1 MOTIVATION

0 R [1o o 18 o 1o o PR TTTPPPPPP 5
R e (0] o] =70 o =[PP PTPPPPPP 5
1.2.1 Origin of errors (faultS)ccooiiiiiiiiicceeecce e 5
1.2.2 Consequences Of faUltS.......cccooiei i e 6
1.3 FAUIE MOELeeiiiiiiiiiiiiiceee e ettt e e e e e 7
1.4 Evolution of design approaches...........coceeeeeeiiiiiie e e 7
1.5 ThesisS CONIIDULIONS.. ..o 10
1.6 THESIS OULIINE.....uiiiiiiiiiiiiiieiiie et e e e e e e e ee e 11

Embedded systems are exposed to multiple errors.chiapter illustrates the origin of those
errors and their consequences on the behavior dfeeitled systems. In addition, this chapter
presents the gap between the evolution of desigroaphes and the verification approaches.
Then, it introduces the thesis contribution, amallly, presents the outline of this thesis.

-3

Motivation

Motivation

1.1 Introduction

Nowadays, integrated circuits (IC) are everywhere their uses have become indispensable.
They are used to perform complex computations andxecute critical applications. The
human dependency with those components is moremard pronounced. Therefore, it is
necessary to ensure a proper functionality of l&stually, more than 40 processors are
embedded inside a classic car. They drive sensfiniats such as the direction and the
braking system. In addition, the new generatiomotot like Robonaut [1] has emerged to
execute medical operation such as ultrasounds ymtges manipulation. Hence, users are
dependent on those systems and the safety carbergyaranteed if the expected behavior of
embedded systems is also guaranteed. Moreovegvibiation of application’s complexity
makes the design cycle of embedded systems morplewrnwhich increases the time-to-
market. An evolution of design methods becomesspehsable to reduce this complexity.
Hence, Electronic System Level (ESL) design apgrea@re gaining momentum and High-
Level Synthesis (HLS) is more and more used togmesomplex integrated circuits. Those
HLS tools allow automatic generation of hardwarenponents according to their high level
specification and a set of constraints that areciipd by the designer. Therefore, the
execution of generated RTL architectures by thok& kbols must be checked at runtime,
after they have been integrated in an embedde@mystgainst different types of errors to
ensure safety and security.

In this chapter, we will discuss the sources ardctinsequences of errors which may occur at
runtime in those embedded systems. Next, afteepties) the traditional design approaches,
we will briefly introduce the objective of HLS t@oand the gap between existing verification
approaches and those tools.

1.2 Problematic

Embedded systems are exposed to multiple faultsatbex their behaviors. Those faults can
be classified into two categories. The first catgggathers the design and fabrication
problems (e.g. signal integrity issues [91]). Thexad category regroups problems of
disruption due to either the environment (i.e. iplrthits) or malicious attacks, or aging of
circuit (i.e. characteristics degradation).

In this document, we only focus on the second categf faults that alter the execution of
circuits at runtime and we assume that the gerceteuits are correct by construction.

1.2.1 Origin of errors (faults)
1.2.1.1 Technology limits

Aging is a well-known technological limit of intesped circuits. This problem refers to the
deterioration of circuit performance over time.dits have always been aging, but it wasn’t
significant until the latest iteration of Moore’aw, which pushed transistor channel lengths
down to 0.18 um. Circuit aging can infer slowerexgtgeand irregular timing behavior [12]. As

-5

Motivation

consequence, the runtime constraints of applicattbat are implemented within IC can be

violated. In addition, this problem increases pl&er consumption of ICs [11]. Technology

limits include also the functionality mode of trasters. Each transistor has critical voltage
threshold: Under this threshold, the transistocasfigured in locked mode and then no

current is supplied. Hence, any modification of sberce voltage can impact the execution of
integrated circuits.

1.2.1.2 Environment problems

Environment is a source of radiations. Those rawhat can be cosmic rays and/or solar
particle events and/or nuclear radiations. Impattshose radiations are usually transient,
creating glitches and soft errors. For exampley tiféect the logical states of flip-flops and
memory cells. In the worst case, those radiatiead ko permanent damage which induces the
destruction of the integrated circuits. Therefdhey present a risk that is increasing with
respect to the reliability of the modern electrosystems.

1.2.1.3 Malicious attacks

In addition to technology limits and environmenblplems, it is now necessary to consider
errors due to malicious attacks. In fact, embedsistems often implement safety critical
applications making security property a more andemimportant aspect in their design. So, it
Is essential to consider attacks that are usedaoifynthe behavior of a system in order to
obtain additional rights or extract sensible da&t ust remain secret such as encryption key
in credit cards [2]. Runtime and control flow intiyg (CFI) attacks constitute one of the most
severe threats to software programs. Although Gfdcks are well-known in computer
systems, they have been recently shown to be sepimblem in embedded systems as well
[3], [4] and [5]. Moreover, there are classes ¢acks that do not target the software part of
embedded system, but the hardware component [&ads Such attacks include Random-
Access Memory (RAM) overwriting [7] that can be dge force the state of a static RAM
point, optically induced faults [8] that cause eg&d transistor to conduct by illuminating it
thereby inducing a transient fault and clock or poglitch attacks [9] that induce internal
system errors by introducing glitches on clock awpr supply.

1.2.2 Consequences of faults

Fault can remain silent for long periods of timehe case where it is in an unused part of the
circuit, or if it is temporarily masked during tegecution of the application. Otherwise, it is
activated and alters the execution. Errors, cormsops of faults, are classified into two
categories:

» Soft-error: error is characterized by an alteratbtmer data or a modification of the
current execution state. This type of error doetscaase circuit destruction. In fact,
the circuit will operate normally after removingans. For example, soft error inside

Motivation

hardware register disappears after rewriting indide same register (update its
value). However, this fault can propagate withia glystem causing new errors.
» Hard-error: error causes total or partial destaurctf circuit.

1.3 Fault model

Single Event Upset (SEU) i.e. a localized partiohpact that leads to fault that altering a
single bit has been widely considered in the exgstvorks. In contrast, Multiple Event Upset
(MEU) has been few addressed in state of the anveder, nowadays it must be taken into
consideration. The impact of fault can influenceesal transistors associated with several
memory cells. In that case, there are multiple atffesuch as Multiple Bit Upset MBU
(usually defined as several erroneous bits in #mesregister) and Multiple Cell Upset MCU
(several erroneous bits in different registers).

In our works, we consider a general fault modehwivo types of alterations, Single and
Combined, which encompass those existing modelst, 8BU and MCU. Single alteration
consists in performing MBU or SEU (that are a splecase of MBU with the number of
faults equal to 1) on a single element inside thehitecture of the integrated circuit.
Combined alteration consists in performing multipleerations over several elements inside
the architecture of the integrated circuit, like MCFor example, we can find a SEU on an
element and MBU on another element of integratezliti

1.4 Evolution of design approaches

The evolution of the capacity to integrate sevemhponents within the same chip, System
On-Chip (SoC), is largely driven by the evolutidnapplications. Designers need CAD/EDA
tools to support that automate tedious and errmmetasks, but also offer new functionalities.
This became critical as the complexity grew up.

For example, mobiles phones were only designeddeive and transmit voice (e.g. Motorola
DynaTAC 8000X in 1983). However today, they alloiwing videos of high definition and
executing complex 3D games. As a consequence, maeartphones embed a system on
Chips.

Time-to-market pressure combined with complexitgpplications require design methods to
evolve. Figurel-1.a illustrates the traditional design flow of intatgd circuits.

Motivation

(N\
High Level Specification
L
Behaviorlevel (Algorithmic) | ¢ Simulations
+
1 | | Formal
Register Transfer Level (RTL) | 4= | ic —tion
& J
L
Gate Level 4= Emulation
“ J
Voo Silicon
Integrated Circuit & Debug
(a) (b)

Figure 1-1: Traditional design flow (a) and its@sated verification methods (b)

Traditionally, the design of application startsvegting the high level specification (e.g. text
document) that describes the functionality of tppli@ation. For that purpose, an executable
model is quite frequently created (like C code).tidis stage, the application specification is
essentially functional without hardware implemeiotatdetails. It defines “what” the system
does. The next stage is to craft an architectunenfdement the desired functionality. The
architecture defines “how” the system does therdddunctionality. Finally, designers hand
code these architectures with Hardware Descrigtemmguage (e.g. VHDL) at the RTL level.
However, finding a correct architecture is a compiesk, and finding an optimized one is
even more challenging. Fundamental issue is thauadarature of this entire design method.
In fact, a manual intervention is a source of exrdihe hand coded RTL description is tested
and time is spent trying to hunt bugs down andxtohiem.

Therefore, the bigger the system and the more ariple application, the more probability
to have errors and the more difficult to meet thkay.

L Specifications ’
I

N)
(Constraints] Behavior
description

High Level

Synthesis Tool

[RTL description }

Figure 1-2 Design flow with High-Level Synthesigapach
-8-

Motivation

High level synthesis (HLS) approaches can helpdiwesthis problem by automatically
producing the RTL description of an applicationnfrits high level specification (see Figure
1-2). Moreover, it allows generating several differeituits depending on constraints that
are specified by designers such as the latencyedsped number of hardware resource
instances. The RTL architectures, generated by téb$, are composed of a control part, a
Finite State Machine (FSM), and an operative péw¢, Data Path (DP). The HLS tools
provided by industrial companies are Catapult-C] ft@m Calypto, Synphony-C-Compiler
[14] from Synopsis and the Cynthesizer [15] fromd@ace Design Systems. In addition,
several academic tools have been developed foands@urposes such as GAUT [16] from
Université de Bretagne Sud, ROCCC [17] from Jaatjeamputing Inc or LegUp [20] from
the University of Toronto. In this work, we are ddbe last version of GAUT (this version is
currently in its final validation phase prior tolpic release).

The HLS flow splits into several steps:

« Compilation step: it translates the high level ipeation into a formal representation
(e.g. Control Data Flow Graph, CDFG);

« Allocation step: it defines how many instancesaiftetype of resource are required,;

* Scheduling step: it determines the control stegnduwhich operations start their
executions. Those control steps are modeled byiteFstate Machine with Data-Path
(FSMD);

* Binding step: it assigns operations to operatalata to registers and allows resource
sharing;

» Generation step: it produces the RTL descriptiothefhardware accelerator.

More details of HLS flow will be provided in the xtechapter.

While design tools have been evolving, verificatitwols received only few evolutions.
Hence, the gap between design tools and verificagidl grows up. Most of the existing
verification methods focus on a specific level tis@maction (see Figuré-1.b), and few
attention has been put on portability (from onesldw another). Thus, each stage of the HLS
flow (that performs refinement over an abstractioodel) owns its verification techniques.
There is no way to set up a full validation flow pseserving the semantic down to IC (e.g.
both C code and RTL description can be validateth daut real case RTL validation requires
meaningful information over variables, that appearS, and is missing in the RTL level).

For example, high level properties used by formatification to check the algorithmic
specification are not supported by both industréadd academics HLS tools. They are either
ignored or treated as common functions and they #re implemented using hardware
resources of IC in unpredicted way. In additiontifiGation approaches proposed at RTL
level cannot be used to check the execution andithieg behavior of RTL architecture
generated by HLS tool due to the lack of information when and where variables are
affected.

Motivation

Therefore, there is a lack of verification appragcho check properties at high level of
abstraction, the timing constraints (i.e. 1/O tignibehavior or hang problems) or malicious
attacks of application generated by HLS tools.

1.5 Thesis contributions

The objective of this thesis is to provide an apploto automatically design On-Chip
Monitors (OCM) for Hwaccs that are generated by Hio8ls. We propose to check at
runtime the execution of those HWaccs against miffetypes of faults to enhance embedded
system security and to verify that there are neralions on the expected timing behavior and
on the internal computations. The OCMs are gengrateVHDL language. The targeted
technology depends on the verification context. @&curity context, generated OCMs are
implemented either on FPGA or ASIC. OCMs constaaligck the execution of HWacc. For
debugging context, generated OCMs are only impléeaseon FPGA. Indeed, the OCMs will
be removed after validating the execution and/erititegration of monitored HWaccs inside
the embedded system.

Errors, supported by this work, can be mainly dfessinto two categories:

» Data Errors: this type of error occurs when theugadf a variable, stored in memory
or in register, is altered.

» Control flow errors: this error occurs when theuelof the next state inside the
control part of the hardware accelerator is alteféus error affects the execution flow
of hardware accelerator.

In this thesis, the Input/output timing behaviothardware accelerators is considered in order
to check the synchronization of HWacc with the egst Today, System on Chip (SoC) are
composed of several hardware components that coinatantogether to execute an
application. So if one of those components intredug delay in its execution due to errors, it
may impact all the system. Also, the verificatidntlee control flow execution is considered
to prevent the illegal jumps and hanging problems.

We also propose to automatically propagate the dbwrrification properties presented in the
high-level model of HWacc to check the RTL desdoipt The formal verification is defined
by the set of specifications (properties) which Haedware accelerator must satisfy. Those
properties are inserted inside the high-level makiedugh the use of ANSI-C assertions. In
addition, many synthesis options are proposed tmetoff between area overhead,
performance and protection level. Moreover, a syoization mechanism is introduced to
ensure the execution of all expected assertions.

Finally, we propose to check the problem of datawugiions. RTL architecture generated by
HLS tool contains a control part that drives an rapee part. The operative part is
represented as a Data Path (DP) that containsad gperators, multiplexer and registers. The
control part is represented by a Finite State MaliiFSM) that defines the control flow of a

-10-

Motivation

given application. Each FSM state generates a coramard that drives the set of hardware
components of the DP. Data corruptions imply maddydata transfers (the configuration of

the Data-Path to route values between operatomsgisters) or stored values (inside internal
registers or memory cells). These faults can cths@rogram to terminate correctly, without

illegal jumps or hanging problems (if the alterealue is not an induction variable), but by

producing wrong results. The consequences of tHasks that cannot be detected by
assertions do not alter the execution order ingidecontrol flow. In fact, ANSI-C assertions

are only able to check at runtime the range ofalde values or the relation between
variables. So, they cannot verify that the valueaofariable is correctly rooted inside the
Data-Path of HWacc i.e. that the current valuexisagted from the right register. Also, they

cannot verify that a given value remains uncharnggsveen its write cycle and the current
cycle. We propose to tackle this limitation by dkiag the paths and the values of critical
variables inside applications. Critical variables &ariables that when they are altered by
errors may impact application’s results. In additiwe consider loop induction variables as
critical variables that can also alter the executibthe control flow. In fact, errors over those
variables can lead to hanging problems (e.g. itdiltnops). A specific monitoring operation is

proposed to check the evolution of their valuesomer to enhance the Control Flow

Checking.

Our proposed monitor synthesis flow is integrateth ithe new version of the HLS tool
GAUT that uses CDFG as result of the compilatiapsihis tool provides the possibility to
generate RTL description of accelerator with othatit On-Chip Monitor (OCM). However,
our synthesis flow can be integrated as an extarisiany HLS tool.

1.6 Thesis outline

This thesis is organized as follows. Chapter 2uhices the basic concepts and related works.
It starts by presenting the traditional High-Le®ghthesis flow. Then, related works targeting
hardware monitoring are detailed.

Chapter 3 presents our first contribution thatvaiodesigner to check automatically the
Input/Output timing behavior as well as the conftol errors. The first part introduces the
proposed approach to generate the On-Chip Monf@M). The second part analyses
experiment results: the error coverage and the@rednead.

Chapter 4 introduces our second contribution tHatva to automatically synthesize ANSI-C
assertions into hardware monitors (OCM). The fpatt details (1) the synthesis flow of
assertions, (2) the proposed synchronization mestmarbetween generated OCM and
hardware accelerator and (3) the proposed syntlmsisns. The second part analyses
experimental results: the performance impact aedattea overhead according to synthesis
options. This last part compares the proposed sgndation mechanism to previous
techniques presented in literature.

-11-

Motivation

Chapter 5 introduces our third contribution. Itg@ets the unified flow to check assertions,
I/0O timing behavior and control flow errors. It g&aby introducing the impact of compilation

options over the control flow. Then, it presents tlew synthesis options to trade-off area
overhead, performance impact and protection |evieklly, it analyses experimental results
and compares results with those presented in ahaied chapter 4.

Chapter 6 introduces ouf'Zontribution. It presents a solution to improve thetection of
data errors by considering the problem of dataugion. It starts by introducing the design
flow to identify the set of critical variables and extract the evolution properties of loop
induction variables. Then, it analyses experimerdallts. It compares the efficiency of the
proposed algorithm to identify the most criticalrighles with the one proposed in the
literature. In addition, it compares the error qage and the detection latency with results
presented in chapter 5.

Finally, conclusion and perspectives are presentéuk last chapter.

-12-

Background and Related Work

Chapter 2 BACKGROUND AND
RELATED WORK

P20 R [01 1 Yo [1 To{ 1 0] o PP SPPUPPPUPPRPTRR 15
2.2 High-Level SYNthesiS FIOWccooiiiiiii e 15
2.3 Hardware MONITOMNGcooeiiiiiiiiieeeet ettt e e e e e e e e e e e e e eaeeeeeaaeeeeees 18
2.4 Assertion Based VerifiCatiON e eerrmeeniaaaeaeeeeeeeeeeeeeeessssssnnnnnnnssnnnns 20
2.4.1 Synthesis of High-Level assertions......... oo 23
2.5 Control FIOW CRECKINGuutiiiiiiii e s 30
2.5.1 Control flow checking using signature analySiS.......ccvveeeeeeiiiiiiiiieiiiiiinns 30
2.5.2 Control Flow Checking using system call sequen@yarsccceee... 37
2.5.3 DISCUSSION ..ceiiiiiiiiiiiaa s e e e e e e e e e ettt e ameeeeeeeaettb s e s s e e e e e e eaaeeeeeeeeeessssnnnnnsssennnnns 38
2.6 Identification of the most critical variablesccccviiiiiiiiiiiii e, 39
2.7 DISCUSSIONuttttiiiiieiiiteteteee e e e e e e e s mmmmmnaeebet bttt e ettt e e e e eeeeee s e e s s s s s nbnnneaeeaaeeeeeeessaaans 43

This chapter first introduces traditional High-Léw@&ynthesis Flow. Then, it surveys a panel
of verification techniques that can be used to kitbe execution of hardware accelerators.
Finally, it discusses the limits of the related egarhes.

-13

Background and Related Work

14

Background and Related Work

2.1 Introduction

Electronic System Level (ESL) design approachesgareing momentum and High-Level
Synthesis (HLS) is more and more used to desigmtrhardware accelerators (HWacc).
Those tools generate RTL architecture of HWacc ftioeir high level descriptions.

Hardware accelerators are more and more used taowmpenergy efficiency and
performance. Those components often implemenicakitapplications and manipulate
sensitive data. However, they are exposed like ggsmrs to several perturbations such as
environment radiations or malicious attacks. Hemsegurity and safety are more and more
considered as important aspect in their design.

However, the existing techniques to validate theceion of HWacc focus on quite low level
of abstraction, i.e. RTL. However, Assertion Basaiification (ABV) approach can be used
at different levels of abstraction, from the higivél down to the low level (C, RTL). ABV
allows improving the detection of errors and faates their correction since it couples
verification elements with design elements.

In the following sections, we give a brief introtioa on High Level Synthesis. Then, we
discuss the different approaches proposed in fitexao ensure the verification of hardware
accelerators. Finally, the limits of those previapproaches and the contribution of this
thesis are discussed.

2.2 High-Level Synthesis Flow

HLS allows designers to focus on the functionabfyan HWacc and its communication
interfaces. The HLS process consists of severasdt@3] which execution order can vary.
The set of traditional HLS steps are illustratedAmyure2-1. The inputs of the HLS flow are
the high-level description of the accelerator tategsize (like C code), the set of constraints
and the library of resources that exposes the ctarstics of the target technology. From this
information, HLS tool can chain the different stejos produce the RTL architecture of
hardware accelerator (HWacc) as follow:

Compilation step: it translates the specification, describing theoatgm to synthesize, into
an intermediate representation. This formal reprsi®n can be a Data Flow Graph (DFG)
but it is nowadays almost Control Data Flow Gra@ibFG). A CDFG is composed of two
types of graph: Control Flow Graph (CFG) and DFGCAG is defined by a couple of
<S BB, S_A>, where S_BB is the set of Basic BloBBY and S_A is the set of arcs A
representing precedence constraints (i.e. execwotider of) between basic blocks. BBs are
defined to be a straight-line sequence of statesrtbat contain no branch or internal entrance
or exit point. For each BBa DFG is associated. A DFG is defined by a cogMeE>, where

V is the set of nodes representing atomic operatfos’, “*”, “-“, “load”, “store”, etc.) and E

is the set of arcs representing precedence betateemc operations. Execution of the input
program consists of a sequential execution of halsicks according to the control flow. For

-15

Background and Related Work

example Figure 2-2.a presents the description of the applicatiorytdhesize i.e. the C code
of FIR filter algorithm. This specification is traformed by the compilation into the CDFG
illustrated in Figure2-2.b and Figure2-2.c. CFG and DFG have been generated in this
example by using GCC compiler version 4.7.2 with dption —O3 as front end. Figuze2.b
depicts the DFG of the basic block BB4. BB4 inclidee statement of line 5, the instruction
to increment the value of the induction variablédf loop2 and the instruction to exit the
loop2. Hence in order to perform the operationimé 5, the value of X[N-1-i] and the value
of CJ[i] are loaded from the memory into registéreen, multiplication of these two values is
performed. Next, this intermediate results is adetthe last result of Y[j] coming from BB3.
The final operation stores the value of Y[j] inteetmemory.

Resource
| Constraintsl || library

Scheduling

Allocation

Binding

nformation

Datapath and Controller
Generation

HWacc RTL
Architecture

Figure 2-1 High-Level Synthesis flow

The allocation step this step defines how many instances of each tfpeesource are
required. In our example, two adders (ADD#0 and A)) one multiplier (MUL#1) and one
memory bank are considered as resource constraints.

The scheduling step:this step determines the states i.e. control sfdpaoted § $...)
during which operations start their execution. Tothlis, scheduling process is based on the
dependencies between data and the constraints dpyedesigners: number and type of
computing resources. For example scheduling algostcan:

* Be unconstrained like As Soon As Possible (ASAPAsiLate As Possible (ALAP)
[34] procedures;

* Minimize the number of control steps under resowmestraint like List Scheduling
[35] or modulo scheduling [36];

e Minimize the number of resources under latency ttamd like Force Directed
Scheduling [37];

-16-

Background and Related Work

* Minimize the number of resources and the numbeoatrol steps like Force Directed
List Scheduling [37].

Void Filtre (int N, int C[N], int X[N], int Y[N]){
(1) intij;
(2) for (j =0; j<N; j++){ // loopl
(3 Y[I=0
(4) for (i=0; i<N, i++){//loop2
(5) Y[il= Y[] + CII*X[N-1-;
6 1
™ @

(b)

Figure 2-2 Filter example (a) Code source, (b) Bddav Graph, (C) Control Flow Graph, (d)
Finite State Machine with Data path.

Once all the operations have been scheduled, thagibehavior is classically modeled as
Finite State Machine with Datapath (FSMD). Fig@f2.d depicts the FSMD of the FIR filter.
FSMD handles variables and operations when tharmgnuas not yet been done. A FMSD is
defined as an tuple <S, 1, O, V, STATUB >, where S= {Surce S » .., Sing iS the finite
set of control states, | is the set of primary sp©® is the set of primary outputs, V is the set
of storage variables, STATUS (I x % Bool™) is the set of transition conditiorss(S x | x V

- S) is the transition function (the next state) #émeld (S x | x V2>V x O) is the update
function.

Each state of the FSMD is associated to a unigsi lock (BB) and each BB can contain
several states. Each state is associated to atde@speration and several operations can be
scheduled in the same state. The CFG of the CDFEBIligpresents in the FSMD since each
BB has only been decomposed into a set of linedest In our example (see Fig@.d),

BB4 is split into four statesgss, Sip and $;. The two load operations are performedgirtise
multiplication is started ingsthe increment of the induction variable “i” artetaddition of
multiplication’s result with the previous value ¥{j] are achieved in state g Finally, the
check condition of loop2 and the store operati@enparformed in statg s

The binding step: this step assigns operations to operators andtdategisters. Result of
binding step can also be modeled as a FSMD whesairables have been merged and
replaced by storing elements (registers, etc.)apetations have been replaced by operators
they have been assigned to. At the end of this separchitecture of the operative part (DP)
is completely defined and the control part candrestructed.

-17-

Background and Related Work

Table 2-1 illustrates the binding information for the DFG BB4 presented in Figura-2.c.
For example (see Figur22.b), operations “+” are performed on operator ADDa#id the
data C is stored in register REG#7.

Table 2-1: Binding results for DFG of BB4

Operation/Variable Operator #instance
load Load #0
store Store #0
+ ADD #1
* MUL #0
X REG #6
Y REG #1
C REG #7
N-1-i REG #4

[REG #2

] REG #0

Datapath and controller generation stepthis step includes the data-path generation and the
controller synthesis which based on the contrakf(oe. the command words) determines the
logic to issue operations. Those results are destat the RTL level.

2.3 Hardware monitoring

Hardware monitoring at RTL level enables to extriatérnal signal of integrated circuit.
Those signals are next analyzed by designer tactdalieration or faults. Several tools have
been proposed to display the evolution of intersighals like Xilinx’s ChipScope [21],
Altera’s SignalTap [22], F-Sight [24] and PALMICRJ]. Those tools allow the automatic
generation of a hardware block, referred to asghated Logic Analyzer (ILA). This
hardware block can be automatically integratedhi@ betlist of design during the logic
synthesis process. In addition, this block is aunied by designer. In fact, designers can
select the type of triggers and the set of sigtmalsheck. The trigger defines the condition to
start the extraction of data. Then, if the conditis true, ILA stores the evolution of signal’s
value to check inside a dedicated memory duringuanber of clock cycles defined by
designer. Finally, signal's values are transmitted software tool through the JTAG
connection, for example, as illustrated in FigeH&

1

--_*,/ Functional I'Os

(unused for debug) =

Functional VOs
{unusad for debug)

LTI

Figure 2-3: Integrated Logic Analyzer
-18

Background and Related Work

Several academic methods have been proposed tt éeters at runtime, referred to as in-
circuit monitoring. The MaMon method [18] [19] prages to integrate a probe unit inside the
Design Under Verification (DUV) to detect eventhioBe events are then transferred via a
parallel-port link, Enhanced Parallel Port Protpcth a host running a monitoring
environment. This technique offers only simple dbads which limit to basic operations like
(=, <) and logic operations like (AND, OR). In atidn, like for the industrial tools, the
selection of signals to check is performed off-likkence, if designer needs to extract more
signals, he must re-design its monitor.

The Assertion Based Runtime Debugger (ABRD) approg5] allows resolving those
limitations by providing the ability to configurbéd set of internal signals to check at runtime.
In addition, the verification is based on assediameckers that are implemented in a
dedicated FPGA. Those assertions checkers areseodeiscriptions of complex behaviors
that the DUV must satisfy. Next, the results ofeaisns checkers are transferred to an
external terminal via a Universal Asynchronous Remelransmitter (UART).

Those previous industrial tools and academic metha@ limited in terms of number of
available trace buffers and pins to extract intersignals. As solution, the technique
introduced in [27] allows sharing the trace buffeila the concept of distributed buffer,
between all detected events. This is performeddsygaing for each event a priority. Then,
this technique uses the concept of data overwaterding to priority when the distributed
buffer is full. In addition, this buffer allows sgiing before and after the trigger condition is
activated. This technique provides a holistic vieinevents and allows identifying the root
cause of a bug.

All those techniques allow detecting events and traxe internal signals to be analyzed off-
line by an external terminal in order to identityetcause of errors. On the contrary, the
method proposed in [26] enables to detect everts@manalyze them at runtime. The analysis
process of events is provided by an integrated wemel engine. This latter includes
MicroBlaze, BRAM, Interrupt controller and UART. Wh any hardware event is observed,
the hardware engine associates an arbitrary sadtajgplication to analyze results.

In addition, there are other methods that only $o@mn the communication and the
synchronization among hardware components insidgystem On-Chip (SoC) to detect
problems such as race, deadlock and livelock. Ththad proposed in [28] focuses on the
AXI interconnection problems. It is based on Lo&#bugging Unit (LDU) and Shared

Debugging Unit (SDU). The LDU monitors trace ofnsactions and detects undesired
condition on bus. Next the SDU combines the delmages from different LDUs and

schedules them to trace memory. The method usgBjns based on the transaction level
verification to detect faults inside a SoC with aetMork-on-Chip (NoC) [31] as

communication infrastructure. A breakpoint moniier added per NoC router to check
network connections. Then, if there is a probleme. (breakpoint condition is valid), a
breakpoint signal is generated and distributedlttha network interfaces. After stopping the

19

Background and Related Work

communication and switching off the functional deca core based scan technique [30] is
used to check the internal state of the system.

Finally, those techniques and industrial tools oehable to detect errors and then allow
tracing the internal state of the system. Nextpstlg analysis must be performed to identify
the cause of the malfunction. This has a negatiygact on the complexity and the delay of
the validation step. In fact, an error detectedhmse techniques can come from any portion
of code that is propagated inside the system.

In the following sub-section, we present an altBweaapproach that allows checking
complex conditions in terms of operations and detgcerrors closer to their sources which
reduces the overhead that is needed to detecatise ©f errors inside a system on chip.

2.4 Assertion Based Verification

Errors detected at the end of simulation can coroel fany system’s module elements.
Hence, an error generated can sometimes circutata fong time in the system, through
many components, before being detected. So, finthlegcause of an error is a complex
process and can account for 70% of design time [41]

Therefore, it is essential for designers to dewobrs closest to their sources in order to
quickly correct them. To do this, the use of assest within the software description and
hardware description of application allows incragghe reliability.

Assertion Based Verification [32] (ABV) is an alt@tive method to monitor the execution of
hardware component. It can be used as formal gatifin or functional verification. The
formal verification checks if the proposed algamithmespects the formal specification, while
functional verification verifies that the executiamf generated circuit conforms to the
expected one.

Those two kinds of verification are both based csetof assertions. Assertion is a concise
description of a complex behavior that the systerdeu verification must satisfy. Those

assertions are defined during the first step ofgieBow. Next, those properties are used as
monitors during the simulation process to dete@ thconsistence between functional

hypothesizes and the runtime execution of compandittis allows detecting errors closer to
their sources and avoids waiting the validationapplication’s outputs to detect potential

problems.

Many languages and libraries for temporal assestiexist such as Property Specification
Language (PSL)[38], System Verilog Assertion (S\B9)] or Open Verification Library
(OVL)[40]. Those temporal assertions are used txktihe RTL description of applications.
The most widely used language to define temporsdréiens is PSL. This language consists
of four syntax: SystemVerilog, Verilog, VHDL and GGeneral Description Language). In
addition, it is structured in four layers as ilkaged in Figure-4.

-20-

Background and Related Work

[Modeling J
[Verification]
LTL CTL)

£| FL ||SERE]MBE|J
Temporal Y,

[Boolean y

Figure 2-4 Structure of the PSL language

The structure of PSL is composed of the followiagglrs:

» Boolean includes conventional Boolean expression (e.¢. aad, or, ..), their values
are reduced to true or false (e.g. faux is O amelis 1).

» Temporal: specifies when the Boolean expressions must b€l \zad contains
relationships between those expressions over flimis. layer consists of three sets of
expressions: Foundation Language (FL), Sequentiééried Regular Expressions
(SERE) and Optional Branching Extension (OBE). Tir& two sets of expressions
use logic LTL (Linear Temporal Logic) and thus OBg&es logic CTL (Computation
Tree Logic). The LTL can be used for simulatiomadl as for formal verification. On
the opposite, CTL can be used only for formal veaiion.

» Verification : is used to specify how to use the property. ThedwAssert” indicates
that the property should be checked. The wokdstme defines the behavior that
entries must meet to perform the verification. Ttype of verification is used as
generator for simulation purpose. The wo@bVer is used to measure how often the
given property occurs during simulation. Finallyete are other keywords available as
“Restrict, “ Restrict_guarantegetc. [42].

» Modeling: allows defining the environment model in whiche tiverification is
performed. It is also possible to specify constsamn the inputs of the circuit under
test (see line 2 in Figur25.a), or to assign values to the auxiliary varialftese line
2, thereq signal,in Figure 2-6). The environment and properties are grouped in
structure named Vunit”. Then, the binding of this structure to RTL moduge
performed as shown in Figu2es.b.

vunit my_unit (my_module) {

(1) default clock = rising_edge (clk); > vunit <

(2) assume never read AND write; inputs outputs
(3) property P1 = never (full AND write);

(4) assert P1; » RTL module

(5) assert always (read -> NOT empty);
i () (b)

Figure 2-5 (a) Vunit (b) Connection between vunid énstance of RTL module

-21-

Background and Related Work

vunit my_unit (my_module) {
(1) defaultclock = rising_edge (clk);
(2) Signalreq;
(3) Req <=readA_req OR readB req ;
(4) Assert always (req -> next(ack));

3
Figure 2-6 example of modeling layer with auxiliasgriable

However, this type of temporal assertions is lichite RTL verification. It cannot be used

with HLS approaches. In fact, there are two prolsieihe first problem is the absence of the
timing concept inside high level specification oértiware accelerator (e.g. algorithmic

description). There is no timing constraint betweemiables except when the HLS tool

supports behavioral description drive SystemC inpie second problem is that the HLS
process merges and replaces variables by signatslwhre registers). Each register can
contain more than one variable according to thdatiines. This makes the manually

integration of those temporal assertions insidegigrgerated RTL architecture a cumbersome
process.

However, designers could resolve these limitatiopspecifying assertions in the high level
specification. Languages of system level (i.e. G/CSystemC, ..) have a keyword dedicated
to assertions, or a standard library that provatasess to assertions in the form of functional
calls. For example, the language C use tlassért()” macros to call the function
“Assert_fail(j that stops the execution of programs when violadi occur. There are two
categories of high level assertions targeting $petion and implementation. Each
application has only one specification (i.e. fuactl model) but it can be implemented (i.e.
algorithmic description, coding) in several ways.

Then, assertion related to implementation is rdlédethe coding style of an application and it
allows checking the correct execution of operationghe values ranges. On the opposite,
assertions related to specification are relateti¢overification team and they are independent
of the used technique of implementation. Those rasee allow transforming the
specifications of an application into formal prajes. For example, they can check the range
of input and/or output variables of an applicateomd relations between them. This allows
checking that the functional model of an applicai® correctly used.

Figure2-7 presents an example of C code of the square 8GR T, application decorated by
four assertions. We can notice that the two sptifin assertions are not related to the
implementation of SQRT application but are reldatethe condition of use of this application.
Indeed, the square root must be computed for aalyp@sitive variable (line 3), and if the
input value,m, is greater than one, then the output vateg,is necessary lower than this
input value (line 18). The two implementation asees are related to the internal variables
of application. For example, the induction varialplanust never exceed the bound of the

-22-

Background and Related Work

loop (line 8) and that the value of ‘x1' must b&vays different to zero (line 10) in order to
validate the next operation, division operatiomgI11).

#include assert.h

float SQRT (float m){

(1) float x1, x2, i =0;

(2) intj;

(3) assert (m>=0); // Specification assertion

(4) while(i*i <=m) {

(5) i+=0.1;

(6) x1=i;

(7) for (j=0; [<10; j++X

(8) assert(j<10); // Implementation assertion

(9) x2=m;

(10) assert (x1 != 0); // Implementation assertion
(11) x2/=x1;

(12) x2 +=x1;

13) x2/=2;

(14) x1=x2;

(15) }

(16)}

(17) float ret = x2;

(18)assert (m>=1 ? ret <=m : ret >m); //Specification ssertion
(19)return ret;

(20)}

Figure 2-7 SQRT application with assertions

However, those high-level assertions are used famlgimulation purpose. In fact, they are
not well supported by current academic and comrakeHLS tools. During HLS, assertions

statements are currently either ignored or tre@gdommon functions and implemented
using hardware resources of HWacc in an unpredetafy. As a consequence, they can
strongly degrade the HWacc performance and carencgrnoved easily if needed.

2.4.1 Synthesis of High-Level assertions

Only few automated or semi-automated design appesabave been proposed to generate,
from high level assertions, hardware monitors tteaify at runtime the behavior of complex
hardware accelerators that are generated by HUS. too

Authors of [58] propose a methodology to automdiiceonvert system level assertions to
hardware monitors or software monitors. Their teghe is integrated in the ODYSSEY [59]
methodology which advocates Object-Oriented (OOpehog of embedded systems. The
ODYSSEY methodology starts from an object orierdede in C++ which is synthesized into
an Application Specific Instruction-set Processa8IP) [60] according to a set of integrated
constraints. Hence, a part of the description tegrated by using hardware accelerators (i.e.
the class methods are implemented as Functionas)Jmhile the remaining part is executed
on the processor core.

-23

Background and Related Work

Authors introduce a specific syntax for assertiortss allows describing both system level
assertions and temporal level assertions. Themyleeel assertions are used to describe the
status of primitive elements. Primitive elements amethods (class operations), variables
(class attributes or local variables inside metrard) constants. In addition, there are a set of
relational and logic operators to compare primitelements. The temporal level allows
defining a simple sequence of actions without neagiany clock cycle for synchronization.
Action specifies transactions between objects. Alsadefines a method call. Temporal
assertions are converted into Finite State MachiR€81s) that are implemented in hardware,
see Figure2-8, while system level assertions are converted software (i.e. code C++) or
hardware (i.e. combination circuits) monitors, egure2-9.

assert always ol.req => ol.data_ready

' ~ol.req.done/10,
@ ol.req.done &

~ol.req/01 ~ol.data_ready/00

ol.req.done & ol.data_ready/10

ol.data_ready/10

~ol.data_ready/01

Figure 2-8 A temporal assertion and its synthesssilt

assert always vl >=0 && vl < 10

void clsl::func(...)

1

: if (Mvl >=0 && vl < 10))
v

> done swi; // raise software
0 [- interrupt
return ;

assert ’

10 —»

Figure 2-9 A combinational assertion and its sysitheesult

The generated hardware monitors run concurrentlght system. The monitor’'s inputs
(variables, method calls, etc.) are provided byitiverface of Method Invocation Unit (MIU)
through its outputs signal. This unit stores therded-object-ASIP instruction that designates
a method, the called object and the method argweméperands). The synchronization
between monitor and system is realized by the MIthen an error is detected by the
monitor, an interruption signal is produced by khi&J to stop the execution of the system.

However, this technique is only understandableheystynthesis ODYSSEY methodology and
uses a specific syntax to define the high levedrigms. Then, this approach is not portable to
any HLS tools. This represents the first condit@ihthat the synthesis technique of high level
assertion must satisfy.

Background and Related Work

This conditionC1 is resolved by the synthesis technique introducef64]. This technique
extends the conventional HLS flow to support geti@naof ANSI-C assertions as monitors
for simulation purpose. It allows automatic detactiand transformation of behavioral
assertions from a high-level description into terap&TL assertions (PSL assertions). This
generation process is integrated inside the HL® s particular tasks as illustrated by the
Figure 2-1Q extracted from [64].

The first step is the identification of assertitimanches by scanning the formal representation
of the application, result of the compilation stéggthe HLS flow. The formal representation is
defined as Data flow Graph (DFG). Next, the setletected assertion branches are removed
from this formal representation and the set of sodeed as input of assertion branches are
duplicated. Then, results of the allocation anddisig step of HLS flow are used to bind
assertion branches inputs to their associatedteggis

Maodel Constraint
+ assertions set

graph [) Proposed methodoiogy
¥

HLS

oW M e

HLS
HLS | Scheduling

Allocation

graph

graph

~ m

HLS RTL

RTL +
RTL - PSL monitors
monitors

Figure 2-10 Assertion support in HLS flow [64]

Next, the set of states that start the executiassértions is detected by scanning the result of
scheduling step. Finally, RTL monitors are genefatem the assertion branches. The
description of those monitors can be either in BS¢ertions or in a set of independent VHDL
processes.

The proposed synchronization mechanism between R®hitors and generated hardware
accelerators is performed by using the FSM statdhasflware accelerators as input of
monitors. Figure2-11, extracted from [64], illustrates the transforroatiof a high level
assertion into PSL monitor. The verification ofe$i®n condition (the right part of the PSL
implication operator-&)) is driven by the current FSM state. The vertiima starts if the
state85 is the current FSM state.

Background and Related Work

C++ T[34] = sqrt (2*x-b);
assert (T[34] <a);

PSL assert always (state =s85) - prev(regl36, 63) < prev
(inputl, 85)

Figure 2-11 Untimed C++ assertion and its tempB&iL transformation

The generated RTL monitors produce an output sigmal is activated when an assertion
violation occurs. Hence, the identification of tteuse of the error may remain difficult. For
this reason, authors of [64] improve their progositby introducing a synthesizable error
handler. This latter allows extracting, during theor detection, the values of application
variables that are selected by the designer. Thakes are organized in the form of error
reports. Moreover, several configuration technggaee proposed to range data inside report
in order to reduce the memory overhead.

However, this approach uses the DFG as result ef dbmpilation step. This formal
representation prevents the user to use neith@tisdadynamic, complex control statements
nor complex applications. This represents the skcoondition C2 that the synthesis
technigue of high level assertions must satisfy.

In addition, those two proposed techniques to ®gide high level assertions ([58] and [64])
have another limitation: the synchronization medran In fact, the synchronization
technigues proposed to drive the execution of geadrmonitors depend on the internal
signals (or results) of hardware accelerators. mbthod introduced in [58] scans the outputs
of the MIU unit that stores the oriented-object RSmstructions to check a simple sequence
of transactions or method calls. The method propas¢64] uses FSM states of the hardware
accelerator to start the verification of assertiodafortunately, those solutions prevent to
detect hanging problem as soon as the hardwaréeeatogs gets stuck in a state or loops over
a subset of states (due to illegal jumps) thatgatedhe state that triggers the next assertion.
This represents the third conditi@8 that the synthesis technique of high level asssstio
must satisfy.

Those conditions€2 and C3 are treated by the technique proposed in [61]s Téchnique
relies of the synthesis tool Impulse-C [63], depeld by the Impulse Accelerated
Technologies. This tool generates from a high-lelescription of an application a dedicated
RTL architecture used as hardware accelerator fgergeral processor. This processor is
designed to drive the data streams between théesatmr and the system. Impulse-C tool has
no limitation on the accepted C code, and thuslvesdhe conditiorC2. Authors propose to
transform behavioral assertions into synthesizabtmitors through a translation from a
behavioralassertstatement to aif-thenblock and a notification function compatible witre
Impulse-C tool. Thef-then block allows checking the assertion condition. Timgification
function allows transferring assertion identifier the processor when assertion violation
occurs via a dedicated communication channel. Eigur2, extracted from [61], illustrates an
example of code instrumentation.

Background and Related Work

Source Code (hardware))
assert(a[0] !'=1); // line 17 —

Conversion (hardware)

if(!(afo] !'= 1)) {
int identifier = 17;
co_stream_write (stream name, -

&identifier, sizeof (int32));
}

Conversion (software)

co_stream read(stream name,
&identifier, sizeof(int32));

switch(identifier) {
case 17: %
fprintf (stderr, "memtest_hw.c:17:"
"Assertion 'a[0] '= 1' failed.\n"):;

Figure 2-12 Converting ANSI-C assertion into codderstandable by the Impulse-C tool

If the condition is true (due to the negative log®ed by the compiler), the processor is
notified through the use of the function “co_strearite”. This function is specific to the
Application Programming Interface (API) of the Intgpe+rC. This allows passing through the
system'’s bus that an error has been detected. Tiengentifier (e.g. 17 in Figur212) of
monitor (assertion) is used to identify error la@atinside the high level description.

Figure2-13 illustrates the assertion framework. The hardwaoaitors {f-thenblocks) detect
errors and notify the software part through the ©@mn communication interface. Then, the
CPU executes a dedicated function defined by dessgiihe Assertion Notification Function
used in [61] writes in a file that error event occwand gives the number of the line
corresponding to the identifier of assertion.

. ae Assertion
Application [RARFINEI
= (Software) Function
o
o =7
i [
HLS API Wrapper
HLS Hardware Wrapper
a
> d
£
- Application TRV
(Hardware) e T8 T

Figure 2-13 Assertion framework

In order to reduce the impact of the hardware noosit(assertion checkers) on the
application’s performance, authors perform optiria@a on the synthesis process of
assertions. They start by using the ability of IspuC to produce parallel execution of
operations. Impulse-C supports the concepprotesssimilar to the objective of Hardware
Description Language (HDL). Authors move assertionte a separate Impulse-C process.
Then, impact over application’s performance is madosince assertions are inserted in a
different process that runs concurrently.

-27-

Background and Related Work

The proposed synchronization technique between wsaed monitors and accelerators
happens through duplicating RAM memory, used toestioe input data of assertions (shared
data). This technique allows resolving the depeogef the hardware monitors with the

internal states of the hardware accelerators. Tdrelware monitors (assertion checkers)
always check their conditions over their input dhi@ are stored inside the duplicated RAM
memory. This is independent on the current hardwaecelerator FSM state.

Next, authors extend their in-circuit assertion moeblogy with a technique for timing
analysis and hanging problem detection [62] and ttiney resolve the condition C3. For
timing analysis, they check if all the timing calaétts are met. To do this, authors use the
ANSI-C clockfunction that returns the current time in numblecyales. Then, to measure the
time of a section of code, this function is calkefore and after that section of code. Next, the
difference between the two times provides the exacuime in terms of cycles. Finally, an
ANSI-C assertion is used to compare the expected (given by designer) with the measured
time. Those ANSI-Cclock functions are transformed into counters during $lyathesis
process.

For hanging problem detection, authors propose s® watchdog timers. Two types of
watchdog are proposed: software and hardware wsrdted in Figur@-14, extracted from
[62]. Software watchdog is provided to check if tadl to the HLS API returns within a time
period defined by designer. Hardware watchdog isduw check the duration between
changes of signals that represent the state dfalgware process. Then, hanging detection is
triggered when a state takes longer (timeout) #rarexpected number of cycle defined by
designer. This timeout is reset anytime a statgsitian occurs. In addition, authors improve
their technique to detect infinite loops in hardevaBince, infinite loops will not stay in a
single state to trigger the hardware watchdog, tla@ithors introduce a second counter for
each hardware process that contains loops. They alésigner to select hardware process to
monitor and to specify the number of cycles thatest must spent inside one or more loops
(nested loop).

Software API
hang

Application
(software)

il
- :
| HLS AFI wrapper |
==
— 1

| HLS hardware wrapper |

1I

Application Assertion
{hardware) Checker (s)

detection

Cpu

FPGA

Figure 2-14 Assertion framework supporting hangdabn

-28

Background and Related Work

However, the hanging problem can be caused byaillggnp. In fact, the HWacc can loop
over a subset of states. In this case, there igalation of timeout and then, the watchdog
cannot detect the hanging problem.

In addition, this technique to detect timing beloaerrors has a negative impact on the area
overhead of the generated monitors. For each tinsisgertion, a dedicated counter is
implemented. Also, for each selected loop to checledicated counter is used. Moreover,
the synchronization mechanism leads to expensiwa averhead due to the RAM memory
that is duplicated. Therefore, the area overheadriad by the generated monitors must be
considered during the synthesis process of higbtlassertions. This represents the fourth
condition C4. In order to reduce the area overhead, authorpopeoto share hardware
resources between a subset of assertions. Theficktian of those assertions is manual.
Thus, they partially satisfy the conditi@4.

Moreover, the proposed synchronization mechanisaches its limit when illegal jumps
occur inside the control flow graph (FSM) of thadware accelerator. Some operations of
HWacc could be skipped due to an illegal jump.hibse operations produce the values of
assertion inputs, then assertions are checked {dcwith the previous values that are
stored in the duplicated RAM. Hence, no assertimtation is detected. We define th& 5
condition C5 as the insurance that the synchronization mecmargsarantees that all
assertions are correctly executed.

Finally, all the previous approaches allow synthiegi assertions into hardware monitors
which run concurrently to the execution of hardwateelerators. This synthesis methodology
has low impact on the HWacc's performance. Thisnésfthe 8 condition C6. However,
this methodology suffers from security drawbackdheshardware accelerators may receive
late detection of assertion violation (accordinghte complexity of assertions to synthesize).
Therefore, the generated monitor must be reactiygévent the propagation of errors inside
the whole system and to enhance the security ofhdinéware accelerator. This represents the
7™ conditionC7 that the synthesis technique must satisfy.

The ABV approach only allows verifying if the hardie accelerator meets its specifications
through a set of high level assertions. Those tgassrare performed on variables that allow
detecting data errors. However, this technique éndimit to check if there is illegal jump
inside the hardware accelerator FSM. They canneticthe execution order of FSM states.
As we explained above, this type of error, contlmlv errors, has a negative impact on the
verification of assertions (conditioB5). We define that detecting data errors as the 8
condition,C8

In the following sub-section, we present an alteweaapproach that allows checking control
flow errors such as illegal jumps and infinite lsojn the literature, this approach is referred
as to Control Flow Checking (CFC). It consists @rifying the successive operations that are
performed by the application.

Background and Related Work

2.5 Control Flow Checking

Existing methods and approaches for control flovification are based on the comparison
between reference CFG (Control Flow Graph) andcctmrol flow that is deduced during the

execution of the monitored application. Any dewatfrom the expected behavior is detected
and failure is reported. Three conditions musthrecked to detect deviation:

1. All transitions between basic blocks of a givenhpatust follow existing arcs in the
CFG. In the case of conditional transition (whebasic block has more than one
successor), transition must validate the condit@ated to its arc.

2. Operations associated to each node (Basic Bloek}rer same than those associated
to the nodes of the reference CFG.

3. Operations associated to each node (Basic Bloekd@rectly executed.

After a comprehensive literature search, we fouogrevious work related to control flow
checking for hardware accelerators. Only contraWflchecking for software processors has
been proposed.

However, existing verification methods are limitea the identification of illegal jumps
(condition 1) and the verification that operatiom® correctly driven (condition 2). The
verification that the operations of the contromil@are correctly executed (condition 3) is not
supported by existing methods.

There are two categories of verification approachesthods that consist in applying
signature analysis and methods that consist inkangsystem call sequence.

2.5.1 Control flow checking using signature analysis

The verification of control flow consists in exttang a huge quantity of information from the
reference CFG. In order to reduce the area overhe@lnecessary to use a more compact
representation designed bignature To do this, a compactor circuit must be locatetiveen
the monitored circuit and monitor to compute therespondingsignature There are three
types of compactors:

» Spatial compactor: it allows having every cycle ignature corresponding to a
function of various observed signals;

» Temporal compactor: it allows obtaining a signatime each signal according to a
sequence of value obtained during a given numbelook cycles;

» Hybrid compactor: it allows computing both tempaaat spatial signature.

The analysis process relies on the following apgtoeeference signatures are first generated
off-line to serve as a comparison basis. Runtingaaures are then computed on-line and
checked against the references. Any deviation ftbenexpected behavior is detected and
failure is reported. Analysis approaches can bssdiad into two categories according to how

the runtime and the reference signatures are cadm@utd stored respectively:

-30-

Background and Related Work

% The Embedded Signature MonitorinESM) approaches: they add in the main
program data related to signature as parameterhdoreference signatures and also
add specific instructions for signature generatind comparison.

« The Disjoint Signature Monitoring(DSM) approaches: they store the reference
signatures and the control flow graph (CFG) ofdpelication is an external memory.
The CFG must be stored to identify at runtime wibe generation and the
comparison of signatures must be performed. Sigesitgeneration and comparison
are handled by an external hardware componengdcaibnitor or watchdog.

2.5.1.1 Embedded Signature Monitoring

Verification methods consist in modifying the pragr to be verified by adding instructions
to compute and compare signatures online. Thisgggocan be made during compilation or
during a preprocessing phase. Recent methods,asuflontrol Flow Checking by Software
Signature [65] (CFCSS), Enhanced Control Flow Cheghksing Assertions [66] (ECCA)
and Control Error Detection through Assertions [@ZEDA), allow automatic insertion of
those instructions by modifying compiler. These moels differ on the insertion they insert.

CFCSS|[65] uses a Global Signature Register (GSR) déslict store the runtime signature
G; associated to the block Yeing executed. A unique signaturec8mputed offline prior to
the execution is associated to each blockien, the execution of control flow is considered
correct, if $is equal to ¢ The runtime signature;& computed using the previous runtime
signature G referred to the block being executed &fgnatures ;Sof previous block Y(V;j €
prev(Vi)) and a specific parameter defined during the compilation step.

G; = G;®d; = G;B(S;DS)) (2-1)

ECCA [66] divides the program into a set of blocks)ezIBranch Free Identifiers (BFI). A
unique prime number larger than 2 called Block Hflen (BID) is assigned to each BFI.
Next, two assignments of code are inserted inth &ack. The first assignment is executed
when entering the block. The assignment is asvi@lio

BID (2-2)
(id mod BID) * (id mod 2)

id «

Whereid is a global integer variable which is updated migiexecution time upon entry into
and exit from each block.

The second assertion is also an assignment; ilace@ at the end of the basic block. The
assignment is as follow:

—_— (2-3)
id « NEXT + (id — BID)

-31-

Background and Related Work

Where NEXT is an integer variable generated atmpegssed time (off-line) and it is equal to
product of accessible block’s BID from the currblutck (its direct successors).

Those two assertions allow identifying illegal jusnwhen detection division by zenal (mod
2 =0 orid mod BID = 0).

CEDA [67] approach proposes to classify the set ofkdanside CFG into two categories:
andX. A block is identified ag\ if it has at least one disjunction block (a digjtion block is

a block that has more than one successor) thanhgelto its predecessors. Each block
(referred to as node) is characterized by two patara d1 and d2 and is identified by two
signatures: Node Signature (NS) and Node Exit Sigpa(NES). All the parameters and
signatures are computed off-line. Then, the curpath is considered as correct if for each
executed node “i” of the CFG, the following two ditions are verified:

S = NS, during the execution of the node i a§d= NES; at the end of the node i.

WhereSis a global signature computed at runtime and datgal during the execution upon
entry into and exit from each node using the follgywequations:

Type of node Entry Exit
A S=Sanddi({N| S=S xor d2(N
X S =S xor d1(N

All those previous techniques have a purely sokwarethods: the generation and the
comparison instructions of signatures are perforinettle the main program. This process
increases the cost of memory to store the setfefelece signatures.

Technique proposed in [68] allows exploiting a lowst infrastructure Intellectual Property
(I-1IP) core, called Pandora, that works in cooperatvith a software based approach. The
software part is used to track the execution flé\a program by inserting ad-hoc instructions
at compile time. Those instructions are able tonmf the I-IP about which block of the

application is currently being executed using thecessor bus. In fact, they send information
to I-IP upon entry into and exit from each basiockl of application by using those two

assertions respectiveljPtestandlIPset

The I-IP constantly listens to the processor buswahen it receives an assertion instruction
(IIPtest or lIPset) from the software code to chialtarts operation according to the received
assertion. Hence if the assertion is:

> A test assertionliPtest(V;)), it checks if there is an illegal jump. The lwablock \
belongs to the list of predecessors of the curbadic block. To perform this, it

-32-

Background and Related Work

controls if the signature ;B associated to jVdiffers from the current value of
program’s signature it stores.

> A set assertionliPsetV))), it updates the program’s signature (runtimenaigre) by
using the following equation:

z=(&M1,)BM2y, (2-4)

where) is the runtime signature, M1 represents a constapending on the signature of
basic block that belongs to the set of predecessioks, pred(V), while M2 represents a
constant depending on both signatures of the culrasic block VY and those of the basic
block belonging to pred(y. Those two constants are computed at compile tisieg the
algorithm proposed in [69].

All ESM methods that have been proposed until nmwvbased on vertical signatures. In fact,
those methods consist in inserting assertionseagtitry or/and at the exit of each basic block
inside the CFG. Then, they use specific instrustiom generate and compare signatures
against reference signatures. However, those agipesado not detect errors if the processor
never meets the test instruction (or assertion) tduan illegal jump. Moreover, the use of
vertical signatures has often a very long latefitys latency depends on the location of the
test instruction. Thus, those approaches do nistsdite conditionC7 (reactivity).

All those problems have led researchers to propegesignature-based approaches that use
horizontal signatures. Figur@-15, extracted from [70], illustrates the h bits added
horizontally to each instruction. The function Fbg@uces for each instruction “” a horizontal
signature by operating on the instruction sequefmoen the path’s beginning through
instruction *j”.

Signature Bits

|
.
h I

Figure 2-15 Horizontal signatures [70]

In addition, there are techniques that combinezootal and vertical signature referred to as
Continuous Signature Monitoring (CSM) [71][72]. Heo techniques allow reducing the
detection latency without decreasing the error cete coverage (detection of illegal jumps
between basic blocks). However, they are not abldetect all the errors linked to illegal

jump inside basic blocks. In addition, they inceedise memory overhead due to horizontal
signatures.

-33

Background and Related Work

Finally all those ESM approaches have a common lohalu the performance impact
(Condition C6). In fact, monitor instructions amalgedded within the program to check. In
the following sub-section, an alternative approagbresented to remove this problem.

2.5.1.2 Digoint Signature Monitoring

Disjoint Signature Monitoring (DSM) approaches axedhe generation of runtime signature
and the comparison with reference signature in ereal hardware component, named
watchdog or monitor. They are therefore compatiakh the requirements of norms such as
IEC 61508 [73] that imposes the use of differesbreces for error detection. However, those
methods cause an important memory overhead to dtweereference signature and

information about the structure of executed contiml. In addition, they need a complex

hardware monitor to generate the runtime signataresto extract the reference signatures
from memory. Due to those limits, only few workssedeen proposed.

The most well-known DSM approach is the Watchdoge&i Processing (WDP) [74]. It
consists in controlling the executed programs thhoaddress checking by using a dedicated
watchdog. This watchdog allows detecting sequeneimgrs and especially illegal jumps.
This enables to reduce the propagation of the ®riorthe system. Moreover, the path
followed through the control flow graph during thgecution is identified. To do this, the
watchdog classifies the nodes reached by the moc@so 7 categories which define the set
of singularities of program:

* 10: Initialization node

* |1: Destination node

* [2: Sequence node with conditional jJump

* 13 :Sequence node with unconditional jump

* |4: Sequence node with conditional jump to sub-paoy

* I5: Sequence node with unconditional jJump to suligpam
» 16: Sequence node that return from sub-program

In addition, WDP uses signature analysis to dedi@cerrors over program instructions. The
information associated to singularities are thdolrasses in the program to verify, their types
and a value that allows analyzing signatures. Thvasges are stored in an external memory.
The type of singularity corresponds to an instauctexecuted by the watchdog (i.e. the
watchdog program contains one instruction for eaotle in the application program). Each
watchdog instruction contains three fields:

e Opcode
* Address of program instruction
» Reference

Background and Related Work

Reference can contain the value of the node’s sigpavhen the node is identified as
destination node (I11). In the case of sequence,nbdeaeference corresponds to hash result of
the node’s signature with the address of nodertstn in the watchdog.

The opcodes of each watchdog instruction dependshenaddress reached by the main
program:

* When the processor arrives on the destination n@eée basic block) then the
watchdog operates depending on the manner to t@mode. This node may be
reached either after a conditional branch (if-th@nlinear transition. In the first case,
the address reached by the main program is compatbdhe value of the second
field in the watchdog instruction. Then, the refee field is loaded into the signature
register and the Watchdog Program Counter (WPGhaseemented. In the second
case, the current signature is compared with tiiererece field and the WCP is
incremented.

e When the processor performs a sequence transitien,watchdog computes the
address of the destination node by using the vafube runtime signature and the
reference field of the current node. Then, it lotidsdestination node. Next, when the
processor performs the transition, the watchdog paoes the address of the
destination node taken by the processor with @adéal address.

However, this technique has several drawbacks fif$teone is the high detection latency due
to the use of vertical signatures. The second srtbd impossibility to detect illegal jumps
inside a basic block. Finally, this technique ig able to check if the conditional branch is
correct.

The method proposed in [77] allows resolving thisétations except the verification of the
branch condition. It starts by using the continusigmature monitoring approach to reduce
the detection latency: for each executed instru¢ttbe watchdog computes the horizontal
signature and compares it to the reference sigaatiored in its internal memory. Due to the
high memory overhead, authors of [77] propose topa the horizontal signature only for
frequently executed instructions. They define aysiarity as a frequent instruction or the
block end (which satisfies the conditi@4#). In addition, they allow detecting illegal jumps
inside a block by comparing the relative addresthefcurrent instruction with the address of
the previous instruction. If the difference betwdlenose two addresses is greater than the size
of one instruction then the watchdog detects arxpeaed sequence break. Moreover, they
allow the watchdog to differentiate a start of aegi exception from a control flow error
without modifying the main program. In contrastWwtbP technique that tags the start of an
exception by a specific instruction, the new teqghei consists in checking the access to the
interruption vector by using only addresses of paogs instructions. Once the watchdog
identifies anexceptionevent, it stores the current signature and thgrpro counter of the
watchdog to be able to restore the system at thektihe exception handling.

-35

Background and Related Work

Those two previous techniques need to store infoomaabout the structure of executed
control flow inside their internal memories of thwnitors which has a negative impact on
the area (memory) overhead. In addition, they gdpereference signatures and identify
application blocks at compile time. This can beoarse of errors (during the generation of
reference signatures) and can be a cumbersomespratith complex applications.

The On-Line Signature Learning and Checking (OSIb®thod allows resolving those
previous problems. The OSLC identifies blocks ardegates the reference signature during
the normal execution of program. The watchdog msoeis asynchronous compared to the
execution of the application programs. It can gabi extended to a system containing
several application processors (AP1, .., APN). Fedlil6, extracted from [75], illustrates a
typical hardware configuration of a system usingLOSA component named Signature
Generator (SG) is added to each application proc€s$). SG detects the beginning and the
end of each application block executed by AP amah thends the computed signature to the
watchdog processor (Checker). Thus, the watchdags dwt require to store extensive
information about the control flow of the monitagirprogram inside its internal memory
which reduces the memory overhead.

AP 1 AP N

pIH

W

. Signature/address/iD

v - v

J Signature/address/ID bus

CHECKER

Figure 2-16 General Configuration For OSLC [75].

The OSLC approach consists of two main steps: lieguand checking.

During the learning step, both the identificatioh application blocks and the reference
signatures generation are performed. The signétaraing is accomplished during the final
test of the software application. As the referesigaa-tures are automatically generated, each
program block must be executed at least once duhagdfinal test. Then, the program is
divided into basic blocks that are associateddozan number of signatures generated by SG.
Each block is identified by its start address daaend address. Next, generated signatures are
sent to the watchdog processor (checker) with tteess of the last executed instruction in
the block. Those signatures are stored in the lmeshory of the checker.

Background and Related Work

During the checking step, the verification of tlentrol flow is performed. The execution is
considered correct if the generated signature ifnensignature) corresponds to the reference
signature associated to the memory segment thaaiosnthe last instruction of the block.
Otherwise an error is detected.

In general, Control Flow Checking using signaturealgsis approaches need complex
software (e.g. CFCSS [65]) or hardware (e.g. WD#)[fonitors to generate the runtime
signature and to extract the reference signatuoes memory. This has a negative impact on
memory overhead and on the detection delay dueatendy of the generator and the
comparison of signatures.

In the following sub-section, we present altermatiapproaches to check Control Flow
execution that allow reducing the complexity of tnerated monitors and improving the
detection latency.

2.5.2 Control Flow Checking using system call sequence alysis

The Monitoring System Call Sequence (MSCS) apprasém alternative technique to check
the execution of the control flow. It relies on pesties and makes sure any faulty behavior
violates one or many propertiefhose properties are extracted through a statigrano
analysis that outputs a Finite State Machine (F8Mich enumerates the legal sequences of
system call. In addition, the generated monitor t@asmpact on the execution of monitored
processor.

The technique introduced in [78] proposes a deedabardware monitor to enforce

permissible behavior as program executes. The gsiiohe behavior is identified by a set of
properties. Those properties capture both coammeap (inter-procedural properties are
represented by function call graph) and fine-graifimtra-procedural properties for each
function are represented by basic block contral/ftmaph) program behavior in a hierarchical
manner. In addition, those properties allow to &h#ee integrity of the instruction code

within each basic block. Figura-17, extracted from [78], shows the architecture dof th
proposed monitor. The monitor’'s inputs are the moygcounter (PC), which represents the
next instruction that would be executed, and tisériiction register (IR), which represents the
current instruction being executed.

For inter-procedural verification, the function lcgtaph with N functions is translated into a
FSM with N+1 states: one state associated to eawcbtibn in the main program and an
additional INVALID state. The transition processtween FSM states (except INVALID
state) represents a valid transfer control (calleturn) generated by the main program. The
INVALID state is used when the violation of funatiacall or return occurs. In fact, the
technique consists in storing function start antlirre indices. Then, it checks for each
transition if the incoming function index is equ@lthe index of one of the valid next states.

-37-

Background and Related Work

For intra-procedural verification, the control flamthin a function is translated into a basic
block information tableTTAB,,). The verification consists in checking the tréinsi between
basic blocks within the same function. The indexhef first basic block for a given function
is computed by using the special fieldTiABs: : “ptr. To BB #0” (see Figur-17).

For the integrity of the executed instruction, @shthe same objective as signature. Authors
propose to use cryptographic hash functions at denime to compute a message for each
basic block. Then those messages are loaded ietmtmitor when the application is loaded

for execution. Next, runtime messages are compaitbdeference messages.

IN\TER—-PROC. CONTROL FLLOW CHECKER

fg‘?é'lg no match (to invalid detection)
TADB sart | TAB ¢
PC State | ptr. to | State | refurn |
Call Addr | State _E_E_#_u_j Ret. Addry /dex | _ BB# _|!
1 e e B B oo e
— * FSEM p

S INTRA-PROC. CONTROL FLOW CHECKER]
' g inwvalid
. -~ ' transition

.| BB offset| s, | 51| Hash' TABun
. ! K
-------- o el e B
+ + + },‘,,*’J ¥
[- (Checker) [ControlJJ 'J[Stall detecticn]
I
stall

INSTRUCTION INTEGRITY CHECKER
Buffers [Invalid dete-ctiu:rn]

'
Hash - i
— engine invali
Ca:untrc:l]—- i —={ Checker }

| (to stall deLectia;&J to
proc. =

Figure 2-17 Architecture detail of the runtime noni78]

Therefore, this technique allows detecting illegahp between basic blocks at the current
execution cycle and checking the execution orddéumdtion calls.

2.5.3 Discussion

All those previous approaches allow detecting adnflow errors such as illegal jumps.
However, they do not provide any verification suppto detect data errors like data
corruption. This problem can alter the values afaldes during their storage in memory or
during their extraction from the memory. Therefdhe verification technique must be robust
against any type of data errors. This defines theC®ndition (C9) that the verification
approach must satisfy.

The basic solution consists in duplicating all peog variables in an auxiliary memory and
then checking their values at each read operatiomever, it is not possible to duplicate all

-38-

Background and Related Work

application’s variables due to the memory overhaad because systematic comparison
greatly reduces application’s performance. Theeefdris wiser to select the most critical
variables to check.

In the following section, we present the main apphes proposed in literature to define and
compute criticality metrics.

2.6 Identification of the most critical variables

Critical variables are variables that, when altet®d faults, may strongly impact the
application results. The identification of criticaériables requires the definition and the
computation of criticality metrics. Those metricefat from one approach to another.
However, the most widely used metrics are thietime” and ‘fanout” (the number of
descendent)n fact, variables with higher lifetime have higlpeobability of being corrupted.
In addition, variables with a lot of descendantsiew they are altered by fault, propagate
errors to a large number of other variables. Séwvemgs exist to compute those metrics.

The first phase in the RECCO [80] tool, a Sourc&tarce compilation, that allows
computing theeliability-weightfor each variable takes into account the varidfdémes and
their functional dependencies with other variables.compute the lifetime of a variable,
RECCO counts the number of lines of code startinghfa write operation and ending with
the last read operation on the same data or thefethé program execution. Next, the second
metric, functional dependencies, is defined as dbe of descendant of a given variable.
Authors of [80] define descendant of a given vdegabas any variable resulted from an
expression which includeg. Then, thereliability-weight (RelWeight) associated to each
variable is given by the following linear equation:

2-5
RelWeight, = K; * lifetime,, + K, * Z RelWeight sescendantsv) 29

Where K and K, are coefficients that can be used to focus morenenmetric than the other.

The proposed technique to compute the variablgritetakes into account neither recursivity
nor iterations. Moreover, it neglects the latenoyekecute an instruction according to the
target architecture or to reach data from an eatesamponent. It is performed prior to the
compilation step.

The approach introduced in [81] proposes a newndein of the lifetime metric in order to

resolve the limitations of the technique propose®ECCO [80]. Authors define the lifetime

after the compilation step. They represent thecaode as the Dynamic Dependency Graph
(DDG) which is generated according to an assendalde and execution scenarios. DDG is a
directed acyclic graph that captures the dynammeddencies among the values produced
during the execution of program. In the DDG, a ealsia dynamic assignment of a variable
or a memory location used by the application atine. Hence, a value can be read many

-39

Background and Related Work

times, but it is written only once. Then, the lifie¢ of a given variable is the maximum
distance in terms of dynamic instructions betwémndefinition and the use of this variable.

In addition, experimental results presented in [8ipw that nodes having higanoutand
propagationare responsible for propagating errors to a lamgmber of locations inside the
DDG and it is likely that at least one of the proai@d errors causes a crash of the system.
The definition of those two metrics is as follow:

» Fanout the fanout of node is the set of all immediatecessors of the node in the
DDG.

* Propagation the propagation of a given node is the numberoales to which an error
in this node propagates before causing a crashomtrast to the metritanout that
considers only the first level of error propagatidhis new metric,propagation
considers error propagation across multiple levels.

This technique depends on the execution scenagoi(guts values) in order to generate the
DDG representation. Hence, the values of thoseiesefire not constant and can vary
according to the current execution scenario.

The method introduced in [82] allows reducing tbenplexity to estimate the lifetime metric
which is referred to as vulnerability. This comptgxs due to the path-dependent nature of
the vulnerability computation. This method defities Register File Vulnerability (RFV) of a
program as the sum difetimes of all registers during the program execution. The
vulnerability of a register is the total time dugiwhich it holds a useful data. The technique
introduced in [82] starts by computing the vulndigbfor each register per basic block by
using the following equation:

V=vi+ vixs (2-6)

whereV is the intrinsic vulnerability/ is the conditional vulnerability arglis the probability
of the next access to the register being a redlédaagister livenessThis value is computed
either through profiling or through static analysisand \V* are constants derived from the
current basic block. Theé is computed as the average of the length of resdshiéd intervals,
[write operation — read operation] within the cutrbasic block. The® is the length of the
last interval until basic block boundary.

Next, the RFV of a given register is computed bysung all the basic block vulnerabilities
as shown in the following equation:

RFVy = Zﬂvi=2ﬁ*(vji+vf*5) @7)
7 j

Wheref; is the execution frequency of the basic block 1jta/j is its vulnerability.

Background and Related Work

In addition to those previous metrics, a novel oetras been proposed in [83], named
importance This new metric allows capturing the importandevariables in dependable
software systems. The dependability [84] of a systethe ability to avoid operation failures
by using Error Detection Mechanisms (EDMs) and ERecovery Mechanisms (ERMs). In
fact, dependability encompasses the following laites: availability, reliability safety,
confidentiality, integrity and maintainability. €himportancemetric is based on two related
metrics: thespatial impacimetric and théemporal impactnetric.

» Spatial impact: it defines the diameter of the @Hd area when a given variable v in a
given component C is corrupted. The spatial impdatariable v of component C is
the maximum of spatial impact in a cycle r, denasd , c.

o,c = max{ay .}, vr (2-8)

« Temporal impact: it computes the amount of time flmegram remains affected
whenever a variable v in a component C is corruplée temporal impact of variable
v of component C is the maximum of temporal impac cycle r, denoted agc.

Tye = max{rlﬁ'c}, vr (2-9)

The function used to compute timeportancemetric of variables in componenC, denoted as
lv.c, with variable specific system failure rate f r@yded in [85].

I = * +
e (1 - f)z (amax Tmax

1 UV,C Tv,C) (2-10)

Finally, method introduced in [86] proposes newhteques to compute the lifetime metric
and the functional dependencies metric of eachakbei Those new techniques resolve
limitations of other approaches in literature irthg the functional dependency evaluation
and the computation of lifetime metric. In additi@uthors allow checking the execution of
control flow by considering the data weight in ciithal branches. Authors validated their
method by quantitative comparisons with fault iti@e results.

The lifetime metric is computed by analyzing thentcol flow graph generated by the
compiler. The proposed process to compute varidfieme starts by identifying, for each
instruction, the set of used variables Use(i) @dale appears in the right side of an
assignation, parameter of function call, or invdlMey conditional branch) and the set of
defined variables Def(i) (variable appears in tb& kide of an assignation or result of
function call). Then, it identifies, for each insttion, the set of alive variables at the entry,
denoted adn(i), and the set of alive variables at the exit, deth®ut(i), by using the
following rules:

If (v € Out(i)) and (j € succ(i)) thenv € In(j)

-41-

Background and Related Work

If(v € Use(i)) thenv € In(i)
If (v € Out(i)) and (v € def(i))then v € In(i)

Based on those rules, the two following equatiaesdeduced to compute the final séngi)
andOut(i), for each instruction, i:

Out(i) = U In(j) (j € succ(i)) (2-11)
J

(2-12)

In(i) = Use(i) U(Out(i) \ Def ()

Then, a variableV’ is consideredalive in the edge ieif v € Out(i) n In(j). Hence, the
lifetime denoted as (Cis the number of all edges that satisfy the nevicondition.

For functional dependenciesietric, authors of [86] start by identifying thetsof direct
descendants for each variabledenoted as DD(v). Then, the setdescendantsf a variable
v is computed by using the following recursive edqrat
(2-13)
Descendant(v) = DD (v) U Descendant(w)
w € DD(v)

The technique used to compute foectional dependenciesetric consists in producing a
matrix M with dimension NxN where N is the prograariables number: A cell (M(v,w) >0)
means that “v” is descendant of “w”. The proposkpb@thm, to produce M, consists of two
stepsinitialization andcomputation

* Theinitialization step allows identifying all directed descendaifits given variable:
If(w € DD(U)) then My(w,v) « My(w,v) + 1

* Thecomputationstep allows finding all descendants of a variadteer than its direct
descendants by using the following approach: fitee matrix obtained in the
initialization stepMy, is multiplied by a coefficientjegree_coefto give more weight
to direct descendants. Then, for each variapthis step takes into account the direct
that belongs into the DD(v) by using the previoadue from the matrix. Next, it
multiplies the matrix by thelegree_coefit each dependency level. This process is
repeated until the convergence of the matrix M.

The number of participations of variables in branohdition is referred as,C

-42-

Background and Related Work

Finally, authors propose a generic functi@niticity Coef to compute the criticality of each
variable depending on their lifetime, functionalpdadency and their weight in branch
conditions as follow:

Criticitycoes) = K1 * CL(v) + K,y % C,, (v) + Ky = (2-14)

M(U, W) * (Kl * Cl (W) + Kw * CW (W))

w € Descendent (v)

WhereK|, K, andKy are coefficients that can be used to focus morenenmetric rather than
the others depending on the designer needs.

Once the value ofriticality of each variable is computed, designers can egéer critical
threshold above which a variable is consideredcatibr select th& most critical variables.
In general, those most critical variables are aapéid in an auxiliary memory. However,
method of [85] introduces two thresholds to sekesubset of the most critical variables for
replication. Those two thresholds allow fixing tieémber of duplicatedy, and triplicated};,
variables. They can be computed as a portion ofdniables in a component.

2.7 Discussion

In this chapter, we have presented different tephes and methods related to the hardware
monitoring and control flow checking. Several ammioes are proposed to check the
execution of integrated circuits at RTL descriptibtowever, most of them (e.g. integrated
logic analyzer) cannot be used to check at runtthee behavior of integrated circuits
generated by HLS tools: HLS tools may encrypt dustate generated RTL architectures. In
addition, there is no relation between signals withe generated RTL architectures and their
associated variables within the high level speaiion (e.g. C code) due to the register
sharing technique used by the binding step of Hidbst

Only few approaches have been proposed to allowehécation of RTL architectures that
are generated by HLS tools. From those approagleehave identified nine conditions which
the verification technique must satisfy. They armmarized in Tabl@-2.

All the existing approaches focus on data erroi®).(Chey are understandable by specific
HLS tools except the technique introduced in [6M].fact, this technique extends the

traditional HLS flow to automatically transform thegh level assertions into RTL assertions.
Thus, it satisfies the first condition (C1). Howevthis technique prevents designer to use
adaptive, dynamic or complex control statementg L2 to the use of DFG as the result of
the compilation step.

In addition, those approaches have limits to ddtanging problem (C3) except the technique
presented in [62] that allows partially resolvirtgstissue. It only detects the problem of

Background and Related Work

infinite loops and stuck in a state by introducaenggatchdog and a counter per loop. However,
this approach has a negative impact on the areheag.

Table 2-2: verification conditions

Condition Definition
Cl Portable to any HLS tools
C2 Support dynamic and static applications behavior
C3 Hanging problem detection
C4 Low area overhead
C5 Efficiency (illegal jumps detection)
C6 Low performance impact
C7 Reactive
C8 Data Error Detection
C9 Consistency

For the low area overhead condition (C4), we oalynd the technique introduced in [61] that
allows manually sharing hardware resources betwabget of assertion checkers. Finally, all
those previous approaches have no impact on thece’#/performance (C6). However, there
iIs no verification approach that considers thecedficy (C5), the reactivity (C7) and the
consistency (C9) conditions during the generatiomapdware monitors.

In literature, control flow checking approaches $oftware program are proposed to ensure
that there is no illegal jump during the executidhis satisfies the efficiency condition C5.
However, most of them check the execution at assegrained program behavior. They
check the sequence of function calls or/and thepjbetween basic blocks for each function.
Only technique proposed in [77] allows checkinglthear execution inside each basic block.
In addition, those approaches are unable to daeeuging problems (C3) like infinite loops.
In fact, their techniques are always initializedemhentering a new basic block (e.g. by
uploading the reference signature).

However, Control Flow Checking approaches cannstlyeéde used with RTL architecture
generated by HLS tools. There are two mains limoitet First, the bit-width of FSM state’s
command word (HWacc) is much higher than the sikzenstruction’s opcode in pure
software execution. This increases the complexityemerated monitors (to generate and to
compare signatures) and their area overhead. Setlomdack of information about FSM
states sequences and their associated basic biscgsoblematic. This information are
necessary to compute the signatures of basic hlocks

Background and Related Work

We propose several techniques to resolve the limits of previous approaches to check the
execution of the RTL architecture generated by k@s against data error and control flow
errors. For control flow errors, we propose to adtically generate monitors that allow

checking the timing behavior (e.g. Input/output itig) and detecting illegal jumps and

hanging problems (e.g. infinite loops). For dateoes; we propose a new technique to
synthesize high level assertions that overcomedirtiitions of the existing methods. This

new technique supports both static and dynamic\wehand uses several synthesis options
to make tradeoff between area overhead, performanpact and protection level. Also, a

new synchronization mechanism is proposed to mia&egénerated monitors independent of
the internal execution of HWacc.

In addition, we consider the problem of data cainmpduring the generation of hardware
monitor. We extend the algorithm introduced in [86]identify the most critical variables
taking into account their lifetime inside loopsammd nested loops. Finally, we propose a
specific monitoring operation to check the evolntaf loop inductions variables in order to
enhance the reactivity of generated monitors teaetontrol flow errors.

The following chapters detail:

» the design flow to check the control flow execut(chapter 3)

» the assertion synthesis flow (chapter 4)

» the unified flow to check both data errors and oarftow errors (chapter 5)
« the critical variable verification flow (chapter.6)

Background and Related Work

On Chip Monitor Synthesis Flow

Chapter 3 ON CHIP MONITOR
SYNTHESIS FLOW

I 0 A 1 11 {0 To [T 1[0] IO P P TPPPUPPPPPR 49
3.2 On-Chip Monitor SYNthesSiS FIOW...........uu e eeeeeeeeeeeeeeeeienr e eenee e 50
3.2.1 BaSIC AefiNItIONS ..ottt ce e e e et e e e e e e e e e e e e e e e 51
3.2.2 CDFG ANAIYSIS ..uciiiii et mmmmme s et naaana e s 52
3.2.3 FSMD ANNOTALION ...ceviiiiieiiieeeeee e e e e s 55
3.2.4 1D GENEIALION ...eiieeeeeieee e sttt ettt e e e e e e e e e e e e e e s s e e e e e 59
3.2.5 OCM GENEIALIONuiiiiiiiiiiiieeeeee et e e e e e eeeeee et e et e e e e e e e e e e e e e s s s s nbeeeeae s 59
3.3 EXperimental re@SUILScooiiiiiiiiiiiiee e e 67
3.3.1 Error Coverage ANAIYSISccevvuviuuiiiiiiieeeiseeeeeeeeeeeeeeeeaasnnnnn e e e e e eneees 70
3.3.2 Areaoverhead ANAIYSISoooiiiiiiiiiiiimm et 75
I S o [od [1] o] o USSP 78

This chapter details the first contribution we pose to enhance the verification process of
hardware accelerators that are generated by HiglvdleSynthesis (HLS) techniques. This
methodology automatically generates On-Chip Monf@€M) during the HLS of hardware
accelerators. Generated OCM allows checking atirmatthe hanging problem (C3) and the
problem of illegal jumps (C5). In addition, it chikscthe Input/Output timing behavior of its
associated accelerator with others components.prbposed methodology is portable to any
HLS tools and support both static and dynamic ajapilon’s behaviors.

-47-

On Chip Monitor Synthesis Flow

On Chip Monitor Synthesis Flow

3.1 Introduction

HLS tools generate descriptions of RTL architectufer hardware accelerators. Typical
description contains a control part that drive®perative part (see FiguBl). The operative
part is represented as a Data Path (DP): a sepefitors, multiplexers and registers. The
control part is represented by a Finite State MaelijFSM) that defines the control flow of a
given application. Each FSM state can start thecwien of more than one operation
according to the available resources.

Data
I/O Interface

Operative part

(Data Path)

Figure 3-1 Architecture of hardware acceleratoregated by HLS tool

Existing approaches to monitor RTL architecturezifoon the logic and/or temporal relations
between internal signals of the operative part (DRIso, they allow checking the
synchronization of some portions of the HWacc bynitaring a sequence of events (e.g.
using SERE properties, see page 21). However,dbayot allow checking the execution of
the control flow which drives the set of operatinside the DP.

Unfortunately, runtime errors can modify the exemutof the control flow of hardware
accelerator which leads to possible leaks of va@uabformation like encryption key.
Deviation of control flow can be faults in branchstructions (e.g. conditional or
unconditional jumps between basic blocks extremiitientry and exit) or in non-branch
instructions (e.g. jump to the middle of anothesibdlock), see Figurd-2. Therefore, their
resulting errors can suspend the execution of hemehaccelerators and up to all the system
by causing, for example, infinite loops or by skigp(illegal jump) the FSM state that drives
the communication between an accelerator or thereitomponents inside the system.

When using HLS, the number of FSM states and thgected transitions depend on the
scheduling algorithm and on the set of constraspecified by the designer. EXxisting
verification methods cannot be easily used withSHiools because when the FSM is
automatically generated, designer cannot extractrdarmation.

On Chip Monitor Synthesis Flow

— > Expected -3 Branch "> Non Branch
execution errors errors

Figure 3-2 Control flow errors

In this chapter, we propose a new design apprdaahallows, at runtime, detecting control
flow errors and checking the synchronization of egated Hwacc with the system. This
allows satisfying hanging problem detection (thendibon C3) and the illegal jumps
detection (the condition C5).

The proposed design flow is integrated into the Ha& of our research group, GAUT. This
flow is introduced as a set of steps realized coeatly to the HLS flow of HWacc.
Important application’s information is automatigatletermined during HLS, from which the
architecture of the generated On-Chip Monitor mwally produced. This architecture is
composed of a FSM controller and a Data-Path.

The proposed On-Chip Monitor Synthesis (OCMS) fleteps are implemented by using the
Software Engineering process to be extensible da@table to the evolution of the proposed
design specifications during this thesis. We ugepttocess of V-model to well implement the

design specification. The V-model allows detectimng limits of the proposed design flow by

performing a set of unitary testing. Then, optirimas are performed to correct the proposed
design. In this chapter, the design specificatimmsests in producing an On-Chip Monitor that

allows checking the execution of the control floiAHWacc.

In the following, we start by presenting the On4CMonitor Synthesis (OCMS) flow. Then,
we detail each step of the OCMS flow. Finally, expental results are presented and
analyzed.

3.2 On-Chip Monitor Synthesis Flow

The proposed design flow to check the executiameicontrol flow of HWacc is presented in
the right part of Figur8-3. This flow splits into several steps:

1 CDFG Analysis step - analyzes the formal representation generatedthey
compilation step of the HLS flow in order to det&ontrol Structures (loop and
conditional constructs), to extract their paransetend to identify input and output
data of the HWacc.

On Chip Monitor Synthesis Flow

2 FSMD Annotation step - analyzes and annotates a copy of the HWacc FSMD _
generated by the scheduling step of the HLS flohis Btep identifies all the states
(later referred to amotable statesthat require particular attention such as foik/jo
states or states reading input and/or writing autfaia. This information is used to
verify at runtime that 1/0 timing behavior and jusnipetween BBs are correct.

3 The ID Generation step- assigns to each state of the FSMD_s a uniqudiiee in
order to later detect illegal jumps inside BBsr@nBB).

4 The OCM Generation step - couples the annotated FSMD_s with the results
provided by the binding step of the HLS flow to guce the RTL description of the
monitor as Finite State Machine and Data Path.

Tl

e

Scheduling

v _ —>! FSMD Annotation:
Allocation ID i ‘l;d
Binding 1.9995.@99!3 “Annotaiéd -,
Binding
nformatio

Datapath and Controlle
Generation

Hwacc RTL
Architecture

Figure 3-3 Proposed design flow to check the execwf control flow of hardware
accelerators generated by HLS tool

3.2.1 Basic definitions

In this subsection, we present some basic conaapdsdefinitions that are necessary to
understand the proposed algorithms of the OCMS.flow

The CDFG generated by the compilation step of Hb& ftontains a set of BB and each BB
contains a set of nodes, V, and a set of edge&dBes represent precedence constraints
between nodes. Nodes represent the set of apphéatrariables and operations. Hence, V is
divided into War and Vpp, Where V = \(5r U Vgp and Var N Vop =@. Each operation node is
always preceded and followed by variable nodesetdOAD and STOREoperation nodes.
The LOAD (resp.STORE operation node reads (resp. writes) data frorsp(rén) memory.

-51-

On Chip Monitor Synthesis Flow

The following two equations illustrate the setmbut nodes, M, and the set of output nodes,
Voop for a given operation node, i

Viep(D) ={ € Vyar; T €j; €E} (5-1)
VOOP(i) ={ € Vyar; 3 e;,j € E} (3-2)
The set of variable nodes, ¥ is traditionally composed of three subsets ofasod

* Vj, is the set of variable nodes that representsgpkcation’s inputs and outputs,

* Viner iS the set of variable nodes that representsriteennediate results of operation
nodes,

* VeonstsiS the set of variable nodes that represent thetaats used by the application.

Definitions

» Disjunction BB (resp. state) is a BB (resp. stét@j has more than one outgoing arc.
» Conjunction BB (resp. state) is a BB (resp. stdta) has more than one incoming arc.

3.2.2 CDFG Analysis

CDFG analysisis the first step of the OCMS flow. Analysis stagfter the CDFG has been
generated by the compilation step of the HLS flBwth input and output data of HWacc and
Control Structures (CS) are detected. CS paramateralso identified. Control structures and
associated parameters are:

» Loop constructs (for, while, do-while...): initialidgan, test condition and increment;
» Conditional constructs (If-else, switch-case...): rapels and test condition.
All these information are stored in a dedicatecidase DB (see FiguB3).

Loop constructs are detected when identifying baxcls in the CDFG. Thus, the first step in
the CDFG analysigs to find back arcs. For this reason the basickd BB of the CDFG are
numbered by using a Depth-First Search (DFS) alyor{88], presented iRigure 3-4: each

BB has a unique DFS-number D, as illustrated inlefftepart of Figure3-5. Given that BBs
are numbered in preorder, back arcs are identifiedsing the following criterion: for each
disjunction BB (see section 3.2.1), if there isB &nong its immediate successors that has a
DFS-numbeless than or equab its own DFS-number, then a back arc is detected

Each loop has one entry BB nanmteehderand back arcs namdattch arcsstarting from an
inner BB of the loop construct and reaching beaderBB. The sink BB of a back arc is
referred to asoop Header(LH) and the source BB of a back arc (i.e. thgudistion BB) is
referred to asLoop Latch(LL). The disjunction BB that does not satisfy tpeevious
condition is referred to aSondition Block(CB). In addition, if there is a disjunction BBath

-52-

On Chip Monitor Synthesis Flow

satisfies the previous condition and only containe operation, then it is also referred to as
CB. Figure3-5 illustrates the CDFG of our FIR filter example ddeigure2-2.a, page 17).
The set of disjunction BB is {BB0O, BB1, BB4, BB5According to the previous criterion, the
set of LL is {BB4, BB5}, the set of LH is {BB3, BB4dand the set of CB is {BBO, BB1}.

Current=0
D[] = 0;
DFS(start);
Function DFS(n)
(1) D[n] = Current ++;
(2) For each m in Succ(rgo
(3) If (D[m] ==0)then
(4) DFS(m);
(5) Endlf;
(6) End For;

Figure 3-4 Algorithm of Depth-First Search

Condition Block

Loop Header

Loop Latch

Back arc

Figure 3-5 Identification of control structures

The next step of the€DFG Analysisextracts the parameters of each detected control
structure. In details, loop constructs are clafigicaodeled in the CDFG by three parameters:
initialization, test-condition, and increment sta@nts [87]. Initialization parameter is the
initial value of the induction variable of the caint loop; it can be constant or variable. In FIR
filter example, (see Figurg-2.a, page 17) initialization parameter is equal @ for the
induction variable “i” of loop2. The increment satent is the function that increments the
induction variable. In the FIR filter example, iearent parameters are the adder “+” and the
constant “1”. Test-condition statement is models®Bduple <f1, f2, CMP> where f1 and f2
are the operands of the comparison operation ang& GMhe operation that compares f1 and
f2. When detecting a back arc, f1 is identifiecttzs basic induction loop variable and f2 is
identified as the loop bound (that can be constanariable). In the FIR filter example, for
loop2, f1 is the induction variable “i”, 2 is thvariable “N” and CMP is the comparator “<”.

On Chip Monitor Synthesis Flow

The proposed algorithm to extract loop parametemeésented in Figur@7. The extraction
process of the test-condition of the current lopts by analyzing theoop LatchBB to find
the operation node that produces the value of émglitonal jump (e.g. the value olt in
Figure3-6). To do this, the proposed algorithm checks theEeutput variable nodes,oy),

for each operation nodes starting from the lasraimen node of the currembop latch BB
(step). If an operation node contains in itgqy the variable node of the jump condition, then
this operation node is identified @ondition NodeHence, the CMP parameter is the operator
of this Condition Nodeand the f2 parameter is one of the variable ntitkgsbelong to the set
of input variable nodes, 3, of thisCondition Nodeln fact, the set ¥, of a Gndition Node
(CN) only contains two variable nodes, the loop&umd and the induction variable. The
induction variable will be used as input by thedate Induction Nodmside the_oop Header
BB of the current loop. Th&lpdate Induction Node (UINs an operation nod®HI node,
that allows updating the value of loop’s inductiariable each time entering the loop (see
Figure3-6). Then, the following equation allows identifyifiyamong the element ofiyf of

the detecte€ondition Node (CN)

f2= VIop(CN) \ (Vlop(CN)nVIop(UIN)) (3-3)

Therefore, the proposed algorithm scans the sepefation nodes inside th@op Header
BB starting from the first operation node to detéa Update Induction Nodéstep 3. For
each operation node, algorithm checks if the ietisn of the set M, of the current
operation node with the setyy of the detectecCondition Nodes not the empty set. In this
case, th&Jpdate Induction Nodes detected.

Void Filtre (int N, int C[N], int X[NJ, int Y[N]}
@) intij;

(2) for (=0; j<N; j++X

(® Y0Il=0;
@ for(i=0; i<N, i++){
®) Y0l= Y[+ CL*X[N-1-if;
® 1}
@ 1}

17

Figure 3-6 the compilation of loop constructs

Afterwards, the algorithm searches for the inigalion parameter by scanning the detected
Update Induction Nod@JIN) inside theLoop HeadeBB. In fact, this node has two arcs: the
first one comes from itsoop LatchBB, referred to akatch Arc The second one comes from

On Chip Monitor Synthesis Flow

outside of the loop body which defines the valughefinitialization parametesiep 3. Then,
the value of initialization parameter is identifieg using the following equation:

Initialization parameter =V, (UIN) \ (V 0, (UIN) NV}, (CN)) (3-4)

Next, the algorithm extracts the increment infororati.e. all the operation nodes and
variable nodes (constant or variable) that are tsempute the next value of the induction
variable. To do this, the algorithm finds the opiera node that generates the induction
variable associated to the detedt@dich Arc(e.g. i2 in Figure8-6) (step 4. Staring from this
node, all operation nodes and variable nodes draated until border nodes are fourstiep

5). Border nodes refer to the set of input varialmees and the previous induction variable
which is the output of thepdate Induction Nodge.qg. il in Figure3-6).

Conditional constructs (if-else and switch-case) @mply modeled by a test-condition. Like
loop constructs, the algorithm starts by analyzthg Condition BlockBB to find the
operation node that produces the value of the tondi jump. Then, f1 and f2 parameters
are the two variable nodes that belong to the ggto¥/the detected operation node and CMP
is its operator.

The last step of th€DFG Analysisdetects Input and Output data of hardware accelerat
Those data are identified inside the CDFG as concation variable nodes, ¢/ Those
variables belong to the set of application’s inpartg outputs variables,yand also variable
nodes that precede or follow memory access operabdesstoreandload, respectively.

Ve = Vip U Voop (LOADS) U V;, (STORES) (3-5)

In our FIR filter example (see FiguBe6), the set of Input and Output data is {N, C, X, Y,
X[N-1-i], CJi], Y[j] and Y1}.

Finally, Input and Output data of hardware accéterand parameters of each control
structure detected during the CDFG analysis stepstred in database (see FigB+8). In
addition, each parameter and each B8op LatchandLoop Headey is associated to a given
control structure via a unique control identifieor@ol_ID (one Control_ID per control
structure). This number is later used during FSMDadation step.

3.2.3 FSMD Annotation

FSMD Annotationstarts after the FSMD_s has been generated frenCDFG by the HLS
scheduling step. The objective of this step is teppre the synchronization between the
hardware accelerator and the generated mofiitodo this, the FSMD_s is analyzed and a set
of states that require a particular attention entdied. Those states are identified as notable
states. Notable states are the initial and thd &teies of the hardware accelerator FSMD_s
and the states that include Input/Output datadttiteon, some notable states serve as support
for the control flow description.

On Chip Monitor Synthesis Flow

Algorithm L oop Detectior :Find Loop and its parameters

Input: The result of the compilation step.
Output: the set of loop parameters, initializati@st-condition and increment statement.
Method:

(1) Current =0;

(2) D[*] = UNIVISITED (-1);

(3) DFS(entry B);

(4) For each bb in BRlo

(5) If (card(Succ(bb) >1then

(6) For each s_bb in Succ(bdp

(7) If (D[s_bb]< D[bb]) then // Loop detection (if D[s_bb]=D[bb] that meansttsabb = bb)
® e step-t-------
9) CJ = the variable node of theditonal jump of bb

(10) Condition Node = the last operation nodededib.
(11) While (CJ¢& VoodCondition Node))

(12) Condition Node = Pred (Condition Node);
(13) End while;

(14)

s e step 2-----------

(16) Update Induction Node = the first operatian@ inside s_bb.
(17) While (V,op(Update Induction Node) V,,(Condition node))

(18) Update Induction Node = Succ (Updatikiction Node);
(19)

(20) End while;

2y step 3-----------

(22) Induction Variable = (M,(Condition Noden V,q,(Update Induction Node) ;
(23) 12 = Vep(Condition Node) \ Induction Variable;

(24) Initialization = \f,p,(Update Induction Node) \ Induction Variable;

(25)

6) e step 4-----------

27) Generate Induction Variable = Pred(Conditimue);

(28) While (Induction Variablez Vo, Generate Induction Variable))

(29) Generate Induction Variable = Pred(@ate Induction Variable);
(30) End while;

(31)

B2 step 5-----------

(33) Border Node = Application’s inputsV consisU Voo(Update Induction Node)
(34) Extract_Increment_Function (Border Node, Generate Induction Node);
(35)

(36) ENndif;

(37) End for;

(38) Endif;

(39) End for;

Function Extract_Increment_Function (Border, Node)

(1) Extract operator of the Node

(2) For each v in V,;(Node)do

(3) If ve Borderthen

(4) Extract v

(5) Else

(6) Pred_node = node that generates& YA o(Pred_node))

@) Extract_Increment_Function (Border, Pred_node);

(8) ENdif;

(9) End For;

Figure 3-7 Algorithm of loop detection and param&gxtraction

-56-

On Chip Monitor Synthesis Flow

More precisely, notable states are:

* The initial and the final state of the FSMD_s which are used to synchrotfiee
execution of the OCM and the HWacc it is associ&ted

 TheCommunication Stat§€omS): the set of states where an input dat@ad for the
first time in a control path and/or where an ouigatia is written;

» ThelLoop Increment Function StafelFS): the set of states that perform one or more
operations of the loop increment function extradtedh the database;

* Control flow states, as itemized below.

The control flow is composed of a set of paths Wwhace interconnected. The Figues.b
illustrates the set of paths of the FSMD_s. Eadh ptarts either by a successor disjunction
state (see section 3.2.1) or by a conjunction gts¢e section 3.2.1) and is ended by a
disjunction state. Hence, notable states that ses\&ipports for the control flow description
are:

» Control Flow Stat€CFS): the set of disjunction state;
» Control Successor Staf€SS): the set of successor disjunction state;

» Conjunction StatéCjS).

(O Disjunctionstate @ Conjunctionstate () Notable state

(@ Successor Disjunction stat@ Control flow path

Figure 3-8 FSMD_s and its characteristics (a) FS8I) Control flow path (c) Annotated
FSMD_s

-57-

On Chip Monitor Synthesis Flow

Figure3-8.c shows the annotated FSMD _s of the FIR filtemapia (see page 17). The set of
ComsS is {s1, sb, s7, s8, s11}, the set of CFC & &, s11, s13}, the set of C|S is {s4, s8,
s14}, the set of CSS is {s1, s2, s4, s8, s12, sl the set of LIFS is {s10, s12}.

The next step in thESMD Annotationdentifies the set of loop states. More precisebgh
loop has a single entry state, nanktéghder Stat€HS), and a single exit state, nanieatch
State(LS). Those states are used later by the morota@heck the execution of loops and to
detect the problem of infinite loops. By definitiaine Header Statdhas two incoming arcs:
the first one comes from outside of the loop bodg the other one from the loop body. The
Header Statdelongs to the set @onjunction States

The Latch Statehas two outgoing arcs: the first one goes toHbader Stateand the other
one goes outside of the loop body. Tlach Statebelongs to the set @ontrol Flow States
Each state is associated to a unique basic bleekKgure3-8.a). Then, the identification of
HS and LS is based on the following condition:hé tbasic block associated to the Control
Flow State (resp. Conjunction State) is taggedl@asp Latch(resp.Loop Heade), then the
Control Flow State (resp. Conjunction State) isitdeed asLatch Statgresp.Header State

In the Figure3-8.a, the set of LS is {s11, s13} and the set of bi&#, s8}.

The design software of this step is presented é¥idure 3-9. The FSMD Annotation step is
an abstract interface which leads to have mordbiley on the implemented algorithm to
find notable states (e.g. Find_NS()). In fact,hiérte is new definition of notable states, we
only need to implement the algorithm that idensifitlose new notable states inside the
FSMD_s without modifying the existing algorithmshi3 is the objective of thé\gile
methodology. The notation of our Unified Modelingriguage (UML) designs presented in
this thesis is introduced in Annex UML notation.

Conjunction_State | Disjunction_State _ FSMD_Annoution
| Comment Abstract Interface
Find_CjS() Find_DjS(}
Find CSS() NS0

A A 4‘_\ ri}

Execution Checking | More Implementation |

Find_NS() | Find_MS()

Figure 3-9: The design of the FSMD Annotation step

Finally parameters of control structures are idettiand extracted from the database thanks
to their identifier Control_ID.

On Chip Monitor Synthesis Flow

3.2.4 |D Generation

The execution of théD Generationstep starts after the generation of the FSMD_shiy t
HLS scheduling step. TH® Generationallows checking that no illegal jump has been done
inside a Basic Block (BB). To do this, this stepguces for each FSMD_s state a unique
identifier (ID) by using the DFS algorithm (see &g 3-4). Once each state has been
processed, the updated FSMD_s is classically us@tpat by the allocation and binding step
of the HLS flow as shown in Figui@3. ID is later used during the generation of the RTL
architecture of the hardware accelerator by conediteg its binary value to the command
word of the HWacc FSM state it is associated to.

OnceCDFG Analysis, FSMD AnnotaticendID Generationhave been carried out, notable
states have been detected and control structusengaers have been extracted and stored in
the database. Hence, all the information needggnerate an On-Chip Monitor able to check
the I/O timing behavior and the control flow of Hesare accelerator have been collected.

3.2.5 OCM Generation

The OCM Generation is the last step of the OCMSvfldhis step couples the annotated
FSMD_s from OCMS with the results provided by theding step of the HLS flow and with
the library of operators to design the OCM archiuex It generates the RTL description of
the OCM including a Data-Path (OCM DP) and a FSMtiler (OCM FSM).

This step starts by building the FSM of the OCMeTdigorithm proposed to generate the
OCM FSM is presented in FiguBel0. The approach used by this algorithm is as folldivws
annotated FSMD_s of the HWacc, generated by-®&ID Annotatiorstep, is traversed and
each time a new notable state is visited, a nete, NS, is created in the OCM FSM. Then,
this new created state is associated to the propertoring operations, according to the type
of the current notable state. Next, starting fréva turrent visited notable state, a value “T”,
MS.T, is created and set to zero. This value is increeteduring the traveling process among
the annotated FSMD _s states until a new notabte staeached (see step 2 in Fig8&0).

If the value of “T” is non-null, then a loopbackcas added to the current OCM FSM state,
MS, (step 2). Indeed, loopback arc is annotated willay T to indicate how many idle (i.e.
realize no operation, NOP) steps are required. ;Timemitoring operation of the current state
is executed only when entering OCM FSM state ferfitst time.

The next step in the algorithm, step 3, identifles set oHeader State PredecesspkSPs.
For each created OCM FSM state, the algorithm chécthe set of the next notable states,
next_$ contains a state that is identified aBl@ader Stat€HS). In this case, the algorithm
checks if this HS is not already visited (H& is a conjunction state, it can have more than
one predecessor state.). If not, the current OCN¥ Ffate is tagged as a Header State
Predecessor.

On Chip Monitor Synthesis Flow

Algorithm MSG : Monitor state Generator

Input : the Annotated FSMD_s model <S, I, O, VASUS, , A> and the set of Notable State
NS
Method:
(1) Visited [*] = 0;
(2) Let OCM_FSM be the empty set;
(3) MS = Create_Monitor_State (Ssource;
(4) MSG (Ssource MS);
Function MSG (S, MS) // s is a notable state
Q) - step 1----------------
(2) Visited[S] = 1;
(3)MS =S;
(4) MS.T =0;
(5)
(6) next_S =5(S, STATUS);// the next state is the subset okstat
(7) While (next_Sn NS =@) // the next state is not a notable state
(8) MS.T ++;
(9) next_S H(next_S, STATUS);// Card (next_S) =1
(20) End while; // next_S is the subset of the set NS (Notald¢ept

(11)

12) e step 2----------------

(13) If (MS.T !=0)then

(14) Awms,ms = Create_Monitor_Transition(MS, MS, MS.T);

(15) OCM_FSM = OCM_FSM {MS};

(16) End if;

@arn e step 3----------------

(18) If (next_Sn HSs+# @) then /lcheck if the next notable state is a header

(19) If (Visited[next_S] == Ojhen // we check if the header state is not already
visited

(20) S is tagged d$eader State Predecessor

(21) End if;

(22) End if;

(23)

(24) e step 4----------------

(25) For m in next_Sdo

(26) If (visited[m] ==0)then

(27) Next_MS Create_Monitor_State (m);

(28) AwmsNext ms= Create_Monitor_Transition (MS, Next_MS, STATUS);

(29) MSG(m, Next_MS);

(30) Else

(32) Ams Next_vs= Create_Monitor_Transition(MS, Next_MS, STATUS);

(32) End if;

(33) End for;
Return OCM_FSM;

Figure 3-10 Algorithm to build the OCM FSM

Finally, for each next notable stateekt_$, that has not yet been visited, a new OCM FSM
state is created. In addition, a new transitiooresated between the current OCM FSM state
and the new one according to the transition camditoming from the hardware accelerator

-60-

On Chip Monitor Synthesis Flow

(through STATUS). If the next notable state is adhe visited, then only a new transition is
createdstep 4 Hence, OCM FSM state transition is valid as sasithe state has completed
all its idle/monitoring operations and that thensi@on condition, STATUS, is verified. FSM
inputs are the STATUS signals coming out from thedivare accelerator and comparison
results provided by OCM DP.

The monitoring operation of each OCM FSM state dedpeon its associated notable state.
Hence, if the notable state is:

 aCommunication Statghen the corresponding monitoring operation cheblat the
related load signals of the HWacc registers comtgifiO data are correctly driven;

* a Header State Predecessdhen the corresponding monitoring operation $eés
loop’s induction variable stored inside the OCMit® initial value (initialization
parameter). If the initial value is a constant,ntheis hardwired in the OCM DP,
otherwise it is read from the hardware acceleratgister it has been assigned to
during the binding step of HLS flow;

* aloop Increment Function Statden the corresponding monitoring operation aspli
the increment function to the stored loop’s indoctvariable;

* a lLatch State then the corresponding monitoring operation caegaby using a
CMP operator, the stored loop’s induction variadmel the loop’s bound 2. If f2 is a
constant, then it is hardwired in the OCM DP, othse it is read from the hardware
accelerator register it has been assigned to dtmmbinding step of HLS flow;

» aControl Flow Statethen the corresponding operation compares the ogeraf the
condition transition (i.e. f1 and f2) by using a €Mperator;

» a Control Successor Statthen the corresponding monitoring operation vesifiee
results of the comparison realized in the assati@entrol Flow State or Latch State
with the STATUS signal provided by the hardwareed&@tor, disables the check
operations of Basic Block Control Unit (the destap of this unit, BBCU, is
provided in the next sub-section) and uploads Eh&€Cbntrol Successor State inside
the BBCU;

» aConjunction Statethen the corresponding monitoring operation deslthe check
operations of BBCU and upload the ID Conjunctioat&inside the BBCU.

Figure3-11.b illustrates the results of OCM FSM when th€M Generatiorstep is applied
to the annotated FSMD _s of Figue3.c. For example, states and § have been merged to
create OCM FSM state MSvith a loopback that is annotated by T=1. In ddditMS, has
also been tagged &teader State Predecesdoecause the successor gfsstagged ableader
Stateduring theFSMD Annotatiorstep.

-61-

On Chip Monitor Synthesis Flow

(b)
Figure 3-11 OCM FSM Generator (a) Annotated FSM®)OCM FSM

The design of this build OCM FSM step is presemteBigure 3-12 We use the concept of
template method and abstract class. This concepidas a generic template to produce the
OCM FSM. The OCM_FSM_Build class defines the exiecuhierarchy of the proposed
algorithm but it does not implement all of the baba it defines. In fact, the step3 of the
proposed algorithm is not implemented inside thetralt class because this step is specific to
check the execution of the control flow. Then, & Implemented inside the class

Execution_Checking. This allows using the same tatapmethod for other types of
verification by updating some steps.

OCM FSM_Build
Common Abstract
TemplateMethod Self stept.
Step1
Step2 Self ste2.
Spet3 o]
Stepd Self stepd.
Self stepd.

?

Control_Flow_Checking

Step3

Figure 3-12: The design of the OCM FSM Build step

The next step in th©OCM Generatiorextracts RTL information needed by each monitoring
operation which are the inputs of the OCM DP. Malga defined in the CDFG are replaced
by registers inside the RTL architecture. Next, bheding step of HLS flow is aware of
variable lifetimes which allows reusing the memepaces (registers) when the variables are

-62-

On Chip Monitor Synthesis Flow

no longer used. Hence, each variable is assodiatadpecific memory location at a specific
cycle. Then, those two following information areeded to perform monitoring operations:

 The name (identifier) of registers that contain ttadues of variables used by the
OCM,

» Dates, in terms of FSMD states, when those varsadnie stored in their corresponding
registers.

All the variables needed by the OCM DP are relatechonitoring operations and then are
related to notable states that are FSMD_s statiess, Tonly extracting the corresponding
registers of every needed variable per notable sieivides all the required information to
execute the monitoring operations.

Finally, the OCM Generationstep instantiates and configures different OCM Déthks.
Those OCM DP blocks are extracted from a hardwaneplate (sed-igure 3-13. This
template defines the behavior of the different hand blocks. Also, it provides the ability to
modify the implementation (the RTL description)tbbse hardware blocks according to the
intended design. In fact, each block is designe@ra8bstract Interface clasand several
implementations can be proposed. The configuratiothose hardware blocks is performed
by using the results of the previous design stéke the number of registers that store the
value of input and/or output data). Finally, theengonnection between those hardware blocks
is build and the OCM DP is created.

VHDL_BBCU_binary | EE_Control
= = | Comment Abstract Interface
" <
BBCU()
BBCU() ‘
VHDL_DC : Delay Conivol
= ; ~ Comment Abstract Interfuce Build OCM DP
DCU) < Compton Abstract
DEU() [
i ©CM DR}
VHDL_I0C ' 10_Control
= i Comunent Abstract Interface
e I <
19CLU)
oG} |
VHDL _JC . Jump Conirol
= { Commeni Abstract Interface
> <
Jeug :
JCU()

Figure 3-13 the design of the OCM DP Build step

Figure 3-14 presents the architecture of generated OCM. ThéA@P consists of four
blocks: Basic Block Control Unit (BBCU), Input/OutpControl Unit (IOCU), Delay Control

-63-

On Chip Monitor Synthesis Flow

Unit (DCU) and Jump Control Unit (JCU). All thoskbtks run in parallel to the execution of
hardware accelerator (HWaccs).

Hardware Accelerator (HWacc)

] 1
] 1
1 1
H ‘ COMMD H
i HwaccFSM | status Hwacc DP i
I 1
S e_net;'e:f _________________________ NN — I :
| T s P i ATr===" AT —=—="""" i
On-Chip Monitor !
1
ID i
BB Control Load signa Data signal i
enable_gheck Unit i
) = 1/0 Control i
CS$: Cjs_ID Unit !
. — !
| H
Delay Control |”°® E\lﬂ +
:] Valid
EL i Unit
n_tim

Incr_update

1

1

1

1

1

1

1

1

Incr_result :
LIFS_cmd H
1

1

1

1

1

1

1

1

1

Jump Control Unit -

CMP_ID
State_ID

On-Chip Monitor Data Path (DP)

1
]
1
]
]
]
]
]
]
1
]
1
]
1
]
1 .
: OCM FSM unit ‘
]
1
]
1
]
]
]
]
1
]
1
]
1
]
1
]
1
]
1

Figure 3-14 On-Chip Monitor Architecture

Basic Block Control Unit (BBCU):

This block verifies that no illegal jump appeansthe current basic block. Figu@15.b
shows the architecture of the BBCU. For all HWa&iFstates that belong to the same basic
block, it compares the identifier of the currenaitst D, namedCID, extracted from the
command word COMMD signal with the one of the poens statd”ID by using the following
equation:

CID —PID =1 (3-6)

In fact, all IDs are generated by a DFS algoritnnpieorder which means that the difference
between two consecutive state IDs is equal to 4teStbelong to the same basic block are
linearly executed. Form those two rules; if thdeténce between these two identifie®3 D

and PID) is not one, the BBCU recognizes an illegal jumgde the current BB.

However, during the test step (unitary testingdaf V-model, we detected a false positive. In
fact, the BBCU indicated that an illegal jump wasgent, but it is not in fact present. This
problem arises when the current state is a CoBuotessor State, CSS, (i.e. presented by the
blue color) or a Conjunction State, CjS, (i.e. préed by the red color). Figui@l5.a
illustrates an example of HWacc FSM. If the currstatte is “g’ then CID = 9 and thePID

=3. By using the previous equation, BBCU recognemedlegal jump. This is a false positive.
The same problem occurs when the current state;isahd the previous state is;g8 To

-64-

On Chip Monitor Synthesis Flow

solve this problem, we updated the design of th€ BBThe proposed solution consists to
update the value &?ID when the current state is CSS or CjS by the coare. This solution
is implemented as follow: the execution of BBClt@trolled by the signalehable_check
coming from the OCM FSM Command (see Fig&t®4). Then, if the current state is a CSS
or a CjS, the execution of the BBCU is interruptadl the value oPID is loaded by the
identifier ID of the CSS or CjS (see CSS_CjS_IDFigure 3-14) that is extracted from the
OCM FSM Command at runtime.

Those IDs of CSS and CjS are stored inside the ®SM during thdD Generationstep of
the OCMS flow (off-line). In the next cycle, theemution of the BBCU is resumed with the
new value of th€ID that can be the successor of a CSS or a CjS.

cib

OCM FSM COMM | enable_check
ID_S4=4
= ID_S9 =9 @

ID_S8=8 PID

ST NEY

(b)
Figure 3-15 Basic Block Control Unit (a) examplerbivacc FSM (b) BBCU Architecture

Delay Control Unit (DCU)

The OCM FSM is an optimized copy of the HWacc FSMfact, only notable states of
HWacc FSM are taken into consideration when bugdine OCM FSM. Then, the DCU
block ensures that a proper delay is introducedhduuntime, to keep the HWacc and the
OCM synchronized. This delay represents the valuél'o associated to each OCM FSM
state. Hence, this block contains a configurablenter that counts simple states between two
notable states and its value is set to zero eaoh & new OCM FSM state is reached. The
output of this block is the signdbne This signal is activated only if the current OGN 8 M
state completed all its idle operations. In additib is used by the other blocks to ensure that
the execution of monitoring operation is only penied when entering an OCM FSM state
and by the OCM FSM to validate the transition t® tiext OCM FSM state.

-65-

On Chip Monitor Synthesis Flow

Input/Output Control Unit (IOCU)

Each register within the RTL architecture generdigdhe HLS tool has BOAD signal that
drives the writing operation into its registers.o88LOAD signals are activated when data
that must be stored in their associated registerseady. Then, thodgDADssignals are used
by the block IOCU as references to spot the tinialgavior of the hardware accelerator.

For that purpose, IOCU checks tHaDAD signals associated to 1/O registers are driven in
time by the HWacc. This is realized by comparingt®AD signals coming from the HWacc
with those provided by the OCM FSM states (by usimgmasksignal see Figurgd-14). The
execution of this block depends on the current OE3W state. The verification is performed
only when the current OCM FSM state is taggedCammunication StatéCS). To do this,
each OCM FSM state uses@mablesignalthat is activated when it is a CS.

As explained above, the binding step allows shariegisters between variables. It is
important to notice that. ThHeOAD signals can change their values during the tintenmal
between the current OCM FSM state and the next Baethis reason, all the monitoring
operations are executed only when entering OCM EB&le for the first time. To do this, the
execution of the I0CU block is also guarded by dheput signal of the Delay Control Unit:
the signaldone The output of this block, namddetectionlQ is defined by the following
equation:

DetectionlO = CheckLoad or enable or done (3-7)
where theCheckedLoads the output signal of the comparison betweenstgepalmaskand
the LOAD signals of HWacc.

Jump Control Unit (JCU)

This block verifies that there is no illegal int8B jump. It consists in checking the
conditional jump between basic blocks. To do thigluplicates all the functions responsible
for generating the signédTATUSthat drives the conditional jump. Then, it comgaits
results with the one coming from the HWacc DP.

Figure 3-16 presents the architecture of the Jump Control.Units block contains a set of
Data Register (DR), Function Unit (FU) and Checktl@&U). The DR stores the induction
signals of loop constructs. In fact, each loop tis has a dedicated DR to store the value of
its induction variable. The DR has two input signahitialization signal (coming from the
HWacc when it is not constant) and the update vafu@duction signal (coming from the
FU). The writing process inside the DR is contmbl®y the signalncr_updatecoming from

the OCM FSM. The FU contains a set of registers apérators to perform the loop’s
increment functionl.IFU, and the condition function§&MP. The configuration of this unit is
provided through the signalFS_cmdand the signaCMP_ID coming from the OCM FSM.
The LIFU’s inputs are the set of data signal comirgn the HWacc and DR’s output

-66-

On Chip Monitor Synthesis Flow

(Induction) signals. The inputs of the conditiomdtions depend on the current disjunction
state. If the state is taggedlasch Statethen the inputs are the induction signal stonsitie
the OCM registers and the sigrfal coming from the HWacc DP (if it is not a constant)
Otherwise the inputs are the sigfitdnd the signafi2 both of them coming from the HWacc
(if they are not constants).

The results of théunction Unitare the value of the sign8ITATUSand the new value of
induction value to be stored within its associategister DR. Next, the value &TATUSs
compared with th&tate IDsignal (represents the results of STATUS signaling from the
HWacc), coming from the OCM FSM, inside the CU keck inter-BB jumps. Then, if those
two signals are not equal, the JCU recognizedegail inter-BB jump.

i Initialization
Incr_updatgé% F
DRy | ... DR,
Incr_result_| ; l ili _ L —
nduction
Data 41 fo
sel
LIFS_cmd —
LIFU CMP |
CMP
0 Function Unit
State_ID Check
— 1 Unit

!

Figure 3-16 Jump Control Unit architecture

3.3 Experimental results

In this section, we present the synthesis resultth® proposed flow to design On-Chip
Monitors. Results are the error coverage and tba averhead incurred by the generated RTL
architectures of OCMs. We have implemented the agmr in java Eclipse Modeling
Framework (EMF). For the purpose of our experimemts chose ten applications out of
well-known DSP application, HLS benchmarks and woion standards: Finite Impulse
Response filter (FIR), Discrete Cosine TransformC{ERD), Matrix Multiplication
(MatMult), Sum of Absolute Difference (SAD) of thdPEG-2 application, Fast Fourier
Transform (FFT), Convolution Product (Conv), Solier (Sobel), Encryption Standards
(Blowfish and AES) and Adaptive Differential Puls€ode Modulation Application
(ADPCM).

-67-

On Chip Monitor Synthesis Flow

All those applications have been written in C laaxgel In addition, they have been kept
parameterized i.e. the sizes of the structured @atay, etc.) are variable. Tal8€l gives an

overview of the application complexity in termsmfmber of C code lines, loop constructs,
conditional constructs and I/O parameters (thetimbuhe application, C code). Benchmarks

range from simple (1 loop, 1 if-else and 3 I/O)ore complex (23 loops, 50 if-else and 5
I/0O) applications.

The design flow we used is presented in ngure 3-17. This flow is composed of three

steps: HLS, Logic Synthesis (Bit Stream generatsdep) and Implementation (FPGA
configuration).

Table 3-1 Application Characteristics

Application| #C code #loop #conditional |#1/0
lines constructs constructs
FIR 17 2 0 4
DCT-2D 56 4 2 3
MatMult 20 3 0 6
SAD 22 1 1 3
FFT 55 5 1 2
Conv 22 6 0 6
Sobel 82 4 11 4
Blowfish 201 11 1 7
AES 213 19 2 5
ADPCM 23 50 5
|:| Operation
O Internal representation
ﬁ Code
E Hardware component
HLS
VHDL
ISE Logic Synthesis
\:I/
EPGA Implementation

Figure 3-17: The design flow for experiments

-68-

On Chip Monitor Synthesis Flow

For the HLS tool (GAUT) the compilation step rel@s the compiler GCC 4.7.2 to translate
the input specification into the formal represeantaiCDFG, referred to as CDFG_GCC. All
CDFGs are generated by using the optimized conqmlabption O3. Next, those
CDFG_GCC are modeled by the Compiler step of GAWT ptoduce the models of
CDFG_GAUT. Then, in order to design hardware acaébes, one functional unit has first
been allocated for each type of operation type @ddition, subtraction, etc.), aridst
Schedulinglgorithm has been used.

Finally; the hardware description of the input aggtion has been synthesized by using the
64-bit ISE 14.5 suite form Xilinx with a Virtex Bevice XC5VLX110T (package FF1136)
as target.

ISE is an integrated collection of several toolsgic synthesis engineX§T), which supports
VHDL and Verilog languages and produces a nethg¢grated with constraints and then
transforms the RTL description into a gate-levesadgtion; Translate toolNGDBuild),
which converts all input design netlists and thettes the results into a single merged file,
that describes logic and constraints; Mapping {MAP) which takes a netlist and maps the
logic on device components and groups the logidaiments into CLBs and IOBs
(components of FPGA); Place And Route td®RR which places FPGA cells and connect
them; Bitstream generation to®@IT GEN which takes as input the outputPARto produce

a configuration file ljitstrean) to the target FPGA and programming tdMPACT) which is
used to configure the target FPGA. We have scrikdthose previous steps for all
applications by using the Tool Command Languddel] script.

For the architecture characteristidgble 3-2 presents the CDFG, the FSMD_s and the
annotated FSMD _s characteristics in terms of nurabbasic blocs, states and notable states.
Results show that our technique to build OCM FShMved reducing the number of states by
51% on average compared to the basic techniqudicdtgpthe HWacc FSM. This allows
reducing the complexity of the generated monitat i area overhead as shown latter.

Table 3-2 CDFG and architecture characteristics

Application| #Basic Block| #State| #Notable Stgte
FIR 7 25 12
DCT-2D 13 31 19
MatMult 12 43 23
SAD 5 23 12
FFT 15 52 31
Conv 21 70 41
Sobel 28 127 45
Blowfish 76 179 66
AES 13 558 76
ADPCM 124 871 358

-69-

On Chip Monitor Synthesis Flow

For the synthesis time overhead, Tabi@ summarizes the synthesis times running the HLS
flow alone and the HLS flow with the OCMS flow. Asated, the overhead ranging from
0.14% to 1.85% (1% on average) is negligible. Idigah, results show that this overhead
decreases when the application’s complexity in@e#és.g. AES and ADPCM applications).

Table 3-3: Synthesize time overhead

Application| HWACC without OCM HWACC with OCM %Time
(ms) (ms) Overhead
FIR 1521 1544 1.51%
DCT-2D 1354 1379 1.85%
MatMult 1567 1584 1.08%
SAD 1728 1747 1.10%
FFT 1472 1493 1.43%
Conv 1561 1582 1.35%
Sobel 1578 1604 1.65%
Blowfish 7997 8048 0.64%
AES 120411 120623 0.18%
ADPCM 104541 104684 0.14%

3.3.1 Error Coverage Analysis

To evaluate the error coverage of the proposed C(gilinst control flow errors, a fault
model has been developed. The hardware descripfighe control flow, i.e. the HWacc
FSM, is modeled by the following components:

» State Register (SR) which stores the value of the HWacc FSM state;

» STATUSsignals represent signals that drive the conditignmp between basic
blocks. They are used by disjunction state;

 Command words (COMMD) represent the control bisoamted to each HWacc FSM
state to drive and to configure the HWacc DP;

» State Identifier (ID) represents the binary valfia state. It is generated during e
Generationstep of the OCMS flow;

Next, the fault model has been configured to prediveo types of alterations: Single and
Combined.

» Single alterations consist in performing multipleeations but on a single element.
For example, single alteration modifies the valdeS® but with no impact on
STATUS, COMMD and ID.

-70-

On Chip Monitor Synthesis Flow

» Combined alterations consist in performing multipleerations over several elements
at the same time (e.g. they can alter the vali&Roénd ID simultaneously).

Those alterations are performed by using the teclenof bit-flip. This technique consists in
flipping randomly bits in the data of the four cooments introduced above. Then, the fault
model is configured to inject single (SEU) or muiki (MBUX; x={2, 3, 5, 10, 20}) bits upset
with each type of alterations.

Finally, the validation of the generated monitope&formed by executing the fault model in
conjunction to the set of parameters associatead¢h application. Parameters are the number
of states, the binary identifier of each HWacc FStste after logic synthesis, the command
word of each FSM state and the set of transitiamden the HWacc FSM. The identifier of
FSM state that will be stored inside SR is onedmtoded. The one-hot encoding manner
consists in identifying each state by using onl doit set to ‘1'within SR. This type of
encoding is specified during the logic synthesiSTXoption).

Once the fault injection is performed, if the &dtgon is not detected, the undetected error
number is incremented by one. This mechanism igatep 16 times (in order to have
representative average values) for each Hwacc R&td. sSThe Undetected Error Rate (UER)
formula is presented by the following equation:

Serror
UER = ZCard(HWacc FSM)
card(HWacc FSM)

(3-8)

¢ _ Undetected Errors 39)
error = 104 x Alterations

Results are given according to the type of theatitens: single or combined.
Single Alteration

For single alteration, results show that all alieres are detected. The detection rate is 100%
(UER =0). This result was expected since the deteapproach proposed in this thesis is

based on the redundancy approach. Figt& shows how redundancy allows detecting any
inconsistency.

The verification of intra-Basic Block jumps consisn storing inside the OCM DP the
previous state’s identifier (ID), and computing therent ID (extraction from the COMMD
related to SR). Then, if the modified value of tBeor SR comes to be locally inconsistent
(case 1lin Figure3-18), our solution immediately detects the alteraifery. when the state’s
identifier is greater than IR or when the value state within the SR is incojregince states
within SR are one-hot encoded, at any time odd reunal bit flips in SR leads to illegal
states. In addition, in some cases, even numbdritdiips leads to illegal states, if this
number is greater than 2.

-71-

On Chip Monitor Synthesis Flow

Redundancy
& —

Stock and Compute ID Computedisjunction functions:

Case/l/ » Loop increment function
\ o COnditionjump
Modified ID Modified SR
Case/B> Detected CGS%\QZ B1

Case 4

/ _STATUS, %€

Illegal SR: Evaluable SR B2 B3
\ Detected Wrong ID

- Double counting of STATUS

OCM and Hwacc run in parallel
Detected

Figure 3-18 Redundancy approach

On the contrary, be the faulty value correct withis type €ase 2, the inconsistency is
globally detected based on the redundancy withrathaltered three elements. Figi-d9

illustrates two examples of alterations that anmeesti within their type:

* SR alteration consists in modifying the value ies®R by two bit flips: one to reset
the current hot bit and another one to set a néwrbis alteration leads to illegal jump
from s to . As ID is not altered (single alteration) but imext because it is
calculated from an altered value of Séage 3in Figure 3-18), the inconsistency is
detected by using the ID evolution propetp{-D, =1, wherelD. is the ID of the

current state within SR anB;, is the ID of previous state within SR).

» |D alteration consists in modifying the value oétburrent state identifier ID without
altering the value within the SR. As the alteredisDassociated to the correct value
within the SR, then the inconsistency is detectgdiding the previous ID evolution

property.

For the verification of inter-basic block jumps,ettOCM duplicates all the functions
responsible for generating the signal STATUS thated the conditional jump in its DRgse

4 in Figure 3-18). This technique impacts the area overhead adged@M which will be
presented in the next sub-section. The two valdaebeo STATUS signal generated by the
OCM DP,STATU%cwm, and the HWacc DRISTATUSwace are compared at runtime to detect

inconsistency.

-72-

On Chip Monitor Synthesis Flow

SR Alteration ID Alteration
ID_SO @mﬁso > Hwacc FSM state
SR: 00100 ID_s1 CsLoibst O Notable state
2 bit flipsu [Gons God bz io_ss
SR: @000 >Ca s G s
Csy Dip_sa sy Dip_sa
<
Hwacc FSM Hwacc FSM
Redundancytechnique
ID_S3-1D_S1=17??? ID_S4-1ID_S1=1???

Figure 3-19 Intra-basic block alterations

In addition, results show that all illegal jumpsioke the control flow that are caused by a
single alteration are immediately detected after thock cycles except for the two following
special cases which need three clock cycles teebextéd:

* lllegal jumps from the end of a disjunction basiodi (see definition in page 51) to
the middle of one of its successors;

* lllegal jump from the end of a predecessor of guaction basic block (see definition
in page 51) to the middle of its successor.

Figure3-20.a shows an example of SR alteration that cauksgmiljump from the end of the
disjunction basic block BBO to the middle of itxsassor BB1. The OCM FSM associated to
this example is presented in Fig0.b. The detection of this type of SR alteratiobased

on the following approach. Each OCM FSM state thahgged as Successor Control State
(e.g. MS) stores the state identifier ID of its associdt®tlacc FSM state (e.g. ID_S4). Then,
when the current HWacc FSM state is a disjunctitates(the end of a disjunction basic
block), the OCM FSM state’s transition is perfornaatording to th&TATUSwace AS there

is no alteration over th&TATUSwace the OCM stops the execution of the Basic Block
Control Unit (BBCU) by using th&nable_checlsignal and uploads inside tReD register
the state identifier associated to the currenestathe OCM FSM state. Then, by using the
ID property (see equatiofs-6), the alteration is detected. This process is showFigure
3-20.c. Therefore, this approach needs one extra agcle to update the value within the
PID register each time a Successor Control Stateaishesl compared to other types of SR
alterations.

-13

On Chip Monitor Synthesis Flow

Enable_check

CID

PID

CID-PID

Bug

@ (b) (©)

Figure 3-20 (a) example of SR alteration (b) asgedi OCM FSM and (c) the execution of
the Basic Block Control Unit

Combined Alteration

For combined alterations, results show that thg anldetected cases are either alteration of
commands in notable states or a combination of’statentifier ID and SR alterations which
mask each other.

However, the approach proposed in this chapteristsns checking the control flow errors
and the Input/Output timing behavior of the geredatardware accelerators (HWacc). Thus,
command words of HWacc FSM states that are nottiftlxh as notable states cannot be
protected against faults. Those faults can be thetdbanks to data based assertions (e.g. PSL
assertions) (see next chapter).

Combined ID and SR alterations are handled by ppraach. As explained in the previous
section, dedicate®ingle Alteration the only case to produce legal states afteriadfeihe
value within SR is performed by injecting 2 bitg4# (the worst case). This SR alteration is
detected inSingle Alterationby using the ID property. Hence, if the ID asstezato the
altered value of SR is also altered to match tkis state, then we have a silent error. Thus,
the higher number of alterations over ID, the higtiteance to hide the faulty behavior.

Figure 3-21 shows an example of combined ID and SR alterahah cannot be detected by
our approach. After 2 bit flips, the value of thexhstate stored in SR is changed frgnos

s;. Next, the identifier ID associated tg is also changed to the expected ID, the identifier
associated to state. $1ence, the verification of the ID evolution profyedoes not recognize
an illegal jump.

Figure 3-22 shows the results of the Undetected Error Rateeémh application. The error
detection capability of the OCM slowly decreasethwhe number of alterations over ID.
Moreover, results show that the UER depends omapip&cation’s complexity.

-4

On Chip Monitor Synthesis Flow

Combination of ID and SR alteration

ID_SO
SR: 00100.“ (s DD st %T:?,
2 bit f|ipsll €O LE NO BUG (ID_S2 - ID_S1 = 1) O Hwacc FSM state
SR: 0000 ° Coad 19:55 1052 MS) O Notable state
Ca o s4 O OCM FSM state
Hwacc FSM OCM FSM

Figure 3-21 Combined alteration: ID and SR

It decreases when the application gains in compl€eig. Blowfish, AES and ADPCM). In
fact, IDs are concatenated to the state’s commamrd.\viHence, with complex application that
needs larger command words, the probability to fyatlie value of ID is less than the one
with application of lower complexity. For examptee SAD application stores 23 bits within
its command words (including the binary ID) and &eS application stores 821bits within
its command words (including of the binary ID). ldenwith 5 bits flips (MBU5) the SAD
application leads to 2,02 FQUER while the AES application leads to 3.58’ 10ER. Then,
the UER with AES is 1% smaller than the one associated to SAD. Finafig, minimum
error detection capability, that is independerthefapplication’s complexity, is 99.75%.

Undetected Error Rate

3.00E-03

2.50E-03
/ ——DCT-2D
2.00E-03 “ MatMul
/ / o
1.50E-03 =FFT
/ / / conv
1.00E-03 / Sobel
// Blowfish
5.00E-04 — — AES
M ADPCM

0.00E+00 —— —
SEU MBU2 MBU3 MBU5 MBU10 MBU20

Eror rate

Figure 3-22: Error Detection mismatch

3.3.2 Area overhead Analysis

In order to evaluate the area overhead incurre@®#, two optimization options have been
considered for logic synthesis: area and spégglure 3-23 presents the area overhead in
terms of slices when OCM is added to the HWacc. ddtailed area of the OCM in terms of
flip-flops (FF) and Look-Up Table (LUT) is presedtan Table3-4. Results are given for the
two logic synthesis options.

On Chip Monitor Synthesis Flow

For speed optimization, the overhead can go up7& 2hile for area optimization the
overhead is at most 20%. The area overhead is teghay three characteristics:

* The complexity of loop’s increment function: thisnttion must be computed twice
to detect single error ov&8TATUSsignal. This is the objective of the Jump Control
Unit presented in the previous section. Then, peadrheads are obtained when
considering OCM DPs that implement complex looprentent functions like
multiplication (e.g. FFT)

* The number of loop constructs: In fact, for eachpl@onstruct a dedicated register
and a multiplexer are instantiated inside the OCM @&nhd a set of control bits are
stored inside the OCM command words. For examplgh whe same loop’s
increment function complexity, the DCT applicatidras two additional loop
constructs compared to the FIR application. Thisraases the area of OCM
associated to DCT (OCp4r) by 28.5% for FF and 63% for LUT compared to tire F
and LUT used by the OCM associated to FIR (Q&gMwvhen the speed optimization
option is selected. However, the overhead incubethe OCMr is greater than the
one caused by the OGMr (see Figure3-23). This difference is due to the
application’s complexity the last point that impatie OCM overhead.

* The application’s complexity in terms of number agerators (ADD, MUL, etc.),
number of multiplexers and registers: Results st HWaccs that implement low
complexity application, with only one functional iurior each type of operation,
exhibit high overhead (e.g. FIR). On the contraing, OCM overhead is less than 4%
for applications of higher complexity like AES, ABQRI and Blowfish despite their
associated OCMs areas (TaBid).

AreaOverhead (Slices)

30%
25%
20%
15%
10%

5%

0% HE mm
<& Q $ Q & & S L & Q
< é'\« \’@\) g)V‘ « ¢ ‘160 §°) I\ QQ(,
Q @’b Q}o e

H Speed Optimization M Area Optimization

Figure 3-23: Area overhead incurred by OCM

To evaluate the last point that impacts the OCMloead, the application’s complexity, each
loop inside the high level specification is paitiainrolled to make HWacc more parallel,
more powerful and thus more realistic. For thatppse, loops of FIR, DCT-2D, SAD,
MatMul, Conv, Sobel, and FFT have been unrollecalfactor of 4 and 8. Partial unrolling

-76-

On Chip Monitor Synthesis Flow

brings potential parallelism. Hence, we modified sitheduling algorithm to allocate as many
functional units as required to fully exploit thparallelism by using the ASAP algorithm.

Table 3-4: OCM area characteristics

Logic Synthesis option
Application Speed Area

FF LUT FF LUT

FIR 49 58 49 56

DCT-2D 63 95 63 91

MatMult 60 93 60 80

SAD 38 44 38 42
FFT 78 165 78 145
Conv 96 154 96 139
Sobel 96 171 96 163
Blowfish 90 132 90 103
AES 126 140 126 127
ADPCM 250 315 250 314

Figure 3-24 presents the area overhead of OCM after unrolbogs. Results are given for
the three high level specifications of each apgbea without unrolling (WU, we use thast
Schedulingalgorithm), unrolling by a factor of 4 (U4) andraling by a factor of 8 (U8).
Results show that the overhead of OCM generated Bd and U8 is decreased compared to

the original specification (WU).

For the speed optimization, the overhead of OCMeduced by 1.88x with the U4 and by
2.78x with U8 while for area optimization the ovealdl is reduced by 1.71x with U4 and by
2.70x with U8 on average compared to previous tegWU). Then, the overhead can go up

to 15% (the peak overhead).

Slice Overhead with partial unrolling

1.8x

2.7x

H Speed Optimization

LT TR

> &\)‘b $\>o9v<)>§> @0«\5“«0% S\BA\)&\\\;}: $\> \9v \9%
Qs A s AN IS YR W)
P F® & &K S Q&‘%&z s

M Area Optimization

Figure 3-24: OCM overhead with partial loop unmudji

-77-

On Chip Monitor Synthesis Flow

Finally the generated OCM has no impact on the H¥gaperformance. In fact, it runs in
parallel to the execution of HWacc. It only exteastome internal signals to perform the
verification. This reduces the clock frequency afidd¢c by 0.12% on average (up to 4% in
the worst case) which is negligible.

3.4 Conclusion

This chapter has presented an automated approagknirate On-Chip Monitors (OCM)
during High-Level Synthesis (HLS) of Hardware aecators (HWacc). The proposed
method runs concurrently to the HLS flow. It is extension of the traditional HLS flow
which is portable to any HLS tools. Hence, it dassthe first condition C1. In addition, the
input of the proposed design flow to generate OGlkhe Control Data Flow Graph (CDFG)
which represents the formal representation of {h@i@ation to check. This representation
supports both static and dynamic behaviors whitisfess the second condition, C2.

The generated OCM analyzes at runtime the timingabier of Hwacc by monitoring its
Input/Output. OCM allows checking the control flawrors like illegal jumps and infinite
loops. Moreover, the monitor’'s architecture is cosgd of a Data-Path and control Part
which is an optimized copy of the original HWaccMEST his control part allows OCM to be
independent of the HWacc’s execution to preventlamging problems. Experimental results
shown that the error coverage on the control flamges from 99.75% to 100%. The proposed
methodology satisfies thé"and the ¥ conditions, C3 and C5. Also, results shown that in
average the OCM area overhead is less than 10%eurdases when the application gains in
complexity. In addition, the synthesis time overhésa 1% on average which is negligible.
Finally, OCM has no impact on the HWacc’s perforgesatisfying the condition C6. It only
reduces the functional clock frequency by 0.12%weerage which is also negligible.

However, the proposed methodology is limited to Weeification of the control flow. In
addition, it only checks command words of notabtates. Those notable states are
automatically identified from the FSMD _s resultingm the HLS scheduling step. Moreover,
this methodology cannot detect problem of datarsr(oondition C8). The next chapters
introduce some optimizations inside the design flmvdetect data errors and to allow
designers defining new notable states. The appraaebented in this chapter has been
published in [89].

-78

Assertion Based Verification for High Level Syntises

Chapter 4 ASSERTION BASED
VERIFICATION FOR HIGH LEVEL
SYNTHESIS

vt R [11 (0o LU T{ 1o o TP PPPUPPPPPR 81
4.2 Assertion Synthesis Flow (On-Chip Monitor Synthéli®y)ccccevvvvevenennnnns 82
4.2.1 ASSErtion EXIrACONcooiiiiiiiiitit et e e e e e e 83
4.2.2 FSMD ANNOTATION ...etviieiiiiiiiieee ettt aeeeeee s 87
4.2.3 ASSErtion CRECKETccooiiiii ittt e 90
424 OCM GENEIAtION STEP ...iiiiiiiieeeeeieeeee sttt ettt s e e e e e e e e e e e eeeeeeeeeseenennes 92
4.3 EXPerimental FESUILScooeiiiiiiiiiiieee e 96
4.3.1 Performance overhead analysSiS...........ooooeeeeeiiiiiiiiiii e 98
4.3.2 Areaoverhead analySiS..........cooiiiiiiiiiiii e 99
S o [od [1] o] o P PP OPRPPPUPPPRTRN 102

In the previous chapter, we have presented a nethadelogy to check the execution of
HWacc generated by HLS tools against control flosers. The proposed technique is based
on notable states that are automatically deteclidus chapter proposes a new approach to
synthesize ANSI-C assertions during the HLS ofveard accelerators. This proposal allows

detecting data errors. In addition, it allows rediug the area overhead by introducing

assertion synthesis options. Finally, it improves teactivity of generated monitors.

79

Assertion Based Verification for High Level Syntises

Assertion Based Verification for High Level Syntises

4.1 Introduction

The first contribution presented in the previouaptler allows checking at runtime the control
flow of a hardware accelerator generated by HL3stdéxperiment results have shown that
this contribution allows detecting illegal jumpsdaimfinite loops. In addition, the generated
On-Chip Monitor is independent of the monitored H&avhich prevents any hanging
problems coming from the HWacc.

However, hardware accelerators face faults thatnoadify values of internal signals without

impacting the execution of control flow or the infputput timing behavior. For example, a
wrong value of a given input (that does not beldaghe range of expected values) can
modify the internal results, and finally infectethalue of application’s outputs.

To detect data errors, a designer, using HLS, sanAssertion-Based Verification (ABV), a
well-known technique in Electronic Design Automati(EDA), as an alternative to check
HWacc behavior by executing an application thatt@ms assertions against a testbench.
ABV allows checking logic and/or temporal behavi@gainst a priori known properties
through signals/registers spying. It relies on types of conditions named pre- and post-
conditions. Pre-condition must always be true preir to the execution of some sections of
code and post-condition must always be true dfieekecution of some sections of code.

Unfortunately, during HLS, high level assertiong(eANSI-C with C code) statements are
currently either ignored or treated as common fonst and implemented using hardware
resources of generated hardware accelerator (HWaampredicted way. As consequence,
they strongly degrade HWacc performances and cammoemoved easily if needed. Thus,
the basic solution is to manually translate thosghH evel assertions into RTL assertions.
Finally, those RTL assertions are used during tst-pynthesis RTL simulation.

Unlike HLS tools, designers can hardly get infoneratabout register names where variables
are stored or FSM states during which variablesaaoessed. Thus, the integration of RTL
assertions in the architectures generated by HolSs@ cumbersome process.

Automatic propagation of high level assertionsestants inside the HLS flow to produce
their RTL descriptions allows resolving those liatibns. Existing techniques [61][62][64]
have several limitations. They only focus on systhieg high level assertion into RTL
circuits (see section 2.7, page 43).

In this chapter, we propose a new approach to aattoatly synthesize ANSI-C assertions
into hardware monitor during the HLS of HWacc. fmeposed approach allows resolving all
previous limitations: synchronization mechanisngaaoverhead and protection level. The
synchronization mechanism is based on the apprnoadduced in the previous chapter. The
synchronization is performed by defining new notattiates. The tradeoff between protection
level and area overhead is performed by proposuoegaissertion synthesis options: speed and
area.

-81-

Assertion Based Verification for High Level Syntises

Since the approach we propose in this chapter secban the technique introduced in the
previous chapter, it is portable to any HLS toolsl asupports both static and dynamic
behaviors. The execution of the assertion chedkaatso independent of the internal states of
the monitored HWacc.

4.2 Assertion Synthesis Flow (On-Chip Monitor Synthesi$low)

This section describes how the ANSI-C assertioesnaodeled inside the CDFG after the
compilation of a C code decorated with assertidNext, it introduces the proposed
techniques to analyze, identify, extract informatend annotate different models generated
by traditional HLS flow in order to generate thelRimplementations of ANSI-C assertions.

The Assertion Synthesis flow we propose consistss@feral steps that are realized
concurrently to the traditional HLS flow as illusted in the right part of Figueel:

1. Assertion Extraction step-starts after the HLS has compiled a C code witlerdi®ns
(through the use of thassert.hlibrary). This step analyses the formal repregsenta
of application including assertions (referred toCi3FG_A in Figure4-1) in order to
detect the assertion statements and to extraat paeameters. Next, it removes the
assertion branches from the CDFG_A and generate=afth detected assertion a new
Control Data Flow Graph (CDFG_x). Then, the schiedustep of HLS flow operates
with the new version of the formal representati®DFG_WA)

2. FSMD annotation step-analyses and annotates a copy of the Hwacc FSMIhis.
step is similar to the one introduced in the presichapter (see page 50). Moreover,
considering assertion synthesis requires to idemt#Ew notable states such as states
that start the execution of assertion verifications

3. Assertion Checker step-produces the RTL architectures of assertions ubibh§
tool. The generation process of RTL descriptiontsaised on the OCM option. Finally,
this step stores all the generated RTL architestae operators in a dedicated
database.

4. OCM Generation step<ouples the annotated FSMD_s with the results dealiby
the binding step of the HLS flow and with RTL arnelitures stored in the library of
operators to produce the RTL description of the iooras Finite State Machine and
Data-Path.

-82-

Assertion Based Verification for High Level Syntises

Assert+C/C++ “

- ittt R
Compiler I i ___1___ U A
V/ - ~
—»1 Assertion Extraction j (. _SPFC_L_ 2>, (_coren 2
I ! |
e I
Scheduling H]j _M_ergerl
C_FSMD_s > pmmTm S~y WSIIIIIIIS | | em T T
.corewa, J j BD:Assertions C.corem Options
Allocation r y_—_r_ _____ :..!j: \L'}"‘.,
Binding > 1 FSMD Annotatlon' I_-Sglegier” i<
Ei”ding (#~ Annotated ™, [His Je
Information 4)
pa f§$9_5 Assertion Checke
Datapath and Controller| r-“()-CI:/I““: " ..__.
Generation —! . e— Ol eraton
i _Generation i LR
_________ rs
Hwacc RTL
Architecture T OCM RTL 1

Archltecture :

Figure 4-1: Assertion Synthesis flow (OCMS flow)

The proposed synthesis flow offers two synthestgoap, speed and area. The speed option is
non-intrusive as it does not affect the HWacc eenwnless an assertion violation occurs. It
can check several assertions concurrently like grevious works in literature. On the
opposite, the area option is potentially intrusarel freezes the Hwacc execution when an
assertion must be verified. This allows sharingdhare resources between assertions
checkers (AC). The following sub-sections detail thaw.

4.2.1 Assertion Extraction

Assertion Extraction is the first step of the aBemer synthesis flow. It starts after the
compilation step of the HLS flow that generates theermediate representation of the
application, including assertions, CDFG_A (CDFGhmssertions). This step identifies the
branches and the basic blocks related to the ams®rextracts their parameters and removes
assertion instructions from the CDFG_A to produceew formal representation CDFG_WA
(CDFG without Assertions). Then, it produces a setCDFG_x from those assertions
instructions. Next, those CDFG_x are synthesizéagusaditional HLS flow by théssertion
Checkerstep (see section 4.2.3). In contrary to our fashtribution (i.e.CDFG Analysis
step) theAssertion Extractiorstep modifies the intermediate representation résilts from
the compilation step of the HLS flow and produce®sw set of CDFGs.

An assertion is modeled in the CDFG_A by a set adid block (BBs) named Assertion
CONDition BBs (ACOND BBs) and one Assertion STATHMeBB (ASTATE BB).
ACOND BB executes operations and evaluates theitonaf assertion it is related to. If the

-83-

Assertion Based Verification for High Level Syntises

condition is true (due to negative logic used by ¢bmpiler), a branch to the ASTATE BB is
realized. ASTATE BB calls the “Assert_Fail()” fumm to stop the program execution. This
function provided by the assert.h library is uniguehe CDFG_A (i.e. it is common to and
shared by all the assertions) and is used to loigtions and to abort program execution.

Figure 4-2.a illustrates the source code of the FIR filteplagation including one assertion
(see line 5). Figurd-2.b presents the compilation result, i.e. the CDFGT e ASTATE BB

of the assertion is presented in Figy.e (basic block BB7). The BB7 has only one
operation node which performs a function call te fanction “Assert_Fail()”. The ACOND
BB is presented in Figurd-2.d (basic block BB5). This basic block containseassns
statements, variable and operation nodes to pertberassertion condition and application
statement. The variable node, “Asl” representsctiraition output of ACOND BB. Red
nodes (variable and operation) represent all tilesaised by ACOND BB.

Void Filtre (int N, int C[N], int X[N], int Y[N])X{
(1) intij;
(2) for (j =0; j<N; j++){ // loopl

3 Y[=0;
(&) for(=0; N, i++){flloop2
© YD cixad e
®) @ SaS S
} (BB2] (BBS8] Dt] [ci]

BB3

B4 BBS

S
BB6 BB7

(b)

__assert_fail(“C[i]-X[N-1-i]>2",...)

BB7
© (e)

Figure 4-2: FIR filter decorated with ANSI-C asgant(a) Source code with assertions (b)
CFG (c) DFG of BB6 (d) DFG of BB5 (e) Assert FunctiCall

The extraction process of assertion statements fhenfiormal representation CDFG_A starts
by detecting ASTATE BB. To do this, the algoritheass the CDFG_A and for each basic
block, it checks if there is an operation node gfeatorms a call to the Assert_Fail() function.
Then, each time an ASTATE BB is detected, a newtt©bbata Flow Graph, CDFG_Xx, is
created and is labeled by a unique number, X, tyatesents the number of the current
detected assertion.

The next step in the extraction process is thetifigation of ACOND BBs. As explained
above, the branch to ASTATE BB is controlled by tasult of ACOND BB. ACOND BB is
the direct predecessor of an ASTATE BB. Once ACOBRD is identified, all its nodes

-84

Assertion Based Verification for High Level Syntises

(variables and operations are moved into the neated graph CDFG_x) associated to the
current assertion, starting from the last nodel anborder node is found. Border nodes, V
are variable nodes and are classified in two typesimunication variables,dy and internal
variables, V.

+ The set of communication variable nodes, ¥ the same as the one introduced in the
previous chapter (see page 55).

* Internal variable nodes are variable nodes tha¢ ladveast one output arc going to an
operation node that performs a HWacc's computatod an output arc that is
connected an ACOND node.

Our algorithm that identifies the set ®f internal variable nodes is presented in Figi
The input of this algorithm is the set of commutima nodes, ¥, and the set Mer Which is

the set of variable nodes that represent the irgeiaite results of operation nodes inside the
CDFG_A (including assertions statements). This $&te, contains internal results of
assertion operation nodes and HWacc operation nddes algorithm starts by removing
from the set Ver all the variable nodes that belong to the sgt Mhen, it checks for every
variable node that has more than one output drtiserie is at least one of its successors that
belongs to the set of /If so, the current variable node is identifiecbasder node.

Then, when border nodes are reached by the extnaptiocess of ACOND BBs, they are
duplicated in the CDFG_x, associated to the curassertion and tagged as input assertion
inside the CDFG_A. In addition, each border nodasisociated to a given assertion through
an assertion identifierAgsert_ID and is added to the list of inputs of the currassertion.
Border node can be associated to more than ongiasséll those information are stored in
a dedicated databas@ssertiony see Figurel-1.

Once CDFG_x is created, the related ASTATE BB isaeed from CDFG_A since no call to
the “Assert_Fail(J function must remain in the HWacc.

Figure4-4 illustrates the CDFG resulting from the assergatraction process: CDFG_WA.
All BBs, nodes and arcs attached to assertionmstaits (see Figuré-2.d) are removed from
the CDFG_A except BB5 and its output arc. In f&B5 contains border nodes {X[N-1-i],
Cl[iJ}. For this reason, CDFG_WA is scanned to meugeised BBs. Then, BB5 and BB6 are
merged to have one basic block for the statemelm@b in Figured-2.a.

Once all assertion branches have been removedther@DFG_A, the scheduling step of the
HLS flow operated with the new version of the formedel, CDFG_WA: CDFG Without
Assertion to generate the FSMD_s.

Assertion Based Verification for High Level Syntises

Algorithm Border Node Identification :

Input: the set Wier\ Ve
Output: the set V
Method:
(1) For each node inifeAVc do
(2) Visited[*] =0;
(3) Next_Operation Node = Succ(node);
(4) If(Card(Next_Operation_Node) >1) then
(5) If(Scan_Border(Next_Operation_Node)) then
(6) Add node to ¥/
(7) End if
(8) ENdif;
(9) End for;
Scan_Border(Next_Operation_Node)
(1) Scan_output = false;
(2) For each operation in Next_Operation_Node do
(3) If(Visited[operation] =0) then
4) Visited[operation] =1
(5) Output_Node = Yo (operation);
(6) [f(Output_Node= V¢) then

(7) Scan_output = true;
(8) Break;
(9) Else

(20) Operation_Node = Succ(Output_Node);
11D Scan_output Scan_Borde Operation_Node);
(12) If(Scan_output) then

(13) Break;
(24) End if;
(15) Endif;
(16) Endif;

(17) End for;
(18) Return Scan_output;

Figure 4-3: Algorithm of Border Node Identification

BB5_BB6

(a) (b)
Figure 4-4: Assertion Extraction result: (a) CDFGAWb) DFG of BB5 and BB6

-86-

Assertion Based Verification for High Level Syntises

4.2.2 FSMD Annotation

FSMD Annotationstarts after the FSMD_s has been generated frenCIDFG_WA by the
HLS scheduling step. The objective of this stepoisynchronize the execution of assertion
verification with the execution of HWacdn fact, this step allows identifying, for each
assertion, the control step when the executionssérion must be started. In addition, it
allows the generated monitor to be independerti@ekecution of HWacc in order to start its
operations. To do this, the FSMD_s is analyzedrsewl sets of notable states are identified.
We use the samimterface class=SMD_Annotation presented in the previous chafsee
Figure 3-9). However, we propose a new implementation to raatecally detect the new
notable states that are associated to the asseréiofication technique which was not
considered in the previous chapter (Chapter 3).

Notable states are: the initial and the final staiéthe HWacc FSMD _s; the control flow
states and the states that include statementsveelat the data used by the assertions. The
latter define the new notable states comparedfinitiens that are introduced in the previous
chapter (see section 3.2.3).

More precisely, the new notable states are:

* Thelnput Assertion State@AS): the set of states that hold the data cpoading to
input variables of a given assertion;

* The Start Assertion StatgSAS): the set of states that start assertiorfieation that
means hold the data corresponding to the last gigsartion input variable.

The identification of IAS and SAS is based on thlation between FSMD _s, the CDFG_WA
and the set of information stored inside the dat@b®B:Assertiofi. Each state of the
generated FSMD_s is associated to at least oneatogrerand several operations can be
scheduled in the same state. We identify for etatie $he set of input variablesg)Meand the
set of output variables, ddae The two following equations illustrate these taets for a
given state “s”:

Vistate(s) = U VIop (or) (4-1)
OPeOperation_of(s)

Vostate (S) = U VOop(OP) (4-2)
OP€eOperation_of(s)

The proposed algorithm to detect assertion sté#&s §nd SAS) is presented in Figukd. It
consists of two steps. The first one focuses onrtiementation properties (properties that
check the results, outputs, of Data-Path operasass,page 22) of the application. This step
scans the set of output variablegsMe0f each FSMD _s state. If the visited variableaggied
as input assertion during tAesertion Extractiorstep, then each direct successor state of the

-87-

Assertion Based Verification for High Level Syntises

Algorithm Assertion State Identification :

Input: the FSMD _s, Assertion Input (Ass_Input).
Method:

(1) VisitedVar[*]=0

(2) VisitedS[*] =0;

(3) Assertion_State ldentification(Ssourcg;
Function Assertion_State_Identification(state)

(1) VisitedS[state] =1;

2 - Stepl------------------

(3) For each variable in4adstate) do

4) If(variable is tagged as input assertionpthe

(5) VisitedVar[variable]=1;

(6) Next_state &(state, STATUS);

(7 For ns in Next_State do

(8) ns is tagged as IAS;

(9) Add variable to the set of input agseraissociated to ns;
(20) End for;

(11) Find_Start_State (Next_State, variable);
(12) End if;

(13) End for;

(14)

as) e Step2------------------

(16) For each variable in My dstate) do

a7) If (variable is tagged as input assertionpthe
(18) If(visitedVar[variable] =0) then

(29) state is tagged as IAS;

(20) Add variable to the set of input assertassociated to ns;
(21) Find_Start_State (state, variable);

(22) End if;

(23) End if;

(24) End for;

(25)

(26) For m in Next_state do

(27) If(VisitedS[m] =0) then

(28) Assertion_State_Identificatiom);

(29) End if;

(30) End for;

Function Find_Start_State(S, variable)
(1) For each id in variable(Assert_IDs)
(2) Remove variable from the set Ass_Input[id]
(3) If Ass_Input[id] is empty then
4) For each state in S do
(5) state is tagged as SAS;
(6) Add id to the set SAS|[state]
(7) End for;
(8) ENdif;
(9) End for;

Figure 4-5: algorithm of assertion states iderdifiegn

-88-

Assertion Based Verification for High Level Syntises

current state is tagged agput Assertion Statéhe value of this variable is always ready in
the next cycle) and the current variable is adweils set of input assertion. Then, this step
checks if this variable is the last assertions ingariable. To do this, for eachssert_ID
associated to the current variable, it removes dingent variable from the set of input
assertion corresponding to the currédsert ID Next, if this set is empty, then direct
successors states are identifiedStert Assertion StatendAssert_IDis added to their sets of
start assertion.

The second step of the proposed algorithm focusethe specification properties of the
application (the relation between application’sutgpand outputs). On contrary to the first
step, this step scans the set of input variablgVof each FSMD _s state. Next, if the visited
variable is tagged as input assertion, then theeptistate is tagged &sput Assertion State
and not its directed successors. Next, if the ativariable is the last assertion input variable
(the same technique presented in the first stapsésl) the current state is taggedSaart
Assertion State

Figure4-6 shows the result of tleESMD Annotatiorstep, Annotated FSMD _s, associated to
the FIR filter application (see Figuré2.a) and its relation with the CDFG_WA. The
FSMD_s is generated using thist Schedulingalgorithm for which one functional unit and
one memory bank have been considered as resourstaiat.

The set of Control Successor State ig &, S, Sie}, the set of Conjunction State is{s},
the set of Input Assertion State isdssio} and the set of Start Assertion State igfsThe
state g;is tagged as SAS because the last input variableeoinserted assertion in the FIR
filter, X[N-1-i], will be ready in s,.

Figure 4-6 (a) CDFG_WA (b) Annotated FSMD

-89

Assertion Based Verification for High Level Syntises

4.2.3 Assertion Checker

Once theAssertion Extractiorstep has generated the set of CDFG_x, (x= {1,2} where n

is the number of assertions inserted inside theipagion) and that th&SMD Annotation
step has identified the set Btart Assertion StatéSAS), the generation of RTL Assertion
Checker starts producing the RTL architecture & generated CDFG_x. The generation
process depends on the OCM option i.e. speed ea. dhose two synthesis options are
independent from those used by the HLS tool tolmgize application.

The design of this step is presentedrigure 4-7. The Assertion Checkestep is an abstract
interface class and each synthesis option is imghted in separate class. Then, depending
on the selected synthesis option, only one of thdasses is instantiated as the service
provider. This is the objective of the strategytgat In addition, this design supports adding
extra synthesis options on demand.

. . Assertion_Checker
Symthesiz Oplian Option Comm ent Abstract Interface

Y

Synthesize()

858

Area_Option Speed Option | More Implementation

Synthesize() Synthesize() | Synithesize()

Figure 4-7: The design of Assertion Checker step

The Speedoption consists in generating for each CDFG_xdiad¢ed RTL architecture. All
the previous approaches in literature useSpeedoption philosophy. This option constitutes
thus the reference in which the optimizations psagbby our method are evaluated.

The objective of the proposddeaoption consists in merging all the CDFG_ x to gehaue
CDFG_M by using the switch case technique. In faeich case represents an assertion
through the identifieAssert_ID The merging process is performed in two step® flist
step consists in merging all the synchronized #&esst Synchronized assertions are
assertions which executions are driven by the s&teet Assertion State. Then, the
identification of those assertions is based orr tBtrt Assertion States, which result fridme
FSMD Annotatiorstep. Each assertion owns a unique state whichstaalythe execution of
one or many synchronized assertions.

Once synchronized assertions are identified, a @GBWG is created per set of synchronized
assertions. The algorithm of this step is presemteHigure 4-8. It starts by scanning the
annotated FSMD_s. Then, for each visit8tart Assertion Statevith more than one

-90-

Assertion Based Verification for High Level Syntises

Assert_ID all its associated CDFG_x are moved to a set yiclwonized CDFG,
Synch_CDFG Next, all the content (i.e. basic blocks and m)def each CDFG_x that
belongs to the s&ynch_CDFGs moved into a new CDFG. This new CDFG is assedito
the current state through its firdissert ID CDFG FID. Finally, a new operation node,
“BIT_OR, is added to the new CDFG to compute the outpuwllosynchronized assertions.
The inputs of this operation node are the outptiatsée nodes of each merged CDFG_x.

Once the set of merged CDFG_FIDs are generatedseitend step of the merging process
consists in merging all CDFG_FIDs with the restlué set of CDFG_x by using the switch
case technique to produce the unique CDFG_M.

In order to merge all the assertions using thechwiiase technique, the following property
must be satisfied: only one assertion is checked &itne. To satisfy this condition, the
monitor must freeze the execution of HWacc eacle tannew assertion must be verified.
Once the verification of assertion is completed, HfwWacc’s execution resumes.

Algorithm Merging Synchronized Assertion

Input: the annotated FSMD _s, the set of generaf@@& x
Output: the set of new CDFGs
Method:

(1) For each state in FSMD do

(2) If state is tagged as SAlgen

3) If (card(Assert_ID(state)) >1hen

(4) Initialize the set of synchronized CDFG1i€éh_CDFG)

(5) For each ID in Assert_ID(statep

(6) Synch_CDFG = Synch_CDRGCDFG_ID;

(7) End for;

(8) FID = the first ID inside the Assert_1Ddi#);

(9) CDFG_FID =Merge_Synchronized CDFGESynch_CDFG, FID);

(20) Remove all ID from Assert_ID(state) expeld;

11 Remove the set of Synch_CDFG from theotgenerated
CDFG_x;

(12) Add the CDFG_FID to the set of generat&FG_x;

(13) End if;

(14) End if;

(15) End for;
Figure 4-8: Merging Synchronized Assertion algarth

Finally, the RTL architecture of CDFG_M (when theea option is selected) or of each
CDFG_x is automatically generated by using the Hitd®l. Those generated RTL
architectures are stored in a library of operatorbe later used during tl@CM Generation
step.

91-

Assertion Based Verification for High Level Syntises

4.2.4 OCM Generation step

OCM Generatiorstep is the final step of the OCMS flow. It couplee annotated FSMD_s
with the results provided by the binding step @& HiLS and also with the RTL architectures
stored in the library of operators. Finally, it geates the RTL description of the OCM.

This step starts by generating the control parthef monitor (OCM FSM). The proposed
algorithm to generate the FSM is the same oneaptbposed in the previous chapter except
for the step that identifies the Header State Rxestors, HSP, (see step 3 in FigBHED). In

this chapter, we are only interested by synthegi2INSI-C assertion. Thus, the identification
of HSP states doesn’t provide any useful inforrmatiBor this reason, we implement the
modified algorithm in a separate class to update tdmplate method introduced in the
abstract clas©OCM_FSM_Build.

As explained in the previous chapter, each OCM FSMe has a dedicated monitoring
operation according to its associated notable .Skg& monitoring operations are introduced
in this chapter compared to operations that wetredniced in previous chapter (see section
3.2.5, page 59). Hence, if the notable state is:

* An Input Assertion Stajehen the corresponding monitoring operation attles to
write data corresponding to the input of assertside OCM registers.

« A Start Assertion Statethen the corresponding monitoring operation stdhte
verification of assertions.

Finally, the OCM FSM inputs are ti®TATUSsignal coming out from the HWacc and the
comparison results provided by the OCM DP. The ODOM results depend on the selected
OCMS option (i.e. speed or area).

Figure4-10.b illustrates the results of OCM FSM when @€M generatiorstep is applied to
the annotated FSMD_s of Figudel0.a. For example, stateg &nd s have been merged to
create OCM FSM state MSvith a loopback T=1.

Once the binding step of HLS flow is performed, lea@riable of the CDFG_WA is
associated to a dedicated register according tolifeéimes. Then, th€©©CM Generatiorstep
extracts from the result of the binding step thggster associated to each variable that belongs
to the sets of assertion inputs, like in the prasiohapter.

Finally, this step instantiates and configures edéght OCM DP blocks according to the
selected synthesis option. To do this, we useSthategy Patterwith the previous hardware
templateintroduced in the previous chapter (see Figile3). This hardware template allows
instantiating and configuring predefined (off-linglpcks like Delay Control Unit (DCU). In
this chapter, we update this hardware templatestantiate the set of RTL architectures that
are automatically generated during the design tand to configure the interconnection

-92-

Assertion Based Verification for High Level Syntises

between them according to selected synthesis offigare4-9 illustrates the new design of

the OCM DP build step.

Figure4-11 presents the architecture of generated OCM tokchssertions violations. The
OCM DP consists of two main blocks: Delay Controlit{DCU) and the Assertion Checker
Unit (ACU). The synchronization between those btoakd the execution of HWacc depends

on the selected synthesis option.

For speed option, the OCM DP runs in parallel #® éixecution of HWacc while with area

option the HWacc’s execution is interrupted eaotetthe ACU starts execution.

VHDL_BBCU_binary

BB_Contral
Comment Abstract Interface

=

BBCU()

VHDL_DC

BBCU()

Delay Control
Commient Abstract Intevface

1

DEU)

VHDL_IOC

DCu()

1O _Control
Comment Abstract Interface

Build (OCM_DP
Common Abstract

Option

<

[CCM_DP()

=
1BCU()

VHDL_JC

locug

Jump_ Control
Comment Abstract Interface

Runtime. Area

‘F

Synthesis_ Option

Runtime_Speed

=

JCU(}

Jeu

Figure 4-9 the new design of the OCM DP build step

OCM_DP()

OCM_DP{)

Figure 4-10 (a) Annotated FSMD_s (b) OCM FSM

-93-

More Implementation

OCM_BR()

Assertion Based Verification for High Level Syntises

Hardware accelerator (Hwacc) Hardware accelerator (Hwacc)
Hwacc FSM COMMD Hwacc DP Hwacc FSM COMMD Hwacc DP
enablat\ STA‘TUS Data signal enable ¢ STA‘TUS Data signal
Reg_enabld] Reg_enabld] A done
Assertion Checke - Assertion Checker L'~
enable . > enablaly .
Assert_st Unit) Assert_st Unit S
) Valid . >J Valid
OCM FSMunit = OCM FSM unit F= #J
Value (T Value (T
Delay Control Delay Control
Enable Unit Enable Unit
T_done T_done
On-Chip Monitor OCM DP unit On-Chip Monitor OCM DP unit

(@ (b)

Figure 4-11: OCM architecture to check assertiooktrons (a) synthesis speed option (b)
synthesis area option

In the following, we present the architecture o thodified module, DCU, compared to this
described in previous chapter (Chapter 3). We disscribe the architecture of the new
module, ACU.

Delay Control Unit

This block is similar to the one proposed in thstfcontribution. It contains a configurable
counter that counts simple states between two lestates (the value of T) and which value
Is set to zero each time a new OCM FSM state ishexh The output of this block is the
signalT_done This signal is activated when the current OCM FS&te completes all its idle
operations. This signal is used by the OCM FSMadhdate the transition to the next OCM
FSM state. In contrary to the previous architectthre execution of this block depends on the
selected synthesis option. In fact, when the am®mw is set, the DCU’s execution is driven
by the Assertion Checker Unit. The execution of ¢bafigurable counter is interrupted each
time an assertion must be checked. This ensuresytiehronization between HWacc and
OCM once the verification of the assertion is done.

Assertion Checker Unit

This block verifies that no assertion failed dueato unintended behavior. To do this, it
instantiates, according to the selected synthgdisrg RTL architecture(s) stored inside the
databas®perator.

Figure4-12 presents the architecture of the Assertion Condrot according to the selected
synthesis option. This block has two parts. The pas independent of the selected synthesis
option. In this part, the ACU contains a set of dDRegisters DRs. Those registers store the
value of assertion inputs coming from the HWdzata signal Each variable tagged as
assertion input has a dedicated register. Thengrifirocess inside DR is controlled by the

-94-

Assertion Based Verification for High Level Syntises

signalReg_enableoming from the OCM FSM. Each bit inside this sibis associated to a
dedicated register DR. This allows updating moemtbne value at the same time.

In contrary to the level 1, the part 2 dependshansielected synthesis option. When the speed
option is selected, the ACU contains, in this p#me set of RTL architectures that are
associated to the set of CDFG_x. Those architextuure concurrently to the execution of
HWacc and the beginning of their execution is dritg the signaAssert_starcoming from
the OCM FSM. Similar to the signd&eg_enableeach bit of theAssert_startsignal is
associated to the start signal of a dedicated RThitecture. All output signals of RTL_ x
architecturevalid_x are combined together to produce the ACU’s ouspgmal Valid. This
signal is connected to the signahable of the HWacc FSM (which authorizes the state
transition) in order to stop it when an invalid ddon is encountered. In addition, it is
connected to the enable signal of the OCM FSM. BHmws identifying the current OCM
FSM state when assertion violations occur.

Data signal Data signal
Reg_enable ‘ N Reg_enable J
==L T E L
DRy | . DR, Level 1 DRy | .. DR,
OO s SO i s
L VR L b
RTL.1 | ... RTL_n RTL_Architecture
(CDFG_1) (CDFG_n) (CDFG_M)
Valid_1 \lf %J/J/ \F Valid_n
s Valid A _done
Valid

@ (b)
Figure 4-12: Assertion Control Unit architecturg ¢peed option (b) area option

When the area option is selected, the ACU implemantthe part 2, the RTL architecture
associated to the unique model of all CDFG_x, CD®GThe execution of this architecture
is configured by the signdlssert_startin contrary to the speed option, this signal sreary
value and its value defines the execution contéxh® RTL architecture. In fact, the RTL
architecture switches between the RTL descriptibreach CDFG_x or CDFG_FID (the
CDFG of synchronized assertions) according to thleier of Assert_start In addition, the
ACU has a new output signa, done This signal informs whether an assertion exeaouso
running. This signal is used to synchronize thecetien between OCM and HWacc. In fact,
the ACU can only execute one assertion or one sgncted assertion at a time (according to
the switch case technique). Then each time a neertaan (or synchronized assertion) must
be verified, the execution of the HWacc is stoppgdising theA_donesignal as illustrated in

-95-

Assertion Based Verification for High Level Syntises

Figure4-13. In addition, the Delay Control Unit and the OCISM are also stopped to keep
OCM and HWacc synchronized.

Execution Runtime with speed option

HWacc | | i

Al A2
ocm ‘

Stop HWacc Stop HWacc Execution Runtime with area option

HWacc | i i 7

Al A2
ocm ‘

A _done =0 A _done =1
A _done =0 A_done =1

Figure 4-13: The execution runtime with area option

4.3 Experimental results

In this section, we present the synthesis restilteeoproposed Assertion Synthesis flow we

implemented in java EMF. We use the same benchnaarks the previous chapter and all the

applications have been written in C specificatibmey have also been kept parameterized i.e.
the sizes of the structured data (array, etc.yanable.

We use the same design flow for experiments inttedun the previous chapter, see Figure
3-17. The compilation step of HLS tool uses the commp@€C 4.7.2 to generate the formal
representation CDFG. All CDFGs are generated usiegstandard compilation option, OO.
Then, in order to design the hardware acceleratog,functional unit has first been allocated
for each type of operation type (i.e. addition, teattion, etc.) by using hist Scheduling
algorithm.

The scheduling algorithm used to design the harewigscription of assertions depends on
the selected synthesis option. When the area ofstiselected thé&ist Schedulingalgorithm
is used. When the speed option is selected8®Palgorithm is used.

In order to validate the proposed algorithms thetect and extract assertions statements and
to evaluate the hardware overhead of monitors, daec for each application a set of
assertion statements. Those assertions are useeritp both functional specification and
implementation properties. Implemented assertioaslzided in four types:

» Simple assertion (e.g. assert (a<b))
 Combined assertion (e.g. assert (a<b && e>d))
» Conditional assertion (e.g. assert (a>=1? b<=a))b>a

* Procedural assertion (e.g. assert (f(a) < g(b))evhand g are function)

Assertion Based Verification for High Level Syntises

The number and the type of assertions we inseni@de in each application are presented in
Table4-1.

Table 4-1: Assertion categories

Application | #Assert #Assert #Assert #Assert #¢§faelrt
Simple Combined | Conditional [Procedural

FIR 3 2 1 2 8
DCT-2D 4 5 1 2 12
MatMult 3 3 1 3 10
SAD 3 1 1 2 ’
FFT 5 4 1 3 13
Conv 4 6 1 5 16
Sobel 4 4 2 9 19
Blowfish 7 11 2 10 30
AES 7 18 4 24 53

Table 4-2 presents the CDFG, the FSMD_s and the OCM FSMaclexistics in terms of
number of basic blocks, states and notable st&esults provide a snapshot of the OCM
FSM complexity (the number of notable state) acogydo the application complexity and
the number of inserted assertions. The evolutiash@humber of OCM FSM states compared
to results of Tabl8-2 (see page 69) mainly depend on the number ofsstiaat are identified
as IAS and/or SAS (see page 87).

Table 4-2: Architecture characteristics

Application | Basic Block| State Notable Statp

FIR 8 23 15
DCT-2D 20 51 31
MatMult 11 37 23
SAD 9 32 14
FFT 19 52 30
Conv 20 71 43
Sobel 45 171 66
Blowfish 39 209 86

AES 64 342 141

Figure 4-14 shows the synthesis time overhead, the delay aldlgdtie proposed Assertion
Synthesis flow to the synthesis times running th&How alone. Results are given for the
two assertion synthesis options. The delay addedthey generation process of RTL
architectures during tha&ssertion Checkestep is included in those results. Results arergiv
for the two assertion synthesis options.

For the speed option, the synthesis time overheades from 0.32% to 4% (2.25% on
average) and decreases with application of highptexity (e.g. AES). For the area option,

-97-

Assertion Based Verification for High Level Syntises

results show that this overhead is increased Isytteen 1% on average compared to the speed
option. This extra overhead is due to the algorittetecting synchronized assertions and
merging all the assertions. Indeed, the selectathegis option configures the execution of
the Assertion Checkestep. When the speed option is selected, this Iséepno specific
operation on the set of generated CDFG_x. It orlyegates the RTL architecture. While with
the area option, this step extracts the set of rieseState Starts from the annotated FSMD to
identify synchronized assertions. Next, it mergegschronized assertions to generate
CDFG_FID. Then, it merges the set of CDFG_FID wiie rest of CDFG_x. Hence, this
additional delay depends on the number of inseassertions.

Finally, the peak overhead is 4.46% which is nelglggcompared to the complexity of the
addressed problem.

4.3.1 Performance overhead analysis

The impact of OCM on the execution time of HWaceprssented in Figuré-15. Results are
given for the two proposed OCM synthesis optioresiits show that there is no performance
impact when thespeedoption is selected. This result was expected dinespeedoption has
been designed not to affect the HWacc executioessriin assertion violation occurs.

Synthesis Time Overhead

5.00%
4.50%
4.00%
3.50%
3.00%
2.50%
2.00%
1.50%
1.00%
0.50%
0.00%

M Speed

W Area

Figure 4-14: Assertion synthesis time overhead

However, results show that the OCMS8ea option impacts the HWacc’'s performance.
Indeed,areaoption interrupts the HWacc’s execution each taneassertion must be verified.
Results show that the performance overhead ramges 67.23% to 342.57% (132.64% on
average). The first characteristic that impactspgbdormance overhead is the complexity of
assertion to synthesize in terms of operators hatt tlependency. In fact, the HWacc’s is
interrupted during a time equal to the delay neddecrify an assertion (see Figutd.3). In
addition, the overhead depends on the dynamic nuofb@serted assertions. The dynamic
number of an assertion represents the repetitionbeu of an assertion during the runtime
execution of HWacc. In fact, assertion inside mest®ps is executed as many times as the

Assertion Based Verification for High Level Syntises

loop iterates. For all those reasons, peaks ovdrhea obtained with application of high
complexity in terms of loops (e.g. Conv has 4 n$weps with complicated assertions).

Execution Runtime Overhead

400.00%
350.00%
300.00%
250.00%
200.00%
150.00%
100.00%
50.00%
0.00%

H Speed Option

H AreaOption

N A D
PP F W

Figure 4-15: Execution runtime overhead

4.3.2 Area overhead analysis

The area overhead in number of slices when an OCMlded to an HWacc is presented in
Figure4-16. Results are given for the two assertion synthgsi®ns. In order to analyze the
area overhead of the OCM in a clear way, we hagarozed the OCM in two blocks:
Assertion Checker UnfACU) andSynchronization BlockSB). TheSynchronization block
consists of the OCM FSM and ttzelay Control Unit(DCU) (see Figured-11). For the
OCMS speedoption, results show that the area overhead rainges94% to 182% (123% on
average). The peaks overhead are obtained whemdedng HWacc that implements low
complexity application. For example, only 8 assasi (two are procedural assertions) with
the FIR application lead to 182% overhead whileaS8ertions (24 of which are procedural
assertions) with the AES application lead to 112%rbead. For the OCMS&rea option,
results show that peak overhead (i.e. FIR appboatdecreases down to 98%. Taeea
option allows reducing the area overhead by 2.3V awerage compared to the speed option.
This reduction comes from hardware resources shaetween different assertions checkers.

Results show that the area overhead incurred bySgmehronization block ranges from
3.30% to 8% (is less than 6% on average). It remtss7.68% on average of the area
overhead caused by ACU. This overhead dependseooatimplexity of applications in terms
of number of control structures. Each control dtritesincreases the number of notable states
at least of two states (successors of disjuncttates Thus, additional slices are needed to
store the state’s command word. The second chaisttehat impacts this overhead is the
number of assertions to synthesize. This numbeeases the number of notable states and
the length of the command words. Moreover, ressitew that this overhead is slightly
increased when the area option is selected (leassi% on average).

Assertion Based Verification for High Level Syntises

Slice Overhead

200.00%
ACU Speed
@SB (FSM+DCU) Speed

180.00% |-

160.00% [
ACU Area

140.00% - @SB (FSM+DCU) Area

120.00% |-

100.00% |

80.00% - — —

6000% — — | B |
4000% 4 — — — = — 4 — = = = — W — —

L B B R B E R R R R R R OEREE EEEE B

T e o e o O O O e e e e
0.00%

FIR DCT-2D MAtMul SAD FFT Conv Sobel Blowfish AES

Figure 4-16: Area overhead of OCM to check assertio

Finally, in order to evaluate the interest of tmegmsed synchronization mechanism between
OCM and HWacc, we compare the number of executselasns when an illegal jump in the
HWacc is performed to the excepted one. To do thes,have enhanced the fault model
introduced in the previous chapter (see page 70jotopute the number of unexecuted
assertions due to alterations.

First, fault injections (bit-flips) have been perfted on the HWacc State Register. This is
used to perform illegal jumps. As we explainedha previous chapter, states within SR are
one-hot encoded. Then, only faults with 2 bit-flage considered to produce legal states (one
to reset the current bit and another one to setabit high). Then, fault injections have been
performed on th& TATUSsignal to create hanging problem including infindeps.

For each HWacc FSM state, the proposed simulatienhamism consists in counting the
number of assertions that should be executed batiteecurrent state and the incorrect state
(result of the illegal jump) or that should be axted after an infinite loop. This number
represents the number of unexecuted assertiontodaleeration. This process is repeated for
each alteration and the average of Unexecuted #@seris computed per Statd AS The
following equation presents the Unexecuted Assefate UAR) for each application:

— ZNb_State UAS

(4-3)
UAR Nb_State
Unexecuted Assertions (4-4)
UAS = -
Alterations

Figure4-17 presents the UAR due to illegal jumps of eachiappbn according to the used
synchronization mechanism (i.e. our technique arddchniques proposed in previous works

-100-

Assertion Based Verification for High Level Syntises

[59][61]). Results show that there is unexecuteskdmn only when the previous techniques
from [59][61] are used. The UAR ranges from 12.69%4.71% (38.23% on average). Peaks
of UAR are obtained when considering HWaccs thatiément low complexity applications
in terms of FSM states and that contain severarasas to check.

Figure 4-18 presents the UAR due to the problem of infiniteps. Results show that our
synchronization technique cannot always ensurexkeution of all assertions like techniques
from [59][61] when theSTATUSsignal is altered. Indeed, our technique depemdshe
STATUSsignal to exist loops. UAR peaks depend on theiegipdn’s complexity in terms of
loops and on the number of assertions to check altered loops. For simple application like
SAD that has only one loop, the UAR is equal tazer

Hence, the proposed synchronization technique all@solving the impact of illegal jumps.
However, it doesn’'t provide enough efficiency tsale the impact of hanging problems
when it is caused by infinite loops.

Unexecuted Assertion Rate
Alteration: illegal jumps

70,00%
60,00%
50,00%
40,00%
30,00% M Our technique
20,00%
10,00%

0,00%

M Previous works

Figure 4-17: Unexecuted Assertion Rate due toallggmps

Unexecuted Assertion Rate
Alteration: infinite loops

70,00%
60,00%
50,00%
40,00%
30,00%
20,00%
10,00%

0,00%

M Our technique

M Previous works

& &S
S
o

Q

Figure 4-18: Unexecuted Assertion Rate due to itefilmops

-101-

Assertion Based Verification for High Level Syntises

4.4 Conclusion

This chapter has presented an automated approachntlate ANSI-C assertions into On-
Chip Monitors (OCMs) during the HLS of hardware @lecators. The proposed approach is
portable to any HLS tools hence satisfying ourt fasndition, C1. In addition, it supports

static and dynamic behaviors hence satisfying ecorsd condition, C2.

ANSI-C assertions are used to detect data erraking the proposed approach satisfying the
8" condition, C8. Besides, the proposed synchromiratchnique relies on the contribution
of the Chapter 3, which makes generatesbertion Checkersndependent of the internal
states of the monitored HWacc.

Experiment results shown that the proposed synctatian technique fixes the problem of
illegal jumps satisfying this way th'®ondition, C5.

The proposed synthesis flow enables designersléatsassertions synthesis option out of
SpeedandArea, according to their need in terms of area overtagmbruntime constraint. The
Areaoption allows reducing the area overhead by 2@vaverage compared tpé&edoption
and it enhances the protection level. Then, thippsed assertion synthesis flow satisfies the
4" condition, C4, and thé™condition, C7.

However, the proposed technique exhibits some wessas. First, it only resolves hanging
problems resulting from illegal jumps (e.g. HWadoops over a subset of states) while an
infinite loop may prevent some assertion to evaluat addition, théArea synthesis option
has a negative impact on the HWacc's performanoe éxecution runtime). Finally, the
proposed design flow doesn’t provide any verificatsupport to detect control flow errors
like illegal jumps. It only resolves their impagexcept for infinite loops) on the execution of
assertion checkers.

The next chapter introduces some optimizationseatensions of the works in order to detect
both data errors and control flow errors in a wdfiflow. The approach proposed in this
chapter has been published in [90].

-102-

On-Chip Monitor Optimizations

Chapter 5 ON-CHIP MONITOR
OPTIMIZATIONS

S0 R [0110 Yo [0 Tod 1 o] o PP PUPRPPPRTRN 105
5.2 Unified On-Chip Monitor Synthesis flow ..., 105
5.2.1 Assertion and Control Structure EXtractionoovvvveiiiiiiiiinneeeeeeeeeen. 106
5.2.2 FSMD ANNOLALION ...t e e e e e e e e ee e e 112
5.2.3 1D GENEIALION ...ceieieeiieieeeee i sttt e e e e e e e e e e e e e e e e senneeeees 113
5.2.4 RTL ChECKEr COMES....uuuiuiiiiiiiiiiiiiiiiiieeeeemte ettt e e e e e e s s s eeeeees 113
5.2.5 OCM GENEIALIONuuuiiiiiiiiiiiiiieeeee e e e e eeeeee ettt e e et e e e e e e e e e e e e e s s reeeeees 117
5.3 EXperimental reSUILSoooviiiiiiiiiciie e 121
5.3.1 Performance overhead analysiS...........ccccccccceiii i 123
5.3.2 Area overhead ANAIYSISuuuuuuuuuuimmmmmme e eeeeeeeeeeeiae e e e e e e e e e aaeens 124
5.3.3 Impact of the compilation OPtioNS...........ceemmmeeeiiieeieeeiiiiiieeee 127
5.3.4 Error Coverage ANAIYSISuuuuuieeiiiiiiieeeeeeeeeeeeeeeeeeevaninnna e e e e e e e e e aaaeeens 129
5.4 CONCIUSION ..ottt sttt et e e e e e e e e e e e e e e s e ettt eeeeeeeeeeeeannanans 132

This chapter presents a unified design flow thaistders ANSI-C assertions, control flow

checking and I/O timing behavior during High Le®jinthesis of hardware accelerators to
automatically generate On-Chip Monitors. It alsopioves the previous assertion synthesis
options to better trade-off area overhead, perfanoe and protection level and also

improves the portability of the approach.

-103

On-Chip Monitor Optimizations

-104

On-Chip Monitor Optimizations

5.1 Introduction

The verification techniques of hardware accelesag@nerated by HLS tools proposed in the
two previous chapters and in literature can besdiad in two categories: algorithmic
verification and control flow checking. The algbntic verification allows checking
functional properties through a set of assertiotr®duced within the high-level specification
of hardware accelerators. The control flow verifiea allows checking the execution of the
control flow and the Input/Output timing behaviddowever, no previous work allows
performing at the same time those two types offication. Results of previous chapters
show that each type of verification is consideredaacomplementary approach to the other
one.

In this chapter, we propose a unified hardwaresgssiparadigm to check at runtime both
algorithmic properties, control flow errors and IA@ning behavior errors. In addition,
optimizations are proposed for the two previougdss synthesis optionSpeedandAread).
Moreover, the proposed approach addresses thébpitytessue of the proposed algorithms to
check the control flow errors by supporting seve@hpilation options (i.e. CDFG forms).
Finally, this chapter introduces new techniquenmt@riove the detection of control flow errors
compared to previous results.

5.2 Unified On-Chip Monitor Synthesis flow

The proposed Unified On-Chip Monitor Synthesis (\(CNIS) flow starts after HLS has
compiled a C code including assertions (through wise of theassert.hlibrary). The
U_OCMS flow is split into several steps as illuggdhin the right part of Figurg-1. First,
Assertion and Control Structure Extraction (ACStepsanalyzes the formal representation of
application including assertions (CDFG_A) in ortierdetect the assertion statements and to
extract their parameters. Next, it removes therassebranches from the CDFG_A and
generates for each detected assertion a new Cdbétal Flow Graph (CDFG_Assx). This
operation is like the one of thessertion Extractiorstep proposed in the previous chapter.
Once the assertion branches have been removedlim@DFG_A and that a CDFG without
Assertion (CDFG_WA) has been generated, ACSE stegglyzes CDFG_WA to detect
Control Structures (Loop and Conditional constr)ycte extract their parameters and to
identify 1/0O data of the HWacc. Similarly to assent statements, Control Data Flow Graphs
CDFG_CSy are created for each control structurbs.impact of compilation options on the
control flow are taken into consideration during ttletection process and the parameters
extraction process. This is an evolution compacethé techniques that were introduced in
the CDFG Analysisstep, our first contribution (Chapter 3, page 52).

The scheduling step of HLS flow operates with tHeFG_WA and generates a FSMD_s.
Next, FSMD Annotation step analyzes and annotatespy of the HWacc FSMD_s. This

step still addresses the synchronization betweera¢tVédnd generated monitor. It combines
the two sets of notable states that were proposetid previous chapters (Chapter 3 and

-105

On-Chip Monitor Optimizations

Chapter 4). Afterward, the ID Generation step assitp each state of the FSMD_s a unique
identifier in order to later detect illegal jumpsside BBs. Two coding styles (binary or one-
hot) are proposed to encode identifiers accordinthé designer needs as it will be shown
later.

The set of generated CDFG_Assx and CDFG_CSy canbeexerged into CDFG_M or a set
of CDFG_ME depending on the selected OCM synthepison (OptArea or OptSpeed).

Those synthesis options represent optimized vessammpared to the ones introduced in
Chapter 4. RTL architectures of the OCM componemts generated by using HLS tool.
Finally, the OCM Generation step couples the ariadt& SMD_s with the results provided
by the binding step of the HLS flow and with the @®&TL components to produce the RTL
description of the complete OCM as Finite State @& and Data Path.

Three colors are used in Figubel to present the differences between the approach we
propose in this chapter and those proposed inrdnaqus chapters (Chapter 3 and Chapter 4).
The red color is used to identify the steps we edusm the design flow proposed in Chapter
4. Modified steps used in both Chapter 3 and Chagteappear in purple. Original
contributions are depicted in orange.

Assert+C/C++ II

| Compiler > cﬁrftsrizusot?u?:?:re ‘
CDFG CDFG
Extraction " €81 N\ CSp

" Mutually
Scheduiing {D — Mually
v
ID

GSMD S L) FSMD C’\[A)Ei’ . C,\?Eﬁ CDFG_M
¥ s Annotation || ¥

Allocation ‘1’_, Nﬂg@r/'r‘
Binding ‘ 3
@ Annotated
i @ Option

Ll

Binding
Information

RTL Checker Gen.

I

Datapath and Controlle - OCM <— ;\tor
Generation “| Generation |_

|

Hwacc RTL v
Architecture OCM RTL

Architecture
e v

u

Figure 5-1: Unified On-Chip Monitor Synthesis flow

5.2.1 Assertion and Control Structure Extraction

Assertion and Control Structure ExtractigACSE) is the first step of the unified OCMS
flow. It detects assertion branches, input/out@iacind control structures of the application.
It starts after the compilation step of the HLSwilonce the formal representation of the
application including assertions (CDFG_A) has bgenerated.

-106-

On-Chip Monitor Optimizations

In the following subsections, the context is firgiroduced before the extraction process of
the ACSE step is detailed.

5.2.1.1 Context

Compiler front-end transforms source code into farmepresentation (e.g. CDFG) which
organization depends on the compilation optionserdhare two categories of compilation
options: standard (e.g. OO0 in GCC) and optimized. @3 in GCC). Standard option simply
translates the source code into a formal repreSentaln this case, the CDFG that is
produced reflects the skeleton of the source codeetly. Optimization options realize
successive passes to improve the program’s perfarenal heses code transformations can
widely modify the structure of the original CDFGorFexample, in GCC, loop constructs (for,
while) can automatically be fully unrolled to ren@othe condition instructions to exit when
the loop’s bound is a constant (static loop). Whawp constructs are parameterized (the
value of loop’s bound is variable), compilers tfans the loop construct into a condition
construct (if-else) and another loop construct (fdole). The loop’s bound is compared to
the loop’s initialization before starting the logody execution and the exit instruction is
performed at the end of loop’s body instructions.

Figure5-2 presents the set of generated CDFG for the Ft& fifsee Figur@-2.a, page 17).
Figure5-2.a and Figur&-2.d illustrate the CDFG when the standard optiona®@ when the
optimized option O3 are selected with GCC respebtivOur FIR filter has two loops with
the same variable bound (N). One can notice thatthrent value of each loop’s induction
variable is checked before starting the loop’s bexlgcution when the standard option OO is
selected (see Figurg2.c). However, with the optimized option O3, theifteation of the
value of the current loop’s induction variable erformed during the loop’s body execution
(see Figureb-2.e) and a new condition is added to the CDFG topaoe the loop’s bound,
“N”, with the loop’s induction variable initializatn, “0”, (see Figures-2.f). Therefore, the
set of control structures depends on the compiladiation. Hence, considering the FIR filter
example, GCC —0O0 and GCC -0O3 generate a CDFG imgjuevo loops only and a CDFG
including two loops and one condition construcpessively.

In addition to code transformations that are autaraby realized by compilers, inserting
assertions into a source code (e.g. through theotisgssert.h library if we consider C
language) modifies the application’s CDFG: a newdearcs and basic blocks are added
according to the assertions (as shown in Chapter 4)

Figure5-3.a illustrates the source code of the FIR appbeatncluding two assertions. Figure
5-3.b presents the compilation result after adding thwe assertions (with standard
compilation option O0). Modifications can be obsslvby comparing the corresponding
application’s CDFG before (Figure2.a) and after (Figuré-3.b) assertions are added. For
the FIR example, four basic blocks are added im@ original CDFG with two new

conditional constructs which do not belong to teedf the original application’s conditional

-107-

On-Chip Monitor Optimizations

constructs. Moreover, some nodes have been motedhi& assertion’s basic blocks (the two

load operations inside BB6).

oo [BBO [9] [N]
o1 [BB1 —
1 1
BB2 N &
DO | BB0OO b< p2 (f)
b1 | BBOL BB3
i2
Ll_‘ @ loop:
\ 3 BBoz}
\ N D7 N-1-i C
’/ p3 BBO3 ﬁ 1 |0p2\
> | ‘ m\ load. 1 BB4
Y 2
. b4 BBO4 |<loop2 % \ ut
(c) BBO6
D6 XC D5 | BB5
(@) \ @ D6 (BB
\ l,Jﬂ
S
BBO5
(b)

Figure 5-2: FIR filter (a) CFG-00, (b) DFG of BB@sth -O0, (c) loop2's condition, (d) CFG
with -O3, (e) DFG of BB4 with -O3, (f) loop's bouctecking

Void Filtre (int N, int C[N], int X[N], int Y[N]){
(1) intij;
(2) for (j =0; j<N; j++){ // loop1l
assert (j<N)
Y[l =0;
for (i=0; i<N, i++){//loop2
assert (C[i]-X[N-1-i] >2)
Y[iI= Y[] + Cli*X[N-1-i];

j1

+ @«

loop1._| BB2
/
/o

g3 ou2] / BB4M
S nd
__assert_fail(“j<N”,...) 00 | |
BBlO / ”
| -l BBS
%_‘ ! | // i \\
é’k’ﬂd C |g?1 \‘ /\ \\
|| |[.BBS \
X[N-1-] cli \
N @K‘ \\\ \2 \\\ \
7 ﬁ L \\‘\\\ JBB7 \\ \
. o f< 4 \ \‘
\ @G - BB6 \\ ?BQ |
\ ¢ n / 7 - - v
\ , XC VS | | assert fail(“Clil-XIN-1-]52",..) BB11
\ \@ /y/: BB8 () \
I
\ VY
\Qﬁ);
BB7
Figure 5-3: CDFG with assertions (a) source codh assertions, (b) CDFG_A, (c)
CDFG_WA

-108

On-Chip Monitor Optimizations

Therefore, extraction of assertion statements rbastealized prior to the Control Structure
Extraction step. Moreover, the extraction processomtrol structures must be generic and
independent of the compilation options.

5.2.1.2 Extraction process

As explained in the previous sub-section, the 8tep in theACSEidentifies branches, basic
blocks and nodes related to the assertions in eodextract and build a CDFG_Assx for each
assertion. Then, it extracts their parameters amdoves assertion statements from the
original CDFG_A. We use the same model of assertdefinition of border node and
technique ofAssertion Extractiorstep, introduced in previous chapter, to deteser@isns,
(see page 82). Figurg-3.c illustrates the CDFG resulting from the assartextraction
process: CDFG_WA. All BBs, nodes and arcs attadbeaissertion statements are removed
from the CDFG_A except BB6 and its output arc.datf BB6 contains border nodes {X[N-1-
i], C[i]}. For this reason, CDFG_WA is scanned teme unused BBs. Then, as shown in
Figure5-3.a, BB6 and BB7 are merged to have one basic btodke statement of line 7.

Once assertion statements and their conditionadtoaets are removed from the CDFG_A,
the next step of thACSEanalyzes the CDGF_WA to detect the Control StmestCS), to
extract their parameters and then to generateethef CDFG_CSs. In addition, input/output
data of HWacc are identified.

Control Structures are Loop Constructs (for, while;while) and Conditional Constructs (if-
else, switch-case). The proposed approach to détecloop constructs is based on the
previous one (IKCDFG Analysistep page 52).

However, unit testing (that is used to both vakdalementary functionalities in our flow, and

also to prevent any regression during evolutioripged out that the loop constructs are not
detected by using the previous technique when éhgpdation option is configured to be the

standard one (i.e. OO0).

In this chapter, we introduce a new method to iflefbop constructs independently of the
selected compilation option. The proposed technisjas follow:

For each disjunction BB (see page 51), if thera ionjunction BB (see page 51) among its
successors that has a DFS-number D less than oaldquits own DFS-number D, then a
back arc is detected.

Next, the Loop Header and the Condition Block atentified based on the technique
presented in the Chapter 3 (see page 52), whiledbp Latch is identified as the disjunction
BB that satisfies the previous condition and net source BB of back arc as introduced in
Chapter 3.

In the FIR filter example, when the standard optihis selected (see Figuse?.a), the set
of disjunction BBs is {BB02, BB04}. According to ¢hprevious condition, back arcs are

-109-

On-Chip Monitor Optimizations

detected in the subset of disjunction BBs {BB04,0BB For example, the BB02 has two
conjunction BBs inside its successors, BB02 and BBiut BB02 is the first and the only
conjunction BB which validates our condition. THere, the set of LL is {BB04, BB02} and
the set of LH is {BB04, BB02}. When the optimizegtmn O3 is selected (see Figi.b),

the set of disjunction BB is {BB1, BB4, BB5}. Thehack arcs are detected in the subset of
disjunction BBs {BB4, BB5}. For example, BB5 has awconjunction BBs inside its
successors, BB3 and BB4, which validates our cangibut BB3 is the first conjunction BB.
Therefore, the set of LL is {BB4, BB5}, the set l0fl is {BB3, BB4} and the set of CB is
{BB1}. BBO1 and BBO are not considered as disjumctBBs because they are empty BBs
(only used to start the execution of application).

Once a control structure is detected, one or msseaated CDFG_CS are created (referred
to in Figure5-1 as CDFG_CSy; y={1,2, .., p}). Indeed, in the cafdoop constructs, two
CDFG_CS are created. As presented in Chapter 3 toostructs are classically modeled in
CDFG by three parameters: initialization, test-abod and increment statements. Hence,
two new CDFG_CSs are created: one for test-comdiiiod another one for the increment
function.

The proposed algorithm to extract loop’s paramedesto generate the CDFG_CSs for each
loop is presented ifigure 5-4. It is based on the previous algorithm introdugedrigure
3-7.

The extraction process of the test-condition staytscanning théoop LatchBB by using
the step 1 of the previous algorithm. Then, it espthe node that produces the value of the
condition jump, referred to aondition Nodeinside the CDFG_CS associated to the test-
condition of the current loop.

The extraction of increment statements starts lycbéng for the Update Induction Node (
UIN) (i.e. the PHI node) inside the Loop Headerntary to the previous algorithm, the
identification process of UIN depends on the seléctompilation option. A new technique is
proposed to identify UIN when the standard comgitatoption is selected (see step 2’ in
Figure5-4). This technique is based on the following corditi

If the intersection of the setod, of the current operation node with the set @f, 6f the
detected Condition Node is different to the emety s

When the optimized compilation option (O1, O2, @33elected, the technique introduced in
Chapter 3 is used (step 2 of FigGr&).

Once the UIN is identified, the algorithm finds thede, referred to as Generate Induction
Variable in Figure3-7, that generates the Induction Variable which i€ @f the input
variable nodes of the detected Update InductioneNod

-1106

On-Chip Monitor Optimizations

Algorithm Loop construct extraction: extract CDFG_CS parameters

Input: The result of the first step ACSE CDFG_WA
Input: GCC compilation option
Output: the set of CDFG_CSy

Method:

(1) DFS(entry B);
(2) Index =0;
(3) For each bb in BRlo

(4) If (card(Succ(bb) >1then

(5) s_BB =Find_Loop(bb);// new condition to detect back arc

(6) If (s_BB != Null)then

(7 Index++;

(8) CDFG_CS_Index = Create_New_Graph ();

9) step-1

(10) Do step 1feigure3-7.

(1) Extract_ConditionNode (CDFG_CS_Index);

(12) Index++;

(13) CDFG_CS_Index = Create_New_Graph ();

[step-2*-------

(15) If (standard compilation) then

(16) Update Induction Node = the first ggi@m node inside s_BB,;

@an While (Voo (Update Induction Node) V.,(Condition node) #)

(18) Update Induction Node = Succ(Updaduction Node);

(29) End while;

(20) Else/

(21) Do Step 2kifjure3-7.

(22) End if;

23 e step 3—------

(24) Update Induction =34(Update Induction node);

(25) For each v in \,,(Update Induction Nodejo

(26) If DFS of the basic bloc associated to v is grehtn DFS of s_BBhen

27) Induction Variable =v;

(28) Break;

(29) End if;

(30) End for;

(31) Initialization = V,y(Update Induction Node) \ Induction Variable;

(32)

@3 e step 4—------

(34) Do Step 4kifjure3-7.

(35) Condition Variables = Application’s ingut Vqns:sU Update Induction;

(36) Build_Increment_Function(Condition Variables, Generate Induction Variable,
CDFG_CS_Index);

(37) Endif;

(38) ENd if;

(39) End For;

Figure 5-4 Evolution of the algorithm of loop ddten and parameters extraction

New technique to identify Induction Variable is posed to be independent of the
compilation option (see step 3’ in Figuset). This technique consists in detecting Liadch
Arc from the set of inputs of UIN. Next, starting frothe detected Generate Induction
Variable, the extraction process duplicates noaesBBs that are used to compute the next
value of the induction variable inside the secorapl, until condition variables are found.
Condition variables refer to communication node, {6ee page 52) and induction variable

-111-

On-Chip Monitor Optimizations

(the output variable of the update induction noé&jally, the initialization parameter which
represents the input of updated induction nodetimeted.

In the case of conditional constructs, one CDFG iL&reated. Conditional constructs are
simply modeled by test-condition. Hen@e&;SEduplicates the last node inside the Condition
Block (CB) and moves it to the new created graphoeiated to the current CB.

Finally, each border node (resp. condition varigble associated to a given assertion (resp.
control structure) through a Control identifier (@w|_ID, it can have more than one function
identifier) and is added to the input list of therent assertion (resp. control structure).

The input list of assertion and control structusesd initialization parameters of loop
constructs are stored in a dedicated Databasd-{gaee5-1). The function identifier is later
used during the FSMD Annotation step.

5.2.2 FSMD Annotation

FSMD annotation starts after the FSMD_s has beaergged from the CDFG_WA by the
HLS scheduling step. The objective of this stepoigrepare the synchronization between
HWacc and OCM. It merges all the algorithms tha proposed in the previous chapters
(Chapter 3 and Chapter 4) to identify notable state

More precisely, notable states in this unified flake:

e The initial and thefinal state of the FSMD_s which are used to synchrothee
execution of the OCM and its HWacc;

 TheCommunication Stat§€omS): the set of states where an input dataid for the
first time in a control path and/or where an otiighata is written;

* Thelnput Checker StatedCS): the set of states that handle data usegbasands by
assertions and/or control structures;

» The Start Checker StatgSCS): the set of states that handle the last régfaired to
execute assertions and/or control structures. S@$ubset of ICS;

* TheControl Flow State¢CFS): the set of states having more than oneotngcarc;

» The Control Successor Stat¢€SS): the set of states whose predecessors hange m
than one outgoing arcs;

» TheConjunction State€CjS): the set of states having more than onennieg arc.

Figure 5-5.a illustrates the annotated FSMD_s aofER filter example when the standard
option OO is selected in the compilation step ofSHlow. The set of ComS is {S6, S11, S13,
S16}, the set of ICS is {SO, S2, S3, S11, S13, $S17@ set of SCS is {S0O, S2, S3, S8, S13,

-112-

On-Chip Monitor Optimizations

S17}, the set of CFS is {SO, S3, S8}, the set 068G§{S1, S18, S4, S9, S17}, the set of CjS
is {S2, S7, S18}.

Finally, this step identifies loop staté$eader StateHS) andLatch Statg(LS). Those states
are identified by using the relation between FSMBnd CDFG_WA (see page 55)

Figure 5-5: (a) annotated FSMD_s (b) OCM FSM
5.2.3 ID Generation

Similarly to the FSMD Annotation step, ID generatstep starts after the FSMD_s has been
produced by the HLS flow. This step produces fahedSMD _s state a unique identifier (ID)
by using the DFS algorithm. In contrast to Chagténat is based on binary encoded IDs, we
propose to use a one-hot encoding technique fottifaes. This allows improving the error
coverage against control flow errors as it willdb®wn later. Therefore, designers can select
the coding style to encode IDs according to thegds i.e. area or error coverage. Once each
FSMD_s state has been processed, the annotated FSMs usual used as input by the
binding step of HLS flow. IDs are later used durthg generation of HWacc architecture by
being concatenated to the command words of HWaxate used at runtime by the OCM to
check that no illegal jump has happened inside a B design of the Basic Block Control
Unit (BBCU) has been updated to support both codigilgs, see section 5.2.5).

5.2.4 RTL Checker Cores

OnceAssertion and Control Structure Extractiatep has generated the set of CDFG_Ass
and of CDFG_CS and that tR&MD Annotatiorstep has identified the set $tart Checker
Stateg(SCS), the generation of RTL Checker Core starfgoduce the RTL architectures of

-113

On-Chip Monitor Optimizations

the generated CDFG_Assx and CDFG_CSy. Similartheéadesign oAssertion Checkestep
introduced in Chapter 4, the generation processritpon the selected U_OCMS option.

However, new designs of the previous synthesisoptare proposed in this chapt®ptArea
and OptSpeedThose implementations allow improving and resajvihe limitations of the
previous synthesis options. In the rest of thisptéia assertion statements and control
structure statements are referred to as CheckesCor

The OptArea option is an enhancement of tAeea synthesis option proposed in Chapter 4
where the HWacc are frozen each time an asser@ahth be checked. In this chapter,
contrary to Chapter 4, HWacc and OCM can executewoently. However, OCM can run
only one checker core operation (operation candsertion or control flow statement) at a
time. Hence, HWacc can run concurrently to OQNtil a second checker core operation
must be executed which reduces the impact on theddWw performance. For that purpose,
all CDFG_Assx and CDFG_CSy are merged to get auen@DFG_M by using a switch-case
modeling technique. The merging step is based emltjorithm proposed in section 4.2.3.

Figure5-6 shows the impact on the execution runtime accgrtbnthe selected optioArea
and OptArea Figure 5-6.a presents the execution of the HWacc without @M. We
identify two control steps F1 and F2. The timindagebetween those two control steps is
presented by T. To evaluate the impact on the gxegcwntime, we assume that F1 and F2
drive two checker cores. Checker core can impleragsgrtion or control structure operation.

Execution without any OCM

@)

Execution with OCM

_—

) —

OcMsArea |
option
Stop HW.
HWace | i Stop HWacc i op acc |
Latency(F1) Latency(F2) i (p
F F2 s U_OCMS OptA
ocm ﬁ S < T ‘ L - optio: -
(b) ///f/
Case 1: l/.gtency{f-i)/> T \(‘.\‘asg\z: Latency(F1)<=T
— - \
Stop HWacc S
HWacc |[—] 1) - i HWacc [i
atency F2
ocM F‘l F‘Z Latency(F2) i ocMm F1 | atency(F1) Latency(F2) :

(c) (d)
Figure 5-6: Execution time impact of OptArea optarmpared to Area option

Figure5-6.b illustrates the execution runtime of the HWadthwhe Area option. The impact
on the execution time is the sum of latency ottadl checker core operations to execute. On
the opposite, with th®ptArea(Figure 5-6.c and Figures-6.d), the impact depends on the
timing delay T between th8tart Checker State§-1 and F2) of those two checker cores.

-114

On-Chip Monitor Optimizations

Then, if the latency of F1 is greater than thigFigure 5-6.c), the impact is only the
difference between the latency of F1 andn the contrary, if the latency of F1 is lesatba
equal toT (Figure5-6.d), then there is no impact on the execution mieti

In addition, with the OptArea option, designer Beato instantiate many hardware resource
for each type of operator (e.g. MUL, ADD) in OCMhi$ allows reducing the latency
required to execute CDFG_CSy and CDFG_Assx sothieatime during which the HWacc
stalls is reduced. Finally, those CDFGs are symbkdsusindist-schedulingalgorithm.

The OptSpeedoption is an improvement of thgg&dsynthesis option proposed in Chapter
4. Both options stop the execution of the HWaamidl only if a violation occurs (assertion or
control flow) which does not impact the HWacc's itign performance. OCM can thus check
several properties concurrently. However, contraryChapter 40ptSpeedoption allows
sharing hardware resources between OCM checkes that are mutually exclusive so that
the area overhead is reduced.

To merge the checker core modules, the followisgdare realized:

* The latency of each CDFG_Ass and CDFG_CS is detexinafter their FSMDs are
generated by the scheduling step of HLS flow byhgishtn As Soon As Possible
(ASAP) algorithm i.e. with no resource constraint.

» Start Checker State (SCS) of each checker coréestified inside the annotated
FSMD_s thanks to the identifig€ontrol_ID (generated in the first step of OCMS
flow, ACSB.

» The list of Start Checker States is sorted by uiegoperation’s latency as criteria. In
the case where a Start Checker State has moreoti@rchecker core, the longest
latency is considered.

Once those information are ready, the merging p®agsed inOptSpeedcan start its
operations. Figur&-8 presents its algorithm. It is based on two maepst The algorithm
first scans the sorted list of SCS, nante8CSto generate a list of Merged Statbty. MS

is a collection of SCS which checker cores are allytiexclusive. Two checker cores CC1
and CC2 are mutually exclusive when the delay betwtbeir respective SCS is greater than
the latency of CC1 (see Figuke7.a). In addition, if those two checker cores arecexed
inside a loop’s body, the delay between their respe SCS starting from the SCS of CC2
must be greater than the latency of CC2 (see Figfirb).

-115

On-Chip Monitor Optimizations

SCS_CC1 iDl
1T = "[scs_cc1
D
1 scs cc2 |SCS_CC2
b2
D > Latency(CC1) D > Latency(CC1)

(D1+D2)> Latency (CC2)

@) (b)
Figure 5-7: Mutually exclusive (a) in linear tratisn (b) inside loop's body

Algorithm: Merging Process
S-SCS: the Set of Start Checker State

Method:
(1) While (S-SCS is not empty) ------ (1)-------
(2) curr=0
(3) Create new set of merged state MS
(4) Put SSCS[curr]in MS
(5) adj = curr++
(6) While (adj < S-SCS size)
(7) If (mutually exclusive (S-SCSJ[curr], S-SCS[ad]]))
(8) Then
(9) I[{mutually exclusive (states MS, S-SCS[ad]]))
(10) Then
(11) Put S-SCS[adj] in MS
(12) curr= adj
(13) End If
(14) End If
(15) adj++
(16) End while
(17) For each state inside M& ----- (2)-----
(18) Compute the set of shared operators SO
(19) If (authorize sharing (SO))
(20) Then
(21) Remove state from S-SCS
(22) Else
(23) Remove state from MS
(24) End If
(25) End For
(26) Merge MS states checker cores

(27) End While
Figure 5-8: Merging process algorithm used in tipeSpeed option

Once a MS is generated, the algorithm computesyfifeeand the number of shared operators
for each checker core associated to SCS that belionthe seMS. Next, the total overhead

-116-

On-Chip Monitor Optimizations

i.e. the area required by additional multiplexeue do sharing is estimated. The following
equation represents the total overhead (TO) of ehebker core:

TO = Z 2 X AreaOf(MUan(Op)) (5-1)

Op €Shared operators

Wherenb(Op)defines the number of times the shared opefapas usedMUXx represents a
multiplexer withx inputs.

If this overhead added to the area with sharingréster than the area with no sharing, then
the SCS is removed fromlS and added back into the ordered list of SCS. Girechires
associated to SCS remaining in MS are merged ta geique model CDFG_MEXx (by using
the switch-case modeling technique, see sectio3)}.EBinally, the algorithm restarts from
step (1) with the new sorted set of SCS.

Last, the RTL architecture of CDFG_M when consiag®ptAreaor of each CDFG_MEX
when consideringOptSpeedis automatically generated by using HLS tool. Bhé&TL
architectures are stored in a library of opera{eee Figureb-1) to be later used during the
OCM Generation step.

5.2.5 OCM Generation

OCM generation is the final step of the unified OE€Mow. It couples the annotated HWacc
FSMD_s with results provided by the binding step HIES flow and with the RTL
architectures stored in the library of operatorsdesign the OCM architecture. Then, it
generates its RTL description including a Data BE¥®hand a FSM controller.

The approach to generate an OCM FSM is based oalgbethm presented in chapter 3, see
Figure3-10. We updated this algorithm to define a new momigpoperation according to the
selected U_OCMS option: OptArea or OptSpeed. WhenQptSpeed option is selected, we
use the same algorithm without any modification.eiWhthe OptArea option is selected, we
introduce a new step, Step3’, inside the previdgsrihm before thestep4(see Figures-9).
This step allows identifying the Predecessor oftStanction state. This state will be used
later to drive the execution of the Transition GohuUnit (TCU).

Figure5-9 illustrates the new design of this step. We iniithe concept @trategy pattern
to modify the execution of this step accordinghe $elected synthesis option.

Like in the previous chapters, each created OCM FS3ale is associated to the proper
monitoring operations to be performed when entetimg state for the first time. Those
monitoring operations are advanced compared toethmisoduced in the previous chapters.
Hence, if the visited FSMD _s state is:

« aCommunication Stateghen the corresponding monitoring operation cheblat the
related load signals of the HWacc registers coirtgitiO data are correctly driven;

-117

On-Chip Monitor Optimizations

» apredecessor of Header State. PHS, then the associated monitoring operateia
the loop’s induction variable to its initial value;

» aControl Successor Statthen the associated monitoring operation verifesresult
of the comparison realized in the Checker Controlt JCCU) with the STATUS
provided by the HWacc, disables the check operatmnBasic Block Control Unit
(BBCU) and upload the ID Control Successor Stagalathe BBCU;

* a Conjunction Statethen the associated monitoring operation disabibes check
operations of BBCU and upload the ID Conjunctioat&inside the BBCU;

* An Input Checker Statethen the corresponding monitoring operation autks to
write data corresponding to the input checker dassertion or control structure)
inside the OCM reqgisters;

» A Start Checker Statethen the corresponding monitoring operation statte
execution of checker core;

A predecessor of Start Check&tate i.e. PSC, then the associated monitoring
operation enables the operation of Transition @dtinit (TCU);

OCM _FSM_Build
Commaon Abstract
; ; ' TemplateMethod e
Synthesis_Option | St;';; Self stepl.
>
Step2
i T Self ste2,
E'tgl ______ P
gfepfi F Self stepd.
Self Stepd’
Self stepd.
{ 1
Contrel_Flow Checking | Unified flow OptArea
| |

Stepd ‘ Stepd

Figure 5-9: the new design of the OCM FSM builgpste

Figure5-5.b illustrates the results of OCM FSM when the OGé&meration step is applied to

the annotated FSMD_s of FiguBe5.a. Notable states are presented by the red détor.
example, the OCM FSM statens is tagged as Predecessor Header State because the
successor of its associated stageinside the HWacc FSM is a Header State. In anldis;;

-118

On-Chip Monitor Optimizations

ands;» have been merged to create OCM FSM stagewith loopback (T =1). This OCM
FSM state, i, has also been tagged as Predecessor of StarkeZh®tate because the
successor af; is a Start Checker State.

Once the OCM FSM model is generated and the setdbles that are needed by each
monitoring operation are identifie@CM Generatiorstep analyzes the results of the binding
step of the HLS flow to extract the RTL informaticeiated to those variables.

Finally, the OCM Generationstep instantiates and configures different OCM B&dules.
We updated the previous hardware template to gen@&M DP introduced in previous
chapter (see Figur&9). We implemented a new class for each synthegisrogn addition,
we add a new predefined hardware block, Transi@omtrol Unit. Moreover, we propose
new RTL description of th8B_Control. This architecture will be used when the One-Hot
encoding style is selected by designer.

Figure 5-10 presents the architecture of generated OCM. ThM @ consists of five
modules: Basic Block Control Unit (BBCU), Input/@ut Control Unit (IOCU), Delay
Control Unit (DCU), Checker Unit (CU) and Transiti€ontrol Unit (TCU). All those blocks
run in parallel to the execution of hardware aaegte. The TCU module is used only when
the OptArea option is selected to synchronize Kezetion between OCM and HWacc.

|
! Hardware Accelerator (HWacc) !
: COMMD :
' HwaccFSM | sratus | Hwacc DP !
1 1
:_ ______ e_”ib'fE ______________ D Loadsignal | ||_ _ _ _ Datasignal . — - — — :
] e e e e b o et
i
Next_State_Strat Check‘er Transition
== Control Unit
\
A
enable_chec| BB Control
CSS_Cjs_ID Unit
STATUS mask
nable enable I/O Control
v >

_ ‘242> Delay Control _ I_ A\I\ID T
V OCM ESM unit [L Unit .|_Delay7Done

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
| \
: SelMux [WV N \j/i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

En_timer x Valid
A)\
R1 Ri
i A
Enable_Reg) AND
Enable_Checker Checker Control Unit A
‘ \LCondition_Bit l Done
LIFU_out
Assertion_Bit
. . State_ID ChECk_.J ump :
On-Chip Monitor Unit Jump_Bit .
OCM Checker Unit
OCM DP

Figure 5-10: Architecture of Unified OCM

-119

On-Chip Monitor Optimizations

The Delay Control Unit and the I/O Control Unit leathe same functionalities and the same
architecture as those introduced in chapter 3hénfollowing, we present the architectures of
the modified modules compared to those describetdmprevious chapters and we describe
the architectures of the new modules.

Basic Block Control Unit (BBCU)

The Basic Block Control Unit (BBCU) has the samadhionality as the one introduced in
Chapter 3 (see page 64), except for the compahsbwmeen identifiers. In this chapter, the
comparison process depends on the encoding approseth for the identifier in théD
Generationstep. When ID is binary encoded, the techniquegsed in Chapter 3 is used: the
difference between IDs must equal to one (see Ei§ttl.a). When One-Hot encoding
approach is used for ID as proposed in this chapler verification process consists in
performing a right logic shift in the current IDdto compare the result with the previous one
(stored inside OCM DP or coming from the OCM FSB#8e Figuré-11.b. This new solution
allows to greatly improve error coverage as showrhie experimental results section. As
soon as the two identifiers differ, BBCU recogniaasilegal jump inside a BB.

ciD CciD

OCM FSM COMMD OCM FSM COMMD
enable_check enable_check

PID @ PID @
& Ge) ©

@ (b)
Figure 5-11: Basic Block Control Unit (a) Binaryding style (b) one-hot coding style

Checker Unit (CU)

Checker Unit (CU) verifies that no assertion idifigi due to an unintended behavior of the
HWacc and that there is no illegal inter-basic klpamp. The CU consists of a set of Data
Registers (DRs), Checker Control Unit (CCU) and ¢&&hdump Unit (CJU). The set of DRs

and the CJU are similar to the DR and the Chechk thait are implemented inside the JCU
module introduced in Chapter 3 (see page 66). Ttiatacture of CCU is similar to the one
of ACU module introduced in Chapter 4 (see page BAe RTL architectures (i.e. checker
cores) that are implemented inside CCU are thosergeed from CDFG_CS, CDFG_Ass,
CDFG_ME or CDFG_M depending on the selected symlmsions (OptSpeed or OptArea).
The CCU’s inputs are the set of data signal corfioign the HWacc and DR’s output signals.

The execution of checker cores is controlled byEhable Checker signal and data storage is
driven by the Enable_Reg signal. The CCU’s outpmésthe new value of induction variable
(LIFU_out signal), the result of condition jum@@ndition_bitsignal), the result of assertion

-120-

On-Chip Monitor Optimizations

check Assertion_Bitsignal) and the value of thBone signal which informs whether a
checker core is running. The@ondition_bitsignal is compared with th8tate ID signal
(presents the results of STATUS signal), comingnfrtne OCM FSM, inside the CJU to
check inter-BB jumps.

Transition Control Unit (TCU)

The Transition Control Unit (TCU) drives the statansition process inside the OCM FSM
and the HWacc FSM by controlling their respectereablesignals. This is used when the
OptAreasynthesis option is selected. ContrarAtea option, the TCU does not interrupt the
HWacc’s execution when a new checker core operatiost be executed. The HWacc's
execution is interrupted only when a new checkee aperation must be performed while
there is a checker core operation that is runniitinvthe CU. In fact, if the current OCM
FSM state has completed its NOP operations (DelayeD-= true) and a conflict is detected.
A conflict happens when the next OCM FSM state $taat Checker State (NSCS = true) and
the current checker core operation is still runnipgne = false). Then HWacc is frozen and
the transition inside the OCM FSM is also interaghtTo do this, thenablesignal of the
OCM FSM and the HWacc FSM is controlled by thedaling equation:

enable = delay_Done or NSCS or Done -2

5.3 Experimental results

In this section, we discuss the interest of thdiemhisynthesis approach proposed in this
chapter. Like the previous design flow, the unif@d-Chip Monitor Synthesis flow has been
implemented by using java and EMF. We use the d@nehmarks presented in the previous
chapters. In addition, we use the same asserti@tste inserted inside each application (see
section 4.3).

The HLS tool compilation step uses the compiler G&Z.2 to generate the formal
representation CDFG. All CDFGs are generated usotg compilation standard option, OO,
and optimized option, O3. Then, in order to dedign hardware accelerator, one functional
unit has been first allocated for each type of amerand aList Schedulingalgorithm has
been used.

Figure5-12 presents the synthesis time overhead, the deldgdady the U_OCMS flow in
order to generate the OCM architecture. To evalubhte worst case and realize fair
comparisons, we present results when @gtSpeedsynthesis option is selected. The
algorithm of OptSpeedhas higher complexity tha®ptArea OptSpeedchecks mutually
exclusive property between checker cores. Nexprtputes the cost to merge checker cores.
Finally, it merges checker cores according to theinefits in terms of hardware overhead.
Instead, OptArea only merges checker cores. Results are given Hertivo compilation
options: O0 and O3.

-121-

On-Chip Monitor Optimizations

As stated, the extra delay ranges from 2.12% t®®4. We noticed that the optimized
compilation option enables to reduce the time ovadn(e.g. Blowfish). This reduction comes
from unrolled static loops which decreases the ramdd control structures to check. In
addition, with the optimized option, loops (backsgrare immediately detected. For example,
when the standard option is selected (Figbw2a), the loopl is detected after checking
BB03, BB04 and BB06, whereas, the optimized op(ligure5-2.d) enables to detect loopl
only by checking BB3.

Peaks overhead are obtained when considering anbigiver of checker cores (assertions and
control structures) to synthesize (e.g. AES). Tioeeg the higher this number, the higher
latency. The second factor that impacts the overhisathe application complexity. For
example, the synthesis time overhead of the Ma@plication is less than those of the FIR
application while it has more properties and maretl structures to check. This overhead
reduction only depends on the synthesis time aatautio each application.

Synthesis Time Overhead

25.00%

20.00%

15.00%

mOoo

10.00%

mO03
5.00%

0.00%

M
NS

R Q <<'\ Q > X ((f?
P & @ & ¥
A\ °

Figure 5-12: Synthesis Time overhead accordingtopilation option

Table 5-1 presents CDFG, FSMD_s and Annotated FSMD_s charsiits in term of
number of basic blocks, states and notable stResults are given for the two compilation
options. As previously explained, the choice of tmepilation option modifies the CDFG
(see Figure 5-2) and then FSMD_s characteristiesuls show that the optimized option can
reduce, in some cases, the complexity of CDFG &M s. The evolution of OCM FSM
complexity in term of states (the number of notadiktes) naturally depends on the number
of assertions to synthesize and on the applicatiomplexity but also on the selected
compilation option.

The next subsection represents experimental retevaluate the benefit and the overhead
of the unified OCMS flow in comparison to the résubresented in the previous chapters
(Chapter 3 and Chapter 4). A3ptArea option allows designers to select the number of
hardware resource instances, we led experiments twid configurations for this synthesis
option:

-122-

On-Chip Monitor Optimizations

* OptArea#l: one instance is authorized for each eckdthrdware resource like in
chapter 4, [90].

» OptArea#2: two instances are authorized for eachded hardware resource.

Table 5-1: Application characteristics accordinghte compilation option

Standard Compilation Optimized Compilation
Application SI?)SC'E State Notable State gl%?:llf State Ng:gtb;e
FIR 8 23 19 7 25 17
DCT-2D 20 51 35 13 31 27
MatMul 11 37 29 12 43 26
SAD 9 32 17 5 23 11
FFT 19 52 36 15 52 35
Conv 20 71 47 21 70 46
Sobel 45 171 106 28 127 78
Blowfish 39 209 112 76 179 109
AES 64 342 152 13 558 147

5.3.1 Performance overhead analysis

There is no performance impact in the two followiogses: checking the control flow
execution when no violation of control flow propestoccurs, and checking assertions in the
Speedoption proposed in Chapter 4 or OptSpeed opti@mpgsed in this chapter when no
assertion violation occurs. Indeed, in none ofdéhesses the HWacc’s execution is stopped.

Execution Runtime Overhead
400.00%

350.00%

300.00%

250.00%

200.00%

150.00%

100.00%
50.00% II I:
0.00%

DCT-2D MatMul SAD Conv Sobel Blowfish AES

M Speed (Chapter 4) M OptSpeed M OptArea#2 M OptArea#tl M Area(Chapter 4) M Chapter 3

Figure 5-13: Execution runtime overhead comparedhapter 3 and Chapter 4

The impact of OCM on the execution runtime is pnésé in Figure 5-13. Results are given
for all the proposed OCM synthesis options. Peakshead are obtained when usifigea

-123

On-Chip Monitor Optimizations

option from Chapter 4 and cconsidering complex iappbns in terms of nested loops (e.g.
Conv has 4 nested loops with complicated assertiorsynthesize). This is due to tAeea
option which interrupts the HWacc’s execution evieme an assertion must be verified.

In addition, results show that OptArea#1 reducesetkecution runtime overhead by 2.76x on
average compared to tAeea synthesis option. This illustrates that the HWaaxXecution is
interruptedonly if some checker cores execute concurrently. Moreaesylts show that
using the previous condition with more than onealivare resource to instantiate, allows extra
minimization of the runtime execution overhead. Apt#2, with only two instances of each
type, reduces the overhead by 1.75x compared t&r&g#l, and then by 4.5x compared to
Area option from Chapter 4. Peak overhead (e.gv@eerhead) is reduced by 4.7x when the
OptArea#l is used and by 7.3x when the OptArea#liscted. This gain comes from the
faster execution of checker cores which minimizies probability to have overlapping
executions of checker cores ($&&se 2in Figure5-6).

5.3.2 Area overhead Analysis

The area overhead incurred by OCMs generated bgppeoach proposed in this chapter is
analyzed according to the monitor’s features. Fits slice overhead incurred by monitors
that check only assertion violations is presentadi @mpared with the results of Chapter 4.
Next, the slice overhead incurred by monitors tdtegck control flow execution and timing
behavior of I1/0O data is analyzed and compared with results of Chapter 3. Finally, the
hardware overhead of monitors that check assextiolations, control flow execution and
timing behavior of I/0 data is analyzed and comgawvéh previous results of Chapter 3 and
Chapter 4.

5.3.2.1 Areaoverhead caused by assertions

Figure5-14 presents the hardware overhead in number of sites the OCM is generated
through assertion synthesis only. For comparisapqse, results are given for the two new
synthesis options presented in this chapbgtSpeedcand OptAreg and for the two options
previously presented in (Chapter 8peedand Areg). The area overhead comes from two
blocks: the Checker Control Unit (CCU) and the 3yoaization Block (SB). The
Synchronization Block consists of the OCM FSM, @elontrol Unit and Transition Control
Unit. According to the results of runtime impacte wlassify synthesis options into two
categories: Non-Intrusive (Speed and OptSpeed) lataisive (Area, OptArea#l and
OptArea#2). Therefore, the results of area overla@agresented and analyzed per category.

For Intrusive mode, we start by comparing OptAreatitl Area. Results show that the area
overhead of CCU remains constant. This result wgeaed since OptArea#l instantiates
one hardware resource of each needed type as At @oes. However, with OptArea#1,
the area overhead caused by SB increases by 0.7M%verage (ranges from 0.23% to
1.13%). This extra overhead is used to implemedttandrive the Transition Control Unit
(TCU). Therefore, OptArea#1l enables reducing tmtime impact by 2.76x on average, with

-124

On-Chip Monitor Optimizations

a negligible extra-overhead. By comparing OptArea#id Area, results show that the area
overhead of CCU increases by 9.61% on average. 1@ag#® slightly increases the area
overhead because it instantiates two hardware res®tdior each type of functional unit (i.e.
addition, multiplication, etc.). Two characteristican impact this extra-overhead. The first
one is the complexity of assertions to synthesizeeims of operators and their dependences.
The second factor that impacts the hardware ovdrhgathe number of synchronized
assertions. Synchronized assertions are assettiatshave the sam8tart Checker State
Hence, the higher number of synchronized assertitves higher chance to instantiate two
hardware resources per type of functional unit. &deer, OptArea#2 increases the hardware
overhead of SB by 0.54% on average as it uses @lg I interrupt HWacc like does
OptArea#l. Therefore, OptArea#2 enables reduciegrtimtime impact by 4.5x on average
compared to Area but with an extra-overhead. THesigners can select the synthesis options
according to their need, runtime impact or hardveserhead.

Assertions OCM Slice Overhead

200.00% B ccu Speed (Chapter 4)
B8 SB Speed(Chapter 4)
180.00% 8 ccu OptSpeed

8 SB OptSpeed
CCU OptArea#2
B SB OptArea#2
B CCU OptArea#l
B SB OptArea#l
0 CCU Area (Chapter 4)
8 SB Area (Chapter 4)

160.00%

140.00%

120.00%

100.00%

80.00%

60.00%

40.00%
20.00%

0.00% [| | | | | | | | | | | | - -"

F'IR ocT MatMul SAD FFT Conv Sobel Blowfish AES
Figure 5-14: Assertion OCM Slice overhead comp#&neQhapter 4

For Non-Intrusive mode, results show that the psepoOptSpeed mode reduces the area
overhead of CCU by 8.87% on average (up to 20.87# @onv) compared to the Speed
option. In addition, in some cases, the area owaellnemains constant compared to the Speed
option (e.g. FIR and SAD). In fact, the OptSpeetlarpshares resources only when the cost
of added multiplexers is lower than the cost ofrelaperators. Moreover, the area overhead
caused by SB slightly increases (less than 1%amibrst case) and is negligible compared to
the hardware overhead caused by CCU. This inclisasmised by the evolution of command
word’s length when the OptSpeed option is usediatit, more bits are used to drive the
execution of checker cores. Hence, the OptSpeedrophables reducing area overhead,
according to the cost function, compared to Speedlenwithout impacting the runtime
execution.

-125

On-Chip Monitor Optimizations

5.3.2.2 Areaoverhead caused by control flow checking (CFC)

Figure 5-15 presents the area overhead in number of slices @M checks the control
flow and the timing behavior of /0O data. It shodde noticed that the technique proposed in
the Chapter 3 supports neither the standard optorthe one-hot coding style of ID. In order
to compare results of the proposed unified flowhwiesults from Chapter 3, we have
configured thdD generationstep of the unified OCMS flow to binary encodentifigers. In
addition, we consider the optimized compilationi@ptO3 of GCC for fair comparison.

Results show that the area overhead of OCM genketatethe unified flow increases by
1.19% on average (the worst case is inferior to déthpared to the previous results. These
increases are due to the new proposed techniqugenerate OCM; more control bits
(Enable_Function, Enable_Reg, etc.) are addeddocttimmand word of each OCM FSM
state compared to the approach presented in Chapteraddition, the set of checker cores
instantiated inside the RTL OCM architecture iseagated automatically from their CDFG
using a HLS tool which did not exist in the apptogresented in Chapter 3. This causes a
small rise in terms of used slices per checker.core

CFC OCM Slice Overhead

30.00%

25.00%

20.00%
15.00%
10.00%
5.00%
0.00%

M Results Chapter 3 M OptSpeed

Figure 5-15: CFC OCM Slice overhead compared top@&nes
5.3.2.3 Areaoverhead of the unified flow

The objective of this chapter is to propose a edifilow that considers ANSI-C assertions,
control flow execution and timing behavior of I/@td to generate OCMs. By using existing
approaches, the only way to check assertions antiatdlow execution is to instantiate two
OCMs. In order to illustrate the interest of thefiea flow in terms of hardware overhead, we
compare its results with the results generatedhbyapproaches presented in Chapter 3 and
Chapter 4. To allow fair comparisons, the optimizechpilation option O3, the non-intrusive
synthesis option OptSpeed and the binary ID condiion mode are considered only. The
previous design flow to synthesize ANSI-C assertioom Chapter 4 supports both
compilation options: standard and optimized.

-126-

On-Chip Monitor Optimizations

Figure 5-16 presents the hardware overhead in number of siideen the OCM allows
checking Control flow properties, I/O timing behawvand assertions. Results show that the
unified flow reduces the hardware overhead by 19%.0h average (from 5.43% to 19.45%)
compared to the overhead incurred by OCMs generhyethe approaches presented in
Chapter 3 and Chapter 4. This result is obtainadk to the proposed OptSpeed synthesis
option that allows sharing hardware resources betweutually exclusive checker cores. In
addition, using the same OCM FSM for the synchratndn of both assertions verification
and control flow checking enables to further redtiee area overhead. Therefore, according
to the number of assertions to synthesize, themnptexity and their location inside the
application, the area overhead can be reduced.

Slice Overhead of the Unifed Flow

250.00%

200.00% -

150.00% -

2 T

FIR DCT-2D MAtMul SAD FFT Conv Sobel Blowfish AES

Results Chapter 3 + Results Chapter 4 B OptSpeed

Figure 5-16: Unified OCM Slice overhead

5.3.3 Impact of the compilation options

In this sub-section, we analyze the impact of thegilation options on the area overhead.
For that purpose, we compare the total area of Hvdad its OCM both generated either by
using OO0 or O3 synthesis options. OCM are genetayadsing the unified synthesis flow and
are used to check the control flow execution a@ltiiming. Figure5-17 presents the area
overhead of generated OCMs according to the cotmgmlaoptions. Results show that the
standard compilation option OO increases the aveshead by 3.37% on average compared
to the optimized compilation option O3. Howeveg thverhead depends on the application’s
complexity and the C coding style. Indeed, overhigmtleases each time applications use
static loops (i.e. blowfish and AES) for exampldisl comes from the two checker cores
(increment and condition functions) that are addedhe OCM for each static loop. The
second characteristic that impacts the overheticeiaumber of states inside the HWacc FSM
(i.e. Sobel, see Tabk1) which drives the number of required bits to erecethte’s identifier
ID. Then, more registers are needed to store IDmack logic is required to check illegal
jumps. However, in some cases, the standard cotopileeduces the hardware overhead (i.e.

-127-

On-Chip Monitor Optimizations

DCT-2D, MatMul, SAD, FFT and Conv) compared to thgtimized option. As shown in
Figure5-2.d, when the optimized option is selected, a nemditmnal construct is added per
loop’s bound variable. This new conditional constrahecks the coherence between the
loop’s bound and the loop’s initialization paramet& hus, more slices are used to synthesize
new checker cores (conditional constructs). Moreotiee length of OCM FSM state’s
command word increases to drive the new checkescor

Finally, we analyze the impact of the compilatigtions on the OCM area itself in terms of
slices. Figure5-18 presents the occupied slices of generated OCM rdiogp to the
compilation option. Results show that the area 6MDslightly depends on the compilation
option. In fact, the variation of OCM area accoglin the compilation option doesn’t exceed
16 slices on average. Hence, the gap between sgwselented in Figure17 mainly comes
from the HWacc which area strongly depends on timepdlation option (e.g. AES).

Compilation option impact on area
overhead
30.00%
25.00%
20.00% -
15.00% -
10.00% -
5.00% -
0.00%
& O S © <& S S & O
& @‘?‘Q ° ¢ ¢ \0“& v
Optimized (O3) M Standard (O0)
Figure 5-17: Compilation option impact
Areaof OCM
600
500
400
300
200 I: ™
100 ———
o s i ik
& P S PSS E
Optimized (O3) M Standard(O0)

Figure 5-18: The occupied slices of OCM accordmgdmpilation options

-128

On-Chip Monitor Optimizations

5.3.4 Error Coverage Analysis

In this sub-section, we analyze the error covemaigthe OCM generated by the approach
proposed in this chapter. We use the fault modebdiuced in Chapter 3 after being updated
by including assertion checking in Chapter 4.

Two evaluation scenarios, with and without assegtichave been proposed to present the
contribution of this chapter compared to resultCobapter 3, control flow errors detection
rate. Results are only given for the combined tgpalteration (see page 74). In fact, with
single alteration, experiment results validate a@pproach by an error detection rate of 100%
thanks to the redundancy approach used by ouritpehiisee Figurd-18).

Like in Chapter 3, the only undetected cases dherealteration of command words in non-
notable states or a combination of ID (the ideetitf HWacc FSM state) and SR alterations
which masks each other. However, alteration of camunwords in non-notable states is out
of the scope of this chapter as we focus on cofiiwal and HWacc’s properties introduced
by the designer. The basic solution to detect tleoses (introduced in Chapter 3) consists in
inserting more assertions. Notable states aressths serve as support for control flow
description and states where assertions must beketie Therefore, the higher number of
assertions to synthesize the higher number of f@t&thtes. Thus, designers can specify the
level of the error coverage by the effectiveness #ie number of assertions to synthesize.
Then, they can use one of the proposed synthedisnepto reduce the area overhead
according to their needs in terms of performance.

In the following, results illustrate the error coege of OCM when combined ID and SR
alteration occurs.

5.34.1 Error coverage without assertions

Figure 5-19 shows the Undetected Error Rate (UER) (see pagewithout taking into
account errors detected by using assertions vatiiic technique when the one-hot coding is
selected. In contrast to previous results (Chaptgisee Figure-22), all illegals jumps are
immediately detected when Single fault (SEU) iedatg¢d on the ID and COMMD words.
These results are expected since modifying onkeéds to incorrect ID (definition of One-
Hot coding). Moreover, results show that the highember of alteration over ID and
COMMD words, the fewer chance to hid the faulty &&br. This interpretation is inversed
when the binary coding is selected. In fact, Fig8#22 shows that the higher number of
alteration over ID, the higher chance to have siegrror.

In addition, the peak of error detection mismatciveh one-hot coding (obtained with the
application SAD) is 13x less than its correspondiatyie when the binary coding is selected,
see Figuré@-22 and Figures-19. It is reduced from 1.6*I®down to 1.23*1d.

-129

On-Chip Monitor Optimizations

Undetected Error Rate(One-Hot coding)

1.40E-04
1.20E-04 ~

1.00E-04 / \
8.00E-05 / \
6.00E-05 / / \

4.00E-05

2.00E-05

0.00E+00 —— E—

SEU MBU2 MBU3 MBU5S MBU10 MBU20
e F|R e DCT-2D === MatMul| === SAD e EFT
Conv Sobel Blowfish AES

Figure 5-19: UER when One-Hot coding is selecteith@ut assertions)

As explained in th©CM Generatiorstep of the unified OCMS flow, the architecturetiod
Basic Block Control Unit (BBCU) depends on the mamto encode ID. Therefore, the area
overhead incurred by the one-hot encoding is aedlyand compared to previous results.
Figure5-20 presents the area overhead incurred by OCM acwptdi the selected encoding
style. Results show that when IDs are one-hot ezatathe hardware overhead is increased by
7.29% on average compared to the binary coding.shylfact, the added hardware overhead
ranges from 3.30% to 13.19% and increases whemgpbkcation’s complexity increases in
terms of states. This evolution of the slice ovathis caused by the increase of the ID size to
be stored within the HWacc FSM states command wandisthe OCM FSM states command
words (with conjunction states and control succesties) and of the size of the comparator
used in the testing function inside BBCU.

CFC OCM Slice Overhead

35.00%
30.00%

25.00%

20.00%
15.00%
10.00%
5.00%
0.00%

M Binary coding EMOneHotcoding

Figure 5-20: CFC OCM slice overhead depending erstiected coding manner (binary or
one-hot)

-130-

On-Chip Monitor Optimizations

5.3.4.2 Error coverage with assertions

Figure 5-21 presents the same example illustrated in Chap{ee8& Figure3-21) but when
assertions are enabled in the unified OCMS flow. &sume that S2 is tagged Simrt
Function State(to check an assertion). Therefore, the silencer,ewhen the state S4's
identifier (ID_S4) is altered to match the S2’sntiger (ID_S2), is detected thanks to the
detection of assertion violation (related to resolt HWacc FSM S2’s command execution).
In this case, the latency to detect silence erepredds on assertions complexity and on the
selected U_OCMS option to synthesize assertiOpIpeedr OptAreq.

Combination of ID and SR alteration with assertion

C s Dip_so
SR: 0010(?:“ (s DID_st T:l
2 bit f|ip3j/l i (s os2 % T=1 > Hwacc FSM state
. % o < O Notable state
SR : Q000 >(s > 1053 0.2
Ca)b s s O OCM FSM state

Hwacc FSM OCM FSM

Figure 5-21: illegal jump scenario with assertion

Figure 5-22 shows the Undetected Error Rate (UER) when aeseri@re considered during
the synthesis of OCM. Results demonstrate thatrtamse enable to improve the detection of
control flow errors without modifying the form ohe curve presented in Figugelo.
(UER(SEU =0 and UER.10(MBU,)—>0). In fact, the UER is decreased by 17.68% on
average compared to the UER when One-Hot codingesl without assertion verifications.
In addition, the peak of error detection mismatclelstained with SAD application) is
decreased by 24% compared to its correspondinge wahen assertion verifications are not
considered, and then it is 16x less than its cpareding value when the binary coding is
selected (as proposed in Chapter 3). This redudfddER is dependent on the number of
inserted assertions and their efficiency. It shdagdhoticed that in this manuscript we are not
interested in the effectiveness of assertionswaihave shown the importance of inserting
assertions inside the high-level specification pplecation to improve the verification of
control flow errors.

-131-

On-Chip Monitor Optimizations

Assertions verification)

1.40E-04

1.20E-04

1.00E-04

8.00E-05

Error rate

6.00E-05

4.00E-05

2.00E-05

0.00E+00

SEU

MBU2 MBU3 MBU5 MBU10 MBU20

Undetected Error Rate(One-Hot coding and

—==FR_A

DCT
=== DCT_A
MatMul
MatMul_A
SAD

=== SAD_A
e FET
== FFT_A
Conv
Conv_A
=== Sobel
=== Sobel_A
Blowfish
Blowfish_A
AES
AES_A

Figure 5-22: UER when the One-hot coding is setbatal the assertion verification results

5.4 Conclusion

This chapter presents a unified hardware-assis@@dmm to check at runtime both
algorithmic properties (C8), control flow errorsdaimput/Output timing behavior errors (C3
and C5). In addition, the proposed unified desipwfoffers some optimizations on the
synthesis options provided in previous chapter, pira3. Those optimizations allow
designers to make tradeoff between area overhedq, (@&rformance impact (C6) and

protection level (C7).

Table 5-2 illustrates the evolution of the proposed synthesptions according to our

conditions.

are considered

Table 5-2 Synthesis options vs. Conditions

Synthesis Option C4 | C6 | C7
Speed X
Chapter 4
Area X X
OptSpeed X X
Unified flow
OptArea X | +-| +I-

-132-

On-Chip Monitor Optimizations

The proposed unified flow improves the contribut@irChapter 3 by addressing the problem
of the compilation options and their impact on toatrol flow. Moreover, this flow allows
designers to select the encoding style (binarynerltwot) of state identifier according to their
need in term of area overhead and error coverage.

Experimental results shown that error coveragehercontrol flow errors is improved by 16x
compared to previous works while the hardware ce@dhis reduced by 10.74%. The
OptSpeedynthesis option allows reducing hardware overhgatb 17.48% without any loss
in performance compared to previous techniqueslevthe OptAreaoption allows reducing
the performance impact by 2.76x without any exteaaoverhead compared to the previous
technique.

The unified flow provides a parameterized platfdombe used for different usage profiles.
Designer with timing constraints, should use 8geedsynthesis option and the One-hot
encoding style that leads to the higher error cayer However, if area is a strong constraint,
we recommend to use tkdptSpeedynthesis option and the binary encoding stylesigrers
focusing on small area overhead with no runtimestramts should use th&rea synthesis
option and the binary encoding style.

The proposed design flow allows detecting contimiferrors and data errors through a set of
assertions. However, when a malicious attack altkervalue of loop’s induction variable, the
detection happens at the theoretical end of lodgptstion (through the comparison of the
STATUS signals). This lets errors propagate inside thstesy leading potentially to
vulnerability issues. Hence, the monitor must leectige to detect errors at the current cycle
and near to their sources.

For other kind of variables, faults can alter ttadue of data without causing control flow
errors or assertion violation. For example, whenualue of a given variable is altered within
its expected range values (no properties violati@ipre the next write operation, it cannot be
detected. As a consequence, internal results aoeadtiered due to the propagation of errors.
Hence, checking the consistence of applicationtgattes is a key issue for monitor design.

The next chapter updates and extends our framewmrfix those previous limitations:
improve the reactivity (C7) of monitor to check smon as possible control flow errors and
check the consistency of application’s variable8)(C

The approach proposed in this chapter has beenigebdno [95].

-133

On-Chip Monitor Optimizations

-134

On-Chip Monitor for Critical Variables

Chapter 6 ON-CHIP MONITOR
FOR CRITICAL VARIABLES

6.1 INTrOAUCTION ...ttt e e e e e e e e e e e e e 137
6.2 On-Chip Monitor Synthesis Flow for critical variail.................cccciiiiieennnn. 137
6.2.1 RUIE EXITACHONcciiiiiiiiieei e immmmm ettt 138
6.2.2 Critical Variable 1dentifiCation...............ceeuieeiiiiiiiiiiii e, 140
6.2.3 FSMD ANNOTALIONcooiiiiiiiiiiiiiit e e e e et r e e e e e e e e eneeans 142
6.2.4 Path EXIFACHONuvviiiiiiiiiiiiiiiii e ommmmt ettt 144
6.2.5 OCM GENEIALION ...uutviiiiiieieiiti ittt eeeeee ettt e eeees 144
6.3 EXperimental reSUILSoooveiiiiiiicee e 148
6.3.1 Variable Criticality ANAlYSISccouuiuiiuumiiiiiieeee e s 150
6.3.2 Area Overhead ANAlYSIS...........ooiiiiiiiiicemmmmeiae e s 153
6.3.3 Error Coverage ANalYSIScoooiiiiiiiiiiiiiiii e 156
(G O] o o1 U1 [0 o PP PUPRPPPRTRN 157

This chapter addresses the consistency of the getemonitor to detect new type of data
errors, data corruption. It introduces a new algbrn to identify the most critical variables.

In addition, it presents a new technique to enhaheereactivity of monitors to quickly detect
loop problems.

-135

On-Chip Monitor for Critical Variables

-136-

On-Chip Monitor for Critical Variables

6.1 Introduction

The unified flow proposed in the previous chap®@hdpter 5) allows designing OCM to
check at runtime both control flow errors and datars. For the detection of data errors, the
proposed technique uses ABV technique allows chectelations between variables and the
ranges of variables values. However, some othaessmust be considered. For example, the
values of constants must never change, the valuegriables must remain constant between
two write operations and the evolution of loop iotlon variables values over time must be
correctly performed. This type of data errors canse the program to terminate correctly,
without illegal jump or property violation, but teillently produce wrong results (output
values). The former solution doesn’t provide angpurt to check such properties.

The basic solution to detect those errors consistsing the modular redundancy approach
like Dual-Modular Temporal Redundancy (DMTR) [9Blowever, this method leads to high

area overhead. In order to avoid this problem,dbplication technique can be performed
only for the most critical variables, critical caydration bits and specific operations. Critical

variables are variables that, when altered by daulftay have an impact of the application
results. Critical configuration bits are a subseF8M state command word bits, limited to

those that configure the data-path when criticalabdes are used by the application. Specific
operations are loop increment functions. The dapibo of loop increment functions alone is

not sufficient to prevent the propagation of eriossde the system. The technique introduced
in chapter 5 duplicates loop increment functiong,ibdetects problem of infinite loops at the

end of loop iterations. To avoid this limitationyglicated loop increment functions can be
used to verify the derivation of loop induction iadnies values at the current cycle.

In this chapter, we propose to consider the detectf data corruption for hardware
verification. This allows OCM to be robust agaiasty types of data errors. The proposed
approach aims at checking at runtime the values thadpaths of critical variables. The
proposed algorithm to identify critical variables improved compared to the previous
approaches. In addition, we enhance the reactoitgenerated monitors to detect loop
problems (e.g. infinite loops) as soon as possie. propose to check at runtime the
evolution function of loop induction variables. the rest of this chapter, the evolution
function of loop induction variable is referredasRule

6.2 On-Chip Monitor Synthesis Flow for critical variables

The proposed On-Chip Monitor Synthesis (OCMS) fltw critical variables consists of
several steps as illustrated in the right partigtife 6-1:

* Rule Extraction step- starts after the HLS has compiled the high levekdation
of application. This step analyzes the formal repn¢ation in order to identify loops
and then extracts the rules of loops inductionaldes.

-137-

On-Chip Monitor for Critical Variables

» Critical Variables Identification step-analyzes the HWacc FSMD_s generated by
the scheduling step of HLS flow. This step computes criticality of application’s
variables and identifies the set of the most @iti@ariables.

 FSMD Annotation step-analyzes and annotates a copy of the HWacc FSMIhis.
step is similar to the one introduced in the thpesvious chapters (see pages 50, 82
and 105). In this chapter, it identifies new nogabtates such as states that read or
write critical variables or states that start tleefication of the derivation rules.

» Path Extraction step-analyzes the annotated FSMD _s after the bindingynmédtion
have been generated by HLS flow in order to extfaetpath of each detected critical
variable. These information are used to verifyusitime that the data transfer process
IS correct.

* OCM Generation stepcouples the annotated FSMD _s with the results igeavby
the binding step of the HLS flow and with RTL arnelitures stored in the library of
operators to produce the RTL architecture of theitno as Finite State Machine and
Data-Path.

Finally, all those steps are realized concurretdlyhe HLS flow of HWacc. The following
sub-sections detail the OCMS flow for critical \adoies.

6.2.1 Rule Extraction

Rule Extractionis the first step of the OCMS flow. It starts aftthe intermediate
representation of the application is generatedhieycompilation step of HLS flow. This step
identifies loops and extracts the rule of each ®apduction variable. All those information
are stored in a dedicated data base named DB:loops.

Loop constructs are detected when identifying kack in the CDFG as presented in Chapter
5. Once a back arc is detected, a new Control Bawa Graph, referred aRulexin Figure
6-1, is created and is labeled by a unique numbehat,represents the number of the current
detected loop. Next, the sink BB (i.e. the conjiorctbasic block) of detected back arc is
referred to ad.oop Header(LH) and its source BB (i.e. the disjunction babiock) is
referred to asoop Latch(LL). Those two types of BB are associated tovegiloop through

a loop identifiel.oop_Id In addition, each basic block located betwekhandLL is tagged
asLoop Body(LB) and the currentoop_ld(associated to the LH and LL) is added to list of
loops of the current basic block. This informatisnater used during th€ritical Variables
Identificationstep.

-138

On-Chip Monitor for Critical Variables

C/C++ e :
L ol Rule Extraction | |
Compiler A R ule Extraction ‘3o =z
i ;|(ﬁ Rule11 ﬁ Rulengl;i
E il [N Wl | [Pt
iDB:Loops H—
hedul R oo] ;
Schedulin i 1 Corit - i
g : ' Crltlcal_ yangbleq HLS :
i L_ Identification 1
FSMD s =
i r::I:_I:Z:DI G
_ i {_DB:Critical V T
Allocation : "---\l/---"' 'LOperatorle
Binding =T ryT~— ---
—— L__Annotation 1
Binding ST
Information #“Annotated >,
N So_FSMD_s .7
Datapath and Controlle \E_
Gen\lelz/ratlon] %l:_ Path Extraction | L
[| e 2 N
Hwacc RTL i J . ! :
i A OCM Generation 1 i
Architecture b Q_.C.MS_ﬂ.QW._._4_4_4_._'?_f_.-_.-_:::i.:::_-.:_.-_::::.' __________ i

OCM RTL Architecture J

Figure 6-1: Proposed design flow for critical vates

The next step in thRule Extractionextracts the rules of each loop's induction vadgelabhis
rule defines the evolution value of a given indoistvariable value over times (during loop
iterations). In general, the rule of a given loojp@uction variable k is as follow:

ke = f(ke—q,..)

Where kis the value of the variable k at the currentaiti®n, t, k; is its value at the previous
iteration andf is a function that has at least one input whick.is This function represents
the loop increment function: the rule. As explainadthe previous chapters, each loop’s
induction variable has two variables nodes insieegenerated CDFG: Update Induction, the
output of the Update Induction Node, and InductMariable, the input of the Update
Induction Node, (see Figute4). Hence, the Update Induction represents the walike; and
the Induction Variable represents the value;of k

The extraction process &ules is based on the algorithm presented in Figude(we only

replace the set d@DFG_CSxby the set oRulex(see Figures-1)). Each visited Condition
Variables (see Figur&-4), during the extraction process, and the InducMamiable are
associated to the current loop through the looptitier Loop_Id.

-139

On-Chip Monitor for Critical Variables

Finally, the RTL architecture of eadRulex is automatically generated by using HLS tool.
These RTL architectures are stored in a librargpdrators to be later used during €M
Generationstep.

6.2.2 Critical Variable ldentification

Critical Variable Identificationstep starts after the FSMD_s has been generatetheby
scheduling step of HLS flow. This step computesdtikcality of application's variables and
identifies the set of critical variables accordinglesigner’s needs. The proposed algorithm to
compute the criticality of each variable is basadtee following function [86]:

Criticity(v) = K; * D;(v) + K, * D.(v) + K,
© DT MQw) (K D) + K x D))

wcdesc(v)

WhereD, defines the lifetimeD. defines the number of participations in branchdions
and M(v,w) defines the dependency weight betweeft &nd ‘W’. K, K. and K,, are
coefficients that can be used to focus more onariterion than the others according to the
designer needs.

The algorithm we use to compute variable lifetinrgesspired from the definitions and rules
that are proposed in [86]. Figu&2 presents the algorithm to compute the set of alive
variables at the entry, In(), and the set of aliaeiables at the exit, Out(), for every state
inside the FSMD _s (for more details see sectionpgage 41).

Once those two sets are computed, a variidalive in state “a” if there is at least one edg
eap Where ve Out(aNIn(b). Then, the lifetime of is computed by counting all states that
satisfy this condition. However, this process ddesike into consideration variables lifetime
inside nested loops iterations. In fact, if theya istate that satisfies the previous condition for
a given variable and that is located inside nedtegbs, it will be counted only once
whichever the number of loop iterations.

Unfortunately, variables that are preserved instegs for a long period of time have more
risk to be altered. For this reason, we proposentoance the algorithm that computes the
variable lifetime by checking the lifetime insidested loops.

Our proposal tackles this limitation by using thaldwing compiler GCC featureif the
variable is rewritten, it is treated as a new vdii@. This technique is known &SA (Static
Single AssignmentAccording to this previous feature, each varidids a unique FSMD_s
state that produces its value, referred tMather State

-140

On-Chip Monitor for Critical Variables

Algorithm Compute variable lifetime

Input: The FSMD_s.
Output: the set of In() and the set of Out() fockeatate inside the FSMD_s
Method:
(1) For each state in FSMD do
(2) In[state] ={} and Out[state] ={}
(3) End for
(4) Repeat
(5) Condition =false;
(6) For each state in FSMD_d®
") In1[state] = In[state];
(8) Outl[state] = Out[state];
(9) In[state] = Vs State)u (Out[state]\bsdState));
(10) For each next in Succ(stated
(1) Out[state] = Out[stat®] In[next];
(12) End for;
(13) If Inl[state] = In[state] and Outl[state] = Out[s}dte all stateghen
(14) Condition = true;
(15) Endif;
(16) Until Condition;

Figure 6-2: Compute variable lifetime algorithm

Thus, the proposed algorithm (see Figaf8) starts by identifyingMother Statefor each
variable. A state “s” is tagged asMother Statefor a given variable “v” if the following
condition is satisfied:

vE VOState (S)

Next, for each variable, the states in which thasiable is alive are identified by using the
technique proposed in [86] (referred to as Aliveit&t in Figures-3). Then, the algorithm
analyzes those states to compute variable lifetimgade nested loops by using the following
approach: for each identifi&iloop_Idof the basic block associated to the current gthtmks

to the relation between CDFG and FSMD_s), if thientifier doesn’t belong to the list of
Loop_Idof basic block associated to thther Stateof the current variable, then the current
state is added to the list of State’s Lodpls, associated to the current variable. Therefore, the
lifetime of each variable is computed using théofelng equation:

D=) nb(i) (6-)

. (ESL
s€Alive_States(v) i€SLy(s)

Where nb(i) is the number of iterations of the leafh identifierLoop_IDequal to “i".

However, due to the high complexity of some loapgement function, it can be extremely
difficult to automatically define the number ofrié¢éions. Moreover, when the loop’s bound is
defined as an application’s input (e.g. N in Fig@f2.a see page 17), the number of loop’s
iteration cannot be statically estimated (i.e.rafte compilation step).

-141-

On-Chip Monitor for Critical Variables

Algorithm Compute State lifetime inside nested loop

Input: The FSMD_s.
Output:
Method:
(1) For each vin V,do
(2) Mother State Find_Mother_State (v);
(3) Mother_BB = Basic block associated to Mothet&ta
(4) Alive_States Find_Alive_Statgv) ;
(5) For each state in Alive_Staté®
(6) BB = Basic block associated to the current state;
7) For each ID inLoop_ID(BB) do

(8) If (ID ¢ Loop_ID (Mother_BB))then
9) State Looffstate) =State_Loogstate)u ID;
(10) End if;

(11) End for;
(12) End for;
(13) End for;

Figure 6-3: compute variable lifetime inside nedtexps

Hence, in the worst case, we simplify the previegsation by assuming that all loops have a
constant iteration number referred to Mdk. Currently, this number is specified by the
designer as an input of our synthesis flow. Howgevar future works, it could be
automatically computed as the average of all detenimbers of iterations that are constant
after the compilation step. The new equation to mate the lifetime of each variable is as
follow:

D,(v) = Z NLSize_of (SLy(s)) 62)

scAlive_States(v)

Finally designers can either set a critical thrédhebove which a variable is considered
critical or select thé&l most critical variables. Then, the set of varialile®t are identified as
the most critical ones are stored in a dedicat¢al lolase named DB:Critical V.

6.2.3 FSMD Annotation

Once the set of the most critical variables is iidie and the set of derivation rules is
extracted from the CDF&,SMD Annotatiomprepares the synchronization between OCM and
Hwacc. This is performed by analyzing the copy efdadc FSMD_s and by defining a new
set of notable states.

Notable states are the initial and the final statebe HWacc, the states that read or write one
or several critical variables, states that holadatrresponding to derivation rules and control
flow states.

New notable states compared to previous chapters ar

» TheLoop Induction Evolution Functio(LIEF): the set of states that start the execution
of the derivation rules;

-142-

On-Chip Monitor for Critical Variables

* The Generate Induction StatéslS): the set of states that generate the newevaf
loop's induction variables;

* TheWrite Statg WS) : the set of states that write one or sewvaratal variables;
* TheRead Stat¢RS): the set of states that read one or sevatigat variables.

In addition, each Conjunction State which is assed to a basic block that is tagged.asp
Headeris identified adJpdate Induction Stat@JIS).

The identification of GIS and WS is based on theults produced in the previous steps of
OCMS flow (Critical Variable Identificationand Rule Extractiolj. The Write Stateis the
Mother Stateof a critical variable. Thé&enerate Induction State the Mother Stateof an
Induction Variable The identification ofRead Stateés based on the following condition: a
state is tagged d&®ead Statef it has at least one variable among its senpiit variables that
Is identified as critical variable.

Finally, the identification process of LIEF is slari to the technique that is proposed in
Chapter 5 to identify Input Function State and tStainction State.

Figure 6-4.a shows the annotated FSMD_s of our fiH& example, when the optimized
compilation option is selected, with the 4 mostical variables. The set of UIS is {s4, s8},
the set of GIS is {s10, s12}, the LIEF is {s10, §1the set of WS is {s2, s8} and the set of
RS is {s3, s9}.

POOTEEEEH0

<
(a) &2

(b)
Figure 6-4: (a) Annotated FSMD _s with 4 Criticatiables (b) OCM FSM

-143

On-Chip Monitor for Critical Variables

6.2.4 Path Extraction

Path Extraction starts after the RTL informatiors Heeen generated by tidlocation and
Binding step of HLS flow and the annotated FSMD_s has hgmrerated by th&SMD
Annotationstep of OCMS flow.

OnceHLS Bindingstep is performed, each state inside the FSMDs slteedicated command
word (a set of bits). Those command words are agedintime by the control part of the
HWacc to configure the operative part (Data-Palthjre precisely, those command words
configure the set of multiplexers to route valuesariables to operators.

This step allows checking that no alteration happeduring the transfer of values of critical
variables between registers and operators. To @) this step analyzes the annotated
FSMD_s. Then, for eacRead Stateit extracts the path of its critical variablesrfr the
results of the HLBinding step. The critical variable’s path representssiteof configuration
bits stored inside the command word associatede@irrenRead StateThose bits are used
to configure the set of multiplexers to route thedue of critical variable(s) to operator(s).
Next, those paths are used at runtime by OCM tolctieat no alteration happened during the
signal routing inside the RTL architecture of HWacc

OnceRule ExtractionCritical Variable Identification FSMD annotatiorandPath Extraction
have been carried out, notable states have beewtteef rules and critical variables are
extracted and stored in dedicated databases. Halhagprmation needed to generate the On-
Chip Monitor has been collected.

6.2.5 OCM Generation

OCM generation is the last step of OCMS flow. luglkes the annotated FSMD_s with the
binding results and with the RTL architecture stione the library of operators (see Figure
6-1). Then, it produces the RTL architecture of theMDC

Like in the previous chapter (Chapter 5), this stggts by generating the control part of the
monitor, OCM FSM. The generation process is basedrevious algorithm. However, there

are new monitoring operations compared to previthepter. Those monitoring operations
depend on the visited notable state.

Hence, if the visited FSMD_s state is:

* An Update Induction Statehen the associated monitoring operation autberia write
the previous value of induction variables inside @CM registers;

* A Loop Induction Evolution Functigrthen the associated monitoring operation starts
the execution of inductions variables evolutiondtion;

-144

On-Chip Monitor for Critical Variables

* An Generate Induction statghen the associated monitoring operation autkerio
write the new values of induction variables gerestdity the HWacc DP inside the OCM
registers and starts the verifications of inductranables evolution rules;

A Write State then the associated monitoring operation autberito write the data
corresponding to critical variables inside the O@gisters and checks that the related
load signal of the Hwacc registers containing caitvariables is correctly driven;

* A Read Statethen the associated monitoring operation compaeesalue of the critical
variables with the copies stored inside the OCM elnelcks that the critical variables
paths are correctly configured.

Figure 6-4.b illustrates the OCM FSM when the OCM generatid@p is applied to the
annotated FSMD _s of Figufe4.a.

Once the OCM FSM model is generated and the setuwébles (critical variables or/and
rules input variables) that are associated to eetable state are identified, then this step,
OCM Generation analyzes the results of the HLSn8ing step to extract the RTL
information related to those variables.

Finally, the OCM Generationstep instantiates and configures different OCM B&dules.
Once again, the hardware template to generate @ DP is updated. We implement new
predefined hardware blocks.

Figure 6-5 presents the architecture of generated OCM. TheM @ consists of five
modules: Delay Control Unit (DCU), Write Control WiWCU); Path Control Unit (PCU),
Critical Control Unit (CCU) and Induction Controlnid (ICU). All those blocks run in
parallel to the execution of hardware accelerdtWécc).

-145

On-Chip Monitor for Critical Variables

Hardware Accelerator (Hwacc)

(OCM)

En_New_reg

Induction Control Uni

1
1 1
1 1
i HwaccFSM | sratus ‘ COMMD Hwacc DP i
i i
Lo enablel _ _ . _ . 1._._. I AR 8 1 !
Fooe ol EXCICICIETETE L SRR RN i d pld 8 1 i s GEI !
1 [— Path bits L) . I 1
. Pathl ma oad Slél I Dhtta sighl | .
! | Path Control ' !
! E jﬁ Unit ' !
! write_mask \LLLI/ I !
g | <] Write Control | [
! En_wrlte U n It Jl AN D |)
! enable /|\ I ' Valid
! Y value I !
! OCM - Delay Control| |pone | !
.r FSM unit | unit | i
! | En_timeT | I
i | | J | 1
I) | En_chec] Critical [I
i On-Chip Monitor En_reg] Control Unit [i
. | En_Update_reg | 1
i | |
! !
! !

Figure 6-5: Architecture of OCM for Critical Varikds

The Delay Control Unit has the same functionalityd ahe same architecture as those
described in the previous chapters (Chapter 3 dmaptér 5). For the remaining modules,
their architectures are detailed:

Write Control Unit

This module checks th&atOAD signals associated to critical variable’s regstme driven in
time by the HWacc. This is realized by comparinglt®AD signals coming from the HWacc
with those provided by the OCM FSM states (using white_masksignal see Figuré-5).
The execution of this block depends on the cur@@M FSM state. The verification is
performed only when the current OCM FSM state gg¢al as Write State (WS). To do this,
each OCM FSM state has Bn_writesignalthat is activated when it is a WS.

As theBinding step allows sharing registers between variables) theLOAD signals can
change their values during the period when stayinthe current OCM FSM state. This
period represents the value of T, see Fidgideb. For this reason, all monitoring operations
are executed only when entering OCM FSM stateHerfirst time. To do this, the execution
of the WCU module is driven by the output signathé Delay Control UnitDone The
output of this moduléNriteCV, is presented by the following equation:

WriteCV = CheckLoad or En_write or Done (6-3)

where theCheckedLoads the output signal of the comparison betweenthitie _masksignal
and the HWact OAD signals.

-146-

On-Chip Monitor for Critical Variables

Path Control Unit

This module verifies that there is no alteratiorewhiouting the value of critical variables to
operators inside the HWacc DP. This is realizedcbgnparing thePath_bits with those
provided by the OCM FSM states, using tath_masksignal. ThePath_bitssignals are
extracted from the command word of HWacc FSM. this concatenation of all configuration
bits that are associated to critical variables. Véefication is driven by th&n_pathsignal
which is activated when the current OCM FSM stateRead State

Similarly to the Write Control Unit, the executioi this module is also driven by the output
signal of the Delay Control UniDone The output of the PCUWheckPathis illustrated by
the following equation:

CheckPath = CheckBits or En_path or Done (6-4)

where theCheckBitsare the output signals of the comparison betwee#th_maslsignals
and thePath_bitssignals.

Critical Control Unit

This module verifies that there is no alteratioside registers containing critical variables. To
do this, it stores the values of critical variableside the OCM DP registers once they are
computed inside the HWacc DP. Then, each time #hge\wvof a critical variable is read by the

HWacc DP, it is compared with the one stored insisieOCM DP associated to the critical

variable.

Figure6-6 presents the architecture of the Critical Conttinit. This module contains a set of
Data Registers and a set of equal operators. E&tlstDres the value of a given critical
variable. The writing process inside the DR is caligd by theEn_regsignal coming from
the OCM FSM. Each equal operator has two inputsstbred value coming from the DR and
the current value coming from the HWacc DP. The ganson is controlled by then_check
signal coming from the OCM FSM.

o (T

En_checkLi \Ti

Figure 6-6: Critical Control Unit architecture

-147-

On-Chip Monitor for Critical Variables

Induction Control Unit

This module verifies that no derivation rule of pé® induction variable failed due to an
alteration. To do this, it instantiates RTL arcbitees, stored inside the operator data base,
associated to loops increment functions that ate@eted from the CDFG. Then, it stores the
current value of a given loop’s induction varialdeming from HWacc DP, inside the OCM
DP register. Next, it executes the RTL architectassociated to the current loop, with as
input the stored value. Then, it compares its testihe new value of the induction variable
with the new one generated by the HWacc DP.

Figure6-7 presents the architecture of the Induction Corithait. This module contains two
set of data registers (DR and DR’), a set of RTthdectures associated to rules and one
equal operator. The DR (resp. DR’) stores the atwvalue (resp. the new value) of the loop’s
induction variable computed inside the HWacc. Eladp construct has two data registers,
DR and DR’, to store the value of its inductionighte. The writing process inside the DR
(resp. DR’) is driven by the sign&n_Update regresp. En_New_rey) coming from the
OCM FSM when the current state is an Update IndacBtate (resp. Generate Induction
State). The execution of RTL architecture is driisnthe signalD_rule coming from the
OCM FSM when the current state is a Loop Induciwolution Function. Finally, the equal
operator checks if the output of a given RTL amttiire and the output of its corresponding
register DR’ have the same value.

En_Update_rg%___i____ “‘L Wl
DR, DR,
-5 |
DR’; | - DR’,

R
RTL [E
Rule,
M / S%H

n_New

Figure 6-7: Induction Control Unit architecture

6.3 Experimental results

In this section, we study the interest of the dedigw we proposed in this chapter. Our flow
has been implemented by using java and EMF andratied to our HLS flow, GAUT. We
use the benchmarks already presented in previasels.

We use the same design flow for experiments inttedun Chapter 3, see Figusel7.The
HLS tool compilation step uses the compiler GCC2t@ generate the formal representation

-148

On-Chip Monitor for Critical Variables

CDFG. All CDFGs are generated by using the standardpilation option, OO0, and the
optimized one, O3.

Table 6-1 shows the characteristics of the generated CDF&&s)t is from the compilation
step of the HLS flow, in terms of number of varedbblnd basic blocks. Results are given for
the two compilation options: standard and optimizedthe previous chapter, results shown
that the compilation option did impact the contilolv in terms of number of basic blocks.
Results presented in Tallel demonstrate that compilation option impacts ahseriumber

of variables of CDFG. For example, the number dfialdes of CDFG associated to the
application AES when O3 is selected is 2.22x grethien the one generated with OO0. This
evolution of number of variables comes from theollmg of all static loops (loop bounds are
constant) which increases the number of SSA varsafdee GCC feature page 140).

Table 6-1: CDFG Characteristics according to coatjph options

o Standard option OO0 Optimized option O3
Application Variables| Basic blocK Variable§ Basic block
FIR 29 8 29 7
DCT-2D 51 20 50 13
MatMul 62 11 58 12
SAD 35 9 22 5
FFT 64 19 60 15
Conv 95 20 91 21
Sobel 237 45 128 28
Blowfish 341 39 342 76
AES 488 64 1084 13

Table6-2 provides a snapshot of the evolution of OCM FSihplexity in terms of notable
states. Results are given for three amounts of prdagtal variables, N (ranging from 10% to
30% of the number of variables) and with standanilation option (e.g. O0). They show
that the complexity of OCM FSM depends on the aapilbn’s complexity, the number of
states that serve as support for the control flaecetion. In addition, it depends on the
number and the position of critical variables. aotf HWacc FSM state can contain more than
one critical variable. In some cases, we noticé tha number of notable states remains
constant when increasing the number of criticalades (e.g. DCT-2D).

Before analyzing the area overhead and the err@rage of the generated OCM, we start by
comparing the results of our algorithm that compheecriticality of each variable with those
produced by the algorithm introduced in [86].

-149

On-Chip Monitor for Critical Variables

Table 6-2: Architecture characteristics with catieariables

Application| Basic State Notable State
Block N (10%) | N (20%)[N (30%)

FIR 8 23 12 12 15

DCT-2D 20 51 28 28 28

MatMul 11 37 20 22 28

SAD 9 32 14 17 19

FFT 19 52 30 30 34

Conv 20 71 46 47 47
Sobel 45 171 97 108 119
Blowfish 39 209 90 109 115
AES 64 342 188 208 216

6.3.1 Variable Criticality Analysis

Figure 6-8 presents the extra delay added by our algoritheotopute the criticality of each
variable compared to the execution time of the ralgm proposed in [86]. Results are given
for the two compilation options. For OO, resultsowhthat our algorithm increases the
execution time by 20.07% on average and, in thestnaase, up to 30.15% compared to [86].
While when O3 is selected, the overtime added ® dRecution time of the previous
algorithm decreases down to 15.14% on average.eldess were expected due to the extra-
time added to compute the lifetime of variablesdadoops which does not exist in [86]. The
optimized compilation option allows reducing thispgthrough unrolling all static loops (e.qg.
AES) (so that, the number of nested loops is dseddaor by reducing the number of
variables (e.g. Sobel).

However, accurate identification of the most catigariables advocates a careful use of the
extra-area used to check critical variables.

Execution time compared to [86]

35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

& Q
< <§L
Q

N Q A
@q@" ¥ <

J & BN S
(10(\ %60 \g\\‘—) ‘?‘5'
Q’\O

M Standard compilation B Optimized compilation

Figure 6-8: Execution time compared to [86]

-150-

On-Chip Monitor for Critical Variables

To evaluate the gain of our technique to computectiticality of each variable, we compare
our results with those produced by the algorithtrostuced in [86].

This comparison consists in checking the set oNmeost critical variables that results from
our algorithm and the sorted set of variables usiregcriticality coefficient generated by the
[86] as criteria. This comparison is based on tiWwing approach: For each variable that
belongs to the set of ti¢Most Critical VariablesN_MCYV (resulting from our algorithm), its
positionP is extracted from the sorted set of variablesu{tesy from [86]). So, ifP is greater
thanN, then more variable$/V, are needed to be selected as critical variabiésprevious
algorithm to have the set of the most critical ables that are selected by our algorithm. The
MV is presented by the following equation:

MV = max P(w)— N (6-5)

VEN_MCV,P(v)>N

WhereN_MCVis the set of the most critical variables (theulesf our algorithm) and is its
cardinality (ranging from 10% to 100% of the numbgvariables).

Figure 6-9 presents the results &V when the standard compilation option is selected.
Results show that the number of the most critieaiables must be increased by 10 variables
on average (up to 26 variables) in order to selaciables that are alive or one of their
descendants that are alive inside loops when téqurs algorithm [86] is used. In addition,
results show that the fewer most critical varialite$e considered (e.g. <35%), the higher
yield difference compared to [86]. In real cases, duplicate the fewer number of the most
critical variables in order to limit the extra-amee@eded to check them. This overhead will be
analyzed in the next sub-section 6.3.2. Moreover peaks oMV depends on the complexity
of applications in terms of nested loops (e.g Cdnwested loops) and variables after
compilation step (e.g. AES 488 variables). In additthe number of nested loops impacts the
evolution of MV. We notice that when the numbemefted loops increases, the number of
MV slowly decreases (e.g. Conv, DCT-2D and MatMul).

However, when the optimized compilation optionatested, results indicate that the number
of MV is reduced, 5 less variables on average (seed®gii). This degradation is due to the

modification of the control flow graph as shownthe previous chapter (Chapter 5). For
example, all nested loops (static loops) insideath@ication AES are unrolled: Thus there is
no difference compared to the results of [88) =0. O3 option also impacts the number of
variables and their descendants. For example,uhdar of variables of the application Sobel
is reduced by near to 50%, then the evolutioM¥fis greatly modified compared to standard
compilation.

-151-

On-Chip Monitor for Critical Variables

MV with Standard Compilation

30
——FIR
25 . ¢

/\ == FFT
20 X === Conv
/\

Blowfish
== AES

g 15 =
10 \
=0—Sobel
5 “ o
K SAD
0 _<;§<1&_"u ——i—i—a

T - - MatMul
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N

DCT-2D

Figure 6-9: Identification of the most critical esle vs. [86] when standard compilation
option is selected

MV with Optimized Compilation

30

25 =¢=TFIR
== FFT
20
/ \ === Conv

§15 — — — Blowfish
i \ = AES
\ —0—Sobel
5 m{ \: \ SAD

® . MatMul

0 N AR

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% DCT-2D
N

Figure 6-10: Identification of the most criticalnables vs. [86] when optimized compilation
option is selected

Figure6-11 summarizes the synthesis time overhead incurrethdyroposed synthesis flow
to generate the OCM architectures. Results arendgwethree numbers of the most critical
variables (N). Results show that the overhead marfigem 4.14% to 15.97% (8.55% on
average) depending on the application’s complexityaddition, the overhead increases when
the number of most critical variables increasedabit, the more critical variables to check,
the more time to find states that read and/or variitgcal variables.

-152-

On-Chip Monitor for Critical Variables

Synthesis Time Overhead

18.00%
16.00%
14.00%
12.00%
10.00%
8.00% A
6.00% -
4.00% -
2.00% -
0.00%

DCT-2D MatMul Blowfish

N
SAD ‘ FFT ‘ Conv ‘ Sobel

Figure 6-11: Synthesis time overhead accordingeaumber of critical variables

6.3.2 Area Overhead Analysis

The area overhead in number of slices when the @CaAdded to the HWacc is presented in
Figure6-12. Results are given for three amounts of the matstal variables. Those numbers
are the percentages of the number of variablesdoh application: 10%, 20% and 30%. We
organized the OCM area overhead in three categ@igxhronization Block (SB) overhead,
Rules Block (RB) overhead and Critical Block (CB)edhead, in order to analyze the area
overhead in a clear way.

The Synchronization Block consists of OCM FSM areldy Control Unit. The Rules Block
consists of Induction Control Unit. The Criticald8k consists of Path Control Unit, Write
Control Unit and Critical Control Unit. For the Rl Block, results show that the area
overhead ranges from 3.84% to 12.30% (7.35% onage¢rand decreases when the
application’s complexity increases. This overheafdahds on the number of loop constructs
and on the complexity of loop increment functiomBose functions are implemented inside
the OCM DP to check their results with those geteerddy HWacc through derivation rules.
In addition, the application’s complexity impacksstoverhead. HWaccs that implement low
complexity applications, with only one functionadiufor each type of operation, exhibit high
overhead (e.g. FIR). On the contrary, the OCM osadhdecreases to 5% with application of
high complexity (e.g. AES, Blowfish). For Synchroaiion Block, results show that overhead
is less than 8% on average and slightly incredess (han 1%) when the number of most
critical variables grows up. This extra-area ovathes due to the evolution of the number of
notable states (see Tab#e2) and of the number of OCM FSM state’s command word
(path_mask, write_mask, etc.).

-153

On-Chip Monitor for Critical Variables

Slice Overhead

140.00%

120.00%

100.00%

80.00%
RB

60.00%
HSB

40.00%
HCB

20.00%

0.00%

N N
MatMul Blowfish

Figure 6-12: slice overhead according to the nuroberitical variables

For the Critical Block, results show that the apgarhead mainly depends on the number of
critical variables to check. Area overhead increasben the number of the most critical
variables increases. In addition, results demotesthat the complexity of application impacts
the area overhead. Although the number of the ME€Vhcreased, HWaccs that implement
applications of high complexity exhibit low CB owelad. For example, with 10% of
variables of FIR application (low complexity) i.8.variables, the CB overhead is 26.54%
while with 10% of variable of Blowfish applicatigimigh complexity) i.e. 30 variables, the
CB overhead is 24.78%. Hence, the number of mastadrvariables is increased by 10x but
the CB overhead is decreased by 6.63% thanks toothelexity of the application.

Finally, the cost of the N most critical variabtesn be modeled by the following function:

Cost(N) = Z (BW(v) + AE(v)) + € 6:6)

VEN_MCV

WhereN_MCV s the set of N most critical variabld8Yv) is the bits width of variables,
AE(V) is the area (in terms of slices) of the equakafoe depending on trBWV) ande is the
cost to check critical variable paths and load aligjof registers that contain critical variables.
This parameter depends on the technique used te stsources (registers and operators) and
also on the selected scheduling algorit®8AR List Schedulingetc.).

In order to evaluate the impact of the selectecddaling algorithm orx, we configured the
scheduler of the HLS flow to use tA&APalgorithm. Then, we compared the areas for the
Critical Block and the Synchronization block witmose produced when thest Scheduling
algorithm is used. The area of the Rule Block isaomsidered because it only depends on the
number of loop constructs. The results of this canson are presented in Table 6-3.

-154

On-Chip Monitor for Critical Variables

Table 6-3: Area of monitor according to the schedalgorithms

List Scheduling ASAP Diff
Application| Crtical CB SB CB SB CB SB
variables
10% 82 29 82 29 0 0
FIR 20% 129 30 129 30 0 0
30% 205 34 201 31 4 3
10% 131 50 131 48 0 2
DCT-2D | 20% 258 54 255 50 3 4
30% 377 59 374 54 3 5
10% 161 44 159 40 2 4
MatMul 20% 306 48 304 46 2 2
30% 473 54 472 50 1 4
10% 103 28 103 27 0 1
SAD 20% 173 31 173 26 0 5
30% 265 32 265 29 0 3
10% 160 50 157 48 3 2
FFT 20% 301 53 301 47 0 6
30% 448 64 444 61 4 3
10% 268 73 259 69 9 4
Conv 20% 489 79 475 75 14 4
30% 718 89 697 78 21 11
10% 709 148 684 148 25 0
Sobel 20% 1258 161 1234 159 24 2
30% 1835 179 1822 177 13 2
10% 766 160 758 136 8 24
Blowfish | 20% 1462 185 1457 176 5 9
30% 2185 200 2179 193 6 7
10% 1430 276 1337 237 93 39
AES 20% 2643 315 2538 265 105 50
30% 3827 359 3726 297 101 62

Results show that th&SAPalgorithm allows reducing the area of those twack$. For CB,
the area is reduced by 16 slices on average u@3%oslices (6.5%). For SB, the area is
reduced by 9 slices on average up to 62 slice{%). This reduction is manly related to the
diminution of the bit width of signapath_masksince the scheduler allocates as many
functional units as required which reduces the remab multiplexers inside the HWacc DP.
Hence, fewer bits are stored inside the OCM FSke'steommand words and the size of the
comparator used inside the Path Control Unit is edsluced.

-155

On-Chip Monitor for Critical Variables

Hence, designers can trade-off area of low overlimadadaptingN which represents the
number of the most critical variables accordingheir needs in terms of area-overhead. For
example, if theList Schedulinglgorithm is used with one functional unit andhié bit width

of variables is 16, then a 10% area overhead esablecking the most critical variable with
FIR and 9 most critical variables with AES.

Finally, the proposed methodology does not imgaetgerformance of HWacc as the OCM is
implemented separately from HWacc.

6.3.3 Error Coverage Analysis

In order to evaluate the gain of checking the adron properties of loop induction variables,
we enhanced the fault model to alter the loop memt functions including errors on the
value of loop induction variables. Then, we compidue error coverage and the detection
latency of the approach proposed in this chaptén tie one introduced in Chapter 5 (the
unified OCMS flow).

Results show that the Derivation Rules (DR) apgdnoatows detecting all errors over
induction variables thanks to the verification betevolution of loop induction variables.
Results also indicate that the error detection isal0% as for the previous technique. This
result was expected since any alterations ovetadye induction variables or/and over loop
increment functions impact the value of the sigh&8ATUS.The monitoring operation of the
previous technique consists in comparing at runtineevalue ofSTATUSgenerated by the
HWacc with the one generated by OCM. Then, altengtare detected when the value of the
STATUSsignal is not equal to the expected one.

However, the alteration of loops induction varigbteay take a long time to impact the value
of the signaSTATUS

Table 6-4 illustrates the latency in terms of clock cyclesdetect errors according to the
number of injected faults. Results show that theéed®n latency with the previous
contributions of Chapter 3 and Chapter 5 (usingdective of the Control Flow Checking
approach, CFC) increases when the application gaiosmplexity and decreases with higher
number of injected faults. Peak latencies are obthiwhen injecting a single fault (SEU).
This result was expected due to the presence ioiitafoops, making the value of induction
variables constant during the loop’s iterationse TWFC approach detects this problem after
covering all expected iterations. Hence, the latancdetect infinite loops is in the order of
IXM clock cycles, wherd is the number of iterations aM is the latency to compute the
loop’s body. The value dfl depends on the complexity of the application imge of the
number of operations inside loops and of the nurobaested loops.

The bit width also impacts the detection latenchie Twider bit-width, the less detection
latency as the probability to get a constant inductariables goes down. Moreover, when

-156-

On-Chip Monitor for Critical Variables

the number of injected faults increases, the dietedatency decreases as the probability to
reach the loop’s bound is increased.

Instead, the contribution proposed in this chapiet checks the derivation rules, allows
detecting alteration only after two clock cyclesietiever the number of injected faults and
the complexity of application. Therefore, the dation rule approach reduces the latency to
detect infinite loop problem by 99.89% on averagmpared to CFC approach. In general,
our approach reduces the error detection laten®B7% on average.

Table 6-4: Error Detection Latency (clock cycles)

SEU MBU2 MBU3 MBU4 MBU8
Application| p Chapter § DR | Chapter 3DR | Chapter 3DR | Chapter DR | Chapter 5

FIR 2 190 2 56 2 17 2 4 2 4
DCT-2D | 2| 4734 | 2| 1444 | 2 471 2 4 2 4
MatMul | 2 835 2 258 2 70 2 4 2 4
SAD 2 46 2 17 2 8 2 4 2 4
FFT 2 757 2 189 2 58 2 4 2 4
Conv 2 4274 2 1311 | 2 456 2 4 2 4
Sobel | 2 90 2 28 2 12 2 4 2 4
Blowfish | 2 | 2889 | 2 188 2 38 2 21 2 4
AES 2 1845 | 2 447 2 113 2 61 2 6

6.4 Conclusion

This chapter presented an automated methodologynhance HWacc safety by preventing
data corruption from altering the execution of HWachis methodology satisfies the last
condition proposed in this manuscript, i.e. C9. Tpmposed design flow consists in

identifying the most critical variables. The gertedamonitor checks at runtime their values
and their transfer processes. Moreover, the praposthod enhances the reactivity, i.e. C7,
of the generated monitors against loop problemsespecially the problem of infinite loops.

This is performed by automatically deducing theperties of the evolution function of loop

induction variables that are checked at runtime.

Experimental results have shown that the proposgorithm to identify critical variables
enables to improve the detection of the most aliti@riables by taking into consideration
their lifetimes inside loops. This allows identifig variables that are alive or/and have
descendants that are alive inside loops. Resubtarsithat the existing algorithm [86] needs
to increase the number of most critical variablgs10 on average (up to 26 variables)
compared to the one specified by the designerderaio identify those variables. However,
this increase of the most critical variables haggative impact on the area overhead.

-157-

On-Chip Monitor for Critical Variables

Finally, results shown that the error coveragehanldops induction variable is 100% and that
the derivation rule approach reduces the detetdii@mcy by 99.57% on average compared to
previous approach while in average it causes 7.8b84tra-area.

The approach proposed in this chapter has beenitetno [96]

-158

Conclusion and Perspectives

CONCLUSION AND PERSPECTIVES

The ever growing complexity of applications in tverld of embedded systems has led to
new challenges. Particularly, time-to-market, siguand safety emerged as key issues in
those systems. Hardware accelerators are masteespimm embedded systems, when
improving energy efficiency and performance is ati@ concern. These systems have been
complex to design for long, restricting such desit@ expert users. Electronic System Level
(ESL) design approaches and High-Level synthediS§tre now changing this situation.

The aim of HLS tools is to design RTL architectutiest fit the specified constraints, while

minimizing the hardware area. HLS tools promoteriskygcles (design is now a matter of

hardware compilation) and reduce “time-to-markdt/hfortunately, they neither address
verification (checking the execution of generatellRirchitectures) nor readability. In fact,

HLS tools may encrypt or obfuscate generated RThitectures. In addition, there are no
relations between signals within those architestuned their associated variables within the
high level specification (e.g. C code) due to sapemizations performed by HLS tools like

the resource sharing. Therefore, existing monitpapproaches targeting the RTL level (e.g.
Integrated Logic Analyzer) do not apply to suchh#@extures.

Validation, however, remains critical. Even if thesigns are supposed to be correct by
construction, several scenarios exist that motila¢eneed for a strong verification: ageing,
aggressive environments, malicious actions, etéidstion happens at several points: some
structural information can be extracted to genenad@itors, but also the designer should be
in the loop, as he is the one with a full knowledgethe system (failure risk). Different
approaches have been proposed in literature toowepthe verification support within HLS
tools by enabling to transform high level assedidqe.g. ANSI-C assert) into hardware
monitors. Nine limits have been identified as pnésd in Table2-2, page 44.

In this manuscript, we proposed a new design appréa automatically generate On-Chip
Monitor (OCM) during the HLS of hardware acceleraithe proposed design flow takes into
consideration these nine conditions.

The proposed design flow extends traditional Higlvél Synthesis flow. One key feature is
its HLS tool independence, satisfying the first dition C1. The input of the design flow is
the Control Data Flow Graph (CDFG) which defines thtermediate representation of the
application to check. This representation suppdmdsh static and dynamic behaviors,
satisfying the second condition C2.

Alterations over the execution can either impaa tontrol flow or corrupt data. The
generated monitor (OCM) allows checking the timicwnstraints of generated hardware

-159

Conclusion and Perspectives

accelerator by monitoring the control flow execat&gainst errors such as hanging problem
(e.g. infinite loops), satisfying the third conditi C3, or illegal jumps (intra or inter-basic
blocks), satisfying the"5condition C5. In addition, monitor checks the itiputput timing
behavior of the hardware accelerator. Executio®©®6M is performed concurrently to the
execution of hardware accelerator. Thus, it hasrmmact of HWacc’s performance which
satisfies the 8 condition, C6.

In addition, the proposed design flow enablesutomatically translate high level assertions
(e.g. ANSI-C asserts). Those assertions allow tiateaata errors making the proposed
design flow satisfying the "Bcondition, C8. The design flow proposes severaithssis
options to trade-off area overhead" (@ondition, C4), performance {écondition, C6) and
protection level (7 condition, C7).

Moreover, we enhanced the proposed design flowatisfg the last condition C9 by resolving
the problem of data corruption. This problem canbetdetected by simply checking the
control flow execution or/and checking assertiohee proposed technique automatically
identifies the most critical variables and then aklseat runtime their values and their
configuration paths. A new algorithm is proposeaaéonpute the criticality of each variable
taking into consideration its lifetime inside loops

Finally, the proposed design flow has been imprdeedktect as soon as possible the problem
of infinite loops which allows further increasinbet reactivity (the % condition C7) of
generated monitors. This is performed by automi@tiextracting derivation properties of
loops induction variables to check at runtime.

The proposed design flow is integrated into the mevsion of the HLS tool of our research
group, GAUT. The first step of this version of HLi®ol transforms the high level

specification into a Control Data Flow Graph, CDFSI. the proposed algorithms in this
manuscript are based on graph analysis coming @lifferent steps of HLS flow (e.g. CDFG,

FSMD, etc.). Thus, any HLS tools that provide tlsgbility to present the results of their
synthesis steps under intermediate format (e.gy..dat, etc.) can benefit from our works.

To show the interest of the proposed OCMS appraacheveral experiments have been
carried on by using well-known HLS benchmarks, D&#nain and encryption standard.
Experimental results shown that the error coveragethe control flow ranges from the
99.75% to 100% while in average the area overheadied by the corresponding monitor is
less than 10% and decreases when the applicatios igacomplexity.

In addition, results shown that synthesis optingzitiming performance allows sharing
resource between mutually exclusive assertion a@reci&nd reducing area overhead up to
17.48% without any impact on the hardware acceemperformance. Moreover, results
shown that the proposed synchronization mechanetmden OCM and HWacc ensures that
all assertions are executed. This reduces the afattnexecuted assertion by 38.23% on

-160-

Conclusion and Perspectives

average (up to 64.71%) compared to previous meshmanproposed in literature while in
average the synchronization area overhead ishass@.

The proposed algorithm to identify the most criticariables allows improving detection of
variables that are alive or/and have descendaivs miside loops. Results shown that the
previous algorithm needs to increase the numbenaxst critical variables by 10 on average
(up to 26 variables) compared to the one specifigddesigner in order to identify those
variables. Obviously, such an increase has a negatipact on the area overhead (which
depends primarily on the number of variables).

Furthermore, considering derivation properties @dpls induction variables improves the
detection latency of control flow errors. In faittallows speeding up the detection of infinite
loops by 99.89% on average compared to control #htvcking and assertion verification
approaches. In general, it reduces the error detelztency by 99.57% on average while in
average it causes 7.35% of area overhead. Fimallylts shown that the generation process
of OCMs is independent of the selected compilatiption and that the OCMs area overhead
slightly depends on the selected compilation option

PERSPECTIVES

In this manuscript, generated OCMs are intendedketect errors. Then, be an error detected,
OCM warns designer to start a counter reaction. ddwnter reaction is out of the scope of
our work.

The first reaction is to prevent errors to propagatd/or induce disasters. In a second phase,
the designer looks for the cause of malfunctions Ttentification is the key of bug fixing.
However, designers can hardly analyze the RTL #chire generated by HLS to found the
source of bug or to localize the detected erroiis Tomes from the optimizations that are
performed by HLS tools, and the lack of readabgity end-to-end semantic preservation (as
an example, there is no relation between variabi¢isin the high level specification and
signals within the RTL architecture). Then, two gherm perspectives can be proposed.

To develop hardware debugger, we could enhancéutiionality of generated OCM by
identifying the operation and the line inside thmurse code of an application when a
violation of a property (assertion or control flomycurs during the execution inside FPGA.
The goal is to improve backward tractability.

To do this, we propose to integrate inside the O&wbhitecture a new module that allows
analyzing the internal parameters of OCM. The ppoiecis as follows: When an error is
detected, the execution of the OCM and HWacc wbeldhterrupted. Then, this new module
would extract the value stored inside the StateidRegof the OCM FSM unit to identify the
current OCM FSM state when an error occurred. Nixiyould extract the current value
inside the Delay Counter Unit. Then, the curreatesbeing executed inside the HWass FSM
would be identified by adding the value extractednf the Delay Control Unit to the

-161-

Conclusion and Perspectives

identifier of the corresponding HWacc FSM statetloé current OCM FSM state. The

corresponding HWacc FSM states (notable state€Gi¥1 FSM states would be stored in a
dedicated data-base during the generation proce$€@8M. Once, the current HWacc FSM

state is identified, the corresponding line insitie source code would be identified by
analyzing the set of operations that are perforthathg this HWacc FSM state. In addition,

if the OCM checks the execution of HWacc througdetof assertions, then the new module
extracts the identifier of the current assertioesd checked.

To identify the root causes of detected errorsywweeald develop the Error handler. The error
handler would have to automatically identify the mtored variables associated to the
verification approaches (ABV approach or/and cdritaw checking) used by OCM. It will
also have to trace their values by using a circad@mory. The use of circular memory
provides a holistic view of the evolution of vared values (past, present and future).
Monitored variables are all variables used by O©Meétect errors. For example, all assertion
inputs are considered as monitored variables.

In addition, error handler provides more flexilyilib enhance the visibility of internal signals

of HWacc by automatically identifying the most wdl variables that influence the values of
constraints monitored variables. The identificatadrthose critical variables depends on the
designer needs in terms of area overhead. All tbeed values of critical variables or

monitored variables are labeled by the name of @émsociated variables inside the high level
specification to be understandable by designers.

Then, designers can identify the root causes of®ivy analyzing the evolution of the values
of the stored variables.

In the future, another technique to improve the error coverdggeoerated monitor would
be to automatically deduce properties for criticatiables. Those properties are different
from those introduced by designers (i.e. ANSI-Gedssns) or control flow properties. Those
properties are based on the binary width of clitregiables and on the analysis of data values
produced during the execution of application (filing) for a set of representative inputs.

Another interesting perspective would be to introduce the debuggirgalbgity [93] within
the generated OCM. Debugging means abstract asalgglh level of RTL description),
controllability (halt, resume, step-by-step, etmjfrospection (full visibility over variables)
and fast changes (agility, short cycles). The abstanalysis is offered by the error handler
perspective. Designers can use assertions insglenitih level specification as hardware
breakpoint to check the execution of a portionade: (controllability). Then, we need to add
capability to store the execution context whenatioh occurs. In addition, we need to add
the capability to modify the value of some varigblghen the execution is interrupted (fast
changes). Due to area overhead concern, we atalkioig about providing such a support for
all variables. Target variables could be specibgdising a specific pragma inside the C code
or could be automatically identified as the inptiassertion statements. Modifying variables

-162-

Conclusion and Perspectives

relies on multiplexers that are inserted in theutspf registers that contain the values of the
selected variables. Then, debugging capability @allow designers to stop and to resume
(step-by-step) the execution context of hardwaelacated under debugging or modifying
some values without the need to start from therbegg.

Enhancement over the generation process of OCM would allow psupng dynamicly
reconfigurable architectures. Some portions of &M are application independent. Hence,
designing OCM should rely on such partitioning betw versatile and constant portions. The
different modules of monitor's data-path will beplemented as predefined hardware block
within FPGA. The control part, OCM FSM, of monitavhich is versatile will be
implemented using a processor (i.e. MicroBlazexhEBSM state’s command word will be
defined as a specific instruction that starts arfigures those predefined hardware blocks.
Then, when the application of hardware accelenatarld be updated, we would only need to
reconfigure the processor in order to update thecaon of monitor. Moreover, the
generation process of OCM would be updated to magptedefined hardware blocks within
Coarse-Grained Reconfigurable Architecture, CGRAve8al algorithms [94] that are
proposed in our research group to optimize the imgpgf application inside CGRA could be
merged with our monitor generator algorithm.

Finally, we propose to address the scalability issue eBy€in-Chip can contain one or many
hardware accelerators. Faulty inter acceleratomeonication can be a cause of errors. As an
example, an output can be valid from the producantf view whereas violating a property
at the receiver side. The verification mechanisrardhe I/Os prevents such a situation by
detecting invalid designs. In this case, the gaedradCM could halt the full system.
However, those hardware accelerators may be updatedintime (i.e. Dynamic Partial
Reconfiguration, DPR). During the reconfiguratidmape, the accelerators are not in nominal
mode. Therefore, we need to improve monitors ineoid differentiate the configuration
mode from the execution mode. In particular, hamgiolations differs between the two
modes.

When a violation over an input data occurs, the O@Gd4t check the mode of the component
that generates this input data, before taking detidf the producer is on execution mode, we
fall back to the default behavior, and the systenmalted. On the opposite, if the mode is
configuration, OCM waits until the component swashback on execution mode. Only the
consumer is halted. As a consequence, this mechaoifers a smart support for an OS
management of DPR.

-163

Conclusion and Perspectives

-164

Annex Synthesis of RTL assertions

ANNEX SYNTHESIS OF RTL ASSERTIONS

Several techniques and tools have been proposetratsform RTL assertions into
synthesizable monitors. Generated monitors perfinensame verification compared to their
associated assertions during the execution (aimmehtof circuits. This is similar to the
objective of integrated logic analyzer (ILA). Onntiast to ILA, those monitors can check
complex properties. In fact, the set of logic aeohporal operators provided by language of
temporal property (such as PSL assertions) allomth&gizing integrated monitors that are
more powerful and more sophisticated comparedtegrated logic analyzers.

The first result of the research related to thegfarmation of RTL assertions into hardware
monitors is the todRuleBasd43]. This tool has been developed by the company IBMiand
only used for formal verification purpose. The ihpmf this industrial tool is the set of
temporal properties described by using the RCTLg{&e Computing Tree Logic) [44]
language. This language is based on the CTL expressas well as adding the regular
expressions [45] similar to those used with PSle Flgure0-1 shows the difference between
an assertion described by CTL and the same oneiloeddy RCTL. The assertion consists
on checking that the signalrite must be followed by theead signal in the next two clock
cycles. CTL imposes to specify each possibility ividbially, like formal verification
approaches. RCTL allows making assertion’s commlitimore compact and more
understandable than CTL.

CTL: AG (write — AX (read) || AX (AX(read)))
RCTL: AG (write— next_event_f(clk) [1..2] (read))

Figure 0-1 CTL vs. RCTL

The specific version of RCTL language usedRayeBasds namedSugar[46]. It has been
standardized by IEEE in 2005 to be the PSL languaien, the first tool, to the best of our
knowledge, used to transform assertions, descrimgdthe Sugar language, into RTL
description has been developed by IBM, is nafe@s (Formal Checkers) [47]. This tool is
an extension oRuleBaseto allow functional verification in addition to fimal verification.
However, FoCs translates assertions into monitors (hardware rgiege) for simulation
purpose only. Figur®-2, from [47], shows the verification flow in whiclbEs operates. The
designers provide the RTL description of an apfiice as well as a set of formal
specifications and a set of test programs. ThR@&gs translates those formal specifications
into a set of checkers. During the simulation, éhokeckers indicate if properties violations
occur.

-165

Annex Synthesis of RTL assertions

Formal Spec Checkers
[RCTL FoCs (e.g. VHDL)
[Design | + Simulator
(e.g. VHDL) J N/
Test Failed?
Programs

Figure 0-2 FoCs Environment

Authors of [50] propose a new todHorus [51][52], to synthesize PSL assertions. The
proposed technique to synthesize assertions isllmasa modular approach which consists of
implementing each PSL operator in a dedicated neothArdware component). Then, those
modules are connected to each other to producé®8ie assertion. Figur8-3 shows the
monitor generated by this approach for the follayymoperty P:

Property P assert alwayA (— next![2] B before!C))

The overall monitor takes as input the master cl@lk) and the resetReset_hsignals. It
observes the signals B, C.

In general, those modules (PSL operators) have@efined interface including an activation
signal étart), operands and output signathi¢cking, valid, ety. Compared t¢-0Cs,this tool
generates more compact architectures from compssergons. However, this efficiency
slightly decreases for simple assertions. Findllys tool has been validated by the PVS
(Prototype Verification System) formal verificatidool [53], which ensures the validity and
the reliability of generated circuits.

clk

reset—n Always Impl Next! Before!
oen_init b clk clk bclk b clk
H reset_n resel_n b reset_n b reset_n Checkin
b elk Start | oy checkingo—— stary heckingg—— L oo checkingg—— | oo checkingg—— £
lnil_cyc]eD—,_H)
FEEESELE LB expr valid L expr valicy LB expr valid B -pexpr Salig 21id
A +—= cond C o= cond
perrl_ol:ling penmding
vV

Figure 0-3 Property monitor for P

In addition, the modular approach is used to autmaldy generate on-line test vectors by
synthesizing PSL assertions with keywassumég54]. This type of PSL assertion defines the
set of constraints that the inputs of a given systeust satisfy.

-166-

Annex Synthesis of RTL assertions

Hence, this approach allows reducing the timeithapent to model scenarios and to generate
a set of test-benchs. Circuits generated by thihinigue are namedenerators The
generation process of thogeneratorsis the same as the one used to generate monitoes.
difference comes only from their library of modulésrdware components). A new module
is proposed to produce generators named signal This module is used to generate the
operands for PSL operators. It contains a LSFRe@ir-eedback Shift Register) to generate a
random number. This number defines the size ofSthié& Registetthat is used to store the
prediction made for the generation of the operamtie. generation of operands begins when
the start signal of the module is activated. Figurd shows the architecture of the generated
circuit, Generator for the following PSL assertion:

Property H: assume alwayRég— (Busyuntil! AckK))

AEL

Rrwl_il L Clk
T

Until

l Always 1 -];1;1;1;:&;1_:;:1_

> B

; Trigger | Trigger| Trigger

\ tart Start g
[‘E “"'“d;‘r—LT Pending Pending

Busy

g Valid_Busy

oni_signal
=

|
Trigge Ack
4~ Valid_Ack
Lons i

__

Valid_Req Req
Figure 0-4 Generator architecture for property H

The generator presented in Figlrd produces three signals to specify the behavidwof
components during data transmission. It assumesmien a request for data transmission is
received Reqsignal) by component C1, then this component swadio transmission mode
(by activating theBusy signal) until the second component C2 completesttansfer (by
activating the signahck).

However, the modular approach has limits with asstilmf PSL operators, more precisely
with the expression SERE of the temporal layer 8L Ksee page 20). In fact, it only

translates SERE properties that contain repetijperators for signals (e.g. next[N] A) and
not for sequences (e.g. {S[*N]}). Moreover, SEREoperties should not contain

parallelization operators for sequences (e.g. “&&”)

The tool proposed in [55] by Marc Boule, named MBA®@solves this limitation of the
modular approach. This tool is based on a full-aatia approach which allows an entire
assertion to be represented by a single automdtois. solution allows optimization that
cannot be done in a modular approach where hardvean@onents are only created for PSL
operators. The full-automata approach is basedoenia treatment on the left and the right
part of an implication, and a set of rewrite rul€sose rewrite rules are used to translate FL

-167-

Annex Synthesis of RTL assertions

operators into SERE operators. An example of rewsftan FL operatorutil) is shown in
Figure0-5. The set of rules and more examples of rewritgpegsented in [56].

FL: P until B

SERE: {(~B)[+]{P}}
Figure 0-5 Rewrite example

This approach uses a library of pre-defined autaraasociated to the set of SERE operators.
The generation process of the full automaton fagiveen property starts by scanning the
syntax tree of the PSL expression and performimgite rules if necessary. Next, each node
is translated into an automaton coming from thealfp Then, the parent of nodes builds its
own sub-property automaton from its children autmmaThe transition conditions are the
expressions of the Boolean layer (see 20). Findtlgse automata are recursively combined
according to the operators used in a sequencel,(e.&&). Figure0-6, extracted from [56],
shows an example of an automaton generated frarea gssertion.

Assert always {~a; a} {b [*0:1]; c}

true / \L \ ~b & ~cC .
tri ~a a . '
U pls2 @ » s2 > s3 s3
v

b&~c ™ g2 | —=¢

\)
|

a&~b&~c

~ - 'S
@ a > s2 - s4
' v

a&b&~c M 53 =<¢

Figure 0-6 Generation process of an automaton fiiven property [56]

Next, the generated automaton is transformed imtmits using the One-Hot encoding [57]
scheme.

All those previous approaches are used to synthdd®l assertions. However, the syntax of
SVA (System Verilog Assertion) assertion is diffegré&om the one of PSL assertion.

The approach introduced in [48] allows transform8\A assertions into hardware monitor
using the BSV (Bluespec SystemVerilog) languageV BSplements the Bleuspec semantic
model in SystemVerilog. The Bleuspec [49] is a Heglel synthesis tool that use atomic
actions as inputs. In fact, it models the hardwa@mponent as a sequence of states. Then,
designers specify operations to be performed o siment through rules. The example
presented in Figuré-7 , extracted from [48], shows a rule for a cachetadler. This rule
iterates through all cache locations, and theneariback into the memory all the dirty

-168

Annex Synthesis of RTL assertions

locations. This operation is performed only if tberrent state of the cache controller is
SynchronizeThe execution of a given rule is controlled by tiierent state of the system.

/lwrite back all contents of the cache
rule sync_cache (state == Synchronize);
case(cache[index]) matches
taggedvalid {.tag, .data., .isDirty}:
if (isDirty) begin
writeToMemory ({index, tag}, data);
notDirty(index);
end
default:
noAction;
endcase
state<= (index == ‘MAX_ADDRESS)?
Ready : Synchronize;
index <= index +1,;
endrule

Figure 0-7 Cache-controller with BSV

The technique proposed in [48] consists in tramsiiog the SVA assertions into Bluespec
modules (rules). Then, those modules are synthebsite hardware monitors by using the
HLS. Each assertion is converted as a set of Fiitde Machine (FSM): the main FSM

controls the temporal sequence of steps given éyaisertion, and the secondary FSMs are
used to drive steps.

-169-

Annex Synthesis of RTL assertions

-170

Annex UML notation

ANNEX UML NOTATION

Abstract Class Concerete Class
aggregation

object reference

method
/‘L”B’ Nwm

Concrete SubClass 1 Concrete SubClass 2

method method . implement pseudocode

Aggregation relationship indicates that one class is a pararather class. It refers to a

special type of association in which the objecesamsembled or configured together to create
a more complex object.

Inheritance refers to the ability of one class (Concrete Sab€) to inherit the identical
functionality of another clas#\bstract clasy and then can add new functionality.

Interface Class
method
< 2
’/; i "'\“
’ Y
.-f'J \H
/" implements s Implements
bl "‘\
v’f! \-\
l{}f '\\\\
Abstract Class Concrete Class
feied method

Interface classis used to describe functionality without implensian. It is just like a
template where defines different functions and thetimplementation. Interface class must

-171-

Annex UML notation

have at least one class that implements it. Fasda implement interface it implements the
functionality as per requirement.

-172-

Bibliography

BIBLIOGRAPHY

[1] Bridgwater, L.B.; Ihrke, C.A.; Diftler, M.A.; Abd&h, M.E.; Radford, N.A.; Rogers, J.
M.; Yayathi, S.; Askew, R. S.; Linn, D.M., "The Rafut 2 hand - designed to do work
with tools,"” Robotics and Automation (ICRA), 2012 IEEE Interoiaél Conference on
vol., no., pp.3425,3430, 14-18 May 2012

[2] Bar-El, H.; Choukri, H.; Naccache, D.; Tunstall, ddlael; Whelan, C., "The Sorcerer's
Apprentice Guide to Fault Attacks," Proceedingshef IEEE , vol.94, no.2, pp.370,382,
Feb. 2006

[3] D. Arora; S. Ravi; A. Raghunathan; N.K. Jha;"Secambedded processing through
hardware-assisted run-time monitoring,” DATE, 20REoceedings , vol., no., pp.178,183
Vol. 1, 7-11 March 2005

[4] M. Rahmatian; H. Kooti; I.G. Harris; E. BozorgzagdéHardware-Assisted Detection of
Malicious Software in Embedded Systems," IEEE, Eodled System Lettre, vol.4, no.,
pp.94,97, Dec. 2012

[5] L. Davi , R. Dmitrienko , M. Egele, T.Fischer, T.HpR.Hund, S.Nurnberge, A.Sadeghi
“MoCFI: A framework to mitigate control-flow attaskon smartphones”, In Proc of the
NDSS Sym, 2012.

[6] S. Guilley, R.Pacalet , “SoCs security: a war against side-cHanheAnnales Des
Télécommunications Juillet/Aout 2004, Volume 5%uis 7-8, pp 998-1009

[7] M. Nueve, E. Peeters, D. Samyde, and J.J. Quisguaemories: a Survey of their
Secure Uses in Smart Cards”; Proc. of IEEE SISW32Q&tober 2003. Washington DC,
USA.

[8] S.P. Skorobogatov and R.J. Anderson; “Optical Famdtuction Attacks”. Proc. of
CHES'02, 2002.

[9] O. Kaommerling and M.Kuhn; “Design Principles forarmiper-Resistant Smartcard
Processors”, Proc. Of the Useinx Workshop on Sraaitd@echnology (Smartcard’99)
pages 9-20, May 1999.

[10] Bondyopadhyay, P.K., "Moore's law governs the ailigevolution,” Proceedings of
the IEEE , vol.86, no.1, pp.78,81, Jan 1998

[11] Boyer, A.; Ben Dhia, S., "Effect of aging on powaetegrity of digital integrated
circuits,” Test Workshop (LATW), 2013 14th Latin Amican , vol., no., pp.1,5, 3-5 April
2013

[12] Sapatnekar, S.S., "What happens when circuits giolv Aging issues in CMOS
design,” VLSI Design, Automation, and Test (VLSI-DA 2013 International
Symposium on , vol., no., pp.1,2, 22-24 April 2013.

-173

Bibliography

[13] Online Catapult-C —http ://www.calypto.com
[14] Online Symphony C Compiler — http ://www.synopsgsac
[15] Online C-to-Silicon —http ://www.cadence.com

[16] P. Coussy, E. Casseau, P. Bomel, A. Baganne aMhin ; "A formal method for
hardware IP design and integration under 1/0O amihty constraints”, ACM Transactions
on Embedded Computing Systems, pp 29-53, Feb 2006.

[17] Online ROCCC- http://www.jacquardcomputing.com/i@cc

[18] EI Shobaki, M.; Lindh, L.; , "A hardware and soft@amonitor for high-level system-
on-chip verification,"Quality Electronic Design, 2001 International Syrejmon on, vol.,
no., pp.56-61, 2001.

[19] EI Shobaki« On-Chip Monitoring of Single- and Mplibcessor Hardware Real-Time
Operating Systems".

[20] Online LegUp HLS - http://legup.eecg.utoronto.ca/

[21] Online ChipScope Pro —http ://www.xilinx.com/toalspro.htm

[22] Online SignalTap Il Logic Analyzer State-Based §egng Flow Design Examples —
http ://www.altera.com/support/examples.

[23] Online PALMICE —http :/hitechglobal.com/designtools/computex/palmicefpopa.h

[24] Online F-Sight —http
:Ilwww.computex.co.jp/eg/products/pdf/summary_pdfight/fsight_mb_gaiyou_eng.pdf

[25] Peterson, K.; Savaria, Y.; , "Assertion-based as-liverification and debug
environment for complex hardware systemGjfcuits and Systems, 2004. ISCAS '04.
Proceedings of the 2004 International Symposiumawi.2, no., pp. II- 685-8 Vol.2, 23-
26 May 2004

[26] Jong Chul Lee; Gardner, A.S.; Lysecky, R.; , "HaadsvObservability Framework for
Minimally Intrusive Online Monitoring of Embedded/Sems,"Engineering of Computer
Based Systems (ECBS), 2018th IEEE International Conference and Workshops on
vol., no., pp.52-60, 27-29 April 2011

[27] Ho Fai Ko; Kinsman, A.B.; Nicolici, N. “Distribute@mbedded Logic Analysis for
Post-Silicon Validation of SOCs” Test Conferend@)&. ITC, 2008

[28] Neishaburi, M.H.; Zilic, Z. “A distributed AXI-bask platform for post-silicon
validation VLS| Test Symposium (VTS), IEEE®2%p 8-13, May 2011.

[29] Vermeulen, B.; Goossens, K.; Van S. R. ; Bennehrdék,“Communication-centric
SoC Devug using Transactions" L fEE european Test Symposium, ETS'07, pp 69-76,
May 2007

-174

Bibliography

[30] Vermeulen B.; Waayers T.; Goel S., “Core-based Sa&arhitecture for Silicon
Debug”, in proccedings IEEE International Test Goahce (ITC), Baltimore, MD, USA,
pp 638-647, Oct. 2002.

[31] Goossens K.; Dielissen J.; Radulescu A.; “The Elenetwork on chip : Concepts,
architectures and implementations”, IEEE Design @edt of Computer, pp 414-421,
Sept-Oct 2005.

[32] T. Yunfeng, “An introduction to assertion-basedifiestion,” IEEE 8th International
Conference on ASIC, 2009, pp. 1318-1323.

[33] P. Coussy and A. Takach, Special Issue on High4L8yerthesis, IEEE DTC . IEEE
Computer Society, 2009, vol. 25

[34] R. A. Walker, C. Samit, “Introduction to the Schidg Problem”, IEEE Design and
Test, pp. 60-69, 1995

[35] G. DE MICHELI, “Synthesis and Optimization of Digit Circuits”, McGraw-Hill,
1994

[36] B. R. Rau, “Iterative modulo scheduling: an aldantfor software pipelining loops”,
In Proceedings of international symposium on Miccbéecture, 1994

[37] P. G. Paulin, J. P. Knight, “Force-directed schedufor the behavioral synthesis of
ASICs”, IEEE Transactions on Computer-Aided Desigh Integrated Cirtuits and
Systems, pp.661-679, June, 1989

[38] Accellera, “Property Specification Language RefeeeNlanual, version 1.1,” , 2004
[39] Accellera, “SystemVerilog 3.la language referen@auall,” 2001
[40] Accellera, “Open Verification Library, Reference Maal,” 2009

[41] Design and Verification of Digital Systems”, In $aale Hardware Verification with
Symbolic Simulation, Springer, Inc, 2006.

[42] H. Foster, Y. Wolfshal, E. Marschner, and IEEE 18%6rk Group. IEEE standard for
property speci_cation language PSL. pub-IEEE-STD; |lEEE-STD:adr, Oct 2005.

[43] I. Beer, S. Ben-David, C. Eisner, and A. LandveuleBase : an industry-oriented
formal verification tool. In 33rd Design Automati@onference Proceedings, 1996, pages
655-660. ACM, 1996.

[44] |. Beer, S. Ben-David, and A. Landver. On-the-flgael checking of RCTL formulas.
In A. Hu and M. Vardi, editors, Computer Aided Maration, volume 1427 of Lecture
Notes in Computer Science, pages 184-194. Spridgdin / Heidelberg, 1998.

[45] T.-H. Lee. Hardware Architecture for High-Performan Regular Expression
Matching. IEEE Transactions on Computers, 58(73-983, July 2009.

[46] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A.n@duze, and Y. Rodeh. The
Temporal Logic Sugar. In G. Berry, H. Comon, andFfkel, editors, Computer Aided

-175

Bibliography

Verification, volume 2102 of Lecture Notes in CortgruScience, pages 363— 367.
Springer Berlin / Heidelberg, 2001.

[47] Y. Abarbanel, I. Beer, L. Gluhovsky, and S. KeidaoCs : automatic generation of
simulation checkers from formal specificationsPioc. 12th International Conference on
computer aided verification, CAV 2000, pages 53&;:2000.

[48] M. Pellauer, M. Liz, D. Baltus, and R. Nikhi. Sye#is of synchronous assertions with
guarded atomic actions. Proceedings. Third ACM I&teE International Conference on
Formal Methods and Models for Co-Design, 2005. MEBIDE '05, pages 1524, 2005.

[49] Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband, carNirav Dave. High-Level
Synthesis: An essential Ingredient for design CaxpASICs. In Processings of
ICCAD’04, San Diego, CA, 2004

[50] K. Morin-Allory and D. Borrione. Proven correct mitors from PSL specifications.In
Proceedings of the conference on Design, automainmghtest in Europe : Proceedings,
DATE '06, pages 1246-1251, 3001 Leuven, BelgiumgiBen, 2006. European Design
and Automation Association.

[51] K. Morin-Allory, M. Boule, D. Borrione, and Z. Zidi Proving and disproving
assertion rewrite rules with automated theorem gnavin 2008 IEEE International High
Level Design Validation and Test Workshop, pages636 IEEE, Nov. 2008.

[52] K. Morin-Allory, M. Boule, D. Borrione, and Z. Zii Validating Assertion Language
Rewrite Rules and Semantics With Automated Theodreavers. IEEE Transactions on
Computer-Aided Design of Integrated Circuits andst8ss, 29(9) :1436-1448, Sept.
2010.

[53] S. Owre and N. Shankar. A Brief Overview of PVSdnMohamed, C. Mufioz, and
S. Tahar, editors, Theorem Proving in Higher Ordegics, volume 5170 of Lecture
Notes in Computer Science, pages 22-27. SpringdéinBeéleidelberg, 2008.

[54] Oddos, Y.; Morin-Allory, K.; Borrione, D., "On-Linfdest Vector Generation from
Temporal Constraints Written in PSL," Very Largealec Integration, 2006 IFIP
International Conference on, vol., no., pp.397,4@218 Oct. 2006

[55] M. Boulé and Z. Zilic. Efficient Automata-Based A&sson-Checker Synthesis of PSL
Properties. In 2006 IEEE International High Levasigin Validation and Test Workshop,
pages 69-76. IEEE, Nov. 2006

[56] Boulé, M. and Zilic, Z. Automata-based assertiopalter synthesis of PSL properties.
ACM Trans. Des. Autom. Electron. Syst. 13, 1, Adid (January 2008), 21 pages.

[57] Sidhu, R.; Prasanna, V. Fast Regular Expressioncivtad Using FPGAs
Field-Programmable Custom Computing Machines, 208®0CM '01. The 9th Annual
IEEE Symposium on, March 29 2001-April 2 2001, Z3B

-176-

Bibliography

[58] A. Gharehbaghi, B. Yaran, S. Hessabi, and M. Gaidakn assertion-based
verification methodology for system-level desigron@puters & Electrical Engineering,
33(4) :269-284, July 2007.

[59] Goudarzi M, Hessabi S, Mycroft A. Object-oriente&IR design and synthesis.
Forum on Design & Specification Languages (FDL).003.

[60] M. Jain, M. Balakrishnan, and A. Kumar. ASIP desigathodologies : survey and
issues. In VLSI Design 2001. Fourteenth Internaidonference on VLSI Design, pages
76-81. IEEE Comput. Soc, 2001.

[61] J. Curreri, G. Stitt, and A. D. George. High-lewghthesis techniques for in-circuit
assertion-based verification. In Parallel & Distiidd Processing, Workshops and Phd
Forum (IPDPSW), pages 1-8, 2010.

[62] J. Curreri, G. Stitt, and A. D. George. High-Le®inthesis of In-Circuit Assertions
for Verification, Debugging, and Timing Analysis.ntérnational Journal of
Reconfigurable Computing, 2011 :1-17, 2011.

[63] Impulse Accelerated Technologies, “Codevelope’ssugaide”, 2008.

[64] Ribon, A.; Le Gal, B.; Jego, C.; Dallet, D.; , “Astson support in high-level synthesis
design flow,” in Proc. Specification and Design gaages, Sept. 2011, pp. 1-8.

[65] N. Oh, P. P. Shirvani, E.J. McCluskey, “Control WlocChecking by Software
Signature”, IEEE transactions on Reliability, V&1, no. 2, March 2002, pp. 111-122

[66] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, J.A.bfaham, “Design and Evaluation
of System-Level Checks for On-Line Control Flow d&rDetection”, IEEE Transactions
on Parallel and Distributed Systems, Vol.10, NQufe 1999

[67] R. Vemu, J. A. Abraham, “CEDA: control-flow erroetéction through assertions”,
12th IEEE International On-Line Testing symposi®@omo, Italy, July 10-12, 2006, pp.
151-156

[68] P. Bernardi, L.Bolzani, M. Rebaudengo, M. SonzarBa&oF. Vargas, M. Violante,
“On-line detection of control flow errors in SoCg means of an infrastructure IPcore”,
2005 International Conference on Dependable SystemdsNetworks (DSN), 2005, pp.
50-58

[69] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, Mlaxte, “Soft-error Detection
Using Control Flow Assertions”, IEEE Int. Symp. Defect and Fault Tolerance in VLSI
Systems, 2003, pp. 581-588

[70] K. Wilken, J.P.Shen, “Continuous signature monitgriefficient concurrent-detection
of processor control errors ”, International Teshrence (ITC), 1988, pp. 914-925

[71] K. Wilken, J.P.Shen, “Continuous signature monitgri Low-Cost Concurrent
Detection of Processor Control Errors ", IEEE temt®ns on Computer-Aided Design,
vol. 9, no.6, June 1990

-177-

Bibliography

[72] Y. Chen, “Concurrent Detection of Control Flow Hsoby Hybrid Signature
Monitoring ”, IEEE transactions on Computers, \&4, no.10, October 2005

[73] Brown, S., "Overview of IEC 61508. Design of elemt/electronic/programmable
electronic safety-related systems,” Computing & @anEngineering Journal , vol.11,
no.l1, pp.6,12, Feb. 2000

[74] T. Michel, R. Leveugle, G. Saucier, A New Approach to Control Flow Checking
Without Program Modification , 21th International Symposium on Fault-Tolerant
Computing (FTCS-21), pp. 334-341, 1991.

[75] Madeira, H.; Silva, J.G., "On-line signature leagniand checking: experimental
evaluation,” CompEuro '91. Advanced Computer Teldgy Reliable Systems and
Applications. 5th Annual European Computer ConfeeenProceedings., vol., no.,
pp.642,646, 13-16 May 1991

[76] Hamlet, R, Testing Programs to Detect Malicious|Ba@™ Int. Working Conf. on
Dependable Computing for Critical Applications, $an, 18-20 Feb. 1991, pp162-169

[77] S. Bergaoui, R. Leveugle, 'IDSM: An improved cohffow checking approach with
disjoint signature monitoring’, Conference on Dasif Circuits and Integrated Systems
(DCIS), Zzaragoza, Spain, November 18-20, 2009

[78] Arora, D.; Ravi, S.; Raghunathan, A.; Jha, N.K.e¢c&e embedded processing
through hardware-assisted run-time monitoring,"i@esAutomation and Test in Europe,
2005. Proceedings , vol., no., pp.178,183 Vol.-11™March 2005

[79] Rahmatian, M.; Kooti, H.; Harris, 1.G.; Bozorgzadek., "Hardware-Assisted
Detection of Malicious Software in Embedded Systéfmbedded Systems Letters,
IEEE , vol.4, no.4, pp.94,97, Dec. 2012

[80] A. Benso, S. Chiusano, P. Prinetto, L. TagliafefA, C/C++ Source to Source
Compiler for Dependable Applications”, IEEE Asiarest Symposium (ATS 2001),
Kyoto (J), November 2001, pp.209-303

[81] K. Pattabiraman, Z. Kalbarczyk, R. K. lyer, “Ap@ion-Based Metrics for Strategic
Placement of Detectors”, Pacific Rim Dependable @aing (PRDC), 2005

[82] J. Lee, A. Shrivastava, “Static Analysis of Registéle Vulnerability”, IEEE
Transaction On Computer-Aided Design Of Integra@ctuits And Systems, Vol.30,
No.4, pp. 607- 616, APRIL 2011.

[83] M. Leeke, A. Jhumka, “Towards Understanding the drtgnce of Variables in
Dependable Software”, Dependable Computing ConterdEDCC2010), pp. 85 — 94,
2010

[84] Auvizienis, A; Laprie, J.-C.; Randell, B.; Landwel@,, "Basic concepts and taxonomy
of dependable and secure computing,” Dependable S@&cure Computing, IEEE
Transactions on, vol.1, no.1, pp.11,33, Jan.-Ma@d.

-178

Bibliography

[85] M. Leeke, A. Jhumka, "An Automated Wrapper-basedypch to the Design of
Dependable Software”, 4th International Conference Dependability (DEPEND'11),
August 21-27th 2011, Nice, France.

[86] Bergaoui, S.; Vanhauwaert, P.; Leveugle, R., "A Neiitical Variable Analysis in
Processor-Based Systems," Nuclear Science, |IEEEsdctions on vol.57, no.4,
pp.1992,1999, Aug. 2010

[87] P. Coussy, A. Morawiec, “High-Level Synthesis: Fréwgorithm to Digital Circuit,”
Springer, 2008

[88] H. Paul, “Nesting of Reducible and Irreducible LegpACM Transaction on
Programming Languages and Systems, vol. 19, 19935Y-567

[89] M. B. Hammouda, P. Coussy and L. Lagadec, “A Degigproach To Automatically
Generate On-Chip Monitors during High-Level Syntkesf Hardware Accelerator”, In
Proceeding GLSVLSI, 2014

[90] M. B. Hammouda, P. Coussy and L. Lagadec, “A Degigproach to Automatically
Synthesize ANSI-C assertions during High-Level 8gsts of Hardware Accelerator”, In
Processing ISCAS, 2014.

[91] Haw-Jyh Liaw; Merkelo, H., "Signal integrity issued split ground and power
planes,” Electronic Components and Technology Genfee, 1996. Proceedings., 46th ,
vol., no., pp.752,755, 28-31 May 1996

[92] Byung Kook Kim, "Reliability analysis of real-timeontrollers with dual-modular
temporal redundancy,” Real-Time Computing Systents Applications, 1999. RTCSA
'99. Sixth International Conference on, vol., pp.,364,371, 1999

[93] Loic Lagadec and Damien Picard, “Smalltalk debugedi in the matrix”, In
International Workshop on Smalltalk Technolodi®ST '10), pp. 11-16, 2010.

[94] Thomas Peyret, “Architecture matérielle de flot pl@grammation associé pour la
conception de systemes numeériques tolérant augsguthése, 2014.

[95] M. B. Hammouda, P. Coussy and L. Lagadec, “A UdifiBesign Flow to
Automatically Generate On-Chip Monitors during Higbvel Synthesis of Secured
Hardwre Accelerators”, Submitted to IEEE Transacttion Computer Aided Design
(TCAD) Special issue on Hardware Security and Tr2G14.

[96] M. B. Hammouda, P. Coussy and L. Lagadec, “ An @agh to Automatically Detect
Critical Data and Generate Associated On-Chip MwaiDuring High-Level Synthesis of
Hardware Accelerators”, Submitted to ISCAS, 2015.

-179

Bibliography

-180-

