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Nomenclature

AHRS Attitude and Heading Reference System

AIS Automatic Identification System

AUV Autonomous Underwater Vehicle

COB Center Of Buoyancy

COM Center Of Mass

CSP Constraint Satifaction Problem

DVL Doppler Velocity Log

EKF Extended Kalman Filter

INS Inertial Navigation System

LBL Long BaseLine

PLL Phase-Lock Loop

SIVIA Set Inversion Via Interval Analysis

TCAS Traffic Collision Avoidance System

TDMA Time-Division Multiple-Access

ToF Time-of-Flight

TRL Technology Readiness Level

USBL Ultra-Short BaseLine

UUV Unmanned Underwater Vehicle
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1 Introduction
Numerous robots made the headlines in the recent years as what the future could
look like. From the affordability of robot vacuum cleaners to the democratization of
aerial photography with user-friendly drones, both consumers and industries see a
huge potential of robots to perform tasks that are either dangerous or just unattrac-
tive to human-beings.
Industrial robots are now standard in many manufacturing industries and considered
the only option to keep up with the demand and the target cost. On the other hand,
mobile robots have mainly been used in closed environments in laboratories and only
started seeing sun-light in the last decade.
Arguably, the two fields that motivate the most mobile robotics are space and under-
water exploration. Both share similar constraints for humans that difficulty can be
overcome such as pressure, energy, and communications. Therefore, each can benefit
from the advances of the other field to tackle its problems. Note that composite ma-
terials, more efficient battery technologies and autonomy are usually heavily tested
and developed for one of these two domains.
Moreover, with the growing interest of the offshore industry to commercially use
underwater robotics in two key activities: surveying and offshore engineering, the
field is about to see a significant growth. Earlier development of Autonomous Un-
derwater Vehicles (AUV) has mainly been funded for hydrographic surveying and
charting, for navigation for military and defense, and for environmental assessments
and monitoring and for national economic exploitation. In 2001, about 52% of all
marine survey efforts were concentrated on these activities [1]. In the same year, the
oil and gas industry accounted for more than 58% of all the offshore industry. And
at that time, only 17% of its activities were deep-water and it has grown constantly
since then.
Chance [2] illustrated the cost-effectiveness of AUV operations in contrast with
towed systems. The main arguments to replace this technology with AUVs are:
• Line running direction: Towed systems cannot easily accommodate sharp

changes in direction whereas an AUV can.
• Line running position: Keeping a deeply towed system on line is difficult

without significant additional cost. AUVs on the other hand run in line.
• Line running altitude/aspect ration: Keeping a towed system at correct depth

is not easy. An AUV can fly at the correct depth or height from the seabed
precisely.
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Chapter 1 Introduction

• End of Line turns: Towed systems require a long line turn to not get tangled.
An AUV can turn on the spot.
• Run-ins/run-outs: Towed systems require a run-in to a line and a run-out,

AUVs need neither a run-in or run-out.
• Positioning: In deep water, positioning of towed system is problematic and, if

any degree of accuracy is needed, calls for a second positioning system. AUVs
can run autonomously or require only one positioning system.
• Survey speed: Survey velocity of a towed system is a function of water depth

and cable length, whereas AUVs can travel at same speed irrespective of water
depth.

In this chapter, we first introduce the different types of unmanned marine vehicles
commonly available. Then we describe the context of Oil and Gas exploration for
which this thesis is being done. The hypothesis, constraints and objectives of this
work are presented before giving the outline of the thesis.

1.1 Unmanned Marine Vehicles

After the unfortunate events of Malaysian Airlines MH370 that disappeared from
the radars while flying from Kuala Lumpur Airport to Beijing, the media closely
followed the search for the missing aircraft shining light on the Autonomous Un-
derwater Vehicles (AUVs) used as a key component of the mission, Figure 1.1. As
explained earlier, the advantage of using AUVs over towed sonars for instance reflects
mainly on the cost and the duration of the mission.
In this section, provided is a list of different Unmanned Marine Vehicles in general
and their characteristics. We will then illustrate their applications in different fields
and also detail the different levels of autonomy usually considered in this type of
vehicles.

1.1.1 Platforms

1.1.1.1 Passively Controlled Vehicles

For the sake of energy-efficiency, long-endurance, and range, many Unmanned Ma-
rine Vehicles rely essentially on the energy provided by the ocean currents and/or
the lift on the “wings” due to the difference of buoyancy.

Buoys On one hand, buoys passively drift with the ocean current for a period of
time while recording data and their position when possible. They either stay on the
surface, a weather buoy for instance 1.2a, or maintain a constant depth during the
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1.1 Unmanned Marine Vehicles

Figure 1.1: The U.S. Navy AUV Artemis (Bluefin 21‘) deployed from the ADV
Ocean Shield vessel to search for the missing MH370 at a 4000 meters depth
using a side-scan sonar.

mission. Furthermore, the speed and the path of the vehicle totally depend on the
currents making the prediction of the survey’s output and duration a little random.
Therefore, the buoys are only used in non-critical environmental surveys or to learn
about currents in some remote areas.

Gliders / Wave Gliders On the other hand, gliders and wave gliders rely on wings,
to produce lift and therefore generate forward movement. Gliders main propulsion
is based on internal pumps that change the vehicles displaced volume by pumping
liquid to an inside bladder. In some cases, a small motor is used to change the
position of the Center Of Mass (COM) relatively to the Center Of Buoyancy (COB)
to change the pitch of the vehicle. This dynamic change of the characteristics of
the vehicle, buoyancy and positions of COB and COM, make it perform a sawtooth
pattern from the surface to several thousands of meters. The Seaglider for instance
[3], 1.2b, only consumes 0.5W in average over the entire period of a mission. This
is due to the fact that the pumps are only activated on the surface and when near
to the bottom. Therefore, this particular glider can travel for several thousands
of kilometers before needing to recharge. Nevertheless, its speed is very limited
(0.25-0.5 m/s) and may result on the vehicle drifting to an undesired location in the
presence of strong currents.
Most of the missions based on these systems require a vessel to follow the vehicle
to recover it and its data or a satellite data link when the vehicle is disposable.
In the case where the vehicle has to be recovered, the vessel might have to travel a
considerable distance to reach it as the path of these systems is not very predictable,
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Chapter 1 Introduction

(a) A Weather Buoy.

(b) A Seaglider Glider Diving. (c) A LiquidRobotics Wave Glider.

Figure 1.2: Passively Controlled Marine Vehicles.

therefore limiting their use.

1.1.1.2 Dynamically Controlled Vehicles

In contrast with the previous category, dynamically controlled vehicles can control
their position or other variables actively to reach a desired state.

Surface Vehicles Repurposed boats or scaled-down versions have been modified
to accomplish long duration missions or surveys where limited human interaction
is needed. With recent advances in artificial intelligence and autonomy [4, 5], some
even can interact with the environment and traffic. Because these vehicles are always
on the surface, access to position information (through GPS or other positioning
systems) and communication (AIS and TCAS for example) allow a much higher level
of autonomy and control. Figure 1.3 shows different autonomous surface vehicles
that have been developed in the recent years for different purposes.

Underwater Vehicles Underwater, the most common types of vehicles are ROV
(Remotely Operated Vehicles) and AUV (Autonomous Underwater Vehicles). ROVs,
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1.1 Unmanned Marine Vehicles

(a) Ifremer’s VAIMOS is an autonomous
sailboat developed in collaboration
with ENSTA Bretagne.

(b) NATO CMRE Autonomous Surface
Vehicle.

(c) MIT-Olin’s WAM-V. (d) Remotely Operated Surveillance
Jet-ski.

Figure 1.3: Autonomous Surface Vehicles

1.4d, in one hand, are very agile and can perform dexterous tasks with ease. Nev-
ertheless, they require a pilot, or even two, to carry on the missions. Their tasks
range from sea-bottom imaging to manipulation of underwater pipeline and valves.
Therefore their shape is usually not very hydrodynamic and depends on an umbilical
cable and a surface ship and usually move very slowly. AUVs, on the other hand, are
mostly torpedo shaped to minimize the drag and consequently require a relatively
low-power propulsion. Dimensions of AUV models vary strongly between less than
a meter up to 10 meters in length, 1.4a, and diameter from a couple dozen centime-
ters, 1.4b, to meters. Dimensions mainly depend on the mission and its duration as
batteries and sensors take most of the volume. Early AUVs were usually large, but
with the recent advances in battery technologies and miniaturization the tendency
is more towards smaller human-portable size that are customizable with modules
depending on the nature of the mission. Nonetheless, large AUVs are still the main
go-to solution for long duration missions at high depth.

1.1.2 Applications

Autonomous Marine Vehicles are used in a wide-spread range of applications. Most
applications fall under one of the three main fields where marine robots are used:
• defense,
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Chapter 1 Introduction

(a) Hydroid’s REMUS AUV developed
in collaboration.

(b) GraalTech’s eFolaga AUV.

(c) ENSTA Bretagne hand-made AUV. (d) ROV in deployment.

Figure 1.4: Autonomous Surface Vehicles

• oceanography,
• and marine industries.

These domains employ marine vehicles is different missions with different purposes.
In this subsection is detailed the most known use cases of these robots.

1.1.2.1 Defense

The defense being one of the very first users of these technologies have been driving
the development of these vehicles thanks to the important investments in research
and development. Moreover, the hazardous nature of the environment for the human
life and the equipment was a crucial driver for such an improvement.
The advantage of autonomous systems in the battle space range from the ability to
collect tactical, operational, and strategic intelligence data for the commandment.
Furthermore, their relatively small footprint and signatures, ease of clandestine de-
ployment, and autonomous operation have noticeable advantage in contrast with
other human driven solutions [6].
The US Navy has identified 40 distinct missions for Unmanned Underwater Vehicles
(UUV) [7, 8] and prioritized them according to their usefulness in the field. The
top five missions as listed below, all are feasible without UUVs. Nevertheless, the
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1.1 Unmanned Marine Vehicles

use of the later will unquestionably improve the outcome of the battle of the navy
equipped with them:
• Intelligence, surveillance and reconnaissance,
• Mine countermeasures,
• Antisubmarine Warfare,
• Battle space characterization,
• Inspection & identification.

Moreover, the equipment and embedded sensors needed for each mission are not
necessarily required for another. Therefore, the modularity of these vehicles became
a requirement to give the user a blank page so he can adapt the vehicle to his use
as needed.

1.1.2.2 Oceanographic Research

Despite the fact that oceanographic missions are far less dangerous, they set the
benchmark for several UUVs. Many UUVs have been first used for oceanographic
purposes. In contrast with the defense type of missions that are relatively short and
mostly near the littoral, oceanographic research requires the vehicles to stay longer
and deeper.
For instance, when observing the oceans role in climate, marine robots can provide
persistent and systematic measurements. Gliders for example are well suited to
cover the required 200 km (and larger) spatial scales and seven days (and longer)
timescales. UUVs can also observe deep and intermediate water masses in all weather
and sea conditions. They can be equipped to determine the along-current extent of
circulation patterns that are not readily apparent from the ship-collected data and
are sometimes too remote for ship monitoring. Moreover, even coastal observations
done using marine robots can present an advantage when observing multiple indica-
tors at the same time. As robots yield more data per unit cost than ships and other
moored systems, they had a notorious impact on understanding ocean processes.

1.1.2.3 Industrial Applications

Up to the recent years, the technology readiness level (TRL) of marine robots was
not yet considered reliable for industrial use. Actually, because of the regulation
around the use of military developed robots and research stage of those used in
oceanography, such technology was often judged to be too young for large industrial
usage.
Luckily, marine robots manufacturers did see the potential of the market for such
vehicles. It then lead to the rise of a new category of robots that are cheaper than
their military counterparts but also more reliable than those used in the research.
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Oil and Gas industry, alongside the telecommunication industry, lead the way by
using ROVs to survey areas and the underwater structures and infrastructures. How-
ever, only few projects are known to use on-board autonomy.

1.1.3 Levels of Autonomy

Autonomy for robotic systems does come in different levels, from very low-level
teleoperation to fully intelligent autonomous aware robots.

The Standard Guide on UUV Autonomy and Control [9] considers a three dimen-
sional space for assessing the autonomy requirements for a mission: (1) situation
awareness; (2) decision-making, planning, and control; (3) external interaction. A
summary of the definition of the levels of autonomy and capabilities of each level is
provided in the tables below.

UUV (1) situation awareness levels
0 Raw Unprocessed data collected from sensors
1 Semi-Processed
2 Feature Data filtered, normalized, and characterized
3 Aggregate Data aggregated over time, space, and/or feature

characteristics (target detection)
4 Interpreted Compared against some knowledge database
5 Inferred Correlated to knowledge base of situational or behavioral

characteristics
6 Intent Correlated to a knowledge base of known patterns of

operation including recognizing plans and objectives and
recognizing and/or predicting intent

UUV (2) decision making, planning, and control levels of autonomy
0 Direct control Execution of externally defined commands; no

decision-making
1 Sequenced

execution
Execution of externally defined sequence of actions;

limited decision-making
2 Adaptive

execution
Execution of externally defined actions; closes loop on the

actions; limited decision-making
3 Objective

achievement
Combine actions to achieve a single objective at a time

4 Multiple
objective

Simplistic combining of multiple objectives

5 Joint objective
achievement

Balance multiple objectives

10



1.2 Context: Oil & Gas Exploration

UUV (3) external levels of autonomy
0 Teleoperation Operator uses continuous video and sensor feedback to

directly control the UUV
1 Remote control Operator provides frequent control, but UUV can execute

some actions
2 Semi-

autonomous
control

UUV chooses from a priori list of actions to execute to
achieve the operator’s goal; capable of continuing some
operations during communications blackouts; operator

can override and redirect actions
3 Fully

autonomous
UUV functions without operator intervention from launch
until recovery; if within range, underway communication

and redirection is still possible from the operator
Depending on the use case of the UUV, it is sometimes preferred to have fully
autonomous operations for a routine non-dangerous mission. And in the contrary,
a human control over the vehicle is favored in defense situations not to cause any
collateral damage.

For the purpose of the targeted application of this thesis, i.e. Oil & Gas exploration,
the UUVs should be fully autonomous with multi-objective level of decision making
[10]. However, due to cost related issue, the situation awareness level will be kept
at aggregating data.

1.2 Context: Oil & Gas Exploration

1.2.1 Oil & Gas Exploration Industry

The Oil & Gas exploration industry is a multi-billion industry that is only a small
part of the Oil & Gas industry. Its purpose is to search and monitor underground
reservoirs to better extract the hydrocarbons.

Characterizing this subsurface deposits require highly sophisticated technology to
detect and determine their extent. This process is called imaging reservoirs. To do
so, surveys are performed on the area of interest. Thanks to the different composition
of hydrocarbons in contrast with other rocks and sediments, it is possible to infer
the depth and size of the different layers and then pinpointing the best position
where to extract.

Techniques to image the underground vary from gravimetry, magnetometry, and
seismic. Gravimetry and magnetometry are passive ways of detecting hydrocarbons
as these parameters are affected by the existence of underground reservoirs. Seismic,
in the other hand, can either be passive: by recording the seismic waves generated by
an earthquake; or active by generating a relatively small seismic wave either using
explosives or seismic wave generators, Figure 1.5. Because of the context of this
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Chapter 1 Introduction

thesis, gravimetry and magnetometry will not be discussed, only seismic surveys are
detailed next.

1.2.2 Seismic Surveys

Source Sensor

Figure 1.5: Seismic Survey Is About Generating A Seismic Wave That Will Re-
flected By The Different Layers Forming The Underground.

Conducting a seismic survey of an area requires a tremendous amount of equipment
and personnel. It is mainly due to the complexity of generating the seismic wave at
low frequencies. Actually, the frequencies of interest for the geophysicists to study
the geological composition of the area, range from few Hertz to several kilo-Hertz
[11].
The principle of a seismic survey is that a source generates a seismic wave at a
predefined position. By reflecting and diffracting along the different layers, the
seismic wave propagates downwards then upwards at different speeds depending
on the density and elasticity of the material. The reflected wave is then recorded
using the adapted sensors, Figure 1.6. By computing the time travel between the
generated wave and the recorded one, and by multiplying the number of sources and
receivers, it is possible to conclude the velocity profile and the depth of each layer;
this process is called inversion [12].

1.2.2.1 Land Acquisition

When the recorders are coupled to the earth surface, whether onshore or at the
sea floor, it is considered to be a land seismic acquisition. As the sensors are in

12



1.2 Context: Oil & Gas Exploration

Figure 1.6: Seismic Sensors.

direct contact with the earth, they can better record its tiniest movements. Three
geophones (extremely sensitive accelerometers) per sensor are usually used in this
situation to register the earth movement in the three dimensions.
Onshore, the seismic waves are often generated using a vibrating heavy mass in
contact with the surface and carried by a truck, Figure 1.7. Offshore, very high
pressure bubbles bursting inside the water generate the seismic wave. It is achieved
by filling a closed underwater cylinder with pressurized air or water vapor, then
opening the cylinder suddenly. The shock wave generated from the bursting bubbles
is equivalent to dynamite that was used in early surveys. Nowadays, dynamite is
only used in land missions where trucks cannot reach the desired position, mountains
for instance.

1.2.2.2 Marine Acquisition

Marine acquisition is not different from the land acquisition in the way of generating
the seismic wave through bursting bubbles. However, the sensors are not placed on
the sea floor. They are organized in long cables dragged behind a moving vessel.
These cables, often called streamers, can be several kilometers long. And a vessel
can drag as much as a dozen cables, making the marine seismic surveys the largest
man-made moving objects in the worlds.

13



Chapter 1 Introduction

Figure 1.7: A land seismic vibrator: Nomad 90.

The main difference between a marine survey and a land survey is that in marine
surveys, the receivers are moving constantly, Figure 1.8. Therefore, to have a correct
image of the underground, it is crucial to keep track of the streamers position at
all time. The seismic vessel cannot simply stop risking its streamers to get tangled
and sunk. Also because of the dimensions of the streamer, it generate several tons
of drag, causing the vessel to be less efficient. Furthermore, an hour of marine
operations is estimated to cost tens of thousands of dollars.

Figure 1.8: Marine Acquisition.

Motivated by the efficiency, the cost effectiveness, and the flexibility that UUVs
could provide to marine seismic surveys in contrast with the traditional streamer
based surveys, this thesis explores the possibility of such a system. This thesis does
not look into the design of the UUV itself, but into localization algorithms and
techniques adapted for the large number of required vehicles given the restrained
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underwater environment.

1.3 Hypothesis, Constraints And Objectives

1.3.1 Hypothesis and Constraints

The previous section presented the context in which this thesis is done. In a marine
environment, where huge vessels are used to conduct seismic survey, we would like
to optimize the efficiency and cost effectiveness of the mission by replacing the
streamers as a carrier for the sensors with UUVs. The later are required to be
positioned at all time in order to later extract the best image of the underground
structures and therefore be able to localize the reservoirs.
As this thesis does not study the design of the vehicles themselves but the algorithms
embedded, we first suppose that all UUVs have the computing power to perform
the necessary computation for the algorithms and decision-making. The UUVs are
not tethered to the surface vessels and due to the large number to be deployed.
The vehicles have a propulsion system and are not only drifting. However, we do
not suppose that the power source on the vehicles is unlimited. The vehicle should
not constantly rely on its propulsion system and should drift with the current as
possible.
Because of the nature of the environment, salty sea water, no radio-frequency waves
can be used. Therefore GPS and radio-frequency communications cannot be used.
Only acoustic signals are allowed. However, we suppose that most frequencies are ac-
cessible with very few noise. Acoustic sensors and sources are supposedly embedded
in the UUV alongside the required electronics. It is supposed that the propagation
of the acoustic signal in the medium is direct and not subject to attenuation within
the predefined range. Passed the range, it is supposed to fade almost instantly,
therefore solving medium access issues.
To reduce the cost per unit of the vehicles, they have been equipped with the noisy
sensors. No inertial navigation is possible without a considerable drift making it
useless. Inertial sensors can only be used to acquire the instantaneous orientation
of the vehicle and cannot be integrated over time.

1.3.2 Objectives

The objective of this thesis is to provide a new localization system for underwater
vehicles using set-membership techniques. This system should be able to scale to
several thousands of vehicles operating simultaneously in the same area. It also
should not require expensive nor very precise sensors that might bring the cost of
the vehicles up.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows:

The chapter 2: Localization for Underwater Vehicles This chapter gives a state
of the art of most known underwater localization systems that could be used for the
UUV-based marine seismic survey. It underlines the known challenges to underwater
vehicles: communication, energy and localization. It also provides a list of the three
most commercially available positioning systems.

The chapter 3: Set-Membership Tools This chapter provides the set-membership
tools that are used in this thesis. The set-membership approach to such a localiza-
tion problem is a novelty as most underwater localization systems use Bayesian
tools. As detailed in the chapter, this is not the first time set-membership tools
are applied to a localization problem nor to underwater localization. However, they
have never been used in such restricted environment with such a large number of
collaborating vehicles.

The chapter 4: Phase Based Localization The first part of the contribution of
this thesis is explained in this chapter. A system allowing all vehicles within range
to acquire their relative position to the base of the system. The system is based on
a single beacon emitting a continuous acoustic wave for the localization duration.
The vehicles within range of the beacon can position themselves without any prior
information but the synchronization of their clock and the clock of the beacon.
Using the set-membership approach and correlating with the recorded behavior of
the vehicle, the algorithm is capable of providing the set where the vehicle is likely
to be. The precision and accuracy of this system depends on the frequency of the
acoustic signal and the behavior of the vehicle.

The chapter 5: Collaborative Localization The second contribution of this sys-
tem is an inter-vehicle collaborative localization system. Instead of the vehicles being
localized according to a fixed beacon as the previous system, therefore constrain-
ing their navigation area ; this system allows vehicles to track their surrounding
neighbors and then maintain their position accordingly in a moving frame. Because
this system does not rely on any moored beacon, an additional tracking system is
necessary to project the vehicles position on the global frame for the seismic data
to be useful.

The chapter 6: Conclusion And Perspectives The last chapter summarizes the
contributions of this thesis and the relaying issues that remain unsolved for the
future research to explore.
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2 Localization For Underwater
Vehicles

2.1 Introduction

As previously stated, autonomous underwater vehicles are used in different fields
including defense, oceanography, and oil and gas to name a few. These sectors
usually preferred to invest in a complex, reliable, and fully capable system composed
of only one vehicle that will carry on the mission. To supply this demand, most
developed vehicle today go through very rough testing and specifications leading to
a high price tag. Moreover, as most missions required one or two vehicles operating
at the same time, positioning and navigation systems were requested to track very
few number of vehicles simultaneously. For instance, a sonar could be used to track
the AUV from the surface then sending the vehicle position back using an acoustic
modem. The latter solution is unfortunately inappropriate for a large number of
vehicles due to access time to the medium and the indistinguishably between the
vehicles.

In this chapter, we explore the actual state of the art in underwater vehicle local-
ization and their limitations, therefore laying the motivations of this thesis.

2.2 Limitations to Underwater Vehicles

2.2.1 Communications

Due to the environment in which the AUV will operate, i.e. water, communication
is a big issue. The least communication is possible, the more the vehicle is supposed
to be autonomous. Therefore, underwater vehicles usually embed more autonomy
than their aerial and terrestrial counterparts as these can rely on higher bandwidths
and easier access to the medium.

Data to be transmitted include commands, navigation information and status of the
vehicles in addition to the sensors measurements. The effectiveness of the commu-
nication channel is affected by the range, the bandwidth, and the network infras-
tructure.
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Chapter 2 Localization For Underwater Vehicles

2.2.1.1 Electromagnetic Communication

Electromagnetic waves do not propagate far underwater because of their high ab-
sorption in water: a =

√
π · f · µ · σ (f being the frequency, µ the magnetic per-

meability, and σ the electrical conductivity). Dissolved salts in sea water makes it
more conductive, therefore making it more absorbent to these waves. Additionally,
the higher speed of electromagnetic waves propagation in water compared to acous-
tic allow higher bandwidth keeping it interesting for close range at relatively low
frequencies.

2.2.1.2 Acoustic Communication

Acoustic (pressure) waves are better for underwater communication due to their rel-
atively low absorption in water. Nevertheless, acoustic propagation underwater faces
other challenges because of the variability of the properties spatially and temporally.
The most known issues are ambient noise, scattering, and multi-path.

Ambient noise Marine mammals, surface waves along with the vehicle propulsion
system cause a considerable amount of background noise. As sources are multiple
and usually unidentified [13], it is difficult to filter the noise that ranges from high
frequencies from marine animals like shrimp and whales to low frequencies that
might have been generated by waves and far traveling ships. At short-range, the
ambient noise level might be too weak relatively to the desired signal. However, the
ambient noise is usually a limiting factor.

Scattering Bouncing on the sea surface, acoustic waves scatter therefore produc-
ing delay spreads, fluctuation of intensity of the scattered signal, and reducing the
spatial correlation. On a calm and flat surface, the scattered signal is fairly stable.
However, the arrival of the signal fluctuates heavily in time and delay on a rough
surface.

Multi-path In addition to surface scattering effect, the acoustic signal reflects on
both the surface and the bottom of the ocean. It even refracts due to the variation
of sound speed spatially. A traveling signal from the source to the receiver may take
different paths resulting in a delay spread in the time varying-impulse response.
These delays may vary from tens of milliseconds typically, to a hundred [14]. For
instance, in Figure 3.1, a signal s0 emitted at t0 from the source arrives to the
receiver at t2 along path 1. A second signal s1 emitted at t1 arrives along the path 1
to the receivers at t3 simultaneously as the first signal s1 along the path 2 therefore
resulting in a collision of data. Even though, multi-path is common issue for most
communication mediums and solutions and algorithms exist, implementing these
sacrifices bandwidth which is already not high underwater.
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2.2 Limitations to Underwater Vehicles

2.2.2 Energy

In addition to communication, access to energy sources underwater poses a prob-
lem. On-board, power is required for the sensors, processing, and mainly for the
propulsion. Energy usage inside an AUV can be described as follows:

E = (pp + pv + pms + ppc)×R
3600× V (KWh) (2.1)

such that :

E = on-board energy (KWh),
R = range of the survey (km),
V = velocity (m/s),
pp = propulsion power (Watts),
pv = vehicle equipment power (W),
pms = mission sensor power (W),
ppc = payload computer (W).

While processing and sensors power can be relatively low, propulsion is a function
of the diameter and the cube of the speed. Actually, the propulsion power can be
expressed as the speed of the vehicle times the drag force pp = FD × V , which
is function of the square of the speed and the surface area of the vehicle FD =
1
2ρ× V

2× S ×CD, with CD being the drag coefficient and S the surface area of the
AUV.

With today’s battery technologies, UUVs endurance range from hours to days mainly
depending on the size of the vehicle. Because larger UUVs can carry more batteries,
they can carry longer missions therefore requiring better navigation. The table
below provides a comparison of different type of batteries and their energy density,
[15].

Technology Energy Density Cost Type
Lead Acid 10-20 Wh/dm3 Low Rechargeable
NiCd/NiMH 10-30 Wh/dm3 Low Rechargeable
Alkaline 10-30 Wh/dm3 Low/High Primary
AgZn 30-50 Wh/dm3 High Rechargeable
Lithium ion 40-70 Wh/dm3 Medium Rechargeable
Lithium polymer 50-75 Wh/dm3 Medium Rechargeable
AlO2 80-90 Wh/dm3 Medium Semi-fuel cell
Hydrogen-oxygen 100+ Wh/dm3 Medium Fuel cell
Lithium 100-150 Wh/dm3 Low Primary
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Chapter 2 Localization For Underwater Vehicles

2.2.3 Localization & Navigation

Finally localization and navigation is one of the most important challenges for un-
derwater vehicles. Aerial and ground robots can heavily rely on a global positioning
system for navigation, like GPS or GLONASS. The lack of propagation of electro-
magnetic signal underwater makes commonly easy and available positioning system
unavailable, [16]. In this subsection we provide a list of most used sensors in un-
derwater positioning and navigation. It is important to note that our contribution
does not aim to replace any of these sensors but to add a layer of redundancy to
acquire a better position estimation. Then we provide a list of the most available
acoustic localization systems commercially that the first contribution of this thesis
compares to.

2.2.3.1 Sensors

Underwater, like any other environment, proprioceptive and exteroceptive sensors
are critical for better localization and navigation. Data from the sensors can either
be fused to provide better positioning or in a unique manner when no redundancy
is available.

Pressure Gauge The pressure sensor allows underwater vehicles to measure their
depth accurately. Therefore, other navigation systems only require to solve a 2D
localization problem.

Figure 2.1: Pressure Gauge.

Magnetic Compass A magnetic compass is a basic sensor just like the pressure
sensor that most UUVs are equipped with. It provides a 3D-vector of the magnetic
field thus the orientation of the vehicle in the 3D space. However, the reliability of
this sensor is questionable as some magnetic anomalies and electrical currents inside
the vehicle affect the measurements heavily. The noise is usually too strong and
cannot be discerned from Earth’s magnetic field.
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2.2 Limitations to Underwater Vehicles

Attitude and Heading Reference System An Attitude and Heading Reference
System (AHRS) combines 3 axis accelerometers, 3 axis gyroscopes and a magnetic
compass to provide a more accurate heading of the vehicle in the 3D space.

Figure 2.2: 9-Degrees Of Freedom Attitude And Heading Reference System Made
Of Inexpensive Phone Components.

Velocity Meter It is important to distinguish the two velocities that can be mea-
sured by a velocity meter underwater: velocity in the surrounding mass of water,
and velocity over the ground or absolute speed. The first velocity can be measured
using a flow sensor usually mounted in the bow of the vehicle, or approximated
from the rotation rate of the propeller. Absolute velocity can be measured using a
Doppler Velocity Log (DVL), . A DVL measures the Doppler-shift of the reflected
signals on the sea bottom that has emitted by its transceivers. A DVL typically
has 4 sensors mounted with an angle with the respect of the sea floor plane. The
measurement of the 4 sensors are combined to compute the vehicle’s speed in the
3D space.

Figure 2.3: Different Sizes Of Doppler Velocity Logs Made By LinkQuest.
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Chapter 2 Localization For Underwater Vehicles

Inertial Navigation System An Inertial Navigation System (INS) is an AHRS
that, in addition of providing the orientation of the vehicle in the 3D space, is
capable of positioning the vehicle. This can be achieved usually by fusing data
from the AHRS and other sensors in order to provide a position of the vehicle. For
instance, when the vehicle is on the surface, it can acquire an absolute position from
the GPS and then integrate the AHRS measurements underwater to estimate the
vehicle’s position. This technique is called Dead-Reckoning but is only used when
accurate and precise sensors are available or for very short mission as integrated
measurement errors lead to great drift rates, typically of few meters per minute [17].

2.2.3.2 Commercially Available Acoustic Localization Systems

Along with the previously cited sensors, underwater navigation commonly uses
acoustic beacon systems. Many solutions are widely commercially available from
different manufacturers to provide either a global or a relative positioning system.
These solutions measure the distance and/or directions of the vehicle from a set of
transponders. Most of these systems can fall into one of the following category.

LBL A Long Baseline (LBL) is an acoustic system where the distance between
the baseline stations (beacons) is long or similar to the distance between the ve-
hicle and the transponders. For the target to acquire its position, it interrogates
the baseline stations by emitting a pulse. Each station of the baseline responds
back and the position is computed from the Time-of-Flight (ToF). The baseline can
either be moored on the seafloor or the surface. Alternatively, the baseline can be
synchronized and emit pings at the same time therefore not requiring the vehicle
interrogation. This is used on the GPS Intelligent Buoys (GIB) which are basically
a LBL on the sea surface emitting synchronized pings. Because the GIBs are aware
of their global position, they can be drifting and embedding their position in the
pings.

SBL A Short Baseline (SBL) is different from the LBL by the inter-distance be-
tween the beacons, 20 to 50 meters. These systems are usually mounted on the
operation’s ship itself. Like LBL, the SBL uses ToF of the acoustic signal between
the emission and the reception of the signal and the greater the distance between
the beacons, the better is the accuracy. Therefore it is preferred to use these systems
on large ships rather than small boats.

USBL Being the easiest to use of the previous systems, the Ultra-Short Baseline
(USBL) is the most popular positioning system underwater. The USBL uses a
transceiver made of an array of transducers that are about 10cm apart, hence the
name. For localization , a pulse is emitted by the array, the transducer on the
underwater target then responds with another pulse that is detected by the array.
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2.2 Limitations to Underwater Vehicles

Figure 2.4: Long Baseline.

Figure 2.5: Short Baseline.

The round-trip propagation time provides the range between the array and the
target. The direction is measured with the phase difference between the different
components of the transceiver array, therefore providing a localization of the target
in a 3D space. If necessary, the target gets its position via acoustic modem when
available.
Surveys about these systems can be found in [18, 19, 20].
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Figure 2.6: IXBlue Ultra-Short Baseline (GAPS) And A Modem Mounted On A
Ship.

2.3 Conclusion

In this chapter we identified some the most noticeable issues that face autonomous
marine vehicles. While this domain may still rely in advances made in other areas to
improve its capabilities like battery technologies and sensors, untethered underwater
communication and localization still need to be solved as separated issues.
As it will be described later in this thesis, localization systems developed in its
scope require very little communication. Also these systems are required to compete
with the commercially available localization system such as the USBL also solving
the known issues when localizing a large number of vehicles. A brief comparison
is provided to highlight the pros and cons of the developed systems against the
available ones.
Next is an introduction to set-membership, the tool that will be used across the
thesis to solve the localization issue.
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3 Set-Membership Tools

3.1 Introduction

This chapter introduces set-membership approach to solve complex non-linear sys-
tem of equations like the ones found in underwater localization as an alternative
approach to probabilistic approaches [21, 22, 23, 24]. Previous work have been con-
ducted in this field for SLAM [25, 26, 27, 28, 29, 30], path planning [31, 32, 33],
design for robust controllers [34] or the characterization of the state evolution of
dynamic systems[35, 36].
To illustrate the tools used, the problem of planar localization [37] where a robot
is positioned at an unknown Cartesian position measures its distance to beacons at
known positions. Suppose that each beacon has a unique signature that makes it
distinguishable from the rest of the other beacons. This system can either be based
on radio-communications [38] or acoustic communications LBL [39], Figure 3.1, as
explained in the subsubsection 2.2.3.2. Distances between the robot and the beacons
can be measured using the Time-of-Flight (ToF) techniques.
The observation model is:

di =
√

(x− xi)2 + (y − yi)2, i = 1 . . . nB, (3.1)

where (x, y) are the coordinates of the robot, and (xi, yi) are the coordinates of the
beacon i, and di is the measured distance between the robot and the beacon i. This
is a classical non-linear problem often found in localization.
Plus, outliers are introduced either from measurement errors (skews on clocks, in-
terference, etc.) or from the model itself as the hypothesis considers that all mea-
surements came from direct-flight trajectories, where it is not always the case in
the reality due to reflections and refraction that might cause multi-path and other
unwanted effects of the measurements.
To solve the localization problem for this robot without any ambiguous solution, at
least three non-aligned beacons must be used. This technique is called triangulation.
Usually, the number of measurements is far more that the minimum required. The
redundancy can then either help with the precision of the position or help detect
and remove the outliers .
The section 3.2 describes how to solve this problem using the set-membership ap-
proach. The section 3.3 introduces the interval analysis techniques that will be used.
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Figure 3.1: Localization of a robot using beacons (LBL) and having multi-path.

The subsection 3.4.2 explains how to represent a problem as a set of constraints. Fi-
nally, section 3.5 introduces the algorithm used to solve the problem.
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3.2 Set-Membership Approach

The set-membership approach principle is to study a problem with bounded errors
as a hypothesis. This approach consists on finding all the compatible parameters
with the observations made and the error bounds that are supposed to be known.
Therefore, the problem consists of computing all the parameter vectors compatible
with the observations and not minimizing the error criteria.
Consider now the same system introduced earlier in this chapter where the robot
measures its distance to the beacons with a bounded error. The true distance
between the robot and a beacon i can be written dtruei ∈ dmeasuredi + [ei] where dtruei

is the real distance between the robot and the beacon, dmeasuredi is the measured
distance and [ei] is an interval enclosing the measurement error. Note that the
interval [ei] can vary from a measurement to another and from one beacon to another.
Therefore, the position of the robot can only exist within a ring centered on the
beacon i with dmeasuredi as a diameter and a width [ei]. The intersection of the rings
must then enclose the robot position.
Notice that depending on the robot position and the position of the beacons and
their number, the solution set can have random shape. For this reason, many set-
membership representations have been developed to accommodate the solution sets
and the observations. Figure 3.2 illustrates the most commonly used representation
of a set of solution: interval boxes [40], sub-pavings [41], ellipsoids [42] and polyhedral
approximations (zonotopes) [43, 44, 45]. Ellipsoids look the most familiar as most
probabilistic methods use ellipsoids to represent the error around the estimated so-
lution. In this thesis however, only interval boxes and sub-pavings will be considered
as they have been proven to be the most efficient [46].
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(a) Box Representation. (b) Sub-pavings Representation

(c) Ellipsoid Representation. (d) Zonotopes Representation.

Figure 3.2: Different representation of a set of solution.

3.3 Interval Analysis

Interval analysis considers intervals instead of real numbers. It has been first devel-
oped to tackle the issue of errors in numerical computations [40]. As real numbers
are represented by floating-points with a limited significant digits in computers, er-
rors can accumulate drastically and lead to completely false results [47, 48]. Also
before the standardization of floating-point arithmetic [49, 50] in 1985, chip manu-
facturers and libraries could use different ways to represent floating-points leading
to various errors and different solutions from a system to another. However, in this
thesis we are more interested in this method to manipulate the uncertainty of the
observations.
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3.3 Interval Analysis

3.3.1 Real Intervals

Real Interval. A real interval is a connected, closed set of R. The set of all
real intervals of R is denoted by IR. Real interval values will be denoted between
brackets to ease the reading and will be only called interval.
An interval [x] is defined as the set of the real values x that are bounded by the
lower bound x and the upper bound x:

[x] = [x, x] = {x ∈ R, x ≤ x ≤ x} . (3.2)

For example [1, 3] , {1} ,R,]−∞,−3] and ∅ are considered as real intervals. Whereas
[3, 2] , ]1, 5] and [1, 2] ∪ [3, 4] are not.

Width. The width of an interval [x] is defined by

w ([x]) = x− x. (3.3)

Midpoint. The midpoint of an interval [x] is defined by

mid ([x]) = x+ x

2 . (3.4)

Intersection. The intersection of two non-empty intervals [x] and [y] satisfies

[x] ∩ [y] =


[
max

(
x, y

)
,min (x, y)

]
if max

(
x, y

)
≤ min (x, y)

∅ otherwise
. (3.5)

Enveloping Interval. The enveloping interval of a subset X of R is the smallest
interval containing X and is denoted by [X].
For instance

[[−5, 1] ∪ [4, 5]] = [−5, 5] .

Interval Union. The interval union t of two non-empty intervals [x] and [y] is the
enveloping interval of the simple union ∪ of these intervals (that might not be an
interval), i.e.

[x] t [y] = [[x] ∪ [y]] =
[
min

(
x, y

)
,max (x, y)

]
. (3.6)

Deprivation. The deprivation \ of two non-empty intervals [x] and [y] satisfies

[x] \ [y] = {x|x ∈ [x] and x /∈ [y]} . (3.7)
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Punctual Interval. A punctual interval is denoted by {x} = [x, x].

3.3.2 Boxes

Box. A box [x] (or interval vector) is an interval of Rn. It corresponds to the
Cartesian product of n intervals i.e. a vector with interval components:

[x] = [x1]× · · · × [xn] . (3.8)

The set of all boxes of Rn will be denoted by IRn.

Bounds. The lower and upper bound of a box [x] are defined as follows

x = (x1, . . . , xn)T , (3.9)
x = (x1, . . . , xn)T . (3.10)

Width. The width of a box [x] is the width of its largest side

w ([x]) = max
i∈{1,...,n}

w ([xi]) . (3.11)

By convention w (∅) = −∞. If w ([x]) = 0, [x] is said to be degenerated. In such a
case, [x] is a singleton of Rn and will be denoted {x}.

Principal plane. The principal plane of [x] is the symmetric plane of [x] perpen-
dicular to its largest side.

Bisection. To bisect a box [x] means to split it into two separate parts following
a plane, usually the principal plane, Figure 3.3.

3.3.3 Interval Arithmetic

Given the n intervals [x1] , . . . , [xn]. A n-ary operator � can be extended to real
intervals and boxes as follows

[x1] � · · · � [xn] = {x1 � · · · � xn|x1 ∈ [x1] , . . . , xn ∈ [xn]} . (3.12)

For instance, we shall consider the case where n = 1. Consider � ∈ {+,−,×, /,max,min, . . . }
a binary operation in R. The extended operator in IR is defined as follows

[x] � [y] = {x � y|x ∈ [x] , y ∈ [y]} . (3.13)
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Figure 3.3: The bisection of [x] = [1, 2] × [−1, 3] according to its principal plane
generates two boxes [x]1 = [1, 2]× [−1, 1] and [x]2 = [1, 2]× [1, 3].

As a consequence,

[x] + [y] =
[
x+ y, x+ y

]
, (3.14)

[x]− [y] =
[
x− y, x− y

]
, (3.15)

[x]× [y] =
[
min

(
xy, xy, xy, xy

)
,max

(
xy, xy, xy, xy

)]
. (3.16)

The inversion is given by

1/ [y] =



∅ if [y] = {0}[
1/y, 1/y

]
if 0 /∈ [y]

[1/y,∞[ if y = 0 and y > 0]
−∞, 1/y

]
if y < 0 and y = 0

]−∞,∞[ if y < 0 and y > 0

(3.17)

and the division by

[x] / [y] = [x]× (1/ [y]) . (3.18)

For example:

[1, 4] + [−3, 2] = [−2, 6]
[2, 6]− [3, 6] = [−4, 3]
[1, 3]× [4, 7] = [4, 21]

[−1, 0]× [3, 9] = [−9, 0]

[1, 2] / [3, 4] =
[1
4 ,

2
3

]
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Similarly, a function f : Rn → Rm can be extended to real intervals/boxes as follows

[f ([x])] = [{f (x) |x ∈ [x]}] . (3.19)

Notice that the enveloping interval was used and not the direct image of the inter-
val/box as the later might not be an interval/box. Actually, the image of an interval
using a discontinuous function can be an union of intervals.
Examples:

sin ([−3, 8]) = [−1, 1]√
[−1, 4] = [0, 2]

[−4, 3]2 = [0, 16]

3.3.4 Tubes

Tube. A tube (or interval of function), [51, 52, 53], [x] (t) is a function from R→
IRn.

Bounds. A tube [x] (t) is bounded by two trajectories, [54], x− (t) and x+ (t) such
as ∀t,x− (t) ≤ x+ (t).

Figure 3.4: Tube Example.

Figure 3.4 shows an example of tube [x] (t) : R→ IR. The tube is bounded by the
functions x− (t) ∈ [x] (t) and x+ (t) ∈ [x] (t). x(t) : R→ R is a function included in
the tube [x] (t) that represents a real valued function.
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3.4 Contractors

3.4.1 Definitions and Properties

Contractor. An operator C : IRn → IRn is a contractor if

(i) ∀ [x] ∈ IRn, C ([x]) ⊂ [x] (contractance)
(ii) (x ∈ [x] , C ({x}) = {x})⇒ x ∈ C ([x]) (consistence)
(iii) C ({x}) = ∅ ⇒ (∃ε > 0,∀ [x] ⊂ B (x, ε) , C ([x]) = ∅) (weak continuity)

(3.20)

where B (x, ε) is the ball with the center x and the radius ε.

A box [x] is said insensitive to C if C ([x]) = [x].

From property (i), boxes can only be contracted. From property (ii), an insensitive
point x is never removed by C. From property (iii), the set of all insensitive x is
closed.

A contractor represents a subset of Rn. Set operations such as intersection, union,
inversion are easy to perform with contractors.

We have the following definitions

C is monotonic if [x] ⊂ [y]⇒ C ([x]) ⊂ C ([y])
C is minimal if ∀ [x] ∈ IRn, C ([x]) = [[x] ∩ set(C)]
C is idempotent if ∀ [x] ∈ IRn, C (C ([x])) = C ([x])
C is continuous if ∀ [x] ∈ IRn, C (C∞ ([x])) = C∞ ([x])

We define also the following operations

intersection (C1 ∩ C2) ([x]) def= C1 ([x]) ∩ C2 ([x])
union (C1 ∪ C2) ([x]) def= [C1 ([x]) ∪ C2 ([x])]
composition (C1 ◦ C2) ([x]) def= C1 (C2 ([x]))
repetition C∞ def= C ◦ C ◦ C ◦ . . .
repeat intersection C1 u C2

def= (C1 ∩ C2)∞

repeat union C1 t C2
def= (C1 ∪ C2)∞

central symmetry (Sa ◦ C) ([x]) def= Sa ◦ C ◦ Sa ([x])
axial symmetry (Su ◦ C) ([x]) def= Su ◦ C ◦ Su ([x])
translation (Tu ◦ C) ([x]) def= Tu ◦ C ◦ T−u ([x])
modulo (C mod u) ([x]) def= tiTi.u ◦ C ([x])
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3.4.2 Constraint Satisfaction Problem

Consider nx variables xi ∈ R, i ∈ {1, . . . , nx}, linked by nf relations (or constraints)
of the form

fj (x1, . . . , xnx) = 0, j ∈ {1, . . . , nf} . (3.21)

Each variable xi is known to belong to a domain Xi. For simplicity, these domains
will be intervals, denoted by [xi], but unions of intervals could be considered as well.
Let x be the vector of all the variables xi and f be the function whose coordinates
are fjs. The Equation 3.21 can then be written f (x) = 0. This corresponds to a
constraint satisfaction problem (CSP) H, which can be formulated as

H : (f (x) = 0,x ∈ [x]) . (3.22)

The solution set of H is defined as

S = {x ∈ [x] , f (x) = 0} . (3.23)

Such CSPs are not restricted to equality constraints and may also involve inequali-
ties. For instance, the set of constrainsx1 + sin (x2

2) ≤ 0
x1 − x2 = 3

can be cast into the CSP framework by introducing a slack variable x3 in order to
get the set of constraintsx1 + sin (x2

2) + x3 = 0
x1 − x2 − 3 = 0

,

where the domains for the variables are [x3] = [0,∞[, [x1] = R, [x2] = R and
the coordinate functions fj are f1 (x) = x1 + sin (x2

2) + x3 and f2 (x) = x1 − x2 −
3. Characterizing the solution set S is NP-hard in general, which means that no
algorithm with a complexity polynomial in the number of variables is available to
obtain an accurate approximation of S in the worst case.
Originally, CSPs were defined for discrete domains, i.e. the values taken by the
xis belonged to finite sets [55]. Later, CSPs were extended to continuous domains
(subsets of R or intervals) [56, 57, 58, 59, 60, 61, 62, 46]. Most of the algorithms
described in these paper use consistency techniques to find an outer approximation
of the set S of all solutions ofH. The main advantage of these techniques is that they
yield a guaranteed enclosure of S with a complexity that can be kept polynomial in
time and space.
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Contracting H means replacing [x] by a smaller domain [x′] such that the solution
set remains unchanged, i.e. S ⊂ [x′] ⊂ [x]. There exists an optimal contraction of
H which corresponds to replacing [x] by the smallest box that contains S. Notice
that the contractors defined in subsection 3.4.1 extend to CSPs. As many prob-
lems of estimation, control and robotics can represented as CSP [63, 64] and many
contractors can be designed depending on the class of the problem [65, 46], we pro-
pose to use the forward-backward contractor, also known as HC4-Revise [66], for our
localization problem.

3.4.3 Forward-Backward Contractor

The forward-backward consist of contracting the domain of the CSP H by isolating
each constraint fj separately and then breaking the constraint into a series of op-
erations involving operators and elementary operations and functions such as +, −,
×, /, exp, cos, etc. called primary constraints and their inverse.
Our localization problem can easily be put as a CSP as the associated constraint
with each beacon is written

di −
√

(xi − x)2 + (yi − y)2 = 0, i = 1 . . . nB. (3.24)

Therefore it can be broken into primary constraints by introducing intermediate
variables:

t1 = −y
t2 = yi + t1
t3 = −x
t4 = xi + t3
t5 = t22
t6 = t24
t7 = t5 + t6
t8 =

√
t7

t9 = −t8
t10 = di + t9

(3.25)

The initial domains associated with the intermediate variables ti are R. Then each
contractor related to a primitive constraint is applied until a fix point is reached.
This is the principle of constraint propagation introduced by Waltz [67]. Constraints
are then broken in two steps of contraction: one from the direct image of the function
and one from the inverse.
For instance, the square root is rewritten in two forms:

t8 =
√
t7 (3.26)

t7 = t28 (3.27)
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and the contraction steps are:

[t8] = [t8] ∩
√

[t7] (3.28)
[t7] = [t7] ∩ [t8]2 (3.29)

For constraints linking more variables such as a binary operation, the constraint is
rewritten in as many ways as possible using primary constraints. For instance, let’s
take the addition constraint t7 = t5 + t6. This constraint can be rewritten in three
different ways:

t7 = t5 + t6 (3.30)
t5 = t7 − t6 (3.31)
t6 = t7 − t5 (3.32)

To illustrate the contraction, suppose [t7] = [4,∞[, [t5] = ]−∞, 2], and [t6] =
]−∞, 3]. Then

[t7] = [4,∞[ ∩ (]−∞, 2] + ]−∞, 3])
= [4,∞[ ∩ ]−∞, 5]
= [4, 5]

[t5] = ]−∞, 2] ∩ ([4,∞[− ]−∞, 3])
= ]−∞, 2] ∩ [1,∞[
= [1, 2]

[t6] = ]−∞, 3] ∩ ([4,∞[− ]−∞, 2])
= ]−∞, 3] ∩ [2,∞[
= [2, 3]

We obtain a smaller interval for each variable: [t7] = [4, 5], [t5] = [1, 2], and [t6] =
[2, 3].
The same principle is applied to Equation 3.25 in order to contract the intervals
around the feasible values of Equation 3.1. The algorithm presented in Algorithm 3.1
and Figure 3.5 runs on every constraint, i.e. for each distance measurement. The
contractor is minimal for each constraint, but might not be minimal for whole sys-
tem due to the dependencies between the constraints. A solution might be to run
the contractor multiple times until a fixed-point is reached. A similar approach
has been used to localize a real car [68]. Figure 3.6 illustrates an example where
the forward-backward contractor is applied for each constraint successively multiple
times until a fixed-point is reached.
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Algorithm 3.1 FwdBwdDist(in : [x],[y],[xi],[yi],[di]; out : [x],[y])
1: [t1] := [t1] ∩ (− [y])
2: [t2] := [t2] ∩ ([yi] + [t1])
3: [t3] := [t3] ∩ (− [x])
4: [t4] := [t4] ∩ ([xi] + [t3])
5: [t5] := [t5] ∩ [t2]2
6: [t6] := [t6] ∩ [t4]2
7: [t7] := [t7] ∩ ([t5] + [t6])
8: [t8] := [t8] ∩

√
[t7]

9: [t9] := [t9] ∩ (− [t8])
10: [t10] := [t10] ∩ ([di] + [t9]) // with [t10] = {0} for this CSP.

// Backward Contraction
11: [t9] := [t9] ∩ ([t10]− [di])
12: [t8] := [t8] ∩ (− [t9])
13: [t7] := [t7] ∩ ([t8])2

14: [t6] := [t6] ∩ ([t7]− [t5])
15: [t5] := [t5] ∩ ([t7]− [t6])
16: [t4] := [t4] ∩

√
[t6]

17: [t3] := [t3] ∩ ([t4]− [xi])
18: [t2] := [t2] ∩

√
[t5]

19: [t1] := [t1] ∩ ([t2]− [yi])
20: [x] := [x] ∩ (− [t3])
21: [y] := [y] ∩ (− [t1])
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Figure 3.5: A Representation of the Forward Backward Contractor of
Algorithm 3.1.
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Figure 3.6: Forward-Backward Algorithm Applied To Distance Constraints Until
A Fixed Point Is Reached
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3.5 Set Inversion Via Interval Analysis

Previously in section 3.4, the solution set S of the CSP H is contracted until a fixed-
point is reached. However, it is rarely the case where the resulting box provides
enough accuracy around S.
For instance, consider the following CSP Hsin, figure Figure 3.7,

Hsin : sin [x] = 0, [x] = [−1, 7] .

		sin(t)=0		
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Figure 3.7: Applying A Contractor To The CSP Hsin Is Not Effective.

Simply applying a contractor to Hsin would not provide better accuracy around the
solutions {0}, {π}, and {2π} as two solutions bound a larger domain.
Therefore, the Set Inversion Via Interval Analysis (SIVIA) [41] was developed to
solve similar issues using sub-pavings.

3.5.1 Sub-Pavings

A sub-paving of IRn is a set of non-overlapping boxes of IRn. Compact sets X can
be bracketed between inner and outer sub-pavings:

X− ⊂ X ⊂ X+. (3.33)

The Figure 3.8 illustrates bracketing of the set

X =
{

(x1, x2) |x2
1 + x2

2 ∈ [3, 4]
}

between sub-pavings with an increasing accuracy from the left to the right. The
frame corresponds to the box [−6, 6]× [−6, 6], the sub-paving ∆X in yellow contains
the boundary of X, whereas X− is represented in red, and the rest is in cyan. Also,
X+ = ∆X ∪ X− and since X− ⊂ X, if X− is non-empty then X is non-empty, and
similarly if X+ is empty then X is empty.
Set operations such as addition, intersection, inverse image, etc. can be approxi-
mated by sub-paving operations.
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Figure 3.8: Sub-pavings characterizing a ring.

3.5.2 Inclusion Function

Let f be a function from Rn → Rm. The interval function [f ] from IRn → IRm is
an inclusion function of f if

∀ [x] ∈ IRn, f ([x]) ⊂ [f ] ([x]) . (3.34)

We define the following properties for inclusion functions

[f ] is monotonic if ([x] ⊂ [y])⇒ ([f ] ([x]) ⊂ [f ] ([y]))
[f ] is minimal if ∀ [x] ∈ IRn, [f ] ([x]) = [f ([x])]
[f ] is thin if ∀x ∈ Rn, [f ] ({x}) = f ({x})
[f ] is convergent if limk→∞w ([x] (k)) = 0⇒ limk→∞w ([f ] ([x] (k))) = 0

The Figure 3.9 illustrates these notions in the case where n = m = 2.
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Figure 3.9: Inclusion functions [f ] and minimal inclusion function [f ]∗.

3.5.3 SIVIA

Let f be a function from Rn → Rm and let Y be a subset of Rm. Set inversion is
the characterization of

X = {x ∈ Rn|f (x) ∈ Y} = f−1 (Y) . (3.35)

For any Y ⊂ Rm and for any function f admitting a convergent inclusion function
[f ] (.), two sub-pavings X−and X+such that

X− ⊂ X ⊂ X+ (3.36)

can be obtained with the SIVIA algorithm, to be described, by choosing the following
inclusion test [tf ] as defined below.

[tf ] ([x]) =


1 if [f ] ([x]) ⊂ Y
0 if [f ] ([x]) ∩ Y = ∅
[0, 1] otherwise

. (3.37)

The SIVIA algorithm works as follow:

• An initial box [x] is provided and is guaranteed to contain the solution. If no
prior information about the set is available, the box is taken very large.

• The inclusion test [tf ] is performed on [x]:

– if [tf ] ([x]) = 0, i.e. [f ] ([x]) ∩ Y = ∅, then the box [x] is discarded as the
image of [x] by [f ] is disjoint from Y. It is then guaranteed that the box
[x] not to belong to the solution set, 3.10a.

– else if [tf ] ([x]) = 1, i.e. [f ] ([x]) ⊂ Y, then the box [x] is added to the
sub-pavings of X− and X+. The box [x] is then guaranteed to belong to
the solution set, 3.10b.

– else, the box [x] is considered undetermined, 3.10c:
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3.5 Set Inversion Via Interval Analysis

∗ if the width of the box [x] is smaller than a desired precision ε, it is
then added to the sub-pavings of X+.
∗ else, the box [x] is bisected into two sub-boxes [x1] and [x2] on which

SIVIA will run again.

• The algorithm is run recursively until all the boxes are either discarded, added
to the solution set or considered too small to be evaluated.

(a) The Box Is Guaranteed Not To Be-
long To The Solution: [f ] ([x])∩Y = ∅

(b) The Box Is Guaranteed To Belong
To The Solution: [f ] ([x]) ⊂ Y

(c) The Box Is Undetermined

Figure 3.10: Inclusion Test

The SIVIA pseudo-code is summarized in Algorithm 3.2. Initially, the sub-pavings
X+ and X− are empty and [x] is guaranteed to contain the solution.
In figure Figure 3.11, an example of the application of SIVIA is presented. Initially
in the space [−6, 6]× [−6, 6], a robot is present at an unknown position. The robot
measures a guaranteed distance [3, 4] from a a beacon at a known position [1, 1]. The
SIVIA algorithm is applied to the initial box [x0] = [−6, 6]× [−6, 6]. The algorithm
outputs the following: the boxes filled with red represent the inner approximation X−
of the solution. The boxes filled with yellow represent the undetermined boundary
of the solution ∆X. The union of the red and yellow boxes represent the outer
approximation of the solution X+. The sub-paving X+ is guaranteed to contain
all the solutions compatible with the observations. Finally the blue filled boxes
represent the discarded boxes that are guaranteed not to contain any solution.
Applying now this algorithm to the previously mentioned CSP Hsin of Figure 3.7,
it is able to go beyond the wide interval [0, 2π] and output narrower sub-pavings
around the three solutions without never finding the singletons {0}, {π} and {2π}.
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Algorithm 3.2 SIVIA(in : [x],f ,Y,ε; out : X−,X+)
1: if ([f ] ([x]) ∩ Y = ∅) then
2: return
3: else if ([f ] ([x]) ⊂ Y) then
4: X− = X− ∪ [x]
5: X+ = X+ ∪ [x]
6: return
7: else
8: if (w ([x]) < ε) then
9: X+ = X+ ∪ [x]

10: return
11: else
12: bisect [x] into [x1] and [x2]
13: SIVIA(in : [x1],f ,Y,ε; out : X−,X+)
14: SIVIA(in : [x2],f ,Y,ε; out : X−,X+)

Therefore a better algorithm using both the idea of SIVIA and the power of con-
tractors has been developed.

3.5.4 SIVIA With Contractors

To characterize a set X ⊂ Rn, bisection-based algorithms, like SIVIA, need to bisect
all the boxes in all directions. For instance, for n = 20, bisecting a box in all
directions generates 220 = 1048576 boxes. Therefore, for high-dimensions, bisections
should be avoided as much as possible.

An alternative SIVIA algorithm applies a contractor C on the box [x] before bisecting
it. For a given number of bisections, the resulting sub-pavings are more precise than
those obtained with a simple SIVIA.

Any contractor that characterizes the CSP H can be used. For instance, we propose
to use two contractors Cin and Cout to characterize the sets X− and X+respectively.
A pseudo-code describing this SIVIA algorithm using contractor is described in
Algorithm 3.3. Notice that the contractor Cin characterizes the set X− by remov-
ing it from the given box, therefore the boxes [xin] ∈ X− are the result of the
deprivation between the original box and the output box by the contraction, i.e.[
xorigin

]
\
[
xcontracted

]
as shown in the algorithm.

Figure Figure 3.12 shows the output of a SIVIA algorithm using contractors on the
same example as below, where a robot measures a distance of [3, 4] from a beacon at
a position [1, 1]. Notice that the sub-pavings obtained are not regular anymore. In
this particular case, every box touches the border ∆X showing that the contractors
that has been used are minimal (also called optimal).
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Figure 3.11: Classic SIVIA. In The Space [−6, 6] × [−6, 6], A Robot Measures A
Distance [3, 4] From One Beacon At A Known Position [1, 1].

In Figure 3.13, a comparison between the three previous techniques to solve the CSP
Hsin is given. In all three cases, the algorithm is given the initial box [x] = [−1, 7].
For the first case, 3.13a, only an optimal contractor has been used, there for the
out X+ = {[0, 2π]}. The classical SIVIA, 3.13b, took 45 iterations to find X+ =
{[6.25, 6.3125] , [3.125, 3.1875] , [0, 0.0625] , [−0.0625, 0]}. Finally, SIVIA with an op-
timal contractor, figure 3.13c, took only 5 iterations to find X+ = {{2π} , {π} , {0}},
hence the importance of using SIVIA with contractors.
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Algorithm 3.3 CSIVIA(in : [x],Cin,Cout,ε; out : X−,X+)
1: [tmp] := [x]
2: [x] := Cin ([x])
3: X− = X− ∪ ([tmp] \ [x])
4: [x] := Cout ([x])
5: if (w ([x]) < ε) then
6: X+ = X+ ∪ [x]
7: return
8: else
9: bisect [x] into [x1] and [x2]

10: CSIVIA(in : [x1],Cin,Cout,ε; out : X−,X+)
11: CSIVIA(in : [x2],Cin,Cout,ε; out : X−,X+)
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Figure 3.12: SIVIA using contractors. In The Space [−6, 6] × [−6, 6], A Robot
Measures A Distance [3, 4] From One Beacon At A Known Position [1, 1].
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(a) Using Only A Contractor.
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(b) Using A Classic SIVIA.
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(c) Using SIVIA With Contractors.

Figure 3.13: Solving The CSP Hsin.
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3.6 Conclusion

In this chapter, we presented the set-membership tools that will be used throughout
this thesis. Foundations of interval arithmetic and parameter estimation given mea-
surements with bounded errors have been laid down. Figure 3.14 shows the solution
given by a SIVIA using contractors on the triangulation problem presented in the
introduction. In a space [−20, 20]× [−20, 20], a robot measures three distances d1,
d2, and d3 from three different beacons at the position (1, 1), (7,−8), and (−5,−6).

1.2 1.8 2.4 3 3.6 4.2 4.8

-1.35

-0.9

-0.45

0

0.45

0.9

1.35

Robot
Position

Figure 3.14: Triangulation Using Interval Analysis.

In the next chapter, we apply these techniques to solve a localization problem where
an underwater vehicle records an acoustic signal coming from a single beacon and
tries to locate itself using this information and fusing it with its on-board sensors
data.
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4.1 Introduction

In the previous chapters, we have established different localization systems used
for an underwater environment. Moreover, we have introduced the foundations to
solve a localization problem using the set-membership approach. In this chapter,
we present a new system to localize robots underwater and the enabling algorithm
based on interval analysis.

This underwater localization system is based on acoustic communications due to
the constraints on electromagnetic waves penetration in water. The novelty of the
system is that it fuses the on-board sensors with minimal information coming from
the stationary beacon. At a fixed position, the beacons emits a continuous acoustic
sine wave to be recorded by the moving vehicles. The vehicles within the range of
receiving the acoustic signal can then determine their position from the beacon based
on their proprioceptive measurements and the phase-shift between the recorded
signal and the original signal using synchronized clocks. The data is fused using
interval analysis techniques described in the previous chapter.

Proprioceptive sensors are widely used in underwater robotics as the main sensors
because of their accuracy. Still, to get a position of the vehicles, proprioceptive
sensors are useless without either an external help or a prior knowledge of the initial
position. In the latter case, the errors on the measurements can lead to very large
position estimation that can be optimized notably using interval analysis [29].

In this chapter, we first explain the motivations behind the development of such a
system, in section 4.2. The problem statement is explained in section 4.3. The al-
gorithm enabling the localization system is described in section 4.4. The section 4.5
shows the results of simulation and a possible implementation on real targets. Fi-
nally, the section 4.6 concludes this chapter.

The drawing conventions used for boxes in the previous chapter are used in this
chapter too, i.e. red, yellow, and cyan or white boxes represent respectively the
inner sub-paving X−, the boundary ∆X and complementary of X.
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4.2 Motivation

Many underwater localization systems have been developed over the years as we
previously exposed in a previous chapter. However, no system is widely used yet as
the GPS for instance. Therefore, there is still a possibility to develop a relatively
simple system to use for the increasing amount of underwater vehicles that are being
used for multiple purposes. Nevertheless, most of the existing systems have some
flaws that does not make them good candidates for a globally used system. Hence
the motivations behind this particular system: scalability, minimum communication,
robustness against kidnapping, no prior assumptions, ability to reconstruct the path.

4.2.1 Scalability

One of the main issues of existing underwater localization systems is the scalability
issue. Most can only track and localize a finite number of vehicles, which makes it
difficult for multi-vehicle operations. For instance, the ultra-short baseline systems
(USBL) and the long baseline systems (LBL) are limited to number of frequencies
and IDs that the system can identify. Most of these limitations come from the
fact that these systems rely on a two-way communication between the target and
the base. The base or the target, depending on the system, replies to a previously
emitted signal in order to estimate the distance from the ToF. This factor therefore
limits the number of either the targets or the refresh rate as a time division multiple
access (TDMA) method is usually required.

4.2.2 Minimum Communication

For a system to be scalable, it is then necessary for it to require as less communication
as possible. One of the success factor of the GPS, for example, is the capacity of any
device, capable of receiving and decoding the data streams from the GPS satellites,
to then find its position with a decent accuracy without having to send data back
to the satellites or any other receiver. Therefore, the receivers are more affordable
and consume very little power. A key to a reliable system can then use as minimum
communication as possible and preferably passive.

4.2.3 Kidnapping

The advancements made in proprioceptive sensors for underwater systems enable
some underwater vehicles to only rely on these sensors. Moreover these advance-
ments are actually fueled by the previously stated problems with communication
and scalability of the exteroceptive sensors. However, the kidnapping effect [69], in
case of strong currents or power loss, can have huge consequences on the estimated
position.
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4.2.4 Unknown Starting Conditions

Also, most of the algorithms require a prior estimation of the position. In case of a
continuous mission using estimator based on proprioceptive sensors, like Extended
Kalman Filter (EKF) [70] or particle filters [71], the vehicle gets a position fix before
starting the mission and/or at the end of the mission. Without a fix, the vehicle
will never be able to find its position and will at most be able to track its position
according to the starting point with a forever growing error. This is similar to a
kidnapping effect, where the vehicle is totally lost in the space and can no longer
estimate its position.

4.2.5 Path Reconstruction

Some missions may further require the capacity to replay the mission at some point
to further review the data. In missions like mine-hunting or geophysical surveys,
recalling the exact position of the vehicle is crucial for the mission to position the
mine or the geophysical characteristics desired. Therefore, the system should be able
to not only provide the position of the vehicle at an instant but also to reconstruct
the full trajectory of the vehicle.

4.3 Problem Statement

Consider an environment where a swarm underwater vehicle is on a mission. Each
vehicle is equipped with proprioceptive sensors, speed and orientation, and can
record an acoustic signal coming from a beacon at a fixed position.

Because the system proposed should be scalable and require no communication
between the vehicles and the beacon as it will be detailed later, the following example
take into account only one vehicle. However the same process can be applied to as
many vehicles that are within the range of the beacon’s signal.

4.3.1 Motion Model

Let’s use a simplified model of an underwater vehicle. Let x=[x, y, z, θ]T be the
state vector describing the pose of the vehicle, where θ is the heading of the vehicle
measured by the on-board sensor and x,y are the coordinates of the vehicle according
to a reference system centered on the beacon, and z be the depth of the vehicle,
Figure 4.1.
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x

y

z

Figure 4.1: Vehicle pose in the environment.

The motion model is

ẋ =


ẋ
ẏ
ż

θ̇

 =


v · cos θ
v · sin θ
vz
ωθ

 , (4.1)

where v is the speed of the vehicle over the horizontal plan measured by the on-board
sensor, vz is the diving rate, and ωθ is the rotation rate.
A more complicated model could be used, however compared to the observation
errors, this model errors can be neglected.

4.3.2 Phase-Lock Algorithms

For this system to be operational, each vehicles clock must be synchronized to the
beacon clock modulo ωs = 2πf , where f is the frequency of the emitted acoustic
signal. This can be achieved easily by using a classical phase-lock loop (PLL) al-
gorithm at the moment of deploying the vehicles. Example of PLL algorithms are
given in the annex ??.
The beacon emits a source signal ssource which is a pure tone at a frequency f :

ssource = sin (ωst) , (4.2)
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where t is the time of provided by the synchronized clock and ωs = 2πf is the
angular velocity.

A vehicle, at a distance d from the beacon, receives a δψ phase-shifted signal s
described by

s = sin (ωst+ δψ) , (4.3)

where δψ = −ωs dc , and c is the celerity of the acoustic wave in the environment.
Therefore the PLL algorithm will provide the phase-shift δψ that embeds information
about the position of the vehicle in the space. We will consider also that the vehicle
movements only introduces a phase shift but no Doppler effect.

Consequently, the recorded signal s is rewritten

s = sin
(
ωs

(
t−
√
x2 + y2 + z2

c

))
. (4.4)

This signal combined with proprioceptive data provides enough information to locate
the vehicle as we will demonstrate in the next section. Both equations Equation 4.1
and Equation 4.4 will be cast into a CSP and used to inverse the system to retrieve
the vehicle position.

4.4 Algorithm Description

4.4.1 Casting the problem into a CSP

First, as we would like to solve the system

HPBL :


ẋ =


ẋ

ẏ

ż

θ̇

 =


v · cos θ
v · sin θ
vz

ωθ


s = sin

(
ωs

(
t−
√
x2+y2+z2

c

))
(4.5)

in a discrete time space, Euler discretization will be used to integrate from the
continuous time space to a discrete time space.

The system Equation 4.5 is rewritten in a discrete time with a sampling rate h,
small enough to assume that all variables are constant within this interval, at an
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instant k as HPBL (k):

xk = xk−1 + h ·


vk−1 · cos θk−1
vk−1 · sin θk−1

vzk−1

ωθk−1

 (4.6a)

sk = sin
ωs

tk −
√
x2
k + y2

k + z2
k

c

 (4.6b)

The vehicle measures at each time sample its horizontal speed vk, its rotation rate
ωθk , and its vertical speed vzk . An additional sensor allows the recording of the
signal sk.

The problem can then be cast into a CSP HPBL (k) with the following inputs: [vk],
[ωθk ],[vzk ], and [sk]. Intervals were taken around the measurements to take the errors
into account.

Applying a SIVIA to the CSP will unfortunately not provide enough precision for a
reliable solution as shown in the Figure 4.2. Therefore a better approach should be
developed.
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(a) Set Of Solutions Of HPBL (k) Where The
Robot Is At (−30;−30) And The Space Is
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(b) The Same Set Of Solutions Of HPBL (k),
Zoomed Around The Vehicle’s Position.

Figure 4.2: SIVIA on HPBL (k).
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4.4.2 Algorithm

For a better precision of the vehicle position, another method is proposed with this
system. Instead of only considering the position of the vehicle at the sample k − 1
and the measurements made at the sample k, all measurements from the sample ki to
kf are considered. To do so, we propose to mix the SIVIA algorithm of solving CSPs
with the concept of tubes and contractors over tubes. This algorithm would enable
contraction over time samples, using an approach similar to non causal estimator
[72].
The algorithm described in Algorithm 4.1 uses the initial tube [x0] (t) as an input
along with :
• the contractor Cmotion that contracts according to the motion of vehicle from

a time sample to the next, from the equation Equation 4.6a,
• the contractor Cobservation that contracts according to the measurements of

the vehicle, i.e. the recorded signal, from the equation Equation 4.6b. It takes
as a second parameter a measurement.
• The tube of measurements [s] (t).

As the time domain is now considered discrete instead of continuous, tubes can be
set as vectors of interval with each component of the vector being the value of the
tube at defined moment tk. Therefore, tubes will be noted with sample indexes:
[x]i,f represents a vector of intervals, i.e. a discrete tube, [x] (t) from the sample ti
to tf with i < f . Later, we will explain why it is useful to take a limited number of
samples instead of the whole tube. Moreover, [x]j will represent the jth component
of [x]i,f , i.e. the value of the tube at the instant tj: [x] (tj).
The algorithm first puts the tube to be contracted [x0]i,f in a stack where the not
yet processed tubes are stored. Then, while the stack is not empty, a tube [x]i,f is
pulled from the stack and contracted. First, the tube [x]i,f is contracted using the
contractor Cmotion that will contract each component [x]j based on the previous
tube element [x]j−1. This first part is where the constraints propagate forward in
time, i.e. from the initial moment i to the final moment f , therefore it is called
Forward-Time Propagation. The contractor Cobservation is applied afterwards us-
ing the observations [s]i,f . Conversely, the second part where the constraints are
propagated from the final moment f to the initial moment i through the contrac-
tion using C−1

motion is called Backward-Time Propagation. Finally, just like a SIVIA
algorithm, if the tube meets the precision ε then it is added to the solution set X,
otherwise, the tube is bisected and the resulting tubes are pushed back to the stack
to be processed.
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Algorithm 4.1 TubeCSIVIA(in : [x0]i,f ,Cmotion,Cobservation,[s]i,f ,ε; out : X)
1: push [x0]i,f to stack
2: while(stack not empty):
3: pull [x]i,f from stack

// Forward-Time Propagation
4: [x]i,f := Cmotion

(
[x]i,f

)
5: [x]i,f := Cobservation

(
[x]i,f , [s]i,s

)
// Backward-Time Propagation

6: [x]i,f := C−1
motion

(
[x]i,f

)
7: if(w

(
[x]i,j < εprecision

)
):

8: X = X ∪ [x]i,j
9: continue
10: else:
11: bisect [x]i,j into [x1]i,j and [x2]i,j
12: push [x1]i,j and [x2]i,j into stack

4.5 Simulation & Implementation

We propose to illustrate this localization system first with scenarios on a simulated
environment with very few disturbances and analyze each result. The second part
will focus on the different issues that the system could face and to solve them when
possible.
For this subsection, we will suppose that the source of the signal s is always posi-
tioned at the same spot at the origin of the frame. Also, we will only be considering
the planar problem to better illustrate the examples in two-dimensional drawings.

4.5.1 Almost-Perfect Environment

4.5.1.1 Static Robot

Suppose a vehicle A at a stationary position from the source, Figure 4.3.
The Figure 4.4 shows that no matter how long the measurements tube is, the solution
set is never satisfying. Actually, the fact that the vehicle is being stationary cancels
the effect of the contractors Cmotion, therefore the resulting solution set is equivalent
to the solution set of a SIVIA algorithm applied used the contractor Cobservation.

4.5.1.2 Straight Path

Suppose now that the vehicle is moving following a straight line, Figure 4.5.
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Figure 4.3: Stationary Vehicle.

The Figure 4.6 shows different solutions provided by the algorithm depending on
the size of the tube, i.e. the number of recorded samples.

Notice that the system is incapable of deciding which of the two possible solution
sets is the true location of the vehicle, 4.6c and 4.6d. This is due to the symmetry
introduced by the square and square root functions inside the phase shift expression.
Therefore, for this system to be effective, the vehicle should preferably perform a
symmetry breaking maneuver at some point during his path.

4.5.1.3 Asymmetrical Path

In order to solve the ambiguity resulting of the distance expression in the phase-shift
expression, we propose that the vehicle performs a symmetry breaking maneuver
during its mission. Similar technique is used by the military in anti-submarine
warfare to solve what is commonly called left-right ambiguity [73].

Suppose now that the vehicle follows the path in Figure 4.7, the beginning of a
lawnmower pattern.

The Figure 4.8 shows the results of the algorithm on a vehicle following the path in
Figure 4.7 depending on the number of measurements taken into account. In figure
4.8a and 4.8b, the algorithm is not capable of converging towards the position of
the vehicle. This is due to the fact that the vehicle is considered to only follow the
straight line from its buffered data. Notice that in 4.8c, even though the vehicle
performed a turn it is not enough to solve all the ambiguities. But finally, with
enough data, the algorithm converges towards the unique set of solutions.

Note that the vehicle could perform a zigziag on its path, like the left-right maneu-
ver dictates, to faster converge towards the solution. However, this case has been
selected to show that just breaking the symmetry does not lead to the convergeance
of the solution right away.
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Figure 4.4: Stationary Vehicle Solution.

4.5.2 Real-World Conditioned Environment

In the previous subsection, we showed the performance of the algorithm in different
situations and we also shown that it performs best when the vehicle is in move-
ment and following an asymmetrical path. Nevertheless, both the observations and
the state estimation were noise-free, which is never the case in real-life. In this
subsection, noise will be introduced in the measurements and state vector to show
the behavior of the algorithm. Finally, the case where the vehicle is kidnapped is
tested and an improvement for the algorithm is proposed based on sliding horizon
techniques.

4.5.2.1 Noisy Exteroceptive Sensors

In this first scenario, noise is introduced in the measurement of the received signal
s. The new input snoisy to the algorithm is described by

snoisy = sin (ωst+ δψ + [εψ]) + [εs] , (4.7)

where [εψ] is the noise interval on the phase-shift, and [εs] is the noise interval on
the signal itself. The Figure 4.9 shows the difference between the noiseless signal s
and the different type of noise on the noisy recorded signal snoisy.
For one of the three cases, a simulation is made using the same path as in Figure 4.7.
The results of the algorithm are shown in Figure 4.10, Figure 4.11, and Figure 4.12,
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Figure 4.5: Path Of The Vehicle (7000 steps).

for a signal with noise only on the phase-shift [εψ], a signal with noise on the recording
[εs], and a signal with both the previous noises respectively.
Notice that the algorithm hardly finds any inner sub-pavings X−. It also takes more
time than previously to converge towards the right solution.

4.5.2.2 Noisy Proprioceptive Sensors

Let’s now introduce a noise [εx] on the estimation as follows:

ẋ ∈


ẋ
ẏ
ż

θ̇

+ [εx] =


v · cos θ
v · sin θ
vz
ωθ

+ [εx] . (4.8)

Such noise can be due to bad proprioceptive sensors reading speed and gyroscopic
data of the vehicle, which is usually common in low-cost vehicles.
In Figure 4.13, the result of the algorithm is shown at different moments. Note that
the algorithm no longer finds the inner sub-pavings X− and the outer approximation
is even wider.
Is such cases, the vehicle autonomy should be aware of the performance of the
algorithm, for instance by evaluating the envelop of the solution set, and decide to
take necessary maneuvers accordingly.
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4.5.2.3 Kidnapping

In this last test case, we simulate a kidnapping effect on the vehicle by deliberately
breaking the non-holonomic path that the vehicle should theoretically follow. This
can eventually happen when the vehicle is subject to strong current gusts that pushes
the vehicle away from its predefined path.
The Figure 4.14 shows the path of a vehicle that has been subject of strong gusts
that modified its path almost instantly.
Applying the algorithm to the recordings first produces similar results to the pre-
vious scenarios as shown in figure 4.15a. However, once the kidnapping occurs,
figure 4.15b, the algorithm misses the real solution and tracks a set that solves the
equations. As long as the measurements are coherent with proprioceptive measure-
ments, it will not be able to detect the anomaly introduced with the kidnapping,
figure 4.15c. However, as soon as an exteroceptive measurement is outside of the
awaited interval, figure 4.15d, the algorithm supposes that no set can be considered
a solution of the CSP HPBL.
In order to solve this issue, we propose to change the depth of the history until the
anomaly is outside of the processed window. For instance, if the kidnapping happens
at an instant kkidnapping where i0 < kkidnapping < f0, then the algorithm will loop
and reduces the size of the tube until it finds possible solution again, i.e. consider a
new moment i1 to start the tubes at, beyond the anomaly: kkidnapping < i1. This
algorithm is described in Algorithm 4.2.

Algorithm 4.2 RTubeCSIVIA(in : [x]i,f ,Cmotion,Cobs,[s]i,f ,ε; out : X)
1: TubeCSIVIA(in : [x]i,f ,Cmotion,Cobs,[s]i,f ,ε; out : X)
2: while(X is empty):

// Reduce history size
3: increase i
4: TubeCSIVIA(in : [x]i,f ,Cmotion,Cobs,[s]i,f ,ε; out : X)

In this particular case, figure 4.15e, because the kidnapping almost instantaneously
leads to an empty X, reducing the size of the history is equivalent to resetting it.
However, this is not usually the case as sometimes the outliers might be compatible
with the following readings but not with others in the future. Therefore, it might be
more interesting to only reduce the history instead of re-initializing it to gain time
on convergence towards the solution. The algorithm user might as well prefer the
reinitialize the history each time it does not find a set of solutions.
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4.5 Simulation & Implementation

(a) Buffer Size: 500 Samples.

(b) Buffer Size: 2000 Steps.

(c) Buffer Size: 5000 Samples.

(d) Buffer Size: 7000 samples.

Figure 4.6: Solution Sets Of The Vehicle Position According To The TubeCSIVIA
Algorithm. The Vehicle Is Following A Straight Line.
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Figure 4.7: Path Of The Vehicle (20000 steps).
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4.5 Simulation & Implementation

(a) Buffer Size: 1000 samples.

(b) Buffer Size: 7000 Samples.

(c) Buffer Size: 10000 samples.

(d) Buffer Size: 20000 samples.

Figure 4.8: Solutions Of The Vehicle Position According To The TubeCSIVIA
Algorithm. The Vehicle Is Following A Asymmetrical Path.
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(a) The received signal snoisy with noise εψ = 0.1.
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(b) The received signal snoisy with noise εs = 0.1.

-1.8 -1.2 -0.6 0 0.6 1.2 1.8

-1.2

-0.8

-0.4

0

0.4

0.8

1.2
Tube	of	with	E_PHI	=	0.1	and	E_S	=	0.1
sin(2*PI*1*t)

(c) The received signal snoisy with both noises εs = 0.1 and εψ = 0.1.

Figure 4.9: Representation of the received signal snoisy with different noises.
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(a) Buffer Size: 7000 samples.

(b) Buffer Size: 10000 samples.

(c) Buffer Size: 20000 samples.

Figure 4.10: Solutions Of The Vehicle Position According To The TubeCSIVIA
Algorithm with the noise [εψ]. 65
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(a) Buffer Size: 7000 samples.

(b) Buffer Size: 10000 samples.

(c) Buffer Size: 20000 samples.

Figure 4.11: Solutions Of The Vehicle Position According To The TubeCSIVIA
Algorithm with the noise [εs].66
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(a) Buffer Size: 7000 samples.

(b) Buffer Size: 10000 samples.

(c) Buffer Size: 20000 samples.

Figure 4.12: Solutions Of The Vehicle Position According To The TubeCSIVIA
Algorithm with the noises [εψ] and [εs]. 67
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(a) Buffer Size: 7000 samples.

(b) Buffer Size: 10000 samples.

(c) Buffer Size: 20000 samples.

Figure 4.13: Solutions Of The Vehicle Position According To The TubeCSIVIA
Algorithm with the noise [εx].68
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Figure 4.14: Path Of The Vehicle During Kidnapping.
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(a) No Kidnapping Yet, Solution Is
Around The Target.

(b) Just After Kidnapping, Algorithm
Lost The Target. Anomaly In Data
Not Detected.

(c) Kidnapping Not Yet Detected, Solu-
tion Is Missing The Target.

(d) No Solution Found, Anomaly With
Data Detected.

(e) Resets The Algorithm To Smaller
Buffer To Acquire Solutions.

(f) Anomaly Kept Out Of Buffer And
Localization Works Again.

Figure 4.15: Solutions Of The Vehicle Position According To The TubeCSIVIA
Algorithm With Kidnapping.
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4.6 Conclusion

In this chapter, we presented a new on-board localization technique capable of lo-
calizing an infinite number of vehicle within range of the source. This method based
on interval analysis and set-inversion only requires the vehicles to be synchronized
to the beacons clock, modulo ωs.
The algorithm behind the method relies on the previously explained basis of inter-
val analysis and combine the power of contractors and tubes to inverse a non-linear
system. The use of tubes does also allow the reconstruction of the path and does
not require the starting point to be known. Moreover, modifying the length of the
tubes robustifies the algorithm against outliers without requiring the computation-
ally expensive task Q-Intersection or Robust-SIVIA, see annex ??.
This method requires only one way communication from the beacon, therefore it
is scalable and the vehicles do not need to ping back therefore being more power
efficient. Nevertheless, producing a pure tone signal continuously over a long period
of time with today’s technologies is not yet reliable in such conditions. Luckily,
many acoustic source systems are in development [74] that will enable this method
to be used in the future.
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5 Collaborative Localization

5.1 Introduction

When missions require a multi-robot operation to collaborate for instance, usually
the knowledge of the of the collaborator pose in the environment and the task it
is performing is crucial to the success of the mission. In the previous chapter, a
system enabling each individual robot to know its position according to a fixed
beacon. However this system does not enable a swarm of vehicles to acquire the
position of each other vehicle.

In this chapter, we explore a method for the cooperative localization using range and
bearing information between the vehicles. Similar work has explored cooperative lo-
calization in aerial and ground robots [75, 76], but also for underwater robots [77].
Bethencourt thesis [78] even uses interval analysis to propagate position information
between underwater vehicles that have access to GPS and those who are perform-
ing tasks deeper underwater. However in order to use the system as presented by
Bethencourt, vehicles need to exchange the necessary data when they are within
range of communication. For this condition to be satisfied, the vehicles need to be
close to exchange the necessary information. Therefore either the vehicles on the
surface need to dive or conversely the deeper vehicle to almost surface to exchange
data. In both cases, one of the vehicles must interrupt its mission for the exchange
to happen. To tackle these issues, we propose a method based on interval analysis
but that will not require data exchange between the vehicles.

In section 5.2 the problem to be studied is stated and an interval state estimator
is described. An interval state estimator has already been used in the previous
chapter, but not explained in details. Then the Polar Contractor is introduced in
section 5.3. This contractor contracts Cartesian coordinates from polar coordinates
and inversely. The section 5.4 exposes the different case-studies where such a system
can be used. These case-studies are simulated and commented. A summary and
perspectives are provided in section 5.5.
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5.2 Problem Statement & Interval State Estimator

5.2.1 Problem Statement

Suppose a swarm of vehicles on a mission where a large area must be swept using
the on-board sensors, Figure 5.1. For the mission to be successful, the whole area
must be surveyed and preferably in the minimum required time. Therefore each
vehicle should as much as possible know its position within the formation.

Figure 5.1: Area To Be Surveyed By The Swarm

Long-baseline can offer a good positioning accuracy, provided the array is correctly
calibrated. However, the deployment, the recovery, and the calibration process is
time-consuming and therefore very expensive, especially for large areas. Therefore to
overcome the limitation of the beacon array, we propose a multi-vehicle navigation
approach similar to the one tested by Curtin and al. [79] where each vehicle is
equipped with an ultra-short baseline in the nose of a vehicle and a beacon in
the other. Nevertheless, in our approach, each vehicle would be equipped with an
acoustic range-and-bearing device that can be assimilated to an USBL. Yet, for
economical purposes and because the high number of vehicles to used, we not only
study the case range-and-bearing is available but also when the vehicles are equipped
with range-only and bearing-only sensors.

5.2.2 Interval State Estimator

For a vehicle operating in a 3D-space, the state vector is usually comprised of
the vehicle’s position in a reference frame and its orientation (Euler angles): x =
[x, y, z, φ, ψ, θ]T . Suppose that all the vehicles in swarm are almost at the same
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depth z, and do not control their roll φ, and pitch ψ. Then, it is only significant to
use the remaining variables: x = [x, y, θ]T to determine their pose.
Because even the most complex models cannot represent fully a real robot operating
in a real environment due to uncertainties, we chose the following 2D kinematic
model as the motion model to be used in this chapter:

ẋ = f (x,u) ẋ
ẏ

θ̇

 =

 uv cos θ
uv sin θ
uω

 , (5.1)

where u = [uv, uω]T is the control input vector controlling the speed of the vehicle
uv and its angular velocity uω. Figure 5.2 shows this simple kinematic model.

xk

xk-1

xk-2

xk-3

xk-4

uk-1

Figure 5.2: Simple Motion Model

In a discrete time space, we choose a sampling rate h small enough to assume the
variable are constant in this time interval. For a sample k, the discrete version of
Equation 5.1 is then:

xk = f (xk−1, uk−1) = xk−1 + h

 uvk−1 cos θk−1
uvk−1 sin θk−1

uωk−1

+ [ε] , (5.2)

where [ε] is the noise term introduced by both the discretization and the model.
Consider now the variables in IR, [xk] can be estimated from the previous state
[xk−1] and knowledge of the input [uk−1]. Nevertheless, in the case of cooperative
relative localization, the vehicles are not estimating their own state but the state
of the surrounding vehicles. Therefore, because of the underwater communication
issue, the vehicles would not be able to share their data with ease.
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In order to solve the problem of cooperative localization, additional exterocep-
tive sensors measure range (distance) di and bearing angle αi from other vehicles,
Figure 5.3.

d
α

x

y

Figure 5.3: Collaborative Localization - Range & Bearing

Given that each vehicle is equipped with a compass, conversion between the position
of a remote vehicle in the local vehicle’s frame and the range and bearing is equivalent
to the conversion between Cartesian and polar coordinates.

5.3 Polar Contractor

As the only information available about the remote vehicle is it’s range and bearing,
therefore a polar to Cartesian contractor should be considered.

This contractor would contract the Cartesian coordinates x and y and the polar
coordinates d and α according the following constraints

x = d cosα (5.3)
y = d sinα (5.4)

d =
√
x2 + y2 (5.5)

α = atan2 (y, x) . (5.6)

The section 3.4 details how to contract for instance Equation 5.3, Equation 5.4, and
Equation 5.5. Nevertheless, the contractor of atan2(.,.) for Equation 5.6 is more
complex because the function is non-monotonic and with discontinuities. Bethen-
court proposes a contractor for atan2(.,.) in his thesis [78] based on Herrero ap-
proach [80]. However, we found that using a smaller seed for the contractor and
using contractors properties subsection 3.4.1 eliminates the issue of the undefined
tan(.) around π

2 , i.e. we propose to start with a the seed set Sseed = S ∩(
IR+ × IR+ ×

[
0, π4

])
.
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Since in Sseed

(x, y, α) ∈ Sseed ⇔


x = y cot (α)
y = x tan (α)
α = arctan

(
y
x

) ,
the minimal contractor is

Catan2seed
([x] , [y] , [α])→


(
[x] ∩ IR+

)
∩
((

[y] ∩ IR+
)
· cot

(
[α] ∩

[
0, π4

]))(
[y] ∩ IR+

)
∩
((

[x] ∩ IR+
)
· tan

(
[α] ∩

[
0, π4

]))
(
[α] ∩

[
0, π4

])
∩ arctan

(([y]∩IR+)
([x]∩IR+)

)
 .

From this seed, it is now possible to build a contractor for S[π4 ,π2 ] = S∩
(
IR+ × IR+ ×

[
π
4 ,

π
2

])
using axial symmetry:

Catan2[π4 , π2 ]
([x] , [y] , [α]) = Catan2seed

(
[y] , [x] , π2 − [α]

)
,

and then a contractor for S[0,π2 ] with the union:

Catan2[0, π2 ]
= Catan2[π4 , π2 ]

∪ Catan2seed
,

and so on for the domain IR×IR×[−π, π] where atan2 is defined. The Algorithm 5.1
details these steps that are based on contractor operation defined in the section 3.4.
Figure 5.4 shows the result of the SIVIA algorithm applied on the space [−10,−10]2.
Provided the angle [0.5, 1.0] as an input, the algorithm is capable of providing both
the inner and outer approximation of the solution set.
Even so, the angle should not be limited to [−π, π] but rather to IR not to constraint
any sensor on providing angles in the specific interval and having to deal with the
discontinuity. Let’s then define the contractor Cangle for S ⊂ IR3 as Cangle =(
Catan2[−π,π]

([x] , [y] , [α] mod 2π)
)
, Algorithm 5.2.

Finally, the contractor for Cartesian and polar coordinates is built using Cangle an
other contractors, Algorithm 5.3. Figure 5.5 shows the result of SIVIA algorithm
applied on a box to convert polar coordinates to Cartesian’s. However, this contrac-
tor is not minimal but is sufficient as range and bearing will be used separately in
this case. A minimal polar contractor can be found in [81].
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Algorithm 5.1 Catan2 ([x] , [y] , [α])

1: if([α] ⊂
[
0, π4

]
):

2: return


(
[x] ∩ IR+

)
∩
((

[y] ∩ IR+
)
· cot

(
[α] ∩

[
0, π4

]))(
[y] ∩ IR+

)
∩
((

[x] ∩ IR+
)
· tan

(
[α] ∩

[
0, π4

]))
(
[α] ∩

[
0, π4

])
∩ arctan

(([y]∩IR+)
([x]∩IR+)

)


3: else if([α] ⊂
[
π
4 ,

π
2

]
):

4: Catan2
(
[x] , [y] , π2 − [α]

)
5: else if([α] ⊂

[
0, π2

]
):

6: Catan2
(
[x] , [y] ,

(
[α] ∩

[
0, π4

]))
∪ Catan2

(
[x] , [y] ,

(
[α] ∩

[
π
4 ,

π
2

]))
7: else if([α] ⊂

[
π
2 , π

]
):

8: Catan2 (− [x] , [y] , π − [α])
9: else if([α] ⊂

[
−π,−π

2

]
):

10: Catan2 (− [x] ,− [y] , π + [α])
11: else if([α] ⊂

[
−π

2 , 0
]
):

12: Catan2 ([x] ,− [y] ,− [α])
13: else if([α] ⊂ [0, π]):
14: Catan2

(
[x] , [y] ,

(
[α] ∩

[
0, π2

]))
∪ Catan2

(
[x] , [y] ,

(
[α] ∩

[
π
2 , π

]))
15: else if([α] ⊂ [−π, 0]):
16: Catan2

(
[x] , [y] ,

(
[α] ∩

[
−π,−π

2

]))
∪ Catan2

(
[x] , [y] ,

(
[α] ∩

[
−π

2 , 0
]))

17: else if([α] ⊂ [−π, π]):
18: Catan2 ([x] , [y] , ([α] ∩ [−π, 0])) ∪ Catan2 ([x] , [y] , ([α] ∩ [0, π]))
19: else if([α] ⊂ [−π, π]):
20: Catan2 ([x] , [y] , ([α] ∩ [−π, 0])) ∪ Catan2 ([x] , [y] , ([α] ∩ [0, π]))

Algorithm 5.2 Cangle ([x] , [y] , [α])

1: if([α] ⊂ ([−π, π] mod 2π)):
2: Catan2 ([x] , [y] , [α])
3: else:

\\ The following handles the discontinuity.
4: Catan2 ([x] , [y] , ([α] mod 2π) ∩ [0, π])∪Catan2 ([x] , [y] , ([α] mod 2π) ∩ [−π, 0])
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Figure 5.4: SIVIA Algorithm Applied Using The Contractor Catan2 On A Box
([−10, 10] , [−10, 10] , [0.5, 1]).

Algorithm 5.3 Cpolar ([x] , [y] , [d] , [α])

1: Cangle ([x] , [y] , [θ])

2: [d] = [d] ∩
(√

[x]2 + [y]2
)

3: [x] = [x] ∩ ([d] cos [α]) ∩
(√

[d]2 − [y]2
)

4: [y] = [y] ∩ ([d] sin [α]) ∩
(√

[d]2 − [x]2
)
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Figure 5.5: SIVIA Algorithm Applied Using The Contractor Cpolar On A Box
([−10, 10] , [−10, 10] , [6, 8] , [0.5, 1]).
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5.4 Cooperative Localization

Suppose now a swarm of robots on a mission. Each robot is equipped with on-board
proprioceptive sensors and exteroceptive sensors depending on the case study below.
Unlike single or small multi-vehicle missions, a large scale swarm mission must be
as cost efficient as possible thus embedding the vehicles with only the necessary
sensors. Below are the different scenarios that will be studied and then simulated.
The cases range from the most expensive, vehicles equipped with range and bearing
sensors and acoustic modems, to the least expensive setups, vehicles equipped with
only range systems and without inter-vehicle communications.
As the mission are performed underwater, a comparison is done between a commu-
nication enabled scenario and a scenario where no localization data is exchanged
between the vehicles. While acquiring range and bearing data, vehicles are able to
differentiate between the neighbors. Some might consider the fact that exchanging
identifiers is a kind of communication between the vehicles, which is true. However
by communication is this chapter we mean the exchange of information about the
state of the vehicles between each swarm element.
The comparison highlights the importance of the exchange of data in the outcome
of such a collaborative positioning and also that it is still possible to acquire a
relatively good positioning without communications when the vehicles collaborate
by maneuvering to avoid positioning ambiguities.

5.4.1 Range & Bearing Measurements

In this scenario, each vehicle of the swarm is equipped with proprioceptive sensors
that provide rough measurements from the vehicle state, and exteroceptive sensors
that estimates both the range and the bearings from its neighbors. When exchange
of information is available between the vehicles, the vehicle j can send its commands
uj to the vehicle i to help with the localization, and vice versa.
For a robot i ∈ {1, . . . ,m} in the swarm, that receives an acoustic ping p ∈
{1, . . . ,pmax} from a neighbor robot j ∈ {1, . . . ,m}, we consider the following
discrete state equations at the instant k:

xik = f (xik−1, uik−1)

ypk =
[
dpk αpk

]T
= g

(
xik,xjk

)
xjk = f

(
xjk−1, ujk−1

)
with f being the evolution function of the vehicle that is function of its previous state
xik−1 and its command uik−1. The measurements ypk =

[
dpk αpk

]T
are computed

using the range and bearing observation function g according to the neighboring
vehicle.
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As shown in Figure 5.3, a transformation form the global frame, where the Equation 5.1
describe the vehicles movements, to the local frame of the vehicle localizing its neigh-
bor. We suppose that the vehicles can measure their orientation via sensor, a com-
pass for instance. Therefore, the transformation needed is only related to the trans-
lation from the global frame to the local frame xi

j =
[

[xj]− [xi] [yj]− [yi] [θj]
]T
,

then the evolution function of the relative vehicle position and observation function
are

xi
jk = f ′

(
xi

jk−1, ujk−1, uik−1

)
, (5.7)

yi
pk = g′

(
xi

jk

)
. (5.8)

Suppose now a swarm of only two vehicles performing a sweep of an area. The
path followed by each vehicle are shown in Figure 5.6. Considering any number of
vehicles on the swarm does not affect the localization because vehicles at most only
exchange their own commands ui and no position information.
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Robot	1

Figure 5.6: Path of the vehicles during collaborative mission.

In this scenario, we suppose that the vehicle Robot 0 in the figure Figure 5.6 is
performing a localization on the vehicle Robot 1. To do so, the vehicle uses the
algorithms TubeCSIVIA explained in the previous chapter, section 4.4. The polar
contractor is used in this case because the range and bearing measurements are
equivalent to polar coordinates in the vehicles frame. Furthermore, we suppose that
the measurements are subjects to noise: [εd] for the range, and [εα] for the bearing.

In Figure 5.7, the algorithm shows a slightly better localization when all the mea-
surements are used to find the solution, 5.7b, compared to only using a unique
measurement, i.e. the last one in this case, 5.7a.
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5.4.2 Bearing Only

In this scenario, we suppose that the vehicles only have bearing information about
their neighbors. Therefore, as shown in 5.8a, Robot 0 is not capable of precisely
locating its neighbor with such few information. Here, the usefulness of the data
through the horizon is shown in 5.8b. Where the position of the neighboring ve-
hicle was vague and unbounded in the first case, it is now bounded thanks to the
contractions from all the measurement throughout the buffer.

5.4.3 Range Only

In this final scenario, vehicles only have access to range information from the neigh-
boring vehicles. Using only a measurement to locate the neighboring vehicle trans-
lates to a disk, 5.9a. However, using multiple range measurements throughout the
horizon leads to a more accurate localization for the targeted vehicle, 5.9b.
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(a) Only Using Last Measurement.
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(b) Using Measurements Throughout The Path.

Figure 5.7: Range & Bearing Localization With Exchange Of Information With
Noise Values [εd] = [−5, 5] And [εα] = [−0.1, 0.1] rad.
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(a) Only Using Last Measurement.
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(b) Using Measurements Throughout The Path.

Figure 5.8: Bearing-Only Localization With Exchange Of Information With Noise
Values [εα] = [−0.1, 0.1] rad.
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(b) Using Measurements Throughout The Path.

Figure 5.9: Range-Only Localization With Exchange Of Information With Noise
[εd] = [−5, 5].
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5.5 Conclusion

In this chapter, we presented a way for a swarm of vehicles to mutually localize itself
relatively. This method is based on the same algorithm described in the previous
chapter, using set-membership methods and propagating the acquired information
throughout a window of time leads to a better set of solution of the equation system.
In these scenarios, we supposed that each vehicle can acquire range or bearing or
both depending on the sensors on board. These range and bearing information are
computed from pings that occur several times during the simulation/mission. Be-
cause these range and bearing information can be considered as polar coordinates
of the neighboring vehicles, a polar contractor has been developed to solve the lo-
calization problem in the Cartesian space. When only one of the two information is
provided, range or bearing, the algorithm considers the value of the other measure-
ment as infinite, therefore always being able to reduce the search space. Because of
the environment constraints, vehicles are not allowed to exchange data, therefore a
comparison between the cases where vehicles are aware or not of the behaviors of
the others is also provided for each scenario.
This relative cooperative localization technique has the advantage of being scalable
for large number of vehicles. For instance, one can imagine a mission where swarm
of vehicles is surveying an area. At predefined moments, each vehicle can emit a
signed ping that will be received by the surrounding vehicles. Each vehicle then can
compute range or bearing, depending the on-board sensors, of the other vehicles and
can locate them in its frame. This way, with post-processing, the position of each
vehicle can be retrieved through the mission by intersecting the recorded position
of each vehicle in the different frame and projecting the whole on the global frame
when possible.
A survey with 16 AUVs is planned on the red sea in December 2015 that will serve
as field test for this algorithm. The vehicles will be tracked from the surface with
an USBL to later compare the output of the algorithm with the real position of the
vehicles.
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As Autonomous Underwater Vehicles are getting broader attention, many industries
consider them now more mature and useful in many cases. However, even if most of
the known barriers are getting surpassed by advances in fields like energy, embedded
computers, and resistance of materials to pressure, the use of these vehicles is still
limited by the localization and navigation issue. Actually, one of the most important
concerns by the users of this technology is to be able to position the recording data
back on a map, whether this data is bathymetry of a sonar or seismic data in the
particular case of Oil & Gas exploration industry.

This thesis starts by providing an overview of the challenges that lead to it. First,
the recent democratization of the unmanned vehicles that expanded to different areas
from air to land and marine robots. We provide an insight on the most common
vehicles being deployed in the marine environment. Then, we introduce the context
of Oil & Gas exploration and particularly marine seismic acquisition where the use
of hundreds of AUVs is now being considered. The hypothesis, constraints and
objectives are developed in the end of the first chapter.

In the second chapter, challenges and limitations faced by all underwater vehicles
are described. These limitations range from the communication, due to the absence
of electromagnetic waves and the use of the very noisy medium of acoustics, the
energy availability, to finally the localization and navigation problem tackled with
this thesis. We also provided a list of the most common and reliable systems that
this thesis challenges.

The following chapter introduced the basics of Set-Membership methods that are
the foundation of this thesis. The philosophy of using intervals instead of scalars
and their arithmetic is detailed. Then, contractors and Set Inversion Via Interval
Analysis, the main tools used through this thesis, are described.

The first contribution of this thesis is explained in the fourth chapter. There, we
propose an innovative system for underwater localization that is based on a single
beacon emitting a continuous sine wave for a certain period of time. Using the
phase shift, introduced by the movement of the vehicle, and the proprioceptive
measurements of the vehicle, the latter is capable of converging to a set of solutions
that satisfy the evolution and observation equations. The algorithm uses interval
analysis and contractors over a sliding horizon to converge toward the solution. We
showed that the algorithm has poor performance when the vehicle is stationary or
follows a straight line. However, as soon as the vehicles performs a maneuver that
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breaks the symmetry of the solution sets , the algorithm is capable of eliminating all
the sets that are incoherent with the observations. We showed also the advantage
of using the sliding horizon with different buffer sizes. The latter technique allows
the vehicle to navigate continuously without having to resurface when an anomaly
happens. We detailed the case where the vehicle is kidnapped from a position to
another. In that case, we showed how the algorithm fails to follow the vehicle in
the beginning as the observations were coherent for an interval of time ignoring the
anomaly. But as all the observations in the horizon are taken into account to produce
the set of possible positions, the algorithm then discovers that an anomaly is present
and reduces the number of observations therefore sliding the search horizon.
The second contribution is detailed in the fifth chapter. We proposed a system
of inter-vehicle localization for a swarm of underwater vehicles. The localization
approach in this chapter is different from the previous chapter as now it is fully
relative to the other neighboring vehicles within range of the signal. We proposed
to use the same algorithm as the previous chapter with a sliding horizon but with
different contractors this time. In this chapter, the vehicle localizes a target vehicle
within observation range. The vehicles uses first range and bearing information to
localize the target. Then we explore the two cases where only bearing or range
information is available. In these scenario we also suppose the cases where the
vehicles do not exchange information. We introduce the polar contractor that is
used in this case as range and bearing provide polar coordinates that need to be
converted into Cartesian coordinate system.
Based on this thesis, future work can introduce better performance of these tech-
niques. As of now, the performance of the algorithms highly depend on the handling
of tubes and their contractors that have not been optimized. Furthermore, because
of the lack of real data, both contributions still need to be tested on the field as
many challenges might not have been considered. For instance, the phase-based
localization still have to surpass the challenge of generating a continuous sine wave.
Today’s acoustic emitter are not rated for continuous emission over a long period and
recent advances in underwater speakers are still too expensive to be deployed. As
for the collaborative localization, the hypothesis of forever synchronous clocks needs
to be challenged and resolved. Moreover, across the thesis, we supposed that the
underwater environment is homogeneous and uniform with the absence of thermo-
cline and only considered these characteristics as probable errors in measurements
introducing noise. One may argue that such phenomena has further effect on the
measurements to only be considered as noise.
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