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A Geometrical Approach to Estimate the
Coverage Measure of the Area Explored

by a Robot.

Maria Luiza Costa Vianna

2023
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Résumé : Les robots mobiles trouvent des applica-
tions dans des environnements domestiques, ainsi
que dans l’agriculture, où ils permettent une agricul-
ture de précision, et dans la logistique, garantissant le
transport efficace de matériaux et de marchandises.
De plus, ils jouent un rôle crucial dans l’exécution
d’une large gamme de tâches difficiles ou dange-
reuses pour les humains, étant essentiels dans les
missions de couverture de zone.
L’objectif principal d’une mission de couverture de
zone est de traverser et d’explorer systématiquement
une zone définie, en ne laissant aucune région inex-
plorée. Ces missions sont souvent entreprises dans
des environnements présentant des risques significa-
tifs pour les opérateurs humains, tels que des champs
minés ou des zones sinistrées. Dans ce contexte, les
missions de déminage et les opérations de recherche
et de sauvetage sont des exemples de missions de
couverture de zone avec un caractère critique pour la
sécurité.
Une connaissance précise de la zone explorée par un
robot mobile est cruciale pour évaluer l’achèvement
de ces missions. Certaines applications peuvent
également nécessiter que le robot revisite une zone
d’intérêt. Dans ce cas, pour vérifier si la mission est

complète, il est nécessaire de déterminer combien de
fois chaque partie de l’espace a été dans la zone de
détection du robot.
Dans ce contexte, nous introduisons le concept de
mesure de couverture, qui représente combien de
fois une partie de l’environnement a été explorée
par un robot mobile au cours d’une mission. En plus
d’évaluer les missions où il faut revisiter des points
d’intérêt, la mesure de couverture est également utile
pour l’optimisation des trajets et pour améliorer l’effi-
cacité des algorithmes de localisation dans des en-
vironnements homogènes, tels que l’environnement
sous-marin.
De plus, nous établissons une relation entre la me-
sure de couverture et le degré topologique. Cette rela-
tion nous permet de proposer une nouvelle approche
pour estimer la zone explorée en se basant sur les
propriétés topologiques de l’environnement qui a été
observé. L’incertitude associée à la mission est prise
en compte grâce à l’utilisation de l’analyse par inter-
valles dans la formalisation du problème.
La théorie et les algorithmes développés dans cette
thèse sont illustrés par des expériences en conditions
réelles dans l’environnement marin.
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Abstract : Mobile robots are increasingly being de-
ployed across different domains. These robots find
applications in domestic settings, as well as in agricul-
ture, where they enable precision farming, and logis-
tics, ensuring the efficient transportation of materials
and goods. Moreover, they play crucial roles carrying
out a wide range of challenging tasks that would be
too dangerous or difficult for humans, being pivotal in
area-covering missions.
Area-covering missions refer to tasks where the pri-
mary objective is to systematically traverse and ex-
plore a defined area, leaving no region unexamined.
Additionally, they are often undertaken in environ-
ments that pose significant risks to human operators,
such as minefields or disaster-stricken areas. In this
context, examples of safety-critical area-covering mis-
sions are Mine Countermeasure (MCM) missions and
Search and Rescue (SAR) operations.
Accurate knowledge of the area explored by a mo-
bile robot is crucial for assessing the completeness of
these missions. Some applications might also require
the robot to revisit an area of interest, in this case, to

verify the completion a mission, one has to be capable
of determining how many times each part of the space
has been in the robot’s range of detection.
In this context, we introduce the concept of coverage
measure, that represents how many times a part of
the environment was explored by a mobile robot du-
ring a mission. In adition to evaluating revisiting mis-
sions, the coverage measure is also useful for path
optimization and it can be valuable for improving the
efficiency of localization algorithms in homogeneous
environments, such as the underwater environment.
Furthermore, we establish a relation between the co-
verage measure and the topological degree. This re-
lation allows us to propose a novel approach for es-
timating the explored area based on topological pro-
perties of the environment that has been observed.
Uncertainty associated to the mission in noisy envi-
ronments is taken into consideration through the use
of interval analysis in the problem formalization.
The theory and the algorithms developed in this thesis
are illustreated through real world experiments in the
marine environment.
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Chapter 1

Introduction
"Given what you know about the world, where should

you move to gain as much new information as
possible?" - Brian Yamauchi [1]
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A mobile robot is a specialized type of robot that, unlike stationary robotic
systems that remain fixed in one location, has the capability to change its po-
sition and navigate within its environment [2]. This characteristic allows this
type of robots to mimic human capabilities, and they are increasingly being
used to carry out dangerous tasks that otherwise would put human lives at
risk, such as bomb disposal [3], firefighting [4], and Search and Rescue (SAR)
missions [5]. Their use in these situations can considerably reduce the risk
to human responders while providing more detailed and accurate information
about the situation. Additionally, these robotic platforms can be equipped
with specialized tools that enable them to perform a wide range of tasks that
would be difficult or impossible for humans to do. For example, thermal cam-
eras for fault detection on transmission lines [6], and soft grippers for a non-
destructive sampling of reefs in deep waters [7].

In the context of these operations, mobile robots often need to perform
an area-covering mission. During these missions, the robot must completely
cover, with its sensors or tools, an area of interest. On a domestic scale, a
simple example of area-covering mission can be found in autonomous vacuum
cleaning robots. These robots autonomously navigate indoor environments,
covering the entire area to remove dust and debris.

These missions are also employed for thoroughly searching or monitoring a
designated part of the environment, allowing a complete understanding of the
situation or identification of potential threats or opportunities. For example,
we have Mine CounterMeasure (MCM) missions [8] and SAR operations. For
the latter, robots are deployed to explore areas stricken by disasters, such as
earthquake-affected areas or wildfires. Their mission is to cover a whole area of
interest, searching for survivors, assessing the extent of damage, and delivering
life-saving supplies.

Environmental monitoring is another significant application of area-
covering missions. Robots are deployed in natural ecosystems, including forests
and oceans, to collect data on environmental conditions, wildlife populations,
and pollution levels. This information is essential for conservation efforts and
scientific research. In [9], for example, an Autonomous Underwater Vehicle
(AUV) was deployed for collecting observations over regular time intervals
within an area of interest. The objective was to examine the impacts of hu-
man interventions and climate change on benthic organisms, which inhabit the
seafloor.

In this thesis, our main motivation is area-covering missions for ocean ex-
ploration, even though the research conducted can be applied to different sce-
narios. Throughout the remainder of this chapter, we discuss our main mo-
tivations to make this environment our primary focus and the importance of
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developing methods for efficient marine exploration. We then present the spe-
cific challenges encountered in this domain, providing an insight into how this
thesis finds application in this scenario. Finally, we summarize the principal
contributions of this study, and we present an overview of this document’s
roadmap.

1.1 Planet Ocean

"How inappropriate to call this planet Earth when it is quite clearly
Ocean." (- Arthur C. Clarke)

Oceans cover around 71% of the Earth’s surface and hold about 96.5% of
all Earth’s water [10]. Life on Earth is thought to have originated in the ocean
over three billion years ago, and the ocean continues to support life on earth.
Phytoplankton, for example, are responsible for producing a significant portion
of the world’s oxygen, around 50% according to scientists [11].

Furthermore, oceans are an essential source of sustenance for millions of
people globally, playing a central role in maintaining food security.

Figure 1.1: Image credits: [12]. Change in sea surface temperature between
1901 and 2020.

However, the stability of this security is increasingly threatened by the ris-
ing temperatures of our oceans, as depicted in Figure 1.1. The consequences of
ocean warming are profound, causing disruptions within the marine food chain
and elevating the risk of fishery collapses [13]. Such an occurrence would have
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severe humanitarian consequences for our planet. These potential crises en-
compass not only food scarcity in coastal regions but also political instabilities
and conflicts arising from competition for food.

To address these challenges and mitigate the impacts of ocean warming,
gathering data and monitoring are crucial. Understanding how ecosystems
respond to these changes is essential for recognizing and planning future re-
sponses. And while data collection alone does not resolve the issue of ocean
warming, it allows the development of solutions to reduce the impacts locally.
For example, through the implantation of artificial reefs for improving coral
recovery [14].

Underwater exploration also holds great significance in the military sector.
According to the US Navy [15], Autonomous Underwater Vehicles (AUVs)
play a vital role in various operations, including Intelligence, Surveillance, and
Reconnaissance missions, MCM missions, Anti Submarine Warfare, among
others.

Figure 1.2: Image credits: ECA Group. AUV inspecting underwater mine.

In Figure 1.2, we observe an AUV from ECA Group engaged in an MCM
mission, where it is employed on the recognition of an underwater mine. Re-
placing human effective in MCM tasks is essential for reducing risks in these
operations. In addition, mines often contain explosives and hazardous materi-
als. When they deteriorate, they can release toxic substances into the marine
environment [16]. Therefore, MCM missions are essential, not only to min-
imize possible human loss and to reduce humanitarian hazards, but also for
minimizing environmental impacts.

Despite the vital importance of underwater exploration, we still know rel-
atively little about the undersea domain. More precisely, according to the
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American National Oceanic and Atmospheric Administration (NOAA), more
than 80% of the oceans remain "unexplored" [17].

In fact, satellites allowed us to map the whole ocean floor with a small
resolution, enough to identify bumps and dips on the seafloor. A more precise
map was made by sonar systems embedded aboard ships. However, since
these systems can only measure to a certain distance range below the ship in
which they are mounted, less than 20% of the oceans were mapped under this
configuration, justifying the amount of seabed considered to be unexplored by
researchers.

Earth’s Oceans Venus

Mars
The Moon

5000m

100 m
1 m

Relative-sized areas mapped at different levels of detail

100 m

100 m

20 m

0.3 m

100 m
1 m

7 m

Figure 1.3: This comparative figure demonstrates how much of each one of
these regions have been explored and with what precision. For example, 95%
of the surface of Venus has been explored with a precision of up to 100m, the
other 5% remains unexplored. And the whole surface of the moon has been
explored with a precision of up to 7m. Credits to Jeffrey Marlow.

For this reason, it is common to hear that we know less about our oceans
than about the surface of other planets. Figure 1.3 provides a comparison
between the precision of the available mapping of earth’s oceans and the map-
ping of Venus, Mars and the moon. We can see on the image that the entirety
of the earth’s oceans has been mapped with up to 5km of precision, this cor-
responds to satellite mapping. A smaller part, has a precision of up to 100m,
corresponding to areas mapped by sonar systems embedded aboard surface
vehicles. This precision is still not enough for allowing an identification of
small size features on the ocean floor such as deep sea vents, underwater mines
and wreckage of missing ships and air-crafts. For that, we need to get sonar
systems closer to the seabed, for example, using submersibles. However, at
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present, very little of the ocean floor has been mapped on these conditions,
with a precision of up to 1 meter.

From June 2014 to June 2017, a survey of 120000 km2, approximately 0.03%
of the ocean’s surface, was performed in the search of the Malaysian Airlines
Flight 370, which disappeared on March 2014 [18]. Although some first indices
of debris were supposedly found in 2023, the remains of the wrecked aircraft
have still not been found.

Figure 1.4: Image credits: [19]. Difference in resolution between multi-beam
sonar and satellite-based bathymetry.

Seabed mapping for the Indian Ocean on this area before this search had an
average resolution, per pixel, of more than 5km2. The new map has a resolution
smaller than 0.01 km2 [19]. In Figure 1.4 we can see the difference between
the sonar bathymetry, acquired during the search, and the previous satellite-
derived bathymetry, illustrating how submersible robotic systems improve the
mapping quality.

The mission for the search of this aircraft was classified as the most ex-
pensive search in aviation history, with a huge deployment of maritime means.
Its unfortunate lack of success demonstrates the complexity of exploring the
underwater environment, that presents many challenges. Some of these chal-
lenges are now discussed.
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Challenges

High pressure, corrosive salinity, that can also affect buoyancy, and extreme
temperature variations in the water column. These are only some of the many
challenges encountered in the underwater environment. Adding to this list of
challenges is the limited propagation of electromagnetic waves in water. Unlike
in the air, where electromagnetic waves can travel long distances with mini-
mal attenuation, water significantly attenuates these waves. As a consequence,
GPS signals are practically unusable underwater, making precise positioning,
navigation, and mapping of underwater environments complex tasks. As a
result, underwater vehicles often need to rely on alternative navigation meth-
ods like inertial navigation systems [20] and acoustic navigation [21]. While
these alternatives have shown promising results [22], they often require com-
plex technologies, that have to be robust and precise enough for dealing with
the challenging underwater conditions.

Communication underwater is also a significant challenge resultant to the
lack of electromagnetic wave propagation. Consequently, data collected by un-
derwater vehicles typically must be stored onboard until the vehicle resurfaces
because real-time transmission is often unfeasible. All of these constraints re-
sult in systems that have to carry onboard precise sensors, expensive navigation
systems, and storage solutions.

Moreover, observing the underwater environment presents its own set of
difficulties. Inexpensive sensors like cameras provide high-dimensional mea-
surements with rich information [24]. Furthermore, cameras are a natural
choice for replicating human perception, and are probably the best sensor to
replace the human eyes in autonomous systems. However, due to the poor
visibility and the homogeneity of features in the underwater environment, ex-
tract meaningful information from underwater cameras is very challenging, as
exemplified in Figure 1.5. Acoustic imagery, acquired through sonar systems,
is often preferred over cameras in this context, but sonar data is less intuitive
and often requires specialized analysis. Chapter 2 is dedicated to presenting
sonars and its own challenges.

The consequence of all of this is a ratio cost/exploration for underwater
robots that is usually too high and simply not accessible. For covering very
small areas, the cost can be very elevated. And we have to add to this the
cost of the deployment of the robots, that usually requires a team of engineers
offshore and big ships to carry all the necessary material, see Figure 1.6.

Reducing the cost of exploration can be achieved by enhancing the robust-
ness of embedded navigation and observation algorithms in submersibles, as
well as by improving the autonomy of these robots to adapt to new scenar-
ios. A robot with the ability to adapt and reconfigure its mission without the
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(a)

(b)

Figure 1.5: Image Credits: Dataset Aqualoc [23] (a): Water turbidity; (b):
Lack of diversity in textures.
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Figure 1.6: Image credits: DGA/GESMA. Deployment of the AUV Daurade
in the roadstead of Brest from a ship.

necessity of resurfacing and waiting for human intervention will conserve its
battery power and discretion.

As we increasingly rely on algorithmic solutions, however, the need for
guarantees becomes imperative. It is essential to be sure about how the system
will perform prior to deployment. In other words, once a mission has been
defined, it is crucial to thoroughly verify potential outcomes while accounting
for all associated uncertainties. This approach minimizes risks, enhances the
predictability and success of underwater missions and reduce costs by avoiding
non-conclusive missions and possible loss of material.

The context of this thesis is stated within this framework, aiming to create
guaranteed methods for verifying area-covering missions. The primary em-
phasis continues to be on the underwater environment, yet the theories and
algorithms developed during this work can be extended to various other sce-
narios. Before presenting the thesis context we present some important terms
in robotics that will be used through this document.

1.2 Robotics Terminology

Making a system autonomous means to make it capable of performing its
tasks without human intervention. To achieve this level of autonomy, we must
furnish the machine with sufficient means to perceive its surrounding environ-
ment, mirroring the natural way in which humans interact with the world.
With this purpose, in robotics, we use sensors, that work as a replacement of
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our senses and natural perception. We can classify sensors according to the
type of data they gather:

• Proprioceptive Sensors: These sensors acquire data about the robot it-
self. These sensors provide information that help the robot understand
its own position, orientation, and movement. They are essential for nav-
igation and control. Some common examples of proprioceptive sensors
are: gyroscopes, accelerometers, encoders and Doppler Velocity Loggers
(DVL), that measure the speed of underwater robots with respect to the
seabed.

• Exteroceptive Sensors: These sensors are used to observe the external
environment, and are also called observation or exploration sensors. They
allow the robot to perceive and interact with the world. Cameras, lidars
and sonars are examples of exteroceptive sensors.

Exteroceptive sensors can be categorized based on the dimensionality of the
area they cover or interact with. One-dimensional sensors typically measure a
property or parameter along a single linear axis. They are usually called line-
sweep or sweep sensors because they must sweep the environment in order to
create a two-dimensional representation of its surroundings. Side-scan sonars
and small-aperture radars are examples of one-dimensional sensors. Cameras,
on the other hand, are an example of two-dimensional sensors. Depth cameras,
like kinetic, are three-dimensional because they capture depth information in
addition to 2D color imagery.

Using this terminology, we present this thesis context next.

1.3 Thesis Context

Determining the area explored by a mobile robot during an area-covering mis-
sion is important to establish if the mission is successful. It is also essential
for validating path-planning algorithms that will lead to complete coverage of
an area of interest or complete avoidance of an area of risk. Overall, deter-
mining the explored area is essential for ensuring efficient and safe operations,
planning future actions, and gaining valuable insights from the acquired data.

The most common approach for determining the explored area is through
grid based methods. In this approach, the area to be explored is divided into a
grid, or cells, of the same size and shape, whose union approximates the target
region. It is assumed that the robot explores the whole cell once it enters the
cell, and then the status for this particular cell is updated. The idea was first
introduced by [25], and it has been largely applied in the planning of coverage
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paths for mobile robots [26] [27] [28]. This approach presents some limitations,
mostly related to the fact that the space is represented by a fixed structure
of cells with the same size. If the grid cells are too small, it can result in
extremely large data structures and increased computational complexity. On
the other hand, if the cells are too large, fine details of coverage may be lost.
Furthermore, storing and updating grids in real-time can be a challenge for
resource-constrained robots.

In [29] and [30], an approach for estimating the area explored by a robot is
introduced, using interval analysis. This method produces an adaptive decom-
position of the space to represent the explored area. Moreover, this approach
determines the explored area from very basic information regarding the robot’s
state and the range of visibility of its sensors. It eliminates the need for storing
and updating predefined regions, significantly reducing memory consumption.
Furthermore, it allows taking into consideration the crucial issue of uncertainty
associated to a mobile robot’s trajectory, proposing a guaranteed estimation
of the explored area. This approach, however, does not perform well when we
have to determine the area explored by one-dimensional exploration sensors.

The approach that we propose in this work presents the advantages of
the interval method proposed in the literature, and it is capable of efficiently
estimating the area explored by one-dimensional sensors. In addition, it is
also able to determine the coverage measure of points in the environment.
The coverage measure represents how many times a point was covered by the
robot’s sensors or tools, in other words, how many times it was explored.

Counting the number of times an area was explored is of interest for differ-
ent reasons, for example, when assessing revisiting missions. In these missions
the robot is required to come back to a previous point, therefore to revisit
it, to improve the quality of information collected around this point through
redundancy. Indeed, studies have shown that target classification improves
dramatically when a multi-view approach is adopted. Usually, single-view ap-
proaches do not provide enough information to make a confident identification
with, for example, synthetic aperture sonars [31] [32], synthetic aperture radars
[33]. A multi-view method is also essential when recognizing or reconstructing
3-dimensional objects from 2-dimensional data such as camera images [34].
In these examples, counting how many times a point or an area, as a set of
points, has already been explored will be essential to determine the mission
completeness. On the contrary, if the robot is not supposed to cover areas
previously visited, the coverage measure will be useful for planning optimal
paths, reducing unnecessary effort.

A multi-view approach is essential for mine recognition underwater. Strong
water currents can directly affect the quality of the image acquired by sonars.
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For example, navigating perpendicularly to the direction of the current reduces
image quality [35], and important features might not be detected. Under those
circumstances, when assessing the completion of an MCM mission, we need to
determine if the whole area of interest was explored and also the number of
times that areas with a possible target in it have been scanned by the robot.
In Chapter 2 we discuss more about how the coverage measure can be useful
in improving the detection of features underwater.

Determining the coverage measure is an act of counting. Topological con-
cepts have already been explored for counting [36] and for addressing coverage
problems in robotics contexts, e.g. [37], [38]. In this work, we establish a
relation between the topological degree and the coverage measure of points
explored by the robot. And in this framework, we developed algorithms for
characterizing the explored area through the computation of the topological
degree.

Different works [39],[40] proposed algorithms for general topological degree
computation. However, methods available in the literature will compute the
topological degree of a cycle with respect to a single point, needing to be
applied to each point individually for a full characterization of the environ-
ment. In this context, we present a set-membership approach that efficiently
determines the topological degree for a whole area of interest. The resulting
algorithm and all the concepts defined in this work are applied to determine
the area explored by a real AUV and by an Unmanned Surface Vehicle (USV).

Contributions

To summarize, we identify four points of contribution in this thesis:

• Introduction of the notion of coverage measure and uncertain coverage
measure, for when the measurements made by the robot are noisy. In ad-
dition, we establish, and prove, a relation between the coverage measure
and the concept of the topological degree;

• An algorithm that integrates the topological structure of the explored
environment for characterizing the two-dimensional plane with respect to
the coverage measure of its points and for determining the area explored
by a mobile robot;

• An algorithm for efficiently computing the winding number of a cycle
with respect to all points in R2;

• Experiments in the real world illustrating applications of the algorithms
developed.
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1.4 Outline

This thesis is organized into two main parts. The first part serves as the
theoretical foundation and comprises three chapters. Chapter 2 presents sonars
and some sonar terminology that will be used in this document. Furthermore,
it introduces some challenges inherent in sonar imagery and discuss how the
theory developed in this thesis can be helpful for enhancing target detection
in acoustic images. The subsequent two chapters within this first part provide
the essential mathematical tools required to comprehend the thesis. Chapter
3 addresses interval analysis, and Chapter 4 topology.

The second part of the thesis is dedicated to presenting our contributions.
This section encompasses three chapters. Chapter 5 focuses on formalizing
concepts related to the explored area and the coverage measure. It also in-
troduces the primary contribution of this thesis that is to establish a relation
between topological tools, particularly the topological degree, and the explo-
ration problem within a two-dimensional space. Chapter 6 presents algorithms
for characterizing areas based on the coverage measure of its points and algo-
rithms for computing the topological degree through interval analysis. Chapter
7 presents real-world experiments that offer practical illustrations of the theory
developed within the thesis.

Finally, the final chapter, Chapter 8, summarizes our findings, and discusses
future research directions.
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Chapter 2

Sonars
Let there be sound

Sonars have revolutionized underwater exploration, marine research, and vari-
ous applications across different domains. This chapter introduces this technol-
ogy and the challenges associated to the detection of targets underwater. We
end the chapter with a discussion about how the notion of coverage measure
defined in this thesis can enhance this complex process. A mathematical model
for a side-scan sonar and terminologies that will be employed throughout this
document are also presented.
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2.1 Introduction

Sonar, short for Sound Navigation and Ranging, is a vital technology employed
in underwater exploration and research that works as a non-invasive mean of
investigation. Water is denser and more uniform compared to air, allowing
sound waves to propagate further and with less loss of energy, overall enabling
sonar systems to achieve greater ranges and resolution underwater [41]. The
rapid data acquisition capability of sonars is invaluable for mapping large areas
[42], identifying potential hazards [43], and conducting extensive surveys in
general.

Figure 2.1: Image extracted from [44]. Colladon and Sturm’s experiment for
measuring the speed of sound in 1826.

The concept of using sound waves for underwater detection can be traced
back to the early 19th century. In 1826, a physicist named Jean-Daniel Col-
ladon and the mathematician Charles-François Sturm conducted experiments
to determine the speed of sound in water by using an underwater bell and
measuring the time it took for the sound to reach a listening tube, Figure 2.1.
This laid the foundation for the fundamental principles of underwater acous-
tics [44]. During World War I, the need for detecting submerged submarines
and underwater obstacles became critical and technology advanced rapidly. By
World War II, sonar systems were already highly developed engineering sys-
tems and played a crucial role in detecting and tracking underwater threats,
significantly influencing the outcome of naval battles [45].
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Two distinct approaches to underwater acoustic sensing have been devel-
oped: passive and active sonar.

Passive sonar systems rely on listening to ambient sounds or acoustic signals
generated by underwater sources. It acts as an acoustic "microphone," picking
up and analyzing the existing acoustic signals in the environment. This ap-
proach offers several advantages, such as the ability to detect and track marine
organisms, for example acoustics serves as the primary mode of communica-
tion for dolphins and whales. But also to detect and track vessels and ships
without revealing the presence of the monitoring system.

In contrast, active sonar operates by emitting sound waves into the water
and analyzing the returning echoes, actively probing the environment to detect
and locate objects or features. It offers several benefits, including the ability to
determine the underwater topography and even the size or shape of submerged
objects. The main disadvantage is that it is possible to detect its presence.

In this work we focus on active sonar systems, for which there are several
types that are commonly used depending on the application. Some examples
are [46]:

1. Single-Beam Echo Sounder: Commonly used for measuring water depth
locally and creating basic bathymetric profiles.

2. Doppler Velocity Logger (DVL): Specialized sonar system that measures
the velocity of a moving platform, such as a submarine or underwater
vehicle, relative to the seafloor or water column. Usually used for navi-
gation, underwater vehicle positioning;

3. Forward-Looking Sonar: Provides imaging of the underwater environ-
ment in front of a vessel or underwater vehicle. They are utilized for
navigation, obstacle avoidance, and underwater surveillance;

4. Side-Scan Sonar: Extensively used for seafloor mapping, underwater
imaging, and target detection. It provides detailed imagery of the
seafloor and submerged objects;

5. Multi-Beam Sonar: Frequently employed for bathymetric mapping and
seafloor profiling. They offer high-resolution data and accurate depth
measurements, making them essential tools for hydrographic surveys,
coastal engineering, and offshore exploration.

For the exploratory context of this thesis, side-scan sonars and multi-beam
sonars are the most appropriate tools. The choice between these two sensors
depends on the specific objectives of the project. Multi-beam sonars were de-
signed for ocean survey and have a narrow coverage area in shallow waters,
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therefore, they are better suited for deep water environments. Side-scan sonar
is efficient at covering large areas quickly in shallow and intermediate water
depths, where it can provide a detailed seafloor image in a shorter time inter-
val. In addition, side-scan sonar excels at detecting and identifying individual
objects or features on the seafloor. In this case, if the covering mission aims at
target detection, side-scan sonar is a better option. Multi-beam sonar, on the
other hand, are preferred for detailed bathymetric mapping and for obtaining
accurate depth information, not offering the same level of target discrimina-
tion.

Considering the above, throughout this work, side-scan sonars will be con-
sidered as the primary research focus. Therefore, this chapter aims to provide
an overview of sonar imagery principles, with a particular focus on the geom-
etry acquisition aspect of this type of sonars. We also present an overview of
the challenges faced during detection of targets on acoustic images and how
this work can be useful in this context.

2.2 Side-Scan Sonar

The architecture of active sonar systems comprises three distinct modules: the
emission module, hydrophone array and reception module. The emission mod-
ule, also known as the transmitter, is responsible for generating the acoustic
signals that are emitted into the water. It typically utilizes a transducer, which
converts electrical energy into sound waves, controlling the frequency, duration,
and pattern of the emitted signals. The hydrophone array, or antenna, serves
as the receiver of the acoustic signals reflected or scattered by underwater ob-
jects. It consists of multiple individual hydrophones strategically positioned to
capture the incoming signals from different directions. These hydrophones con-
vert the acoustic energy into electrical signals. Finally, the reception module,
also known as the receiver or signal conditioning unit, processes the electrical
signals received from the hydrophone array.

In Figure 2.2 a characterization of a starboard side-scan sonar is presented
as proposed in [47]. The sensor is mounted on an AUV with a fixed angle
θ between the axis of the sound propagation and a horizontal reference axis.
The sonar’s openings in the Y Z and XY planes are, respectively, represented
by α and ϕ. These two angles depend directly on the speed of sound on these
two different planes. In practice, vertical openings α assume large values while
horizontal openings ϕ are small and usually irrelevant, as it is explained later
in this chapter on Section 2.2.4.

As illustrated in 2.2a, in side-scan sonars systems, the emission module
emits a series of narrow acoustic beams in a slant direction towards the seabed
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Figure 2.2: The Figure presents an AUV at an altitude h with an embedded
starboard side-scan sonar. The area represented in green corresponds to the
area ensonified by the sonar. Figure (a) offers a front-view representation
(across-track direction) and Figure (b) a top view (along-track direction).
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Figure 2.3: AUV navigating with two side-scan sonars symmetrically placed on
port and starboard. A visibility gap under the robot, as illustrated, is common
in these systems.

and perpendicular to the direction of motion of its carrier. Each emitted beam
captures information along a specific track or line and together, the emitted
beams can be conceptualized as a line sweeping across the environment due to
the narrow horizontal aperture ϕ. Typically, the system consists of a pair of
antennas positioned on port and starboard of the towing vehicle, Figure 2.3.
As the sonar system moves inside the environment, at every ping emission, a
narrow stripe of the seabed is ensonified, resulting in a sequence of lines that,
if concatenated, effectively cover the entire survey area.

Frequently, data received at the starboard and the port antenna are treated
simultaneously, and data acquired from side-scan sonars are typically repre-
sented as a 2D image, named waterfall, capturing both port and starboard
views.

2.2.1 Waterfall and Mosaic Images

Each row in the waterfall image corresponds to a ping emission and essentially,
with each new ping emission, a new row is added to the image. Therefore, as
new echoes returned from the seafloor and objects arrive, the current image
shifts downward, creating space for the new data on the top1. For this aspect
they are called waterfall images, Figure 2.4.

The vertical axis of the image represents the time at which the sonar beam
or ping was emitted, in this case, each row in the image represents a specific
ping emission. The horizontal axis represents the slant range of the sonar

1Click for video with example of Waterfall

https://www.youtube.com/watch?v=bDxwAhkT-gs
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Figure 2.4: Waterfall image created by a two side-scan sonar system mounted
on AUV with the configuration presented on Figure 2.3. The black band
in the middle represents the visibility gap, the region under the robot from
where we have transmission loss. Rmin and Rmax correspond, respectively, to
the minimal and maximal slant range in the robot’s visible area as represented
in Figure 2.2a.
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pulse, that represents the actual distance traveled by the acoustic signal during
the time-of-flight of the sonar pulse in the across-track direction before being
reflected. In other words, the slant range is half the distance that the pulse
traveled during the time that the signal took from being emitted, backscattered
and received again by the sonar’s antenna. It is perpendicular to the direction
of motion or the sonar platform’s trajectory. In this context, each column in
the image represents the received signal at a specific time interval, providing
information about the spatial distribution of the sonar data across the swath
or coverage area.

The different color intensities on the waterfall image represent the ampli-
tude of the backscattered signal, creating an understanding about the type of
surface that reflected it (sand, gravel, mud, etc.) or even, in the case of low
amplitude, if an area was not ensonified at all, indicating the presence of an
obstacle obstructing the passage of the sound waves.

Figure 2.5: Example of mosaicking of a Waterfall image into Cartesian coor-
dinates. For illustration purposes the visibility gap, or water column, is not
represented.
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2.2.2 Mosaicking

The waterfall image represents the explored area in the sonar’s relative coor-
dinates. Georeferencing the sonar image is called mosaicking, the focus is on
associating the relative positions within the sonar images to their respective
longitude and latitude coordinates. This process allows for the integration of
the sonar data with other geospatial information, enabling accurate position-
ing and spatial referencing of the features represented in the waterfall images.
Mosaicking can also be a transformation of the waterfall relative coordinates
into any absolute coordinate system such as Cartesian, Figure 2.5.
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Figure 2.6: The i index represents the time in which the ping was emitted and
j is the distance traveled by a sound sample to be backscattered by a point
p across-track. The vector (xAUV (i), yAUV (i), zAUV (i)) represents the AUV ’s
position in a global reference frame.

The transformation in this example can be computed using a rotation ma-
trix Rm associated to the robot’s orientation angles (raw, pitch and yaw) and
its position (xAUV , yAUV , zAUV ):xijyij

zij

 = Rm(i)

 0

±
√
j2 − (h(i)− hp)2
h(i)− hp

+

xAUV (i)
yAUV (i)
zAUV (i)

 (2.1)

where the i index represents the specific ping emitted (vertical axis on the
waterfall image), while the j index represents the individual samples across
the track (horizontal axis on the waterfall image), Figure 2.6. The robot’s
altitude h(i) can be estimated by a Doppler Velocity Logger (DVL) or by a
single-beam echo sounder. The height of the feature responsible for reflecting
the signal at range j is represented by hp, we discuss more about estimating this
parameter later in the chapter. To indicate which sensor is being considered,
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the sign ± is used, where + indicates the starboard side and − denotes the
port side. Georeferenced sonar images are called mosaic images.

Now, we describe the process of feature detection on the waterfall image.

2.2.3 Features Detection in Sonar Images

Processing waterfall images and detecting features within them is out of the
scope of this work. However, a general understanding about this process is
important for recognizing its complexity and challenges.

A sonar system detects underwater features through remote sensing. This
technique is applied when the feature cannot be directly inspected, and the
information about it is to be gained secondarily, without direct physical con-
tact.

The receiver of a sonar system encounters various noises that need to be
addressed before performing feature detection on the acoustic image [48]. One
common type of noise is ambient noise, which includes background sounds
generated by natural sources such as waves, marine life, and geological ac-
tivities. Another source of noise is reverberation, which occurs when sonar
signals bounce off objects and surfaces in the underwater environment, creat-
ing unwanted echoes. These echoes from the seafloor can overlap and mask the
weaker signals from underwater targets, reducing detection range and signal
clarity. Additionally, electronic noise from the sonar equipment itself, such
as thermal noise and electrical interference, can further degrade the received
signals. To address these challenges, the receiver employs various signal pro-
cessing techniques to suppress noise and enhance the desired signals.

The quality and detail of the generated imagery will depend on the capacity
of the receiver to treat these noises but also on two parameters that are intrinsic
to the sonar: the azimuth and range resolutions. The first refers to the ability
of a side-scan sonar to distinguish between objects or features that are located
close to each other along the horizontal plane (plane XY in Figure 2.2b). The
azimuth resolution depends directly on the distance to the sonar. This means
that the closer that two objects are to the sonar, the smaller the distance
between them will have to be, so they can indeed be classified as two different
individuals. Generally, higher-frequency signals and larger hydrophone arrays
result in improved azimuth resolution [49].

Range resolution, on the other hand, corresponds to the minimal distance
along the propagation direction (plane Y Z in Figure 2.2a) between two objects
to see them separately. A higher range resolution allows for the detection of
smaller objects or features at different depths, and it is primarily determined
by the bandwidth of the emitted acoustic signals [49].

These resolutions are important parameters because they determine a
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threshold for the minimal size an underwater feature must have for being
reliably detected. We also have to add to that the acoustic properties of the
feature, such as its composition and reflectivity. Features that have strong
acoustic reflectivity are more likely to be detected compared to features with
weak reflection capability. But in general, if a feature is smaller than the az-
imuth or the range resolution of the sonar system, it may not be adequately
resolved and could appear as a blurred or indistinguishable part of the sur-
rounding background. Otherwise, an acoustic shadow will indicate the pres-
ence of an object on the seafloor.

While the direct echo in sonar imagery provides valuable information, shad-
ows offer additional details. For example, the distortion or elongation of the
shadow can reveal object’s dimensions and geometry that may not be apparent
from the direct echo. This is well illustrated on Figure 2.7a, where the fish’s
shadow on the waterfall has more details than its own echo.

In Figure 2.7b one may see an example of what the received signal for
Figure 2.7a can look like. Different amplitudes of the signal are represented
[51]:

• Low amplitude volume reverberation that refers to the scattering of
sound waves by particles in the water column or seabed. Volume re-
verberation can be a beneficial or challenging aspect in sonar imagery
depending on the application. On the positive side, it can provide valu-
able information about the environment, such as the density and distri-
bution of particles in the water column. This information can be used for
tasks like water column characterization, biomass estimation, or moni-
toring sediment transport [52]. The latter being important, for example,
for understanding the effects of tsunamis on the underwater environ-
ment [53]. On the negative side, it can introduce background noise and
reduce the signal-to-noise ratio, making it more difficult to detect and
distinguish individual targets or objects of interest;

• Mean amplitude due to seabed reverberation that refers to the scattering
and reflection of sound waves by the irregularities and composition of the
seabed. Different bottom types, such as sand, mud, gravel, or rocks, have
distinct scattering properties, resulting in variations in the reverberation
signal. It can also contribute to reduce the signal-to-noise ratio;

• High amplitude revealing an echo after interacting with an object in the
environment;

• Low amplitude due to the shadow area of the object, it corresponds to
a part of the space that is not explored by the sonar.
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Figure 2.7: A shadow on the waterfall image represents an obstacle (a black box
on the scheme) on the sonar’s visibility range. (a) waterfall image, extracted
from [50], acquired by a side-scan sonar where a fish is detected; (b) example
of amplitude signal received by the sonar’s reception module over time for a
waterfall image like the one in (a).
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An approximation of the object’s height hp and vertical size can be inferred
from L1, L2, R1, R2, that are illustrated in Figure 2.7b. These values can
all be approximated from direct measurements on the waterfall image. For
example, the width of the shadow on the waterfall, in theory, is equal to
L2 − L1. Of course, in practice, it may not provide highly precise results due
to several factors and limitations. For example, waterfall images have a pixel
resolution and that might not provide the level of detail necessary to precisely
distinguish and measure the shadow’s boundaries. Environmental conditions,
including water turbidity, sediment, and suspension can also affect the shape
of a shadow as beam spreading, signal attenuation, and noise. For all these
reasons, estimating object’s height only based on sonar data is a challenging
task that has been the subject of different works [54].

Since features detection is not the subject of this work, to simplify our
presentation, we assume that the floor is flat, and all the objects on the envi-
ronment have hp = 0. In next section we discuss more about this assumption,
and we present other hypotheses adopted on the side-scan sonar model and on
its visible area. They serve to simplify the mathematical model used through-
out the rest of this work and aim to strike a balance between model simplicity
and practical applicability.

2.2.4 Hypotheses Adopted on the Side-Scan Sonar Model

First, we are going to assume that the speed of propagation of the sound
in the water is constant during a mission, not taking into account possible
changes due to water salinity, temperature, etc. As a consequence, we have
that angles α and ϕ, illustrated in Figure 2.2, are also constant. We also make
assumptions about the visibility gap between starboard and port sonars, the
local bathymetry of the environment and about the horizontal expansion of
the sound. These hypotheses are discussed in the remaining of this section.

No Visibility Gap

We assume that the visibility gap, represented by Lgap in the model presented
on Figure 2.2a, is zero. We also consider that there is no overlap between the
visible areas of the starboard and port sonars. In this case, both visible areas
can be represented as a single connected set in the environment.

In practice, a configuration like this is hardly feasible, it would require a
careful positioning and alignment of the sonar systems and appropriate sonar
beam patterns and coverage angles. Even if this could be managed, this ideal
configuration would change for different altitude values of the system carrier.
However, it is important to notice that this assumption does not impose a limi-



2.2. SIDE-SCAN SONAR 41

tation on the method proposed in this work, it only simplifies its mathematical
presentation. Our method will still be able to take into account overlaps and
gaps on the ensonified area.

The Flat Sea-Floor Assumption

The position of a point p ∈ R3 that is visible by the sonar in the environment
is usually represented by polar coordinates (Rp, θp), as presented in [47], along
with its height hp, see Figure 2.2a, where Rp corresponds to the slant range of
the point, or its distance to the sonar, and the angle θp might be obtained as
follows:

θp = arcsin(
h− hp
Rp

) (2.2)

As previously discussed, estimating the object’s height hp solely from sonar
data might be a hard fallible task. But if hp is unknown then θp can not be
computed. In this context, the only knowledge about an ensonified point p will
be that it is responsible for an echo at Rp but, it might be anywhere inside the
angular interval [θ− α

2
, θ+ α

2
]. A common approach, considering the above, is

to assume that the floor is flat [55], [56], where it is assumed that all detectable
features within the ensonified region have hp = 0.

In addition, as exemplified in Figure 2.7, an object or any underwater
feature with a certain height conceals a part of the seabed from the sonar.
Therefore, the projection of the sonar’s visible area on the sea-floor can no
longer be represented by a fully connected region if the flat-floor assumption
is not assumed. As a matter of fact, we would have to represent the ensonified
region as a set of non-intersecting regions and without bathymetric data about
the environment this would be impossible before treating the waterfall image.

For presentation purposes, we assume that this condition is met at least
locally. As it can be expected, the flat sea-floor assumption leads to errors
when estimating the position of features in the environment and, as a conse-
quence, in the process of building a map from sonar data. There are many
works in the literature dedicated to mitigate the effects of this assumption
[57],[47]. Nevertheless, the flat sea-floor is still a reasonable approach in many
contexts specially if we consider that the sensor’s altitude h will be usually
significantly bigger than most features height, making the effects of the as-
sumption neglectable.

We insist on the fact that if one wants to incorporate external bathymetry
to account for areas that may be hidden due to a non-flat sea-floor, our method
can still be effectively applied by treating each one of the unconnected sets that
form the visible area individually.
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No Horizontal Opening - The Zero Azimuth Assumption

The angle ϕ considered in this model, Figure 2.2, represents the sensor’s open-
ing and the beam spreading effects on the horizontal plane. This angle is
usually called the sonar’s azimuth angle in the literature. This opening cre-
ates uncertainty on the positioning of a point in the sonar’s range of visibility,
not being possible to exactly determine its positioning on the XY plane. For
example, consider a feature in the environment that can be represented by
(Rp, θp, 0), assuming the flat sea-floor condition. On the XY plane this point
can be found anywhere within an arc q, see Figure 2.2b, and we can not be
more precise than that.

Figure 2.8: The robot’s visible area considering the conditions established for
the modeling of the two side-scan sonars system used in this thesis.

The angle ϕ is usually very small and often considered to be zero, resulting
in no horizontal opening. In a first moment, we make this assumption for
simplifying the presentation of the model of sonars. Here, we consider the
sonar beam to be perfectly perpendicular to the motion direction, resulting in
a narrow and focused beam. In practice this assumption is reasonable when
dealing with synthetic aperture sonars, for example. These sensors use a post-
processing technique named beamforming [58] that introduces constructive
interference on signals from hydrophones with particular angles and destructive
interference on others, improving along-track resolution [59].

By taking ϕ = 0, and considering all the other hypotheses established in
this chapter, we will be dealing with a visible area for a starboard/port side-
scan sonar system that can be represented as illustrated in Figure 2.8.
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2.3 Coverage Measure to Aid in the Post-Treatment Pro-
cess

Detection and classification of features underwater have numerous applications
across different domains. It is essential for marine exploration and scientific
research, for example, by mapping the seafloor, identifying geological forma-
tions, locating underwater ecosystems, and studying marine organisms and
their habitats. It also enables the discovery and preservation of ancient ship-
wrecks, submerged cities, historical artifacts, providing valuable insights into
maritime history and cultural preservation. As already discussed, some other
applications might present a critical character, for example, search and rescue
operations, mine-countermeasure missions, and detecting and classifying other
vessels and underwater vehicles in the environment. Accurate classification is
essential when distinguishing between friendly and hostile targets in order to
support effective decision-making and tactical responses. However, detection
and classification are two different tasks that present individually many chal-
lenges due to several factors inherent to the undersea environment and the
nature of sonar technology itself.

Figure 2.9: Image credits: [60]. Different underwater rocks detected by a side-
scan sonar. We can notice the difficulty in distinguishing one feature from the
other.

One of the primary reasons for the difficulty in classifying objects in sonar
images is the limited information available in the data. As presented previ-
ously, waterfall images typically provide grayscale or color intensity represen-
tations of the received signal strength, which may not contain sufficient dis-
criminative features to distinguish different objects. As illustrated in Figure
2.9, false matches are very common.
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Figure 2.10: Waterfall image with some debris and an underwater mine de-
tected. Image extracted from [61].

Additionally, different objects may have similar acoustic signatures or ex-
hibit variations in their response due to factors such as shape, orientation,
material composition, and environmental conditions. These variations can
lead to ambiguities and overlapping characteristics, making it difficult to es-
tablish clear boundaries between different classes. For example, in Figure 2.10
we present a waterfall image with some debris and an underwater mine de-
tected. From this image, one can understand the difficulty in classifying a
potential hazard as so, since it resembles a lot to an ordinary feature. A cor-
rect classification in this scenario, however, is essential for protecting human
lives.

The study of methods for automatic target detection and classification in
sonar images have, of course, been considered by many works, applying classi-
cal signal processing [62] and machine learning [63]. Nonetheless, underwater
environments are highly dynamic and diverse, with a wide range of underwater
objects, such as rocks, wrecks, marine organisms, and geological formations.
Objects may exhibit variations in size, shape, and appearance, further adding
to the complexity of classification. All of that contributes to the scarcity of
labeled training data for specific underwater objects or classes [64], [65]. In
addition, the creation of a proper dataset is also affected by reverberation,
and interference in sonar signals since these unwanted signals can distort the
acoustic signatures of objects. In view of the above, poor robustness and a low
identification rate are common outputs of these researches [66].

Due to all the above, when target classification presents a vital impor-
tance we still have human classifiers looking through hours of waterfall im-
ages. Trained experts can indeed identify and classify targets [67], but this
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approach is time-consuming, resource-intensive, and expensive. In addition,
as described in [68], it can be very monotonous, in the end, also leading to a
frequent misclassification of targets.

In this scenario, a prior characterization of waterfall images according to
the coverage measure of its points would allow the user to know beforehand
how many times each point should appear on the sequence, facilitating its
analysis and matching between different points of view of the same feature.
Overall, the coverage measure of points on the waterfall allows for a more
informed interpretation, enhancing the decision-making process and reducing
the likelihood of misinterpretation or false conclusions.

The coverage measure of sonar data can also be useful information for
assessing the creation of a dataset for machine learning algorithms. By in-
corporating information about the amount of times a certain region has been
explored to create a dataset, models can have a better judgement about their
own performance. Areas that have been extensively explored will have models
that can learn better to distinguish characteristics and patterns of features
in those areas. In general, analyzing the distribution and density of explo-
ration efforts across different areas can provide insights into the likelihood of
encountering certain features. Understanding where previous detections and
classifications have occurred helps in establishing baseline expectations and
identifying regions with higher or lower probabilities of specific features. This
knowledge might help to set appropriate detection thresholds and adapt clas-
sification algorithms accordingly.

2.4 Conclusion

In this chapter an overview about sonar technology and more particular side-
scan sonars was presented. We have explored the principles and techniques
involved in side-scan sonar imaging, including the acquisition of waterfall im-
ages and the subsequent mosaicking process.

Hypotheses assumed about the sonar’s mathematical model were also pre-
sented, characterizing the side-scan sonar as a line-sweep sensor. The area
explored by these sensors is constructed as the robot moves within its envi-
ronment, sweeping the seafloor. Our method can still, however, be applied to
more general scenarios, since the hypotheses presented only aim at simplifying
its representation for presentation purposes.

Finally, we established a relation between the work presented on this thesis
and the challenges encountered during the classification of underwater targets
from sonar images.





Chapter 3

Interval Analysis
"Uncertainty is the only certainty there is, and
knowing how to live with insecurity is the only

security."- John Allen Paulos

When estimating the area explored by a robot we need to take into consider-
ation the uncertainty associated to its path in the environment. In this work,
we choose to represent and propagate uncertainty using interval analysis. In
this context, this chapter introduces this domain and a set of existing tools
that will be used in the following chapters.
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3.1 Introduction

There are numerous information and events in the world that we might desire to
measure or monitor, however, the world is noisy and unpredictable. When we
use a scale, for example, or any other sensor for the matter, we know that it is
not capable of giving us a precise value, and we also know that if we weight the
same object twice, it will probably give us different readings. Nevertheless, we
continue to use the scale because we assume that the unknown actual solution
is probably not that far from the noisy reading, we accept a certain margin of
uncertitude. In brief, uncertainty is an inherent feature of the world we live
in, and we are used to dealing with the uncertain by wrapping it under a set
of possibilities where the real answer is known to lie within.

Indeed, enclosing the unknown into a guaranteed solution set is the motiva-
tion behind a huge body of work. This is particularly important in applications
where errors and uncertainties in the input data can propagate through the
computation, leading to significant deviations in the output.

In the fields of robotics and control theory, probabilistic approaches are
popular for assessing the best solution to a problem considering some knowl-
edge about its uncertainties. These approaches, however, imply a probability
distribution of the problem that is usually unverifiable. Our choice in this work
is to address uncertainty through set-membership approaches. In this case, we
will be dealing with a set of possible solutions to a problem, in contrast to
traditional methods that rely on single-point values.

X

(a) Interval enclosure.

X

(b) Subpaving enclosure.

Figure 3.1: The set X is represented by outer approximations.

A set might assume any shape and even be disconnected, in this case, in
order to be represented and manipulated by a computer, sets have to be rep-
resented by outer approximations. With this purpose, different techniques can
be found in the literature, such as zonotopes or polyhedral enclosures [69, 70],
ellipsoids [71], intervals or subpavings [72]. An example of an outer approxima-
tion obtained using intervals and subpaving is illustrated in Figure 3.1. These
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two methods have been proven to be robust to non-linear constraints [73],
an important attribute considering the characteristics of problems in mobile
robotics. Moreover, interval analysis provides a rigorous structure for bounding
and quantifying uncertainties, allowing guaranteed and robust computations.
In this context, we adopt the interval approach.

Interval computation is a particular case of set computation. Therefore, we
first recall some fundamental concepts from set theory that lay the foundations
for interval analysis. Readers who are comfortable with this content can feel
free to go directly to Section 3.3 from where we present the interval analysis
tools used in the following chapters.

3.2 Set Theory

A set is a collection of distinct objects, which can be anything from numbers
and symbols to words, colors, or even other sets. The objects in a set are called
its elements or members, and there is no repetition of elements within a set.

Let A be a set. Set theory is based on a binary relation that says that any
element a either belongs to A, a ∈ A, or not, a ̸∈ A. There are two important
sets that must be considered: the empty set ∅, that contains no element and
the universe Ω, that contains all elements. The complement of A is denoted A
and by definition:

A = {a ∈ Ω|a /∈ A}

3.2.1 Operations on Sets

Let A and B be sets, the following basic operations can be applied:

Intersection A ∩ B ≜ {a|a ∈ A ∧ a ∈ B}.

Union A ∪ B ≜ {a|a ∈ A ∨ a ∈ B}.

Difference A\B ≜ {a|a ∈ A ∧ a ̸∈ B}.

Inclusion A ⊂ B⇔ ∀a ∈ A,a ∈ B.

Equality A = B⇔ A ⊂ B and B ⊂ A.

Cartesian Product A× B ≜ {(a, b)|a ∈ A ∧ b ∈ B}
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A B

A ∩ B

(a) Intersection.

A B

A ∪ B

(b) Union.

A B

A\B

(c) Difference.

A

B
A× B

(d) Cartesian Product between sets.

B C = A× B

C1

projA(C1)A

projB(C1)

(e) Projection of sets.

Figure 3.2: Basic set operations.

Projection Let C = A × B and C1 be a subset of C. Two projections can
be defined:

The projection of C1 onto A (with respect to B):

projA(C1) ≜ {a ∈ A|∃b ∈ B such that (a, b) ∈ C1}

and the projection of C1 onto B (with respect to A):

projB(C1) ≜ {b ∈ B|∃a ∈ A such that (a, b) ∈ C1}

We illustrate some of these operations in Figure 3.2. Some useful examples
are:

• A ∪ ∅ = A,

• A ∩ ∅ = ∅,

• A ∪ Ω = Ω,

• A ∩ Ω = A.



52 CHAPTER 3. INTERVAL ANALYSIS

3.2.2 Set Image

We can extend operations on numbers (or vectors) to operations on sets. For
example, consider the sets A and B and a function f : A ⊂ Rn → B ⊂ Rm. If
A1 ⊂ A,

f(A1) ≜ {f(a) | a ∈ A1} (3.1)

And if B1 ⊂ B,
f−1(B1) ≜ {a ∈ A | f(a) ∈ B1}

Interval analysis has been proved to be effective when dealing with the classical
Set Inversion Problem [72], even if f is non-linear. The method is presented
in Section 3.4.1.

The simple concepts from set theory presented in this section provide a
foundation for interval analysis. Going further, interval analysis introduces
tools that make it possible to compute and represent sets that are defined by
constraints. These tools are now presented in the following sections.

3.3 Interval Analysis

The main idea behind interval analysis is to represent real numbers as intervals,
defined by their lower and upper bounds, rather than single point values. Over
the years, interval analysis has been refined and expanded, finding applications
in various fields such as optimization [74], numerical methods [75], and robotics
[76].

In this section, we present the definitions and concepts that constitute the
foundations of interval analysis as stated in [77].

3.3.1 Intervals

We denote [x] an interval, and it represents a closed and connected subset of
R. It is defined by a lower bound x− and an upper bound x+. The inter-
val encompasses all real numbers between x− and x+, including x− and x+

themselves such that

[x] = [x−, x+] = {x ∈ R | x− ≤ x ≤ x+}

The width w([x]) of this interval is equal to x+ − x−. If w([x]) = 0, it means
that x− = x+ and that it contains only one element, in this case, being called
a degenerate interval or a singleton.
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Basic Operations Between Intervals

Basic mathematical operations, such as addition, subtraction, multiplication,
and division, can be defined between intervals. Let ⋄ be an operator represent-
ing one of the elementary operations mentioned above, ⋄ ∈ {+,−, ., /} and [x]
and [y] are intervals of R. We have that

[x] ⋄ [y] = [{x ⋄ y | x ∈ [x] and y ∈ [y]}] (3.2)

where the brackets [.] around the set denote its convex hull. It represents the
smallest interval containing all feasible values for the operation x ⋄ y, for all
x ∈ [x] and y ∈ [y] [78].

General Operations on Intervals

Intervals are sets of R, therefore, as it was done for sets, general operations
f on numbers can also be extended to deal with intervals on the input. One
should note, however, that not all operations on intervals will yield an interval
on the output. This will be particularly the case if f is discontinuous. For
example, let us take f : R→ R such that

f(x) =

{
1 if x ≤ 1,

2 otherwise
(3.3)

By definition, as stated on Equation 3.1, if f is applied to interval [−1, 1],
the output set f([−1, 1]) = {1, 2} is not an interval. In order to assure an
interval on the output, we will be dealing with the convex hull [f ] of f , and
for the previous example we obtain [f ]([−1, 1]) = [1, 2], actually enclosing all
the range of possible values. The convex hull of a function over a set is an
inclusion function, that we present in Section 3.3.3.

Set Operations on Intervals

All set operations can also be naturally applied to intervals. For example, the
intersection of two intervals is also an interval, representing the common region
shared by both intervals :

[x] ∩ [y] = {a ∈ R|a ∈ [x] and a ∈ [y]} (3.4)

or, if intervals [x] and [y] are disjoint, their intersection results in the empty
interval denoted by the symbol ∅, which is the same symbol used for the empty
set.
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On the other hand, the union of two intervals may not always be an interval.
It combines all values present in either interval. However, there are cases where
the resulting set is not a connected range of values and hence does not satisfy
the criteria to be considered an interval :

[x] ∪ [y] = {a ∈ R|a ∈ [x] or a ∈ [y]} (3.5)

In order to assure that the union of two intervals will also be an interval we
can consider an interval union that is, by definition, the convex hull of [x]∪ [y].
The interval union is denoted by ⊔ such that

[x] ⊔ [y] ≜ [[x] ∪ [y]] (3.6)

Now we generalize the definitions stated in this section to other dimensions.

3.3.2 Boxes or Interval Vectors

An interval vector [x] of Rn is a box, and it is, by definition, a Cartesian
product between n intervals. It can be seen as a collection of intervals, one
for each dimension, that specify the ranges along each axis. We denote by IRn

the set of all the boxes of Rn.

[x]

X

Y

x− x+

y−

y+

Figure 3.3: Interval box [x] = [x−, x+]× [y−, y+]. [x] ∈ IR2.

Each interval within the box represents the uncertainty or variability along
a specific dimension. For example, in two dimensions, a box can be represented
as [x−, x+] × [y−, y+], where [x−, x+] represents the interval along the x-axis
and [y−, y+] represents the interval along the y-axis. The box encompasses
all points within the range of the intervals, effectively defining a rectangular
region in the xy-plane, Figure 3.3.

Operations on boxes in interval analysis involve applying the respective
operations on the intervals within each dimension. For instance, addition
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of two boxes is performed by adding the corresponding intervals along each
dimension.

Classically, the width of a box [x] ∈ IRn is defined as the maximum absolute
difference between the upper and lower bounds of each component interval:

w([x]) = max
1≤i≤n

(w([xi])) (3.7)

We say that a box [x] ∈ IRn is empty if exists one of its components that
is empty:

[x] = ∅ if ∃i ∈ {1, . . . , n} such that [xi] = ∅

3.3.3 Inclusion Functions

Inclusion functions plays a vital role in interval analysis by providing means to
propagate uncertainties throughout calculations involving intervals. It serves
the purpose of accurately computing a box that encompasses the direct image
of a given input box by a function f .

[x]

X

Y

x− x+

y−

y+

X

Y

f

f([x])

[f ]∗([x])

[f ]([x])

Figure 3.4: The image of a two-dimensional box by a function f : R2 → R2

can assume any shape. An inclusion function [f ] : IR2 → IR2 computes a
box guaranteed to contain all the possible solutions. The minimal inclusion
function is represented by [f ]∗.

We consider a function f : Rn → Rm, that can assume a non-linear char-
acter. An inclusion function of f is [f ] : IRn → IRm, such that

∀[x] ∈ IRn , f([x]) ⊂ [f ]([x]) (3.8)

The image f([x]) can be non-convex or disconnected, assuming any shape.
Its inclusion function [f ] of f is a box [f ]([x]) guaranteed to contain f([x]).
This notion is illustrated in Figure 3.4 for a two-dimensional example. We say
that the inclusion function is minimal if for any input box [x], [f ]([x]) is the
smallest box that contains f([x]), and it is denoted [f ]∗([x]) on the figure.
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Pessimism

There are many reasons that contribute for having inclusion functions that
are not minimal, that lead to wider intervals than strictly necessary, reducing
precision. Nonlinearity, for example, is one of the main reasons to pessimism
when evaluating a function f through interval arithmetic. In addition, interval
computations assume that the inputs are independent when in reality, there
can be functional dependencies among the variables. When overlooked, these
functional dependencies may lead to wider enclosures and increased pessimism.
This will usually be the case when the same variable appears several times on
a function, for example, if we take f(x) = cos(x).sin(x). Now, assuming an
input interval [x] = [0, π

2
], we obtain

[f ]([x]) = cos([x]).sin([x])

= cos([0,
π

2
]).sin([0,

π

2
])

= [0, 1].[0, 1]

= [0, 1]

(3.9)

Interval arithmetic does not take into consideration that cos(x) = 1 can not
happen at the same moment as sin(x) = 1, which would make it impossible
to have 1 in the solution set, that in reality is equal to [0, 0.5].

When intervals are used as inputs to subsequent operations, the inherent
overestimation from previous computations can amplify and accumulate. This
phenomenon is referred to as wrapping effect.

Later in this chapter, in Section 3.4, we present a technique called sub-
paving that addresses the issue of pessimism by partitioning the input interval
into smaller sub-intervals, enabling finer analysis and reducing overestimation.

3.3.4 Set-Valued Constraint Satisfaction Problems (SVCSPs)

Constraint Satisfaction Problems (CSPs) are concerned with determining val-
ues for a set of variables, subject to specific constraints that define the rela-
tionships and limitations between them. Formally, a CSP consists of three
components: variables, domains, and constraints.

Variables represent the unknowns or quantities that need to be assigned
values to satisfy the problem. Each variable has a domain, which is a set of
possible values it can take. Constraints define the conditions or relationships
that must be satisfied among the variables, also imposing restrictions on the
allowed combinations of values. The goal in a CSP is to find an assignment of
values to the variables such that all constraints are satisfied. This assignment
is often referred to as a solution or a feasible solution.
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Many problems in computer science can be modeled as a constraint sat-
isfaction problem. For example, the automatic detection of the type of an
expression in a formal language [79], map coloring in graph theory [80], logic
puzzles [81], etc.

Solving CSPs typically involves employing algorithms and techniques that
explore the solution space and incrementally refine assignments to satisfy
the constraints. Backtracking algorithms, constraint propagation, and search
heuristics are common approaches adopted [82]. In the case where the vari-
ables of the CSP are represented as intervals of Rn, feasible solutions can be
narrowed using interval analysis [83]. In this case, problems are named Set-
Valued Constraint Satisfaction Problems (SVCSPs), and the constraints can
be expressed as interval relations, such as equality, inequality, containment,
etc.

Many problems in robotics can be tackled as a SVCSP, such as determining
the area explored by a robot [29] and range-only localization [84], for example.

Within the interval analysis framework we find two operators that can be
employed to refine interval enclosures and propagate constraints accurately
when solving SVCSPs, they are named contractors and separators. These
operators play a crucial role aiding in the removal of infeasible regions that
do not satisfy given constraints, and they are essential in this thesis, playing
an important role in the construction of a solution to our problem. Therefore,
these operators are presented in this section.

3.3.5 Definition of a SVCSP

We represent a SVCSP by H. It is composed by nx variables xi ∈ R, each
of them belonging to a corresponding domain [xi] ∈ IR, i ∈ {1, . . . , nx}. The
vector of variables is defined as

x =
(
x1, . . . , xnx

)T (3.10)

and the initial knowledge about its value is the interval vector

[x] = [x1]× . . .× [xnx ] (3.11)

These variables are linked by nf relations or constraints that can be represented
by a function f : Rnx → Rnf . The SVCSP problem can be formulated as:

H : (f(x) ≤ 0, x ∈ [x]) (3.12)

and SH represents its solutions set

SH = {x ∈ [x] | f(x) ≤ 0} (3.13)
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ContractingHmeans to replace the current domain [x] by a smaller domain
[x

′
] such that SH ⊂ [x

′
] ⊂ [x], meaning that a valid contraction does not dis-

card any possible solution while removing pessimism. An optimal contraction
of H will replace [x] by the smallest interval vector that contains SH.

3.3.6 Contractors

Let us consider a constraint f(x) = 0 with solution set S, we say that C is a
contractor consistent with this solution set. It is an operator that when applied
to [x] ∈ IRnx returns another interval vector C([x]) ∈ IRnx such that C[x]) ⊆
[x]. In this operation, only vectors x ∈ [x] that do not respect constraint
f(x) = 0 are removed from [x]. Therefore, we can say that C([x])∩S = [x]∩S.
The definition bellow was first presented by [85] and adapted by [86]:

Definition 1 (Contractor). A contractor is a mapping C : IRnx → IRnx such
that:

∀[x] ∈ IRnx , C([x]) ⊆ [x] (Contractility)

If f(x) ≤ 0 and x ∈ [x] ⇒ x ∈ C([x]) (Consistency)

[x] ⊂ [y]⇒ C([x]) ⊂ C([y]) (Monotonicity)

S

[x]

C([x])
C∗([x])

x2

x1

[x]

Figure 3.5: Contractor C consistent with solution set S. The dashed area
is removed during contraction of [x] without removing any single point that
belongs to S. The minimal contractor is denoted C∗.
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The consistency property establishes that a solution consistent with f can
not be removed during contraction by C, the contractor associated to the con-
straint. For example, take the following constraint:

f(x1, x2) = x21 + x22 − 4 = 0 (3.14)

In Figure 3.5 we illustrate in red the set of points that respect this constraint,
and we name this set S. The contractor C is consistent with S, and it will not
remove a single point of S from a box on which it is applied.

We say that a contractor is minimal if for all [x] ∈ IRnx , we have C([x]) =
[[x] ∩ S]. This means that the minimal contractor returns the convex hull, or
the smallest box, that can be obtained by contracting [x] without removing a
single point of S. Where S is the set of solutions that respect the constraint
associated to C. In Figure 3.5 we represent the minimal contractor associated
to f in Equation 3.14 by C∗.

Developing algorithms for contractors have been the subject of different
works [87],[85], [88]. The major principle, in practice, is to evaluate contractors
using interval arithmetic, as demonstrated below for the contractors of some
simple constraints.

Example 1:
x =

(
x1, x2, x3

)T
x1 − x2 − x3 = 0

C :

[x1]
[x2]
[x3]

 =

[x1] ∩ ([x2] + [x3])
[x2] ∩ ([x1]− [x3])
[x3] ∩ ([x1]− [x2])


If the initial knowledge about the variables is, for example, the interval

vector [x] = [0, 3] × [−2, 2] × [4, 5], the contraction will give C([x]) = [2, 3] ×
[−2,−1]× [4, 5].

Example 2:
x =

(
x1, x2

)T
exp(x2)− x1 = 0

C :
(
[x1]
[x2]

)
=

(
[x1] ∩ exp([x2])
[x2] ∩ log([x1])

)
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In [85], the concept o contractor programming was introduced with the
objective of extending standard operations on sets to contractors. With this,
a basic formalism was defined where basic contractors can be combined in
order to solve complex constraints. For example, we have :

Intersection (C1 ∩ C2)([x]) ≜ C1([x]) ∩ C2([x])

Union (C1 ∪ C2)([x]) ≜ C1([x]) ⊔ C2([x])

Composition (C1 ◦ C2)([x]) ≜ C1(C2([x]))

The negation ¬C of a contractor C can be defined as follows:

¬C([x]) = {x ∈ [x]|x /∈ C([x])} (3.15)

As illustrated on Figure 3.5 this set is not necessarily a box and to deal with
this problem, separators were introduced.

3.3.7 Separators

In this thesis we are interested in determining the exploration status of a box
in the environment. We want to assess if all the points inside this box have
been explored, if the box has been only partially explored, meaning that only
some of its points were explored while others not at all and finally if any
point inside the box have been explored. Determining if all the points have
not been explored can be easily done by a contractor associated to a solution
set representing the explored area, the solution of the contraction will be an
empty box. However, if we have a box [x] ∈ IRnx and we want to know
if all x ∈ [x] are a possible solution for a constraint f . In other words, if
∀x ∈ [x], x ∈ S, where S represents the solution set for constraint f , that we
assume to be of non-empty volume. We know that if this is true, we have that
C([x]) = [x], however, the non contractility of [x] is not enough for proving
that all the points inside it are also a solution to the problem. As presented
in Figure 3.6, a contractor does not provide enough information to determine
if a non-contractile box is fully inside the solution set or only on its boundary.
In this case, it can only provide an outer approximation of the set of possible
solutions.

In this context, the concept of a separator is introduced in interval analysis
to characterize both inner and outer approximations of a solution set, providing
a more complete representation. For that, the complementary contractor C,
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Sj

[x] = C([x])

x2

x1

[x] = C([x])

Figure 3.6: The dashed area represents the solutions set S for a constraint f in
a SVCSP with [x] ∈ IR2. The contractor C associated to this constraint is not
able to contract any of the boxes [x] represented in black and in red without
removing a possible solution to the problem. Therefore, the non contractility
of a box is not able to prove that a box is completely inside the solution set or
only on its border.

associated to the solution set S will also be employed. Following the opposite
definition of contractors, the complementary contractor guarantees that every
non-solution to the original constraint is contained in the box resultant of
the contraction. A separator S associated to f is composed by C and C that
can also be respectively named Sout, because it contracts the space out of the
solution set, and S in because it contracts the interior of the solution set.

We present below its formal definition as stated in [89]:

Definition 2 (Separator). A separator associated to a constraint f is an op-
erator that can be seen as a pair of contractors {S in,Sout}, such that:

S :IRnx → IRnx × IRnx

[x] 7→ ([xin]× [xout])

and it respects the following properties:

(i) [xin] = S in([x]),

(ii) [xout] = Sout([x]),

(iii) [x] = [xin] ∪ [xout],
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(iv) [xout] ∩ S = [x] ∩ S,

(v) [xin] ∩ S̄ = [x] ∩ S.

Furthermore, we have the following relations:

[x]\[xin] ⊂ S (3.16)

([x]\[xout]) ∩ S = ∅ (3.17)

S

Figure 3.7: Examples of applications of separators considering a solution set S
represented in gray. Dashed areas in red are removed by the inner contractor
S in and dashed blue areas are removed by the outer contractor Sout.

The notions established on this definition are illustrated in Figure 3.7.
If we consider the problem initially stated at the beginning of this section

of determining if all vectors on a box can be a solution to a constraint, we can
now determine this by analysis the output boxes of a separator. As illustrated
in Figure 3.8, when the separator is applied to a box that is fully inside the
solution, we obtain [xout] = [x] and [xin] = ∅. If, on the contrary, [xin] ∩
[xout] ̸= ∅, it means that this box intersects the boundary ∂S of the solution
set. All this information will be important when constructing a paver, as it
will be explained in Section 3.4.2.

The same operations applied on contractors can be extended to separators
[85]. Let S = {S in,Sout} be a separator, its complement can be defined as

S = {Sout,S in} (3.18)

and now if we take two separators, S1 = {S in
1 ,Sout

1 } and S2 = {S in
2 ,Sout

2 }, the
following set operations can be defined for them:
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Sj

[x] = S in([x]) = Sout([x])

x2

x1

[x] = Sout([x])

S in([x]) = ∅

Figure 3.8: The solution to the problem stated at the beginning of this section
can be found by analysis of the boxes returned by the separator associated to
the solution set S. For the box in black we have that [xin] = [xout] because it
is impossible to contract [x] without removing a solution to both contractors
associated S.

Intersection S1 ∩ S2 ≜ {S in
1 ∪ S in

2 ,Sout
1 ∩ Sout

2 }

Union S1 ∪ S2 ≜ {S in
1 ∩ S in

2 ,Sout
1 ∪ Sout

2 }

Difference S1\S2 ≜ S1 ∩ S2
The application of the projection operator needs to be discussed more in

details.

Projection of Separators

The definition of the projection of sets was presented in Section 3.2.1, now we
extend it for separators.

Given sets X ⊂ Rn, Y ⊂ Rq and Z = X× Y, let us consider a separator S
consistent with a set Z1 ⊂ Z. The projection of S along X will be consistent
with the set projX(Z1) if the following definition is considered:

Definition 3 (Projection of Separators). We consider the separator
S([x], [y]) = {S in([x], [y]),Sout([x], [y])} consistent with Z1. The projection
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of S along X with respect to [y] can be defined as

projx(S)([x]) =

{ ⋂
y∈[y]

∂xS in([x],y),
⋃
y∈[y]

∂xSout([x],y)

}
(3.19)

where ∂xS in([x],y) = {x ∈ [x] | (x,y) ∈ Z1} and ∂xSout([x],y) = {x ∈
[x] | (x,y) ∈ Z1}.

The proof for this definition can be found in [90]. And for more details
about separators and its algebra, the reader can refer to [89].

Separators are employed by pavers in order to characterize sets by an inner
and outer approximation as it will be presented in Section 3.4.

3.3.8 Image Contractor

As previously presented in this chapter, SVCSPs are systems doted of a set of
constraints that are usually expressed by equations. Then, from these equa-
tions, one can construct, using separators, an outer and an inner approximation
for the solution set of the concerned system. However, quite often, in practice,
this order is not respected, and we might have a solution set for a problem but
not the equations for the constraints that defined it. Without these equations,
one can not create contractors and separators that will allow for a character-
ization of the solution set through a classical approach using set operators.
Finding the constraint equations for an existent solution set might be an easy
task for sets such as S illustrated in Figure 3.8. However, in most cases, this
will be cumbersome [91], as it would be for the set S presented in Figure 3.7.

In this scenario, in [91] and [92], the image contractor was introduced with
the objective of constructing contractors and separators for sets without having
to explicitly define equations for the constraints that created it.

Let us consider a set S ⊂ R2, we are going to represent this set by a binary
image BS. In this representation, each pixel of the image has a value of 1 if
it intersects S, and 0 otherwise. The binary image BS is defined by a set of
parameters: its size px× py, pixel resolution ϵy ∈ R+ and ϵx ∈ R+ respectively
on the vertical and horizontal axes, and a point on the plane (x0, x1) that is
the point represented by pixel (1, 1).

For i ∈ {1, . . . , px} and j ∈ {1, . . . , py}, we have that BS(i, j) ∈ {0, 1}. The
pixel value will be defined according to the distribution of set S on the image
space. The area in the plane represented by a pixel (i, j) is a box Pij ∈ IR2

such that Pij = [x0 + iϵx, x0 + (i+1)ϵx]× [y0− (j +1)ϵy, y0− jϵy] and we have

BS(i, j) =

{
1 if Pij ∩ S ̸= ∅
0 otherwise

(3.20)
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y

(0, 0)
R = 1

(1.5, 1.5)
R = 0.5

(−2, 2)

BS

j\i
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 98

(x0, y0) = (−2, 2)

ϵx = 0.5ϵy = 0.5

Figure 3.9: On the right we have an example of a binary image BS representing
the set illustrated in gray on the left composed of two disconnected subsets
that are disks centered in (0, 0) and (1.5, 1.5). The binary image is of size
px × py = 9 pixels × 9 pixels, pixel resolutions ϵx = 0.5 and ϵy = 0.5 and
initial position (x0, x1) = (−2, 2). Pixels represented in black on the binary
image are pixels whose value is equal to one.

There are different numerical methods for determining if a box intersects the
set S depending on the information that is available about this set. In this
work, we will have a curve, or a set of curves, representing the boundary of
sets. The method for creating BS from this information is presented in Section
6.3.2 from Chapter 6. In Figure 3.9, we have an example of a binary image for
a simple disconnected set, the precision of the representation will depend on
pixel resolution.

The central concept underlying the image contractor is the integral image.
An integral image is a technique extensively used in computer vision [93]. It
is a form of an image where each pixel value represents the cumulative sum of
the pixel values in the original image, up to that position, in both horizontal
and vertical directions, as demonstrated in Figure 3.10. The integral image
associated to a set S, that we name IS, is constructed by iteratively summing
the pixel values in the respective binary image BS. The resulting integral image
allows for quick retrieval of pixel sums in any rectangular region, facilitating
efficient computation within the image contractor. It also provides a fast and
efficient way to compute various properties and statistics of an image, such as
means and variances, within a region.

For i ∈ {1, . . . , px} and j ∈ {1, . . . , py}, the integral image can be defined
as:

IS(i, j) =
∑
i
′≤i

j
′≤j

BS(i
′
, j

′
) (3.21)
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i

j

i

j

Figure 3.10: On an integral image, the value of a pixel corresponds to the
cumulative sum of pixels, on the original image, on the rectangular area above
and on the left of this pixel.

IS

j\i
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 98
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 2 3 4 4 4 4
0 0 2 4 6 8
0 0 3 6 9 12
0 0 4 12
0 0 4

8 8 8
12 1212

8 16 161616
8 12 1617 1818

0 0 4 8 12 16
0 0 4 8 12 16

18 2020
202018

Figure 3.11: Integral image associated to the binary image of the example
presented in Figure 3.9.

In Figure 3.11 we have the resultant integral image IS(i, j) for the binary image
BS(i, j) illustrated in Figure 3.9.

The integral image can be computed once from the binary image and then,
from this new representation, the number of 1-valued pixels contained in the
original image within a rectangular area of any size can be obtained from only
four operations. One does not have to parse the whole rectangular area for
computing this value that is calculated in constant time with O(1) complexity.

Let ϕS : IN → N0 be a function that returns the sum of pixels in a box
[n] = [n−

1 , n
+
1 ] × [n−

2 , n
+
2 ] on the original image. This function evaluates the

value of pixels on the integral image on the coordinates of the corners of this
box:

ϕS([n]) = IS(n+
1 , n

+
2 )− IS(n+

1 , n
−
2 )− IS(n−

1 , n
+
2 ) + IS(n−

1 , n
−
2 ) (3.22)
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Figure 3.12: The four images show the steps for computing the number of
non-zero pixels within box [x] on the original image. The gray rectangles
correspond to the area on the binary image comprised by the respective sum
of pixels of the integral image.

A visual explanation of this function is given on Figure 3.12.
Function ϕS is used by the image contractor. Consider a box [y] = [y0] ×

[y1] ∈ IR2 that we want to contract with respect to a solution set S. The
following steps will take place

(i) Create the binary image BS and its correspondent integral image IS for
set S;

(ii) Map box [y] ∈ IR2 to its pixel representative [n] = nx × ny with

nx = [floor((y−0 − x0)/ϵx), ceil((y+0 − x0)/ϵx)]

and
ny = [floor((y−1 − x1)/ϵy), ceil((y+1 − x1)/ϵy)]

where floor and ceil are functions that round a given number to the
nearest integer in different directions. The former downward and the
latter upward;
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BS

[n]
[m]

Figure 3.13: Example of contraction of box [n] into [m] without removing any
1-valued pixel from the resultant box.

(iii) Contract [n] in order to find the smallest box [m] ⊂ [n] such that
ϕS([n]) = ϕS([m]). This is done by the image contractor that we denote
CI and it satisfies:

CI([n]) = [m] = [m−
0 ,m

+
0 ]× [m−

1 ,m
+
1 ]

where

m−
0 = max(for x ∈ [n0] such that ϕS([n

−
0 , x]× [n1]) = 0) or n−

0

m+
0 = min(for x ∈ [n0] such that ϕS([x, n

+
0 ]× [n1]) = 0) or n+

0

m−
1 = max(for x ∈ [n1] such that ϕS([n0]× [n−

1 , x]) = 0) or n−
1

m+
1 = min(for x ∈ [n1] such that ϕS([n0]× [x, n+

1 ]) = 0) or n+
1

An example of contraction is illustrated in Figure 3.13.

(iv) Map [m] from image coordinates to workspace coordinates again to ob-
tain [y

′
], that is the contraction of the original box [y] with respect to

set S.

[y
′
] = [m0

−ϵx + x0,m0
+ϵx + x0]× [m1

−ϵy + x1,m1
+ϵy + x1]

The image contractor can be generalized to other dimensions [94] [95] but
in this work we only use the 2-dimensional case presented in this section.

An image separator for a set S is constructed from an image contractor
associated to set S and from the complementary image contractor associated
to set S.
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3.4 Subpaving

In Section 3.3.3, we presented the concept of pessimism in representing solu-
tion sets as intervals, along with the consequential wrapping effect that arises
when this pessimism accumulates through successive operations on the inter-
vals. To mitigate this pessimism, a potential solution involves subdividing
the space into smaller interval vectors and classifying them based on whether
they intersect with specific portions of the set under-representation or not. By
employing this approach, we can effectively reduce the impact of pessimism
and refine the accuracy of interval-based representations. This new wrapper
is called subpaving and it will be an import asset when solving SVCSPs and
to the set-inversion problem, that is also presented in this section.

Let us consider a set X ⊂ Rn that can assume any form and even be
disconnected and we want to wrap this set under a subpaving representation.
The process starts with an initial interval vector, that can also represent a
union of disconnected interval vectors, that encompass the entire space of
interest [x0] ∈ IRn. This initial estimation is then further divided into smaller
subintervals using bisection.

Through bisection and analysis of the subintervals of the initial estimation
[x0] for set X, the subpaving K of [x0] is created as a union of non overlapping
boxes [96], and as presented in [86] we have

[x0] =
⋃
[b]∈K

[b] (3.23)

During the division process of [x0] into sub interval vectors, each box
[b] ∈ K is examined to determine its properties and characteristics. This
examination involves evaluating the set membership or intersection with the
target set X being represented. Based on this evaluation, the subintervals are
classified into different categories, such as those completely contained within
the target set, those completely outside the set, and those that intersect with
the set boundary. In this context, we can define an inner-approximation K−

of X as a union of boxes of K that are subsets of X:

K− =
⋃

[b]∈K,
[b]⊂X

[b] (3.24)

An outer-approximation K+ can also be defined such that:

K+ =
⋃

[b]∈K,
[b]∩X̸=∅

[b] (3.25)
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From these definitions we can conclude that Rn\K+ is a set of points that do
not belong to the target set and that the following relation will be respected:

K− ⊂ X ⊂ K+ (3.26)

[x0]

X K+\K−K−

Figure 3.14: Inner and Outer approximation of set X through subpaving.

In Figure 3.14 the concepts of subpaving and of inner and outer approxi-
mations are illustrated.

3.4.1 Set Inversion Via Interval Analysis (SIVIA) Algorithm

The set inversion problem involves determining the pre-image of a given set
under a given function. In other words, given a function that maps elements
from one set to another, the goal is to identify the set of all input values
that map to a specific target set in the range. Let us consider a function
f : Rn → Rm, we want to estimate the set X ∈ Rn from the knowledge of its
image by f that we denote Y ∈ Rm. This is a set inversion problem that can
be formally stated as follows:

X = {x ∈ Rn|f(x) ∈ Y} = f−1(Y) (3.27)

In [96] a solution to this problem using interval analysis was proposed
through the Set Inversion Via Interval Analysis (SIVIA) algorithm that we
present in this section. In this work, a SIVIA algorithm will be used in Section
6.4 for characterizing points in the waterfall space in terms of their coverage
measure. The algorithm assumes an inclusion function [f ] : IRn → IRm and
it approximates a set X ⊂ Rn from any Y ⊂ Rm using a subpaving technique.
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The SIVIA algorithm, that is presented in Algorithm 1, starts with an
inclusion function [f ], an initial enclosure for the solution set X represented
by [x0], the image set Y such that f(X) = Y and a precision parameter ϵ that
determines when bisection should cease. The outputs of the algorithm are an
outer approximation set X+ and an inner approximation set X− such that the
relation X− ⊂ X ⊂ X+ is valid.

The algorithm examines the relation between the image of an interval vector
[x] under the action of [f ] and the target set Y. From this analysis four distinct
cases may arise:

1. [x] is out of the solution set → [x] is discarded:

[f ]([x]) ∩ Y = ∅

2. All vector x ∈ [x] is on the solution set X → [x] is stored in both X+

and X−:
[f ]([x]) ⊂ Y

3. Undetermined case, there might be a vector x ∈ [x] on the solution set
X but [x] ̸⊂ X and w([x]) < ϵ → [x] is stored in X+:

[f ]([x]) ̸⊂ Y

[f ]([x]) ∩ Y ̸= ∅

4. Undetermined case, there might be a vector x ∈ [x] on the solution set X
but [x] ̸⊂ X and w([x]) ≥ ϵ → [x] is bisected and new tests are applied
on each of the resulting interval vectors :

[f ]([x]) ̸⊂ Y

[f ]([x]) ∩ Y ̸= ∅

3.4.2 Paver

In this work, we use paver for characterize the plane in terms of the coverage
measure of its points. This method will be presented in Chapter 6.

In Section 3.3.4 we presented the concept of constraint systems where a
solution set to the problem is defined by a set of constraints. These solution
sets can be approximated by a subpaving wrapper constructed by a paver. A
paver uses separators to classify if an interval vector is part of the outer or
inner approximation of a solution set or not a part of the solution at all.
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Algorithm 1 Set Inversion Via Interval Analysis (SIVIA) (in: [f ], [x0], Y,ϵ,
out: X−,X+)
1: Initialize:

X−,X+ = ∅
Q = {[x0]}

2: if Q ̸= ∅ then take a t-box [x] ∈ Q and remove it from Q else return
endif

3: if [f ]([x]) ∩ Y = ∅ then
▷ [x] has no solutions

4: elseif [f ]([x]) ⊂ Y then
5: X+ ← X+ ∪ [x] ▷ outer approximation set
6: X− ← X− ∪ [x] ▷ inner approximation set

7: elseif w([x]) < ϵ then
8: X+ ← X+ ∪ [x] ▷ outer approximation set

9: else
10: bisect [x] into [x](1) and [x](2)

11: Q← Q ∪ {[x](1), [x](2)}

endif

12: Return to 2.

Algorithm 2 was proposed by [90] and it is quite similar to Algorithm 1, with
some differences that are now described. Algorithm 2 assumes on the input
a separator S associated to a solution set X, that we want to characterize by
a subpaving wrapper, an initial interval vector enclosure [x0] and a precision
parameter ϵ that determines when bisection should cease. The outputs of the
algorithm are an outer approximation set X+ and an inner approximation set
X− such that the relation X− ⊂ X ⊂ X+ is valid.

The algorithm analyzes if an interval vector represents a part of the space
inside or outside the solution set X associated with S. For that, it starts
by calling separator S to contract [x] into [xin] and [xout]. As presented in
Section 3.3.7, [x]\[xin] is by definition a subset of X. Therefore, [x]\[xin] can
be directly added to X− and X+. Then it analyzes the interval vector resultant
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of the intersection ∂S([x]) = [xin]∩ [xout]. If w(∂S([x])) < ϵ this box is stored
only in X+ and it will not be analyzed anymore. Otherwise, it is bisected and
the separator is applied again on each one of the resultant boxes.

Algorithm 2 Paver (in: S, [x0],ϵ, out: X−,X+)
1: Initialize:

X−,X+ = ∅
Q = {[x0]}

2: if Q ̸= ∅ then take a t-box [x] ∈ Q and remove it from Q else return
endif

3: [xin], [xout] = S([x])

4: X+ ← X+ ∪ [x]\[xin] ▷ outer approximation set
5: X− ← X− ∪ [x]\[xin] ▷ inner approximation set

6: ∂S([x]) = [xin] ∩ [xout]
7:
8: if w(∂S([x])) < ϵ then
9: X+ ← X+ ∪ ∂S([x]) ▷ outer approximation set

10: else
11: bisect ∂S([x]) into [x](1) and [x](2)

12: Q← Q ∪ {[x](1), [x](2)}

endif

13: Return to 2.

Example: Two Attached Goats

We present a classical problem [97] that can be solved using pavers. The
problem considers two goats, each one attached to a fixed peg on a grassy
area, with ropes of known lengths L1 and L2. The goats can move freely
within the radius of their respective ropes, but their movements are limited
by the length of it. We are going to tackle this problem from a 2-dimensional
perspective and assume that one of the pegs is at a position p1 ∈ R2 known to
be encompassed by the interval vector [p1] ∈ IR2 and the other at a position
p2 ∈ R2 guaranteed to lie within the interval vector [p2] ∈ IR2. Assuming



74 CHAPTER 3. INTERVAL ANALYSIS

L1 = L2 = 10, [p1] = [0, 1]× [2, 10] and [p2] = [10, 16]× [0, 1], using the library
Codac [98] for Python 3.10 we solve the following problems:

Calculate the grazing area for each individual goat on the lawn: This
problem can be represented by a SVCSP with constraint f : R2 × R2 → R.
Assuming that p = (px, py) is the position on the plane on which the goat in
consideration is attached to and let L be the size of the rope, this constraint
can be formalized as:

f(x,p) = (x1 − px)2 + (x2 − py)2 − L2 (3.28)

For a given peg position p, we want to determine the set S of points such that

S = {x ∈ R2 | f(x,p) ≤ 0} (3.29)

For this purpose a separator S([x], [p]) = {S in([x], [p]),Sout([x], [p])} associ-
ated to S can be created. Here we have [x] ∈ IR2 and [p] ∈ IR2, respectively
representing the workspace for points on the lawn and possible positions of the
peg.

The projection of S along x with respect to the peg position of each goat
will give us the separator necessary to solve the problem. For example, for
goat one we have projx(S)([x]) with respect to [p] = [p1], that for simplicity
we name it S1. This separator is associated to the solution set:

S1 = {x ∈ R2 | ∃p1 ∈ [p1], f(x,p1) ≤ 0} (3.30)

Analogously, we have for goat two the separator projx(S)([x]) with respect
to [p] = [p2], that we name S2 associated to the solution set:

S2 = {x ∈ R2 | ∃p2 ∈ [p2], f(x,p2) ≤ 0} (3.31)

The result to the problem can be obtained by a paver applying each of
these separators as illustrated in Figures 3.15a and 3.15b.

Compute the combined grazing area accessible to at least one of the
goats on the lawn: We are now interested in the set of points of the plane
that can possibly be explored either by goat one or by goat two. The solution
set S2 for this problem can be formally expressed as:

S1|2 = {x ∈ R2 | ∃p1 ∈ [p1], f(x,p1) ≤ 0 or ∃p2 ∈ [p2], f(x,p2) ≤ 0}
= S1 ∪ S2



3.4. SUBPAVING 75

and it can be characterized by a separator S1|2 resultant of the union of sepa-
rators S1 and S2.

S1|2 = S1 ∪ S2 (3.32)

The subpaving obtained by a paver applying this separator is illustrated in
Figure 3.15c.

Compute the regions on the lawn where only one of the goats can
potentially graze: For this problem, the solution set can be formalized as:

S3 = (S1 ∪ S2)\(S1 ∩ S2) (3.33)

We are going to name the separator associated to this set S3. Considering all
the concepts introduced in Section 3.3.7 and using De Morgan rules, it can be
concluded that:

S3 = (S1 ∪ S2) ∩ (S1 ∩ S2)
= (S1 ∪ S2) ∩ (S1 ∪ S2)
= (S1 ∩ S1) ∪ (S1 ∩ S2) ∪ (S2 ∩ S1) ∪ (S2 ∩ S2)
= (S1 ∩ S2) ∪ (S2 ∩ S1)

The resulting subpaving associated to S3 is illustrated in Figure 3.15d.

Find the overlapping region on the lawn where both goats can po-
tentially graze: Now we consider the following solution set :

S4 = {x ∈ R2 | ∃p1 ∈ [p1], f(x,p1) ≤ 0 and ∃p2 ∈ [p2], f(x,p2) ≤ 0}
= S1 ∩ S2

We are going to name the separator associated to this set S4 such that:

S4 = S1 ∩ S2 (3.34)

The resulting subpaving associated to S4 is illustrated in Figure 3.15e.

Compute the grazing area on the lawn guaranteed that can be ac-
cessed by at least one of the goats: For this problem we will associate a
separator S5 to the solution set S5 defined as follows:

S5 = {x ∈ R2 | ∀p1 ∈ [p1], f(x,p1) ≤ 0 or ∀p2 ∈ [p2], f(x,p2) ≤ 0} (3.35)
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For that we are going to consider the complement of separator S consistent
with set S in Equation 3.29. Its complement S will be consistent with the
following set:

S = {x ∈ R2 | f(x,p) > 0} (3.36)

Then, projecting S along x with respect to the peg position of each goat
we obtain S1 = projx(S) consistent with:

S1 = {x ∈ R2 | ∃p1 ∈ [p1], f(x,p1) > 0} (3.37)

and S2 = projx(S) consistent with:

S2 = {x ∈ R2 | ∃p2 ∈ [p2], f(x,p2) > 0} (3.38)

And since S5 can be rewritten as

S5 = S1 ∪ S2

= {x ∈ R2 | ∀p1 ∈ [p1], f(x,p1) ≤ 0} ∪ {x ∈ R2 | ∀p2 ∈ [p2], f(x,p2) ≤ 0}

we obtain the following separator for the problem:

S5 = S1 ∪ S2 (3.39)

The result of an analysis of this separator by a paver is illustrated in Figure
3.15f.

3.5 Dedicated Sets

We can construct an interval of any mathematical object as long as the set of
domain in which this interval is defined forms a complete lattice [99]. In math-
ematics, a lattice is a partially ordered set in which every pair of elements has
both a greatest lower bound (infimum) and a least upper bound (supremum)
and it is a structure where elements can be compared and combined in terms
of meet ∧ and join ∨ operations.

Formally, a lattice is defined as (ε,≤), where ε is a set and ≤ is a partial
order relation on ε. For any two elements x and y in ε, the infimum (or meet)
of x and y, denoted as x ∧ y, is the greatest element in ε that is less than or
equal to both x and y. Similarly, the supremum (or join) of x and y, denoted
as x ∨ y, is the smallest element in ε that is greater than or equal to both x
and y.

Considering the definition above, in this section we present two special
type of intervals, of elements whose domains can be represented as complete
lattices, that are used in the next chapters of this work.
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3.5.1 Interval of Sets or Thick Sets

When we estimate the explored area while considering the uncertainty asso-
ciated to the robot’s trajectory, we will obtain three distinct sets: a set of
points that were definitely explored, a set of points potentially explored, and
a set of points unexplored (as per [29]). In this study, we employ thick sets
to represent uncertain sets, such as the one we will generate for the explored
area..

The concept of interval of sets or thick sets was introduced by [100]. This
is an important type of interval that will be used in this work in order to
characterize uncertain sets as it will be presented later in this document.

When considering sets in Euclidean spaces they can be endowed with a
lattice structure that arises from the natural ordering induced by the inclusion
relation ⊂. Therefore, we can define an interval of elements of the lattice
(P(Rn),⊂) that is named thick set. The following definition is adapted from
[101], to where the readers may refer to for further information on the subject.

X
X+

X−

Figure 3.16: Representation of thick sets.

Definition 4 (Thick Set). We denote JXK ∈ IP(Rn) a thick set of Rn if there
are two subsets of Rn called the lower bound X− and the upper bound X+ such
that

JXK = [X−,X+]

= {X ∈ P(Rn) | X− ⊆ X ⊆ X+}
(3.40)

A thickset partitions the environment into three zones, the clear zone X−, the
penumbra X+\X− (both illustrated in Figure 3.16) and the dark zone Rn\X+.

If for the thick set X = [X−,X+], we have X− = X+ then X is said to be
thin. It corresponds to a singleton on P(Rn) or a classical subset of Rn.
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S

x2

x1

[X]
x1

x2

Figure 3.17: On the left we have a disconnected thin set S represented in gray.
On the right we have a thick set represented by disks on the planes. The clear
zone is illustrated in white, the penumbra in gray and the dark zone in black.
We have S ∈ [X].

In Figure 3.17 we demonstrate how a thick set can be used to encompass
a set and how information about the distribution of this set within the three
different zones (clear zone, penumbra and dark zone) can be interpreted. If
S ∈ [X], it can be concluded that X− ⊆ S and therefore that all the points
in X− are a solution to S. We can also conclude that X+ ∩ S ̸= ∅ and that a
point that belongs to the penumbra X+\X− might either be a solution to S or
not. Finally, all the points in the dark zone Rn\X+ are guaranteed to not be
a solution to S.

3.5.2 Interval of Functions or Tubes

In mobile robotics, the inherent uncertainties associated with a robot’s pose
often require the consideration of a set of possible trajectories to represent
the robot’s dynamics during a mission, acknowledging that the true trajectory
lies within this set of possibilities. Rather than relying on a single trajectory,
by considering a range of potential trajectories, mobile robots can account
for variations in sensor measurements, environmental conditions, and other
sources of uncertainty, enhancing their ability to navigate and interact effec-
tively in complex and dynamic environments. The robot’s trajectory during a
mission is a function of time and in this section we formalize the notion of set
of functions.

A set of functions is represented by means of tubes. The concept was
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introduced by [102], and we adopt the definition formally presented in [103]
and [104], that allows the use of interval arithmetic within this framework.

t
t0 tf

[x]

x

[t1]

[x]([t1])

t2

[x](t2)

x+

x−

Figure 3.18: One-dimensional tube [x] enveloping function x : R→ R.

Let Fn be the set of all functions from R to Rn, Fn is a complete lattice with
partial order x ≤ y for x ∈ Fn and y ∈ Fn, such that ∀t ∈ R, x(t) ≤ y(t)
[104]. In this context, we can define an interval of functions [x] = [x−,x+] of
Fn such that ∀t ∈ [t0, tf ] ⊂ R, x−(t) ≤ x+(t). A function x ∈ Fn belongs to
a tube [x] ∈ IFn if ∀t ∈ [t0, tf ], x(t) ∈ [x](t).

The interval evaluation of a tube [x] over an interval [t] ∈ IR was given in
[104] as follows:

[x]([t]) = [{x(t) | x ∈ [x], t ∈ [t]}] (3.41)

that is the smallest box enclosing all the possible solutions within the domain [t]
and considering all the functions enveloped by [x]. In Figure 3.18 we illustrate
a one-dimensional tube [x] ∈ IF and its evaluation over an interval [t1] and over
a single point value t2. We know from the illustrated tube [x], that a function
x ∈ [x] has at least two different values in t ∈ [t0, tf ] such that [x](t) = 0.
If, additionally, we have another tube [ẋ] representing its first derivative, we
could also conclude that x has exactly two roots.
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t
t0 tf

[x]

[x]([t0 + δ, t0 + 2δ])

slice 0

slice 1:

t1

[x](t1) = [x]([t0 + 7δ, t0 + 8δ])
slice 7

[t0 + δ, t0 + 2δ]

Figure 3.19: Numerically a tube is represented as a sequence of boxes that are
called slices of the tube.

Numerically, a tube can be represented as a sequence of boxes that corre-
spond to temporal slices. For that a sampling time δ > 0 is associated to the
tube representation and the tube is constant for all t ∈ [t0 + kδ, t0 + (k + 1)δ],
with k ∈ Z. Meaning that an inspection of the value of [x] at any t ∈
[t0 + kδ, t0 + (k + 1)δ] will be equal to [x]([t0 + kδ, t0 + (k + 1)δ]). The box
[t0 + kδ, t0 + (k+1)δ]× [x]([t0 + kδ, t0 + (k+1)δ]) is called the kth slice of the
tube. In Figure 3.19 the discretization into slices of a one-dimensional tube is
illustrated. This implementation results in a piece-wise constant enclosure for
the tube, enabling straightforward execution of standard interval operations.

The arithmetic between intervals is naturally extended to tubes. For ex-
ample, consider [x] ∈ IFn and [y] ∈ IFn. For an operator ⋄ ∈ {+,−, ., /}, we
will have that

[x] ⋄ [y] = [{x ⋄ y ∈ Rn | x ∈ [x] and y ∈ [y]}] (3.42)

This equation is an extension of Equation 3.2, and it is the smallest tube
containing all feasible values for the operation considering the possible combi-
nations between functions enveloped by [x] and [y].

Furthermore, if we have a function f : Rn → Rm, this function can be
applied to a tube [x] ∈ IFn and the resultant inclusion function [f ] will be
defined as

[f ]([x]) = [{f(x) | x ∈ [x]}] (3.43)
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In the next section we will be interested on the integral of a tube. For an
interval [t1, t2] ⊂ [t0, tf ], it is the smallest box containing all feasible integrals:∫ t2

t1

[x](τ)dτ =

{∫ t2

t1

x(τ)dτ | x ∈ [x]

}
(3.44)

and from the monotonicity of the integral function:∫ t2

t1

[x](τ)dτ =

[∫ t2

t1

x−(τ)dτ,

∫ t2

t1

x+(τ)dτ

]
(3.45)

We will also be interested in evaluating the integral of tubes over interval
domains [t1], [t2] ∈ IR. It was proved in Section 3.3 of [105] that this integral
can be computed by:∫ t2

t1

[x](τ)dτ =

[
lb(y−([t2])− y−([t1])), ub(y

+([t2])− y+([t1]))

]
(3.46)

where [y](t) = [y−,y+] =
∫ t

t0
[x](τ)dτ is the interval primitive of [x] and

operators lb and ub return the lower bound and the upper bound of an interval,
respectively.

3.6 Detection of Self-Intersections on Tubes

Detecting self-intersections on a tube will play an important role in this work.
The problem was the subject of [105] and in this section we present the for-
malism, concepts and the method introduced by them in order to deal with
this problem.

Let x be a continuous function from R to Rn. A self-intersection of x is
determined by two parameters t1, t2 ∈ R, t1 ̸= t2, and it is a point p ∈ Rn

such that p = x(t1) = x(t2). We are interested in identifying self-intersections
along sets of continuous functions in the plane.

Let x : [t0, tf ]→ R2 be a continuous function, for some interval [t0, tf ] ⊂ R.
In [105] a pair defining a self-intersection is called a t-pair. We are interested in
computing the following set, of all t-pairs that characterize self-intersections:

T∗ = {(t1, t2) ∈ [t0, tf ]
2 |
∫ t2

t1

ẋ(τ)dτ = 0, t1 < t2} (3.47)

Where ẋ represents the first derivative of x. With the intention of simpli-
fying the notation, from now on, in this section, we will be using v = ẋ.
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x(t1) = x(t2)

x(t3) = x(t6)

x(t4) = x(t5)

tx

ty tx = ty

t1 t3 t4

t2

t5

t6

Figure 3.20: Right: curve with three self-intersections (t1, t2), (t4, t5) and
(t3, t6). Note that [t4, t5] ⊂ [t3, t6], therefore x([t3, t6]) is not a simple cy-
cle; Left: t-plane, with the three self-intersections identified.

A t-pair can be graphically represented in a t-plane. In Figure 3.20 an
example of t-plane is given considering the set T∗ = {(t1, t2), (t3, t6), (t4, t5)}
for a function x that is also illustrated.

In practice, we will be dealing with an unknown function v∗ guaranteed
to be represented inside a tube [v]. As a consequence, we will not be able to
estimate the set T∗ directly as defined in Equation (3.47). Instead, we estimate
the set T that contains all the possible self-intersections from all the feasible
curves that we obtain by integrating [v]:

T = {(t1, t2) ∈ [t0, tf ]
2 | ∃v ∈ [v],

∫ t2

t1

v(τ)dτ = 0, t1 < t2} (3.48)

Since v∗ is guaranteed to lie within [v], we also have that T∗ ⊆ T. Finally, the
problem of detecting self-intersections within a tube amounts to computing
the set T and that is a typical set-inversion problem. Algorithm 3 is a self-
membership algorithm to identify self-intersections along tubes. It is a SIVIA
algorithm, as presented in Section 3.4.1, that applies some tests to determine
if a t-box [t] ∈ IR2, that is a set of t-pairs, belongs or not to the solution set
T. These tests, that are now presented in this document, were proposed by
[105] to where we also refer the reader for the proofs of what follows.

Testing if [t] does not contain any possible solution: If [t] is not a
solution, it means that it does not exist t ∈ [t] such that t ∈ T. Let t = [t1]×[t2]
be the t-box to be evaluated, we are only interested in t-pairs (t1, t2) for which
t1 < t2. Therefore, if [t1]− [t2] ⊂ R+, the box [t] does not contain any solution
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to the problem and it can be discarded. Additionally, we can say that,

0 ̸∈
∫ [t2]

[t1]

[v](τ)dτ ⇒ [t] ∩ T = ∅

It implies that if there is no v ∈ [v] or t ∈ [t] that leads to
∫ t2
t1

v(τ)dτ = 0, the
t-box [t] can also be discarded. These conditions are enough for rejecting a
t-box with no solution within as long as [t1]∩ [t2] = ∅, on the contrary, another
test must be applied.

If [t1] ∩ [t2] ̸= ∅, [t] will pass the last two tests even if it does not contain
any possible solution. This happens because in this context ∃t ∈ [t1] and
∃t ∈ [t2] such that

∫ t

t
[v](τ)dτ = 0 and naturally [t1]− [t2] ̸⊂ R+. In this case,

the injective test is introduced, it consists of proving that functions in [x], for
which we are computing the self-intersections, are injective in [t−1 , t

+
2 ]. This

can be verified by the following test:

0 ̸∈ [v]([t−1 , t
+
2 ])⇒ [t] ∩ T = ∅

Finally, these three tests have been proven to be robust for eliminating t-boxes
without discarding any possible solution to the problem.

Testing if [t] is a subset of the solution set: We can also apply some
tests in order to verify if a t-box [t] is a subset of the solution set. First, we
know that this will only be true if the condition [t1]− [t2] ⊂ R− is met. Next,
we need to determine if ∀t = (t1, t2) ∈ [t], ∃v ∈ [v] such that

∫ t2
t1

v(τ)dτ = 0.
This condition can be restated using the intermediate value theorem:∫ [t2]

[t1]

v−(τ)dτ ≤ 0 ≤
∫ [t2]

[t1]

v+(τ)dτ ⇒ [t] ⊂ T

where ∫ [t2]

[t1]

v−(τ)dτ = {
∫ t2

t1

v−(τ)dτ | t1 ∈ [t1] and t2 ∈ [t2]}

and if A ⊂ R2, the comparison A ≤ 0 means that ∀a = (a1, a2) ∈ A , a1 ≤
0 and a2 ≤ 0.

Finally, if after the tests stated above, it is concluded that the t-box is not
a subset of T but it can not be discarded either, the box is bisected if it has a
minimum width or it is added to the outer approximation set. The complete
procedure is presented in Algorithm 3.
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Algorithm 3 Detecting self-intersections on tubes (in: [v], [t0, tf ], ϵ, out:
T−,T+)
1: Initialize:

Q = {[t0, tf ]2}

2: if Q ̸= ∅ then take a t-box [t] ∈ Q and remove it from Q else return
endif

3: if [t1]− [t2] ⊂ R+ or 0 /∈
∫ [t2]

[t1]
[v](τ)dτ or 0 /∈ [v]([t−1 , t

+
2 ]) then

▷ [t] has no solutions

4: elseif [t1]− [t2] ⊂ R− and
∫ [t2]

[t1]
v−(τ)dτ ≤ 0 ≤

∫ [t2]

[t1]
v+(τ)dτ then

5: T+ ← T+ ∪ [t] ▷ outer approximation set
6: T− ← T− ∪ [t] ▷ inner approximation set

7: elseif w([t]) < ϵ then
8: T+ ← T+ ∪ [t] ▷ outer approximation set

9: else
10: bisect [t] into [t](1) and [t](2)

11: Q← Q ∪ {[t](1), [t](2)}

endif

12: Return to 2.

x1

x2

[x](t0)

[x](tf )

[x]([t1])[x]([t2])

(a)

t1 = t2t2

t1

[t2]

[t1]

(b)

Figure 3.21: Images created using the library Codac [98]. (a): A tube [x] ∈ IF2

represented in blue with one self-intersection. (b) : Paving of the t-plane to find
a self-intersection on [x]. The box [t1]× [t2] is the smallest box containing the
outer-approximation, represented by the union of the yellow boxes, of t-pairs
representing a possible self-intersection.
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In Figure 3.21 we have an example of the application of the algorithm just
presented to a tube where one self-intersection can be detected. Each self-
intersection is represented by a connected set and if many self-intersections
are detected the set T will be disconnected.

3.7 Conclusion

In conclusion, this chapter presented interval analysis, a mathematical tool for
handling uncertainty and approximating solutions to complex problems. After
recalling concepts from set theory, we explored the fundamental concepts of
interval arithmetic, interval enclosures, and the representation of functions
using intervals.

The use of contractors and separators have been discussed as essential op-
erators for efficiently propagating constraints and refining approximations. We
then discussed how these tools can be employed for creating subpavings of the
environment, which serves as a valuable technique for reducing pessimism and
enhancing accuracy in interval-based representations. Finally, two important
dedicated sets, that are going to be employed to characterize uncertainty in
this work, were presented.

In the upcoming chapter, we present topological tools that establish, to-
gether with the content presented in this chapter, a solid mathematical back-
ground for formalizing the problem associated with defining the explored area.
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(a) S1 (b) S2

(c) S1|2 (d) S3

(e) S4 (f) S5

Figure 3.15: Green boxes represent inner approximations of the solution set
and blue boxes outer approximations. Boxes in white do not contain points
that might be a solution to the problem and black boxes represent [p1] and
[p2].



Chapter 4

Topology
“Mathematicians are indifferent to the replacement of
objects by others as long the relations don’t change.
Matter is not important, only form interests them.”-

Henri Poincaré

When our objective is to guarantee the complete coverage of an area, we aim
to obtain an explored area without any "holes" indicating unexplored regions.
In this context, it can be said that there are some topological properties we
want to verify in this explored area that we want to estimate.

This chapter serves as an introduction to the field of topology and presents
existent topological tools that will be essential for formalizing our problem in
the subsequent chapters of this document.
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Topology emerged as a branch of mathematics born out of the necessity to
categorize and classify geometric objects. Briefly stated, topology deals with
properties and characteristics of sets that remain unchanged under continuous
deformations, such as stretching, bending, twisting, and shrinking, but without
tearing or gluing.

Figure 4.1: A topological transformation of a doughnut into a coffee cup.
Image extracted from [106].

In topology, what matters is the underlying structure and the relation of
closeness between points in a space, rather than their specific geometric appear-
ance. This concept often leads to intriguing and sometimes counterintuitive
results. For example, there is a famous mathematical joke that says that a
topologist is someone who cannot distinguish between a doughnut and a coffee
mug. Although they may look different as physical objects, from a topological
perspective, they are "the same". By the same we mean that one object can
be transformed into the other in a continuous and reversible manner without
tearing or gluing. Figure 4.1 illustrates this transformation.

In this Chapter, we will introduce fundamental concepts from topology
that will serve as the building blocks of the following sections of this document
providing a solid mathematical framework. Furthermore, these topological
tools will prove invaluable for the mathematical formalization presented ahead
in this work, and they also play a central role in the development of a solution
for the problem at hand.

The content presented here has only an introductory character and it is
mostly based on the following text books [107], [108], [109], [110], [111].

4.1 Common Euclidean Subspaces

Before presenting the concept of topological spaces we find essential to first
define some common Euclidean spaces that often serve as foundational exam-
ples:

Unit Interval I ⊂ R is the unit interval.
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I = {x ∈ R|0 ≤ x ≤ 1}

Unit Ball Bn ⊆ Rn is the unit ball in Rn.

Bn = {x ∈ Rn | ∥x∥ < 1}

Unit n-sphere Sn ⊆ Rn+1 is the unit n-sphere.

Sn = {x ∈ Rn+1 | ∥x∥ = 1}

In R2, S1 is also named the unit circle.

Unit Disk Dn ⊆ Rn+1 is the unit disk, it will also be referred to as a closed
ball.

Dn = Bn+1 ∪ Sn

4.2 Topological Spaces

In this work, our focus remains exclusively on Euclidean spaces. However,
within this chapter, we introduce concepts from topology at a more abstract
level, considering broader spaces referred to as topological spaces. The inten-
tion is to provide a deeper understanding of topological tools and to illustrate
their extensive applicability by introducing them within a more general con-
text.

Figure 4.2: Any two opens balls in Rn can be continuously deformed onto the
other by radial retraction. This transformation does not preserve the distance
between points in the space.

On the introduction of this Chapter we mentioned that two different ob-
jects that can be transformed onto another through a continuous deformation
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are considered equivalent in topology, the coffee mug and the doughnut ex-
ample were used for illustrating this idea. Another example, that is simpler,
is the transformation between two balls of different radii, Figure 4.2. In this
transformation, it is obvious that the continuous deformation between these
two metric spaces, in any direction, will not preserve the distance between
points [108]. Therefore, in order to establish equivalence between spaces from
a topological point of view, the concept of distance is irrelevant, and it does
not have to be well-defined.

In this context, while metric spaces rely on the notion of distance, a topo-
logical space seeks to remove this specific metric structure and focus solely
on the closeness and continuity between points. Hence, the main motivation
behind the definition of a topological space is to provide a generalization of
the concept of a metric space, advancing in abstraction and enabling an ex-
ploration of more general and flexible mathematical structures.

In a metric space, distances between points are explicitly defined, and open
sets are constructed based on these distances. In order to define a topology
on a set we designate certain subsets of that space to be open. This collection
of subsets need to satisfy three axioms that are presented on the following
definition, adapted from [112]:

Definition 5 (Topological Space). A topological space is a pair (X,T ) con-
sisting of a set X and a topology T on X. The topology T is a collection of
subsets of X, called open sets, that satisfy the following properties:

(i) X and ∅ are elements of T , or we can say that X and ∅ are open;

(ii) The intersection of a finite collection of open sets is open.
If U1, . . . , Un ∈ T then their intersection U1 ∩ . . . ∩ Un is in T ;

(iii) The union of any arbitrary collection of open sets is open.
If C is any finite or infinite collection of elements in T , then the union
of its elements

⋃
c∈C

c is in T .

A subset S ⊆ X is said to be closed in (X,T ) if its complement X\S is an
open set, in other words, if X\S ∈ T . According to this definition a set can be
both open and closed, for example X and ∅. The three axioms in Definition 5
can be rewritten in terms of closed sets:

(i) X and ∅ are closed;

(ii) Finite unions of closed sets are closed;

(iii) Arbitrary intersections of closed sets are closed.
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4.2.1 Common Examples of Topologies

Some common examples of topologies are:

Discrete Topology: The discrete topology on X is the power set of X,
T = P(X). All possible subsets of X are open sets and it is the finest topology.

Trivial Topology: The trivial topology is the coarsest topology on X, it
has the minimum number of subsets of X in order to respect the three axioms
established by definition. In this case, T = {X, ∅}.

Example: Let us consider set X = {1, 2, 3}. Its discrete topology is
T = {{1, 2, 3}, ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}, its trivial topology is
T = {{1, 2, 3}, ∅} and another example of possible topology would be T =
{{1, 2, 3}, ∅, {1}, {1, 2}}. It can be easily verified that these three propositions
of collections respect the three axioms presented in Definition 5.

The subsequent definitions, taken from [111], present two topologies that
hold significant relevance and are frequently encountered in various mathemat-
ical contexts.

Definition 6 (Quotient Topology). Let X be a topological space, Y a set and
the map q : X → Y is a surjective function.

The quotient topology on Y is defined by setting U ⊆ Y to be open if and
only if q−1(U) is open in X.

We discuss more about spaces with a quotient topology in Section 4.3.3.
Metric spaces are topological spaces with the metric topology.

Definition 7 (Metric Topology). Let (M,d) be any metric space equipped with
distance function d. For the metric topology, T will be a collection of open sets
in the usual metric space sense. Therefore, we have O ∈ T if for every x ∈ O
there is a real positive value ϵ such that Bϵ(x) ⊆ O. Where, Bϵ(x) is an open
ball of radius ϵ centered in x or Bϵ(x) = {y ∈M |d(x,y) < ϵ}.

4.2.2 Representation of Arbitrary Sets on Topological Spaces

In a topological space we have a topology that is a collection of open sets of
the space. Closed sets are the complement of these open sets. If we have some
arbitrary subset of the original space, not necessarily closed or open, we might
be interested in representing it by an open or closed set of the topological
space. This can be obtained with the closure and the interior of the arbitrary
subset.
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S

Figure 4.3: Let (X,T ) be a topological space where {X, ∅, A,B,A∪B,A∩B}
are closed sets. The closure of S is the result of the intersection of all the
closed sets of (X,T ) that contain S and it is represented by the striped area.

The closure is the smallest over approximation of a set by closed sets.
Equivalently, we have the following definition:

Definition 8 (Closure). Let (X,T ) be a topological space and S is a subset of
X, S ⊆ X. The closure of S in X is the set

S :=
⋂
{A ⊆ X |S ⊆ A and X\A ∈ T}

The closure of the arbitrary subset S is the intersection of all the closed sets
A that contain S. This notion is illustrated in Figure 4.3.

Since the intersection of an arbitrary collection of closed sets is also a closed
set, the closure of a subset S is the smallest closed set of the topological space
that contain S.

Notice that the closure of a topological space employs the same notation
as the complement of sets, as presented in Section 3.2. Nonetheless, in this
document, there will be no confusion when either of these notations is used.

The interior is an inner approximation of a set by open sets.

Definition 9 (Interior). Let (X,T) be a topological space and S is a subset of
X, S ⊆ X. The interior of S in X is the set

S̊ :=
⋃
{A ⊆ X |A ⊆ S and A ∈ T}

The interior of the arbitrary subset S is the union of all the open sets A that
are a subset of S. This notion is illustrated in Figure 4.4.

Since the union of an arbitrary collection of open sets is open, the interior
of a set S is the biggest set that is open and a subset of S.
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XX

S
A

B

C

Figure 4.4: Let (X,T ) be a topological space where A, B and C are open sets.
The interior of S is the result of the union of all the open sets of (X,T ) that
are subsets of S. In this example S̊ = A ∪ B ∪ C and is represented by the
striped area.

The definition of interior can be used to define the neighborhood of a point.

Definition 10 (Neighborhood). If (X,T ) is a topological space and p ∈ X,
then a neighborhood of p is a subset S ⊆ X such that there exists an open set
O ∈ T containing p, where O is entirely contained within S.

In other words, S ⊆ X is a neighborhood of p ∈ X if p ∈ S̊.

The exterior and the boundary of an arbitrary subset can also be defined.

Definition 11 (Exterior). Let (X,T ) be a topological space and S is a subset
of X, S ⊆ X. The exterior of S in X can be defined as the complement of its
closure:

Ext S := X\S

The exterior of a set is an open set.

Definition 12 (Boundary). Let (X,T ) be a topological space and S is a subset
of X, S ⊆ X. The boundary of S in X can be defined as:

∂S := X\(S̊ ∪ Ext S)

4.2.3 Convergence

On a metric space convergence refers to the behavior of a sequence of elements
in that space as the sequence gets longer. Let {xn} be a sequence of elements
in the metric space (M,d). The sequence is said to converge to a point x ∈M
if, for any positive real number ϵ > 0, there exists a positive integer N such
that for all n ≥ N , the distance between xn and x, given by d(xn,x), is less
than ϵ. In other words, as the sequence gets longer, the points of the sequence
become close to x.
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In topological spaces, the notion of "close to" is generalized using neigh-
borhoods. And convergence is defined through the two definitions below, re-
spectively from [112] and [108].

Definition 13 (Limit Point or Accumulation Point). Let (X,T ) be a topolog-
ical space and S is a subset of X, S ⊆ X. A point q is a limit point of S if
every neighborhood of q contains a point of S other than q itself.

All points of X are either limit points or isolated.

Definition 14 (Convergent Sequence). Let (X,T ) be a topological space and
{xn} is a sequence of points in X. For x ∈ X, we say that the sequence
converges to the limit x, if for every neighborhood S of x there exists a positive
integer N such that xi ∈ S for all n > N .

4.2.4 Continuity

Now we define the central concept in topology: continuous maps between
topological spaces.

The open set criterion for continuity shows that continuous functions be-
tween metric spaces can be detected knowing only the open sets [108]. For
example, let f be a function between two Euclidean spaces, say f : Em → En.
One can say that f is continuous if given any x ∈ Em and any open set O that
contains f(x) in En, then f−1(O) is open.

In topological spaces continuous functions can still be defined without ex-
plicitly relying on distances. Continuous functions in topology preserve the
topological structure of spaces, ensuring that points that are close together in
the domain are mapped to points that are close together in the codomain.

Let (X,Tx) and (Y, Ty) be topological spaces, from now we omit their topol-
ogy from the notation, that should be understood from the context. Therefore,
we will just simply say that X and Y are topological spaces.

A map f : X → Y is continuous if for every open set O ⊂ Y , f−1(O) is
open in X. The following lemmas were extracted from [108] and define some
properties of continuous maps.

Lemma 4.2.1. Let X,Y and Z be topological spaces.

(i) Any constant map f : X → Y is continuous.

(ii) The identity map Id : X → X is continuous.

(iii) If f : X → Y is continuous and S ⊆ X is open then f|S is also continu-
ous.
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(iv) If f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is also
continuous.

Lemma 4.2.2 (Local Criterion for Continuity). A function f : X → Y is
continuous ⇐⇒ each point of X has a neighborhood on which f is continuous.

Definitions previously presented on this Chapter are enough for proving all
the properties defined on Lemmas 4.2.1 and 4.2.2.

Now that the concept of a continuous function on topological spaces is
defined we can define homeomorphism.

Definition 15 (Homeomorphism). A homeomorphism between topological
spaces X and Y is a continuous function f : X → Y which has a contin-
uous inverse f−1 : Y → X.

If such a function exists, we can say that X and Y are homeomorphic and
we write X ≃ Y .

In topology being homeomorphic is an equivalence relation. Therefore, any
space is homeomorphic to itself by the identity function and it is a transitive
property, meaning that if X ≃ Y and Y ≃ Z then X ≃ Z as well.

A property of a topological space that is invariant under homeomorphisms
is called a topological property or topological invariant.

Let (X,TX) and (Y, TY ) be topological spaces and let f : X → Y be
bijective. Then f is a homeomorphism if and only if for every O ∈ TX ⇐⇒
f(O) ∈ TY

In this chapter we already mentioned two examples of homeomorphisms
illustrated in Figures 4.1 and 4.2. Other examples are:

1. Any two closed balls in Rn are homeomorphic,

2. An open ball in Rn is homeomorphic to Rn,

3. The cube C = {(x, y, z) | max(x, y, z) = 1} is homeomorphic to the
2-sphere S2.

4. Any Jordan curve is homeomorphic to S1.

A Jordan curve is a non-self-intersecting, continuous, and closed curve in
the plane. It divides the plane into two distinct regions, an inside region
bounded by the curve and an outside region that extends to infinity.
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4.2.5 Basis for a Topology

Let X be a topological space. A collection B ∈ P(X) is called a basis for X if:

(i) Every B ∈ B is open;

(ii) Every open subset of X is the union of elements in B.

Since X is open we can conclude that the basis covers X with its elements.
For example, considering the definition of open sets on the topology induced

by the metric on a metric space, presented in Definition 7, open balls form a
basis for the topology on metric topologies. For a set endowed with the discrete
topology, the collection of all singletons will be a basis.

The notion of basis can be used to bound the size of a topology on some
space, and the size of a topology is related to the notion of countability. In
this thesis we are going to be interested on topological spaces that are second
countable because they are important for the definition of manifolds, discussed
in Section 4.3.2. By definition, from [113], we have :

Definition 16 (Second Countable). A topological space is called second count-
able if at least one of the possible basis for its topology is countable.

Every Euclidean Space Rn is second countable.

4.3 Interesting Topological Spaces

In this section we define some important types of topological spaces that will
be mentioned in this document.

4.3.1 Hausdorff Spaces

One of the key questions in topology is how points in a space can be separated
and in this context the separation axioms are a set of axioms that determine the
level of "closeness" and "separation" between points in a topological space. We
mentioned that the notion of distance is not necessarily defined for topological
spaces, therefore we are going to generalize this notion using open sets. The
separation axioms specify conditions under which distinct points in a space can
be separated by open sets and help classify different types of topological spaces
based on their separation properties. The two most commonly encountered
separation axioms are the T0 separation axiom and the T1 separation axiom.
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Figure 4.5: Example of separation axioms for a topological space X.

T0 A topological space X satisfies the T0 separation axiom if for any pair
of distinct points x and y in X, there exists an open set G ⊆ X containing
one of the points but not the other. In other words, distinct points can be
distinguished by at least one open set. Formally, for every x ̸= y in X,
there exists an open set G such that either x ∈ G and y /∈ G or y ∈ G
and x /∈ G. Let X = {1, 2, 3} be a topological space with topology T =
{X, ∅, {1}, {2}, {1, 2}} then X is T0 because:

1. for 1 and 2: there exists {1} such that 1 ∈ {1} and 2 /∈ {1},

2. for 1 and 3: there exists {1} such that 1 ∈ {1} and 3 /∈ {1},

3. for 2 and 3: there exists {2} such that 2 ∈ {2} and 3 /∈ {2}.

The main idea is illustrated in Figure 4.5a.

T1 A topological space X satisfies the T1 separation axiom if for any pair
of distinct points x and y in X, there exists open sets containing each point
separately. In other words, every point in the space has its own neighborhood.
Formally, for every x ̸= y in X, there exists open sets G and H such that
x ∈ G, y /∈ G, y ∈ H, and x /∈ H. The main idea is illustrated in Figure 4.5b.
A T1 space is always T0, but the converse is not necessarily true.

To illustrate the previous definitions we consider set X = {1, 2, 3} with
topology

T = {{1}, {1, 2}, {1, 2, 3}, ∅}

This space presents two characteristics that usually make the definition of
topological spaces counterintuitive if we are used to working with the topology
on Euclidean spaces. They are:

(i) Each individual element of X is not necessarily closed. For example,
{1} is not closed because its complement {2, 3} is not open. Individual
points are always closed in Euclidean spaces.
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(ii) Let us consider a constant sequence set in X, for example, (2, 2, 2, . . .).
By intuition the limit of this sequence should be 2 but according to
Definition 14, this sequence will have two different limits in X: 2 and 3.
Therefore, the limit of the sequence is not unique. Point 3 is considered
a limit of the sequence because there is only one neighborhood around
3, containing the whole space, that is so big that it does not allow to
distinguish the behavior of the sequence. This ambiguity could be solved
for sequence (2, 2, 2, . . .) if we set {1, 3} to also be open, for example.

The topological space considered satisfies the T0 separation axiom but not
T1. However, a space satisfying the T1 separation axiom is not guaranteed
to avoid these two undesired characteristics either. For example, if x and y
are distinct points in a T1 space, there are open neighborhoods around x, Nx

and around y, Ny such that x /∈ Ny and y /∈ Nx. It is possible, however, that
Nx∩Ny ̸= ∅ for all Nx, Ny. Thus, a sequence {xn} can converge to both x and
y if there exists two positive integers Ix and Iy such that for n > Ix, xn ∈ Nx

and for n > Iy, xn ∈ Ny, then for n > max(Ix, Iy), xn is in both Nx and Ny,
which is allowed in T1 spaces.

To solve this a new separation axiom named T2, or the Hausdorff separation
axiom, was defined.

T2 A topological space satisfies the T2 separation axiom, commonly known
as a Hausdorff space, if for any pair of distinct points x and y in the X, there
exist disjoint open sets containing each point separately. In other words, every
pair of distinct points can be separated by disjoint open sets. Formally, for
every x ̸= y in X in the space, there exist open sets G and H such that x ∈ G,
y /∈ G, y ∈ H, x /∈ G, and G ∩H = ∅. Metric spaces and discrete topological
spaces are examples of Hausdorff spaces.

In a Hausdorff space, the limit of a convergent sequence is unique. This
property is particularly useful in analysis and other areas where convergence
is important. The uniqueness of limits simplifies proofs and makes it easier to
reason about the behavior of sequences in these spaces.

The concept of a Hausdorff space introduced here is next employed to
define an important kind of topological space which are manifolds. Later in
this document, manifolds will be a condition to define the area established by
the range of visibility of the sensors employed by the robo during exploration.

4.3.2 Manifolds

Manifolds are topological spaces that offer a rich and versatile mathematical
framework that arises naturally in different contexts. One of the most com-
pelling aspects of manifolds is their local Euclidean structure. Locally, they
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resemble Euclidean spaces, making them amenable to analysis and provid-
ing an intuitive geometric understanding. This local linearity allows for the
use of calculus and differential equations on manifolds, facilitating the study
of smooth functions and geometric properties. Despite their local simplicity,
manifolds can possess global topological and geometric characteristics that
can be highly nontrivial. Notions and definitions presented in this Section are
adapted from [110].

(a) The R2 plane. (b) The 2-sphere S2 (c) Torus

Figure 4.6: Examples of 2-Dimensional Manifolds.

A space M is locally Euclidean of dimension n if every point x ∈ M has
a neighborhood homeomorphic to an open ball Bn ⊆ Rn. Considering this, a
formal definition of a manifold can be presented:

Definition 17 (Topological Manifold). An n-dimensional topological manifold
is a second countable Hausdorff space that is locally Euclidean of dimension n.

Figure 4.6 illustrates some examples of manifolds.

Manifolds with Boundary

x

y

Figure 4.7: The cylinder is a 2-dimensional manifold with boundary. The
neighborhood of point x is homeomorphic to B2 but the neighborhood of y is
not.
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Let us consider a cylinder as presented in Figure 4.7. Some points on the
surface of this cylinder will have a neighborhood that is homeomorphic to an
open disk in R2. However, some other points, such as y in Figure 4.7, will not
have a neighborhood homeomorphic to an open disk on the plane and they
are called boundary points. Therefore, the cylinder, because of its boundaries,
can not be considered a manifold by the classical definition presented in this
Section.

Figure 4.8: Upper Half-Space of R2 represented by the grey area.

In order to formalize these objects that are "almost" a manifold but with
boundaries we need to formally define the notion of upper half-space that is
illustrated in Figure 4.8. The upper half-space Hn ⊆ Rn is

Hn := {(x1, . . . , xn) ∈ Rn | xn ≥ 0}

Then, we have the following definition:

Definition 18 (Topological Manifold with Boundary). An n-dimensional
manifold with boundary is a second countable Hausdorff space in which every
point has a neighborhood homeomorphic to an open subset of Rn or Hn.

Points of an n-dimensional manifold with boundary homeomorphic to Rn

are named interior points and the others are named boundary points. No point
of a manifold with boundary is both an interior point and a boundary point.

If we consider a cube in R3 or a rectangle in R2 we can notice that these
topological spaces do not fit into the aforementioned classifications due to the
presence of corners. A definition for manifolds with corners can be found in the
existing literature, but exploring this topic is beyond the scope of our current
work. Interested readers can refer to [114] and [115] for further information.
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Differentiable Manifold

Differentiable manifolds are manifolds on which the concept of smoothness
can be defined. This concept allows us to extend calculus techniques to more
complex spaces.

A simple example of a differentiable manifold is a sphere. For instance,
take a small region of S2. Locally, this region looks like a flat two-dimensional
plane where smooth functions can be defined, and the usual rules of calculus
apply. Different regions on the sphere might have different local coordinates
and the way calculus works within might change. But as long as we take small
enough patches of the sphere and can smoothly transition between them, we
have a differentiable manifold.

Diffeomorphism

We can now introduce a relation between differentiable manifolds:

Definition 19 (Diffeomorphism). A diffeomorphism between two differentiable
manifolds of same dimension, take M and N , for example, is a bijective map

f :M → N

that is itself differentiable and has a differentiable inverse f−1 : N →M .
If such a function exists, we can say that M and N are diffeomorphic.

Note that the unit cube is homeomorphic to the 2-sphere, but this transfor-
mation is not diffeomorphic. One can be continuously deformed into the other
but not smoothly, since the sphere is a 2-manifold and the cube a 2-manifold
with boundary.

4.3.3 Quotient Spaces

Quotient spaces serve as a mean to simplify complex topological spaces by
identifying points that are equivalent under an equivalence relation. Consider
the following definition, adapted from [111], for an equivalence relation on a
set:

Definition 20 (Equivalence Relation). Let X be a set. An equivalence relation
on X is a binary relation ∼ satisfying these three properties:

(i) x ∼ x for all x ∈ X (reflexivity);

(ii) x ∼ y then y ∼ x (symmetry);

(iii) x ∼ y and y ∼ z then x ∼ z (transitivity).
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If X is a set with an equivalence relation ∼, then we can define equivalence
classes for elements in X. Let x ∈ X, its equivalence class is the subset
Ex ⊆ X consisting of all elements that are in relation with x, such that

Ex = {y ∈ X | x ∼ y}

The following two properties are respected:

(i) If x ∼ y then Ex = Ey;

(ii) If x ̸∼ y then Ex ∩ Ey = ∅;

We denote X\ ∼ the set of equivalence classes of X. It is a decomposition
of the original set into a collection of disjoint subsets whose union is the original
set. Function π : X → X\ ∼ is called the quotient map, and it maps each
element of X to its equivalence class.

1

1

(1, x2)(0, x2)

x1

x2

0

X

Figure 4.9: X is a set of the plane with an equivalence relation defined between
its two vertical edges such that (0, x2) ∼ (1, x2) for x2 ∈ [0, 1].

For example, let us consider the set X = {(x1, x2) ∈ R2 | 0 ≤ x1 ≤
1 and 0 ≤ x2 ≤ 1}, that corresponds to a square in the plane. We can establish
an equivalence relation on X between the two vertical edges, represented in
red on Figure 4.9, such that, (0, x2) ∼ (1, x2) for x2 ∈ [0, 1]. We can take,
for example, the equivalence class for (0, x2) and it will be equal to E =
{(0, x2), (1, x2)}. Point (1, x2) will have the same equivalence class. For all the
other points of X for which x1 ∈ ]0, 1[, points that are not on the vertical axes,
their equivalence class will consist of only the point itself.

The set X\ ∼ can then be obtained by "gluing" together points that are
equivalent on the original space. Therefore, for the precedent example, we
obtain a cylinder by "gluing" the vertical edges of the square.

Now we can define quotient spaces using the definition presented in [111].
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(0, x2) ∼ (1, x2)

X\ ∼

Figure 4.10: X\ ∼.

Definition 21 (Quotien Spaces). Let X be a topological space and let ∼ be an
equivalence relation on X. The set X\ ∼ with a quotient topology determined
by the quotient map function π is called the quotient space of X with respect
to the relation ∼.

The quotient topology was defined in Definition 6.

4.4 Connectedness and Compactness

Here we discuss the notion of connectedness and compactness of a topological
space.

4.4.1 Connected Space

A topological space X is disconnected if and only if it can be expressed as
the union of two disjoint non-empty open subsets [113]. A space that is not
disconnected is said to be connected. We can also say that a space is connected
if there are no two nonempty open sets whose union is the entire space, and
whose intersection is empty. Intuitively, a connected space is one that is "all in
one piece," and there is no way to split it into two separate, non-overlapping
parts.

An example of a connected space is the interval [0, 1] in the standard Eu-
clidean topology. An example of disconnected space is the real line R without
the origin 0 that can be divided into two non overlapping open sets [−∞, 0[
and ]0,∞].

X is connected if and only if X itself and ∅ are the only subsets of X that
are simultaneously open and closed. Otherwise, we have a non-empty subset
O ⊂ X that is open but its complement X\O is also open. The union of O
with its complement is a union of two disjoint open subsets that result in X,
therefore, by definition, X is disconnected.

Any space homeomorphic to a connected space is also connected, therefore
connectedness is a topological property.
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Path-Connectedness

A stronger property than connectedness is path-connectedness. It describes the
existence of continuous paths between any two points in the space. A path-
connected space is one in which, for every pair of points, there is a continuous
function, called a path, that maps the unit interval onto the space and joins
the two points.

Formally, a path from x to y on a topological space X is a continuous map
f : [0, 1]→ X with f(0) = x and f(1) = y.

A topological space X is path-connected if and only if for all pair of points
x and y in X, there is a path in X from x to y. A path-connected space is
always connected, but a space can be connected without being path connected.
The topologist’s sinecurve is one of the most common examples of this [113],
and it can be defined by the following equation:

f(x) =

{
0 if x = 0

sin( 1
x
) if x ∈ (0, 1]

4.4.2 Compact Space

Compactness is a concept in topology that captures the notion of finiteness in
topological spaces. A topological space X is considered compact if it has the
property that every open cover of X contains a finite subcover of X. Breaking
down this last statement we have that an open cover of a space X is a collection
C of open subsets of X whose union is X. A subcover of C on the other hand
is a subcollection of elements of C that still covers X.

For example, every finite topological space is compact because finite spaces
have a finite number of open elements. Every topological space with trivial
topology will also be compact.

Let us consider set X = {1, 2, 3} with topology

T = {X, ∅, {1}, {3}, {1, 2}, {1, 3}}

An open cover of X can be the collection

C = {{1, 2}, {1, 3}, {1}, {3}}

and it has different possible subcovers that remove redundant subsets from
the original open cover. For example, we have SC = {{1, 2}, {1}, {1, 3}}, but
we can also have SC = {{1, 2}, {1, 3}}. The latter is the smallest subcover
contained in this open cover.
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An interesting property of compact spaces is that compact subsets of a
Hausdorff space are bounded. Proof of this proposition can be found in [108].
As a consequence, any subset of R2 homeomorphic to D2, for example, is
compact.

Locally Compact

A locally compact space is a topological space such that for every point in
the space, there exists a compact subspace containing an open neighborhood
of that point. In other words, each point in a locally compact space has a
compact neighborhood.

Formally, a space X is locally compact at x ∈ X if there is some compact
subspace C of X that contains a neighborhood of x. If X is locally compact
at each of its points, X is locally compact [111].

4.4.3 Compactification

Compactification is a technique that allows us to extend a given topological
space to a compact space by adding boundary points to it. The process of
compactification is particularly useful when we want to study the original
space in a more complete and structured manner, as it will be the case later
in this work. We only discuss the compactification of Hausdorff spaces.

Formally, let X be a topological space. A compactification of X is a pair
(Y,f), where Y is a compact Hausdorff space and f : X → Y is a continuous
map. In addition, f is an embedding, meaning that it is a homeomorphism
between X and its image f(X) in Y .

As it was mentioned, the compactification process typically involves adding
new points to the original space X to create the compact space Y . These new
points, often referred to as boundary points or points at infinity, capture the
behavior of sequences or directions in X that go off to infinity. The resulting
compact space Y may have a different topological structure from X, but it
retains essential topological properties.

For example, [0, 1] is a compactification of [0, 1[. Here, the compactified
space was obtained by adding only one point to the original space. This
process can be generalized to arbitrary locally compact Hausdorff spaces with
the one-point Compactification [113].

Alexandroff One-Point Compactification

Definition 22 (One-Point Compactification). Let X be a locally compact, non-
compact Hausdorff space and p a point not in X. We define a new space X∗ =
X ∪ {p}. We assume that the neighborhoods of p are sets of the form {p} ∪
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(X\L), where L are compact sets of X. Neighborhoods of X are unchanged
in X∗. We call X∗ the one-point compactification, or equivalently Alexandroff
compactification, of X and we have the following properties:

(i) X∗ is compact;

(ii) X∗ is Hausdorff.

The proofs for the properties presented on this definition were discussed by
[113] and are out of the scope of this document.

To summarize, we can say that if X∗ is a compact Hausdorff space and
X is a subspace of X∗ whose closure equals X∗, then X∗ is said to be a
compactification of X. If in addition X∗\X equals a single point, then X∗ is
called the one-point compactification of X [111].

In order to make the plane R2 compact one can add one point at infinity,
resulting in the S2 sphere under stereographic projection. Similarly, S1 is a
compactification of R.

4.5 The Fundamental Group

Until this moment, in this Chapter, we discussed concepts from general topol-
ogy. In this section we start discussing concepts from algebraic topology. Al-
gebraic topology introduces algebraic techniques to study topological spaces.
It focuses on their invariants that are preserved under continuous deformations
and transformations.

The fundamental group is a concept from algebraic topology. This is a
key concept that will be used in forthcoming chapters to define a solution to
the exploration problem considered in this work. At its core, the fundamental
group measures how loops in a space can be continuously deformed without
tearing or breaking. Loops are closed paths that start and end at the same
point in the space.

Definition 23 (Loop). Let γ : [0, 1]→ X be a path on a topological space X.
We say that γ is a loop if and only if γ(0) = γ(1).

We say that a loop in a topological space X is based at point x ∈ X if
γ(0) = γ(1) = x. In this case, x is a basepoint.

In this Section we present how the fundamental group classifies these loops.
But first, we remember the definition of groups and define the notion of iso-
morphism on groups.
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4.5.1 Groups and Isomorphism

A group is a set G together with an operation · that satisfies the following
properties [116]:

(i) Closure: For all elements a, b ∈ G, the result of the operation a · b is
also an element of G;

(ii) Associativity: For all elements a, b and c ∈ G, (a · b) · c = a · (b · c);

(iii) Identity Element: There exists an element i ∈ G, called the identity
element, such that for any element a ∈ G, a · i = i · a = a;

(iv) Inverse Element: For every element a ∈ G, there exists an element b ∈ G,
called the inverse of a, such that a · b = b ·a = i, where i is the identity
element;

If, in addition to the properties listed above, a group also satisfies the following
property:

• Commutativity: For all elements a, b ∈ G, a · b = b · a.

we say that the group is abelian.
Abelian groups are among the simplest algebraic structures, consisting of

a set and a single binary operation. Their simplicity and versatility give them
a wide range of applications. The commutativity property, which states that
the order of elements does not matter under the binary operation, is a distin-
guishing feature of abelian groups, simplifying calculations and allowing for
easier manipulation of group elements. A simple example of abelian group is
the group (Z,+) of integers under addition.

Isomorphism

Isomorphism is a broad and complex topic, but for our current purpose, we
provide a simple definition that conveys the essential information needed to
comprehend the subsequent discussions.

Let (G,OG) and (H,OH) be two groups. A function f : G → H is an
isomorphism if it is bijective and if it preserves the group structure. That is,
the operation OG in the group G corresponds to the operation OH in the group
H.

If an isomorphism exists between two groups G and H, we say that G and
H are isomorphic, denoted as G ≃ H. Intuitively, isomorphic groups have
the same group structure, meaning they are essentially the same group with
different labels on the elements.
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The key concept for understanding the fundamental group lies in the defi-
nition of homotopy presented on next section.

4.5.2 Homotopy

Let us consider the definition below, given in [112]:

Definition 24 (Homotopy). Consider two topologicals spaces X and Y and
let f , g : X → Y be continuous functions. Then f is homotopic to g if there
exists a continuous function F : X × I → Y such that F (x, 0) = f(x) and
F (x, 1) = g(x) for all points x ∈ X.

F is called a homotopy between f and g and we can say f ≃ g. Being
homotopic is an equivalence relation on the set of continuous functions from
X to Y .

1

0
x

X × I

Y

F

f

g

1

Figure 4.11: Example of homotopy between two paths f and g.

As illustrated in Figure 4.11, the second parameter of function F is usually
referred to as a "slider control" that allows us to smoothly transition from f
to g as the slider moves from 0 to 1, and vice versa.

4.5.3 Homotopy Equivalence

While homotopy allows us to smoothly deform maps within a space, homotopy
equivalence establishes a deeper connection between spaces themselves. Briefly,
a homotopy equivalence between two spaces implies the existence of continuous
transformations that seamlessly connect one space to the other while preserving
essential topological properties.

From [108]:

Definition 25 (Homotopy Equivalence). Let f : X → Y be a continuous map
between two topological spaces X and Y and g : Y → X a continuous map
from Y to X. If g◦f is homotopic to the identity map idx and f ◦g homotopic
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to the identity map idy then we say that X is homotopy equivalent to Y , or X
has the same homotopy type as Y.

Instinctively, homotopy equivalence refers to the ability to continuously
deform two topological spaces into each other through bending, shrinking, and
expanding operations. For example, the ball B2 is homotopy equivalent to a
point p ∈ R2. Let p be a point in B2, for any α ∈ B2 we have f(α) = p, then
clearly (f ◦ g)(p) = p and (f ◦ g) ≃ Ip. Then we have (g ◦ f)(α) = p and by
radial retraction (g ◦ f) is homotopic to IB2 as expected. Two distinct points
are homotopy equivalent, then, this reasoning can be extended to any point p
and to any open set in the plane.

Spaces that can be continuously collapsed to a single point, and therefore
homotopy equivalent to a single point, are called contractible.

Difference with Homeomorphism

Homeomorphism establishes a stronger equivalence, preserving the entire topo-
logical structure, including open sets, compactness, and connectedness. Ho-
motopy equivalence allows for more flexible transformations, while homeo-
morphism implies a one-to-one correspondence between spaces with identical
topological properties.

For example, B2 is homotopy equivalent to a single point by a continuous
map that "collapses" the entire space to a single point along radial lines. How-
ever, B2 is not homeomorphic to a single point, for that there should exist a
bijective continuous map and its inverse between the two spaces.

4.5.4 Construction of the Fundamental Group

Let X be a topological space and consider the set of all loops in X based at a
basepoint p ∈ X. The relation of homotopy is an equivalence relation on this
set and based on this notion the fundamental group can be defined.

p

(a) Trivial loop.

p

γ1
γ2

(b) Concatenation of loops.

p

γ

p

γ−1

(c) Inverse loop.

Figure 4.12: Concatenation of loops as the group operation.

Definition 26 (Fundamental group ). The fundamental group of a topological
space X with respect to a basepoint p, denoted, π1(X,p), is a set of equivalence
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classes of loops based at p, where the equivalence relation is given by homotopy.
The operation of the group is the concatenation of loops. The identity element
of the group is the trivial loop that stays at the basepoint, and we define the
inverse of a loop as the loop traced in the reverse direction. These concepts are
illustrated in Figure 4.12.

Since any loop based at p must lie entirely inside the path component of
X which contains p, we restrict ourselves to path-connected spaces. With
this restriction, the fundamental group is independent of p, and we can use
notation π1(X) to refer to the fundamental group of a path-connected space
X [112].

p

γ1

(a) S1

p

(b) S2

γ1

γ2

(c) T 2

Figure 4.13: Examples of fundamental groups.

To give a few examples, let us consider S1, Figure 4.13a. There are two non
homotopic loops that can be easily identified, they are the trivial loop, that
can be any point in S1, and γ1 that goes around all the points in S1. We can
then consider the concatenation of γ1 with itself and obtain γ21 , γ31 , γ41 , . . . that
are non-homotopic to γ1 or to each other. The inverse of the concatenated
cycles γ−1

1 , γ−2
1 , γ−3

1 , γ−4
1 , . . . are also non-homotopic to each other and neither

to the precedent loops. Thus, one can conclude that for each integer n ∈ Z
we have a different homotopy class on the 1-sphere. Therefore, we define the
fundamental group π1(S1) = {γn1 |n ∈ Z} where each homotopy class consists of
all loops that wind around the 1-sphere a given number of times, this number
can be negative or positive considering the direction of winding. Finally, we
can say that π1(S1) is isomorphic to the group (Z,+), the additive group of
integers.

For S2, we have that all loops are homotopic to the trivial loop since they
can all be continuously deformed to a single point, as illustrated in Figure
4.13b. In this case π1(S2) is often denoted by 0, we have π1(S2) = 0. Gener-
alizing, for n ∈ N, π1(Sn) = Z if n = 1 and π1(Sn) = 0 if n > 1.

The last example is the torus, that we name T 2. The fundamental group
π1(T

2) is the product of the fundamental group of the circle with itself:
π1(T

2) = π1(S
1)× π1(S1) ≃ Z× Z. This is represented in Figure 4.13c.
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Considering again the fundamental group on the 1-sphere and let γ be a
loop on this space. This loop is a continuous map from the 1-sphere to itself,
and we can assign a number deg(γ) ∈ Z to γ that measure the number of times
it winds positively around S1. By convention, we assume the counterclockwise
direction to be positive. This number determines to which equivalence class in
π1(S

1) γ belongs to. Section 4.8 formalizes this notion that we just introduced,
deg(γ) is named the degree of function γ, and this concept plays a major role
in this work.

4.6 CW Complexes

Combinatorial models for constructing topological spaces are methods that
use combinatorial structures to represent and study topological properties of
spaces. These models serve as a tool for understanding the topology of spaces
in a more concrete and discrete manner, making complex topological problems
more amenable to analysis.

Some common combinatorial models used for constructing topological
spaces are graphs. Graphs are simple combinatorial structures consisting of
vertices and edges. They can be used to represent and study topological spaces
with a 1-dimensional structure, such as curves and networks.

In this Section we present a combinatorial structure, that is useful in the
context of this work. They are called CW complexes.

A CW complex is composed of cells of varying dimensions, where each cell
is essentially a Euclidean space of a certain dimension.

There are two types of cells in a CW complex, open and closed cells. An
open cell of dimension n is a subset of Euclidean space Rn that is homeomorphic
to an n-dimensional open ball, and it is called open n-cell. A closed cell of
dimension n is the closure of an open cell of dimension n, which means it
includes all the points on the boundary of the open cell. It is homeomorphic
to a closed n-dimensional ball, and it is called closed n-cell.

In Figure 4.14 we illustrate some building blocks of CW complexes.
The CW complex is built by iteratively attaching cells of various dimen-

sions to a growing skeleton. The n-skeleton of a CW complex consists of cells of
dimension at most n. The 0-skeleton consists of 0-cells, which are just the ver-
tices of the complex. To form the 1-skeleton, 0-cells and 1-cells are connected.
Then, k-cells are attached to the k − 1-skeleton along their boundaries.

The two following rules must be respected when attaching cells together to
create a complex:

1. Cells are attached along their boundaries in a specific way. For example,
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0-cell 1-cell

2-cell 3-cell

Figure 4.14: Building blocks of CW complexes.

a lower-dimensional cell can be attached to the boundary of a higher-
dimensional cell.

2. The attachment process should be continuous, meaning that as cells are
attached, their boundaries are smoothly connected to the boundaries of
other cells.

0-cell 1-cell

2-cell

∪ ∪

=

D2

Figure 4.15: CW complex covering D2.

In Figure 4.15 an example of CW complex covering D2 is presented.
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4.7 Homology

We present in this Section another group that can be assigned to a topologi-
cal space and that is topologically invariant, the homology group. Homology
groups capture the idea of cycles and boundaries in a topological space.

4.7.1 Homology Group

Homotopy groups are challenging to obtain and analyze, especially for higher
dimensions. In this context, the homology group is often referred to as a
simplification of the homotopy group because it captures essential topological
information about a space while being computationally more accessible and
easier to work with than the homotopy group.

As a consequence of Hurewicz theorem, we can say that the first homology
group for a path-connected space is created through an abelianization of the
fundamental group, where computability problems are easier to be approached.

In a nutshell, the n-th homology group of a space measures the n +
1-dimensional holes within that space or, equivalently, of holes with n-
dimensional boundary. A precise definition includes concepts beyond the scope
of this document. Instead, we provide an understanding of homology groups
through illustrative examples, which will bring enough comprehension for the
context in which they are considered in this work.

For instance, if 0 represents the trivial group, we have the following:

Example 1: (Spheres) The homology group of spheres are

Hk(S
n) =

{
Z k = 0, n

0 otherwise

Take S1, for example. The 1-sphere is single-connected, and, as a consequence,
H0(S

1) = Z. This happens because 0-dimensional-boundary holes can be
detected by analyzing the connectivity of the space and describe the path-
connected components of the topological space [117]. In addition, S1 has one
two-dimensional hole with a 1-dimensional boundary, then H1(S

1) = Z.
The two-dimensional sphere S2 is single-connected, hence we have

H0(S
2) = Z representing its path-connectedness. This space also has one 3-

dimensional hole with a 2-dimensional boundary, therefore, we have H2(S
2) =

Z. The extension to higher dimensions follows the same logical framework.
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Example 2: (Disk) For a disk Dn we have only one path-connected com-
ponent but no holes, therefore

Hk(D
n) =

{
Z k = 0

0 otherwise

Example 3: (Torus) The torus T 2 = S1 × S1 has a single-path con-
nected component, two 1-dimensional-boundary holes and one 2-dimensional-
boundary hole (its interior). In this case,

Hk(T
2) =


Z k = 0, 2

Z× Z k = 1

0 otherwise

The three examples above have in common the fact that their homology
group H1 is equal to their respective fundamental group π1. This happens
because for these examples the fundamental group is already abelian. Now,
let us consider an example where this will not be the case:

a c

b d
e

a

b

Figure 4.16: There are four independent loops on the two-holed torus: a, b,
c and d. The loop e is the boundary of the area represented in yellow, and
therefore it is considered to be trivial in Homology.

Example 4: (2-holed Torus) The 2-holed torus denoted 2T 2, Figure 4.16,
is the connected sum of two copies of T 2. Its fundamental group π1 and
first homology groups H1 are composed of combinations of loops a,b,c and d,
represented on the Figure. Therefore, in practice, we have

π1(2T
2) = Z× Z× Z× Z

and
H1(2T

2) = Z× Z× Z× Z
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However, intrinsically, group H1 differs of π1.
This happens because loop e, represented in red in Figure 4.16, is not

trivial in π1, because this cycle can not be deformed into the trivial loop. As
a consequence some loops in the space will not commute, the order in which
we combine a,b,c and d matters, and the group is non-abelian. On the other
hand, loop e is considered to be trivial in H1 because it is the boundary of the
surface represented in yellow on the figure (remember that in homology groups
we count boundaries). By considering cycle e as trivial, the non-commutative
problem no longer exists in H1, and it is an abelian group.

Having established the concepts of fundamental group and homology group,
we are now primed to define two pivotal notions: the topological degree and
the winding number. These fundamental concepts will play a central role in
this thesis.

4.8 Topological Degree

The topological degree quantifies the winding behavior of continuous maps
from one compact oriented manifold to another of same dimension. Simply
stated, it is an integer that represents how many times the original space
wraps around a point of the target manifold under the mapping.

In this work, we concentrate on the definition of the topological degree
of mappings between Euclidean spaces. Here we give a general axiomatic
definition and recap the main properties that we use, as stated in [118],

Definition 27 (Topological degree). Let D be an open subset of Rn and f a
continuous function from its closure D to Rn. A degree of f is a family of
functions deg : (f , D,p)→ Z for all D open subsets of Rn, f continuous and
p ∈ Rn\f(∂D) such that:

• (identity) deg(IdD, D,p) = 1 if p ∈ D

• (excision) deg(f , D,p) = deg(f , D1,p)+deg(f , D2,p) where D1, D2 are
opens in D with p ̸∈ f(D\(D1 ∪D2))

• (homotopy invariance) deg(h(α, .), D,p(α)) is independent of α for any
homotopy h : [0, 1]×D → Rn, and p(α) ̸∈ h(α, ∂D) for all α ∈ [0, 1].

When such a family of function exists, it is known to be unique and the
notion presented on this definition is illustrated in Figure 4.17.
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D

f

f (D)

p

d1

d2

Figure 4.17: Example of mapping defined on R2, defined by a function f :
D → R2 that wraps the source domain D in a way that points d1 and d2

coincide in the target domain. Equivalently we can say f(d1) = f(d2) = p. It
can be concluded in this case that deg(f , D,p) = 2.

In particular, when f is at least continuously differentiable, and p is a
regular value of f (i.e. the determinant of the Jacobian of f , det(Jf ) is non-
zero on each d with f(d) = p):

deg(f , D,p) =
∑

d∈f−1(p)

sign(det(Jf (d))) (4.1)

4.8.1 Winding Number

The topological degree of differentiable functions from D2 to R2 is linked to
the winding number of f(∂D2).

Let p be a point in the interior of the image by f of D2, in other words,
p ∈ f(B2). Function f maps S1, on a cycle in R2, and the winding number is
the number of times this cycle turns around p:

Definition 28 (Winding number). Let f : D2 → R2 be a continuous function
and p ∈ f(D2)\f(S1). Consider its restriction f|S1 : S1 → R2\{p}. It
induces a linear map in homology:

f̃ : H1(S
1)→ H1(R2\{p})

i.e. from Z to Z, i.e. is of the form f̃(C) = ηC, where C represents an
equivalence class in H1(S

1). This η is called the winding number of γ = f(S1)
around point p ∈ f(D2)\f(S1). For all other points in R2\f(S1) the winding
number is set to zero.

We can now state the relation between the topological degree and the
winding number:
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Lemma 4.8.1. Let f be a continuously differentiable map from D2 to R2 and
let y ∈ R2\f(∂D2) such that f−1(y) is finite and y is a regular point for f .
Then deg(f , D2,y) is equal to the winding number η(f(∂D2),y) of f(∂D2) at
y.

Proof. For all y ∈ R2\f(∂D2), either there exists no d such that y = f(d),
or there exists a finite, non-zero number of d, d1, . . . ,dm in D2, such that
f(di) = y.

In the first case, this means that both, deg(f , D2,y) is zero and y is in the
complement of f(D2) and the winding number η(f(∂D2),y) is also zero.

In the second case, y being regular for f , we have deg(f , D,y) =
m∑
i=1

sign(det(Jf (di))). Take small enough open neighborhoods Ui of di in D

such that the sign of det(Jf (d)) is the same as the sign of det(Jf (di)) for all
d ∈ Ui. This is always possible since Jf is continuous. Note that this implies
that f restricted to Ui induces an homeomorphism onto its image. Also we can
always choose the Ui to have empty pairwise intersections and to have f being
an homeomorphism from Ui onto its image, by taking them small enough (the
di are isolated points within D).

Now, the map f̃ is the same as the map induced in homology f̃ by f :

D2\
m⋃
i=1

Ui → R2\{y}. We note also that within D2\
m⋃
i=1

Ui, the cycle ∂D2

is homologous to the sum of the ∂(Ui), for i = 1, . . . ,m. Hence f̃(∂D2) =
m∑
i=1

f̃(∂(Ui)).

But f(∂(Ui)) is a Jordan curve homeomorphic (by f) to ∂(Ui), since we
chose Ui such that f restricted to Ui onto its image is a homeomorphism.
Hence f̃(∂Ui) is either plus or minus identity, according to the orientation of
f̃(∂Ui), i.e. f̃(∂Ui) = sign(det(Jf (d))) for any d ∈ Ui, which we know is equal
to sign(det(Jf (di)). Hence

η(f(∂D2),y) =
m∑
i=1

sign(det(Jf (di))) = deg(f , D2,y)

.

In Figure 4.18 we present some examples of winding numbers for different
mapping functions.
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γ γ

γ
γ

p2

p1

p2 p2
p3

p2

p1

p1 p1

p3

η(γ,p1) = 0

η(γ,p2) = 1

η(γ,p1) = 0

η(γ,p2) = −1

η(γ,p1) = 0

η(γ,p2) = 1

η(γ,p3) = −1

η(γ,p1) = 0

η(γ,p2) = 1

η(γ,p3) = 2

Figure 4.18: In these examples we have γ = f(∂D2) where function f repre-
sents a continuous map f : D2 → R2.
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4.9 Conclusion

On this Chapter we presented how topology remove limitations imposed by
metrics on spaces by focusing on the properties that remain invariant under
continuous deformations, an approach that allows the study of features of
spaces that might otherwise be obscured by rigid geometric notions. We also
presented topological tools used to analyze and classify spaces. In the upcom-
ing chapters, these tools will be applied, along with the notions of interval
analysis presented on the previous Chapter, to formalize and to establish a
solution to the problem envisioned in this work.
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The primary objective of this thesis is to propose an algorithm that pro-
vides a reliable estimation of the area explored by a mobile robot in a two-
dimensional environment and the coverage measure of the points within. The
preceding sections have laid out the necessary theoretical background for ad-
dressing this particular challenge. In this Chapter, we provide a mathematical
representation of the problem at hand, formally defining the notions of cover-
age measure and explored area.

In this work, we consider two different scenarios: the first scenario assumes
the robot exploring the environment using a one-dimensional sensor, while
the second scenario generalizes the method for two-dimensional sensors. The
fundamental contribution of this work is then presented: A relation between
topological tools, more specifically the topological degree, and the coverage
measure is established. Finally, we extend the problem’s definition to encom-
pass the aspect of uncertainty. The theory developed here will later be used
for developing the ultimate application of this thesis in Chapter 6.

5.1 One-Dimensional Sensors

5.1.1 Problem Statement

Consider a mobile robot exploring an unknown planar environment. At first,
we assume that the robot’s pose can be fully described by

(
x ψ

)T ∈ R3 where
x : R → R2 and ψ : R → R are functions of time. Function x represents the
robot’s trajectory on the plane, and we assume to be at least C2. Function ψ
represents the robot’s orientation on the plane, and it is at least C1. Given the
context, the assumptions regarding the continuity of these functions derivatives
are reasonable. This is because acceleration and angular speed measurements
can be easily acquired using basic proprioceptive sensors, like inertial measure-
ment units, often integrated on the robot. The robot’s trajectory satisfies the
following differential equation

ẋ = g(x, ψ) (5.1)

In the scenario considered here, the robot navigates within a two-
dimensional environment, using its exploration sensors to sense its surround-
ings throughout the mission. We denote [0, T ] as the mission’s time interval
where T is a real positive value.

Visible Area

We define V : [0, T ]→ P(R2) a set-valued function, V(t) represents the robot’s
visible area at instant t ∈ [0, T ]. This set encompasses all the points on the
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plane inside the robot’s range of visibility for a given instant within exploration
time.

On this first part we assume that the robot’s visible area is one-dimensional.
In Chapter 2, we presented Side-Scan Sonars and emphasized their significance
in underwater exploration missions. With the hypotheses introduced at the
end of the chapter, the visible area of a side-scan sonar can be conceptualized as
one-dimensional. Therefore, in this section, we consider a visible area inspired
by the configuration of a robot with one side-scan sonar. We assume that the
sensor scans the environment on the robot’s left side while it moves around
the plane.

x2(t)

x1(t)

ψ(t)

x1

x2 V(t)

p

Figure 5.1: Mobile robot with a one-dimensional exploration sensor on the
plane. At instant t the point p is sensed by the robot, therefore p ∈ V(t).

This configuration is presented in Figure 5.1 where the robot is illus-
trated at some instant t ∈ [0, T ] with its position defined by the pair
x(t) = (x1(t), x2(t)).

Let L be a positive real number and the sensor’s visible range, the visible
area in the example can then be defined as

V(t) =
⋃

l∈[0,L]

(x1(t)− l sin(ψ(t)), x2(t) + lcos(ψ(t))) (5.2)

One can notice that the visible area depends on the robot’s pose and its path
and movements dictate which parts of the environment fall within the sensor’s
observation. The union of the sensor’s visible area throughout the mission de-
fines the extent of the environment that is observed by the robot’s exploration
sensors.
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Explored Area

The set AE corresponds to the area explored by the robot during the mission.
This subset of R2 contains all the points sensed by the robot’s embedded
sensors as it navigates within the environment, and we have:

AE =
⋃

t∈[0,T ]

V(t) (5.3)

Robot at

Robot’s trajectory

V(0)
Explored Area AE

x(0)

Figure 5.2: Area explored by a one-dimensional sensor on the robot’s left side
along its trajectory.

Figure 5.2 exemplifies the resultant AE if we consider the illustrated robot’s
trajectory and the visible area function described by Equation (5.2).

Waterfall and Mosaic Spaces

One-dimensional visible areas can be parameterized by a single parameter,
this means that each point within the visible area can be uniquely identified
or represented using one single variable. This parameter corresponds to the
position along the linear axis of the visible area. For example, in Equation
(5.2), this parameter is given by l ∈ [0, L], and it determines the lateral distance
of an explored point to the robot. As the robot sweeps the environment, the
union of its one-dimensional visible areas over time creates a two-dimensional
space that can be described as [0, L]× [0, T ] for the entire mission duration. A
resemblance can be observed between this space and the space used to portray
the data forming the sonar’s waterfall image, as explained in Section 2.2.1. In
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the case of the waterfall image representation, the abscissa corresponds to the
radial distance of a reflective point in the environment from the robot, while
the ordinates-axis represents the exploration time. In this context, we name
this space W = [0, L] × [0, T ] and refer to it as the mission’s waterfall space.
Notice that instead of using the radial distance of explored points to the robot,
we use its projection on the plane.

In sonar literature we usually represent data from the left-side sonar on the
waterfall image with negative abscissa values. Therefore, in order to respect
convention, for the example considered here, we assume W = [−L, 0] × [0, T ]
to be the mission’s waterfall space.

All points (u, t) ∈ W are points that were in the robot’s visible area at
least once and therefore, points that were explored during the mission, but
represented in a relative coordinate frame. The robot’s trajectory, its visible
area and the explored area are all defined inside an absolute coordinate system.
Still drawing a parallel with sonar terminology, we name the mission’s absolute
coordinate frame the Mosaic Space M ⊆ R2. In robotics, this space is usually
called the world frame. In practice, the mosaic space represents, in the context
of area covering missions, a parcel of the complete environment that we might
want to explore, ot the area of interest.

We define the sweep function f : W → R2 as a continuously differentiable
function whose image over [−L, 0] × t, with t ∈ [0, T ], represents the visible
area V(t),

V(t) = f([−L, 0], t)

Moreover, we have,

AE = f(W )

Figure 5.3 illustrates the sweep function mapping.

Coverage Measure

When the robot encounters a point for the first time, it becomes part of the
explored area. However, if the robot subsequently leaves the vicinity of that
point and later returns to find the same point within its visible area again,
that point is considered to be revisited.
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−L
0

T

W = [−L, 0]× [0, T ] M ⊆ R2

x1

x2

f

f−1

f (−L, [0, T ]) f (0, [0, T ])

f ([−L, 0], 0) f ([−L, 0], T )

x(0)

0

Legend for mosaic space M:

Figure 5.3: Waterfall and Mosaic Spaces related by the sweep function f . The
image by f of 0× [0, T ] represents the robot’s trajectory on the mosaic space
and f([−L, 0], t) represents the visible area for some t ∈ [0, T ].
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−L
0

T

W = [−L, 0]× [0, T ] M

x1

x2

f

f−1

0

x(t1)

x(t2)

p

Legend for mosaic space M:

t1

t2

w1

w2

x(0)

Figure 5.4: Point p is explored at instants t1 and t2. Therefore, we have a point
w1 ∈ W with ordinate value equal to t1 and a point w2 ∈ W with ordinate
value equal to t2. Both these points are mapped by f onto p.

The coverage measure, or how many times a point in the environment was
explored by the robot during a mission, is given by the function cm : R2 → N.
In Figure 5.4, for example, point p is sensed for the first time at instant t1, and
there is a point w1 = f(l, t1) with l ∈ [−L, 0] in the waterfall space. Then,
the point is revisited at instant t2 and therefore, it exists w2 = f(l, t2) with
l ∈ [−L, 0] in the waterfall space.

Let det be the determinant function and let Jf represent the Jacobian
matrix of the sweep function. In a first moment we assume the following:

∀w ∈ W,det(Jf (w)) > 0 (5.4)

The determinant of the Jacobian matrix of a mapping function between two
spaces represents the amount by which the mapping stretches or compresses the
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source space as they are transformed into the target space. If the determinant
of the Jacobian matrix is positive, it indicates that the mapping preserves
orientation and, on the contrary, if the determinant is negative, it signifies that
the mapping reverses orientation. In our context, a positive determinant of Jf
throughout the time indicates that each new set of sensor readings, represented
by a horizontal line in W , expands the size of the resultant explored area.
Furthermore, it determines that AE can not be reduced or be constant during
time, it is always expanding. Summarizing, this condition implies that the
robot is constantly moving and that the sensor sweeps the environment on the
same direction of the robot’s advancement movement.

This hypothesis establishes, among others, that the number of times that
a point appears in the waterfall space corresponds to the number of times that
this point was explored during a mission. This is the case because, considering
the one-dimensional character of the sensor, a point can not be inside the
visible area for a continuous interval of time, only punctually. Therefore, for
a point p ∈ R2, we have that f−1(p) is either an empty set or a finite set of
individually unconnected points in W .

Thus, if Ker f is the kernel of function f and for p ∈ R2, it can be
concluded that

cm(p) = #Ker (f − p) (5.5)

where # indicates the cardinality.
Finally, for the example presented in Figure 5.4, considering hypothesis in

Equation (5.4), we have f−1(p) = {w1,w2} and cm(p) = 2.

Coverage Measure and the Explored Area

The explored area AE can be defined as the set of points that were sensed by
the robot at least once and therefore in terms of the coverage measure of its
points:

AE = {p ∈ R2|cm(p) ≥ 1}

Describing the mosaic space using the coverage measure of its points is the
method adopted in this work for defining the explored area. The following
section establishes a connection between the topological degree and the cov-
erage measure. This constitutes the primary contribution of this work, and it
enables the development of an algorithm, presented in Chapter 6, for efficiently
determining the coverage measure across an infinite number of points.
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5.1.2 Coverage Measure and the Topological Degree

"The mathematical facts worthy of being studied are those which, by
their analogy with other facts, are capable of leading us to the knowledge
of a physical law. They reveal the kinship between other facts, long
known, but wrongly believed to be strangers to one another."

(- Henri Poincaré)

We recall from Section 4.8 that the topological degree is a function deg :
(f , S,p)→ Z where S is an open subset of Rn, f : S → Rn is continuous, and
p ∈ Rn\f(∂S). This function respects the hypothesis established on Definition
27. Furthermore, if f is continuously differentiable and det(Jf (d)) is non-zero
for each d such that d ∈ f−1(p), Equation (4.1) can be used to compute the
output value of this function. Then, let f be a map from the two-dimensional
disk to the plane, such that f : D2 → R2, and p ∈ R2\f(∂D2). Then,
in Section 4.8.1 we prove that the winding number η(f(∂D2),p) is equal to
deg(f , D2,p).

γ

Figure 5.5: The mission contour γ is a counterclockwise oriented continuous
closed curve on the plane.

Now let f represent the sweep function, mapping from W , which is home-
omorphic to D2, to R2. We make the following proposition:

Proposition 1. For any p ∈ R2\f(∂W ):

η(γ,p) = cm(p), (5.6)
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where γ = f(∂W ) represents the mission contour. We choose γ to be
counterclockwise oriented, and it is a closed curve that surrounds all the points
that have been explored. In Figure 5.5 we illustrate the mission contour for the
example mission illustrated on Figure 5.2.

Proof. Under hypothesis (5.4), we know that Jf is positive for all points in the
Waterfall Space. Therefore, condition for using Equation (4.1) is met for any
p ∈ R2\f(∂W ). Then we obtain

deg(f ,W,p) =
∑

w∈f−1(p)

+1 = #Ker (f − p)

Finally, from Equation (5.5), it can be concluded that deg(f ,W,p) = cm(p).
Since deg(f ,W,p) = η(f(∂W ),p), the proposition is proved.

On next sections we extend the relation between the coverage measure and
the topological degree, so it comprehends more general scenarios.

Coverage Measure of Points with Undefined Winding Numbers

We assume, for the moment, that the robot’s pose and its visible area are well-
defined along the mission. Meaning that there is no uncertainty associated to
them. In this case, it is expected that the coverage measure of all the points in
the environment can be uniquely determined. However, if we use the winding
number for estimating the coverage measure, as proposed in (5.6), the coverage
measure of a point p ∈ γ will be undefined.

For example, in Figure 5.6, point p1 ∈ γ is the image by the sweep function
f of a point (0, t2) ∈ W . This point is inside the robot’s visible area V(t1)
and according to the definition of the coverage measure on Equation (5.5),
cm(p1) = 1, but η(γ,p1) is undefined. We have a similar scenario for point
p2 ∈ γ that is the image by f of a point (−L, t3) ∈ W but also of another point
(l, t1) ∈ W with l ∈ (−L, 0). Thus, we have cm(p2) = 2 although η(γ,p2) is
undefined.

In this context, to extend the validity of (5.6), we define a bounded function
η as the extension of the winding number function to the full domain f(W ).
For that, we consider the following definition, adapted from [119]:

Definition 29 (Upper Limit). Let M be a metric space and g a function from
M to R. For any limit point (Definition 13) y ∈ M the upper limit, when it
exists, is defined as:

limsup
p→y

g(p) = lim
ϵ→0

(sup{g(p) | p ∈ B(y, ϵ)\{y}})

where B(y, ϵ) denotes the ball within M , centered at y, of radius ϵ.



134 CHAPTER 5. COVERAGE MEASURE AND EXPLORED AREA

x(0)

p2

x(t1)
x(t3) x(t2) = p1

Figure 5.6: The coverage measure of point p1 is equal to 1 and of point p2

is equal to 2, but the winding number of γ with respect to these points is
undefined.

The sweep function f is a continuous map from a compact subset W to a
subset of R2, therefore f(W )\f(∂W ) is composed of a disjoint union of opens
Vi, i ∈ I, for some index set I. All points of f(∂W ) are limits of some sequence
of points f(y), with y ∈ W̊ . We can now state:

Theorem 5.1.1. Consider a function w :
⋃
i∈I
Vi → Z. Suppose that w is

bounded on
⋃
i∈I
Vi then there is an upper semi-continuous extension of w, w :

f(W )→ Z defined as:

w(p) =


w(p) if p ∈

⋃
i∈I
Vi

limsup
p′∈

⋃
i∈I

Vi→p

w(p′) otherwise

Proof. This is immediate: the upper limit exists since w is bounded on
⋃
i∈I
Vi,

and the definition of w precisely imposes that w is upper semi-continuous.

Supposing that the number of connected components of f(W )\f(∂W ) is
finite, as the winding number is constant on each component, this defines a
bounded function η that we can extend to the full domain f(W ) by Theorem
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5.1.1 to obtain η. Finally, if the condition expressed in Equation (5.4) is
satisfied, we can say that for any p ∈ R2,

η(γ,p) = cm(p) (5.7)

Considering Definition 29, if p ∈ γ, its coverage measure will be equal to
the coverage measure of points on the open Vi with the biggest winding number
value for which p is a limit. For example, point p2 in Figure 5.6 is the limit
for two opens. One of the opens has a winding number value of +1, and the
other a winding number value of +2. Therefore, according to (5.7), we obtain
cm(p2) = 2, as expected by the original definition on Equation (5.5).

This new definition extends the applicability of the method but condition
(5.4) is still necessary for Equation (5.7) to be true. Next section introduces
new concepts to remove this constraint.

Coverage Measure for Points Swept Backwards

If the condition established on Equation (5.4) is not satisfied there are two
scenarios to be considered:

1. ∃(l, t) ∈ W such that Jf (l, t) < 0 : This translates by a point p =
f(l, t) in R2 that is explored by the robot at t but swept on the opposite
direction with respect to the robot’s advancement movement, defined by
vector

(
ẋ1(t) ẋ2(t)

)T .

2. ∃(l, t) ∈ W such that Jf (l, t) = 0: Point p = f(l, t) in the mosaic space
is called a non-regular value of f . Point (l, t) corresponds to a critical
point in the waterfall space where the mapping loses its local injectivity.
In practice, it implies that there might be a continuous path within W
that is mapped by f onto p and therefore Equation (5.5) is no longer
valid for determining the coverage measure of this point. This problem
arises for example if for some t ∈ [0, T ] we have

(
ẋ1(t) ẋ2(t)

)T
= 0.

In this Section, we extend the method in order to deal with a negative
determinant of the Jacobian of the sweep function (scenario 1 presented on
the list above). As a consequence, by continuity, there will also be points in
W where this determinant is zero. However, we assume that these points are
singularities that arise from a change in the sweeping direction. A cease on
the robot’s movement that would be represented by

(
ẋ1(t) ẋ2(t)

)T
= 0, for

some t ∈ [0, T ], still will not be comprised by the resultant method.



136 CHAPTER 5. COVERAGE MEASURE AND EXPLORED AREA

0

w1
t̂1

t1

f

x(0)

x(t̂1)
p

x(t1)

M

γ1 = f (∂W1)
W1 = [−L, 0]× [0, t1]

(a) Mission during time interval [0, t1], point p is sensed for the first time at t̂1 and
cm(p) = 1.

0

w1
t̂1

t2

t̂2w2

f

x(0)

x(t̂1)

x(t̂2)x(t2)

γ2 = f (∂W2)

p

0L

W2 = [−L, 0]× [0, t2]

M

(b) Point p is swept on the opposite direction of the robot’s movement at t̂2. At t2,
cm(p) = 2.

γ S−
M

0
w1

t̂1

T

t̂2

t̂3w3

w2

f

x(0)

x(t̂1)

x(t̂2)

x(t̂3)

x(T )

p

W

f−1(S−)
(c) The mission ends at T and the point p is sensed for the last time at t̂3, the final
coverage measure of this point is 3 although η(γ,p) = 1.

Figure 5.7: Example of mission that does not satisfy condition (5.4).
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The example illustrated in Figure 5.7 demonstrates the inconsistency that
arises in the equality presented in Equation (5.7) on a mission that does not
respect condition (5.4).

At the beginning of the mission, in Figure 5.7a, the robot moves from
its initial position x(0) to position x(t1), t1 > 0. During the interval [0, t1],
condition (5.4) is satisfied. Point p ∈ R2 is sensed for the first time at instant
t̂1 ∈ [0, t1] and this occurrence is represented in the mission’s Waterfall Space
W by point w1. The mission contour associated with this first part of the
mission is the closed curve γ1 = f(∂([−L, 0]× [0, t1])) and we have:

η(γ1,p) = sign(det(Jf (w1))) = 1

that is indeed equal to the coverage measure of p at t1.
The mission continues as the robot advances to position x(t2), t2 > t1

and point p is revisited at t̂2. For the time interval [0, t2], we have f−1(p) =
{w1,w2} and γ2 = f(∂([−L, 0]× [0, t2])) represents the mission contour. As il-
lustrated in Figure 5.7b, at t̂2, point p is swept with the opposite direction with
respect to the robot’s advancement movement. In this context, the Jacobian
of function f at w2 is negative and

η(γ2,p) =
2∑

i=1

sign(det(Jf (wi))) = 1− 1 = 0

although, according to (5.5), cm(p) = 2 at t2.
Exploration ends at position x(T ), T > t2 and the complete mission is

represented in Figure 5.7c. Point p is sensed for the third and last time at t̂3
and at the end of the mission f−1(p) = {w1,w2,w3}. At t̂3, point p is sensed
by a forward movement of the sensor on the plane, therefore we have

η(γ,p) =
3∑

i=1

sign(det(Jf (wi))) = 1− 1 + 1 = 1

but cm(p) = 3 is expected.
To address this problem, we can divide the Waterfall Space W into two

sets, S+ and S−,
S+ = {w ∈ W |det(Jf (w)) > 0} (5.8)

S− = {w ∈ W |det(Jf (w)) < 0} (5.9)

We define two new positively oriented contours, γ+ and γ− as the image by f
of the boundaries of these sets:

γ+ = f(∂S+) (5.10)
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γ = f(∂W )

f (S−)

x(0)

0

T

W

γ+ = f (∂S+)

x(0)x(T )

0

T

S+

γ− = f (∂S−)

∂W

S−

∂S+

∂S−

S−

f

f

f

Figure 5.8: Decomposition of the Waterfall Space and γ according to the
sweeping direction.
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γ− = f(∂S−) (5.11)

Figure 5.8 illustrates this division.
For a regular value p ∈ R2 we will have Ker (f − p) ⊂ S+ ∪ S− and

Ker (f − p) = Ker(f|S+ − p) ∪Ker(f|S− − p)

Equation (5.5) can also be rewritten:

cm(p) = #Ker (f|S+ − p) + #Ker (f|S− − p)

The cardinality of a set can be obtained by a sum of +1 through its elements:

cm(p) =
∑

w∈f−1

|S+
(p)

+1 +
∑

w∈f−1

|S−
(p)

+1

and considering the definitions of sets S+ and S−, respectively on (5.8) and
(5.9), we obtain

cm(p) =
∑

w∈f−1

|S+
(p)

sign(det(Jf )(w))−
∑

w∈f−1

|S−
(p)

sign(det(Jf )(w))

Finally, from (5.10), (5.11), (4.1) and Definition 28, we have

cm(p) = η(γ+,p) + η(γ−,p) (5.12)

for any regular point p ∈ R2.
Note that all non-regular values p ∈ R2, representing a singularity to the

method, lay on the intersection of curves γ+ and γ−. In this context, their
coverage measure is naturally defined considering the upper semi-continuous
extension of the winding number η.

5.1.3 Dealing with Uncertainties

It is well known that estimating the position of robotic systems involves deal-
ing with uncertainty due to various factors that can affect the accuracy and
reliability of the final estimation. In order to provide a guaranteed charac-
terization of the environment in terms of the coverage measure of its points,
uncertainty needs to be taken into account on the formalization of the notion
of coverage measure.

In this context, we now consider that the robot’s pose can be uncertain,
but we keep the assumption that the sensor’s model is exact. Nonetheless,
since the visible area depends on the robot’s pose, uncertainty is naturally
propagated to the coverage measure.
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Let x∗ be the function representing the robot’s trajectory on the plane dur-
ing a mission. From now on, we assume that x∗ is unknown and that instead,
x∗ belongs to a set Sx ∈ P(R → R2) of all the possible functions describing
the robot’s behavior. Modeling the behavior of a mobile robot by a set of pos-
sible solutions containing the ground truth is a common approach since they
are usually non-holonomic systems. These are systems whose behavior can
be modeled by differential equations and physical constraints, implying that
if bounded uncertainties are introduced, they create a bounded disturbance
around the real solution.

p2

p1

x1 :

x2 :

Figure 5.9: Point p1 is explored only if x∗ = x2 and point p2 is explored either
if x∗ = x1 or x∗ = x2.

The coverage measure cm(p) for a point p ∈ R2 can take different values for
distinct functions x ∈ Sx. In this work, we propose a solution for computing
the uncertain coverage measure based on interval analysis. For example, let
us consider a set Sx = {x1,x2} with two possible solutions as illustrated in
Figure 5.9. The coverage measure of p1 can either be 0 or 1. In this case, we
want its coverage measure to be represented by an interval [0, 1] containing all
the possible solutions. For point p2, its coverage measure is always equal to 1.
Therefore, we represent its coverage measure by the singleton [1, 1].

We adopt the notation cm|x(p) for representing the coverage measure of a
point p ∈ R2 for a given x. We are interested in estimating [cm](p) ∈ IZ, the
smallest interval of relative integers such that

[cm](p) =
⊔
x∈Sx

cm|x(p) (5.13)

As it will be discussed on the next chapter, in practice, we have to deal with
the propagation of pessimism. In this case, [cm] is ideally the smallest interval
to represent the set of solutions, but this will not always be the case.

From each x ∈ Sx, we can generate a different γ, a possible mission contour
for the mission. Then, we define Sγ ∈ P(S1 → R2) as the set of all possible γ.
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x2(0)

x1(T )

x2(T )

x1(0)

Figure 5.10: The solid line represents the mission contour γ associated to the
robot’s trajectory represented by function x1. The dashed line represents γ for
the robot’s trajectory represented by function x2. The hatched area contains
points surrounded by both contours and therefore points that have certainly
been explored. Gray areas represent points that could have been explored
depending on which of the trajectories is the ground truth.

Furthermore, the sweep function f will also depend on x, and we denote fx

the sweep function associated to some function x ∈ Sx. Then, we have the set
Sf ∈ P(W → R2) such that

Sf =
⋃
x∈Sx

fx (5.14)

To simplify the definitions in this section, first we consider a point p ∈ R2

such that for any x ∈ Sx, we have det(Jfx(w)) > 0 for all w ∈ f−1
x (p). Accord-

ing to (5.7), we can obtain the coverage measure through the computation of
the winding number of the mission contour. Therefore, we want to determine
[η](Sγ, .) ∈ IZ, that is ideally the smallest interval such that

∀γ ∈ Sγ , η(γ, .) ∈ [η](Sγ, .) (5.15)

and we can define the uncertain coverage measure of p as

[cm](p) = [η](Sγ,p). (5.16)

Figure 5.10 presents set Sγ considering the example presented on the be-
ginning of this section, we have Sγ = {γ1, γ2} where γ1 is the mission contour
associated to trajectory x1 and γ2 to trajectory x2 from Figure 5.9.

A generalization for points swept backwards can be directly obtained con-
sidering a decomposition of each of the cycles γ ∈ Sγ in γ+ and γ−. This
decomposition results in sets [γ+] ∈ P(S1 → R2) and [γ−] ∈ P(S1 → R2).
Equation (5.12) can then be adapted to the uncertain coverage measure, we
obtain:

[cm](p) = [η]([γ+],p) + [η]([γ−],p) (5.17)
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In the initial section of this chapter, we proposed and proved Proposition
1, that uses the concept of winding number to compute the coverage measure
of points in the environment. We demonstrated that our approach has the
capability to account for points that are swept in a direction opposite to the
robot’s forward movement, as well as to accommodate uncertainties in the
robot’s pose throughout the mission. The remaining of this chapter expands
upon the formalization introduced in this initial part to address sensors with
two-dimensional visible areas.

5.2 Two-Dimensional Sensors

5.2.1 Problem Statement

We return to the assumption that the robot’s pose is known through the mis-
sion and that it can be represented by

(
x ψ

)T ∈ R3, with x : [0, T ] → R2

at least C2 and ψ : [0, T ] → R at least C1. The robot employs integrated
two-dimensional exteroceptive sensors, like cameras for example, that allow it
to explore a portion of its surroundings defined by the sensor’s visibility range.
Unlike one-dimensional sensors, that provide data along a single axis, a local
two-dimensional representation of the observed environment is created around
the robot at each instant.

The primary challenge encountered when attempting to generalize the no-
tions presented on the first part of this chapter to this new configuration, lies
in formally defining the coverage measure while employing two-dimensional
sensors. Given the two-dimensional nature of the observable area, a point
within the environment that has been explored only once during a mission
could potentially remain within the robot’s visible area for a continuous time
interval. As a result, the coverage measure definition provided in (5.5) is no
longer valid because there is possibly an infinite number of instants for which
this point would be inside the visible area. Furthermore, Equation (5.5) is
necessary for establishing a relation between the exploration problem and the
notion of topological degree, as presented in (5.6) and on both of its extensions
in (5.7) and (5.12). In this context, a more general definition of the coverage
measure is proposed to deal with two-dimensional sensors and its relation to
the topological degree is proved again for this new scenario.

Visible Area

We define the robot’s visible area as a set-valued function V : [0, T ]→ P(R2)
that respects the following assumption:
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Assumption 1 We suppose that V(t), for t ∈ [0, T ], is a differentiable man-
ifold with boundary, diffeomorphic to the disk D2 with differential structure
inherited from R2 by the obvious embedding D2 ⊆ R2.

As a consequence, the boundary ∂V(t) of V(t) is diffeomorphic, as a man-
ifold without boundary, to S1, the unit circle of R2.

Robot atx(t) V(t)
D2

ht

∂V(t) = ht(S
1)

Figure 5.11: The robot’s visible area is diffeomorphic to D2. We denote ht the
diffeomorphism between these two spaces for an instant t ∈ [0, T ].

We note the orientation preserving diffeomorphism

ht : D
2 → V(t) (5.18)

We suppose it varies continuously in time t and that D2 is counterclockwise
oriented. Figure 5.11 illustrates an example of visible area diffeomorphic to
D2.

Explored Area

The set AE is the union of the robot’s visible area through the mission, as it
was defined for the one-dimensional context (5.3).

(0, 0)

r
θ
(r, θ)

x1 = 0

Figure 5.12: Polar representation of points on disk D2.
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We use a simple example for illustrating the resultant explored area in the
context of two-dimensional visible areas. For that, we parameterize the disk
D2 with polar coordinates of the form {(r, θ) | r ∈ [0, 1], θ ∈ [0, 2π)}. This
parameterization is illustrated on Figure 5.12.

Robot at x(T )Robot at x(0)

Figure 5.13: In gray, the area explored by a mobile robot moving straight
forward during time interval [0, T ] with a circular visible area.

Then, we assume a scenario where the robot performs a forward movement
in the environment with a speed vector

g(x, ψ) =

(
ẋ1
0

)
(5.19)

where ẋ1 > 0 is constant. The visible area V(t) for t ∈ [0, T ] is a simple
translation of D2 to be centered at (x1(t), x2(t)), and we have

ht(r, θ) =

(
x1(t) + rcos(θ)
x2(t) + r sin(θ)

)
(5.20)

Figure 5.13 illustrates the area explored by the robot on this context.

Waterfall and Mosaic Spaces

The mosaic space M ⊂ R2 in this new context is the same as the one we had on
the one-dimensional case. The equivalent of the waterfall space is constructed
as follows.

First, consider I = D2 × [0, T ], the origin domain that is mapped by a
differentiable function f : D2 × [0, T ]→ R2. We note

f(d, t) = ht(d) (5.21)

with d = [0, 1]× [0, 2π). This mapping is illustrated on Figure 5.14.
Space I represents points that were explored during the mission in a relative

coordinate frame, and, in a certain manner, the waterfall space notion that we
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t

f

f−1 x(0)
T

x(T )

I

M

p0

i1 i2

Figure 5.14: Mapping from a local coordinate frame I to the world frame,
that is represented by the mosaic space M . We assume a circular visible
area centered on the robot’s position and rotated according to the robot’s
orientation on the plane. Point p ∈ M is explored two times during the
mission. In this case, we have f−1(p) that is a non-connected set of points
made of the union of subsets i1 and i2.

previously had. For the one-dimensional context, however, we naturally had a
local injectivity of function f . This was a result of not having connected paths
within the waterfall space that could be mapped by f to the same point on the
mosaic space. In order to construct a waterfall space with this property on the
two-dimensional scenario we have to quotient I by the following equivalence
relation ∼, to obtain W = I/ ∼:

(r, θ, t) ∼ (r′, θ′, t′) (5.22)

if a continuous path from (r, θ, t) to (r′, θ′, t′) within I is a subset of
f−1(f(r, θ, t)).

At first, this quotient space seems similar to the one that we had in the one-
dimensional scenario. However, in general, it can be challenging to characterize
and to define the properties of a quotient space. Therefore, we prefer to adopt a
different approach, when defining the notion of coverage measure, independent
of the notion of the waterfall space. This new approach, that is now presented,
simplify our future proofs when reestablishing a relation between the coverage
measure and the topological degree.
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Coverage Measure

We recall that a point is only considered to be revisited if once in the robot’s
visibility range, it goes out of reach and then is sensed again later in time.

We can then define the following set, for all points p on the set AE associated
to the mission:

Tp = {t ∈ [0, T ] | ∃(r, θ) ∈ [0, 1]× [0, 2π), ht(r, θ) = p}

Still identifying points in D2 by their polar coordinates, this set contains all
the instants when point p ∈ AE is inside the robot’s visible area.

x(0)
p

x(t1) x(t2) x(T )

Figure 5.15: In this example, the illustrated point p enters the robot’s visible
area at instant t1 and leaves it at instant t2. During time interval [t1, t2] the
point stays on the robot’s visibility range.

We consider again the context defined for the mission presented on Figure
5.13, and we take point p as illustrated on Figure 5.15. This point is on the
robot’s visible area V(t) for all t ∈ [t1, t2]. Therefore, we have

Tp = {t ∈ [0, T ] | t1 ≤ t ≤ t2} = [t1, t2]

and Tp is a closed subset of [0, T ].
In more complex examples, Tp will be a union of connected components,

that are closed subsets of [0, T ]. The set Tp will be composed of finitely many
disjoint intervals of the form [ai, bi] with ai, bi ∈ [0, T ] and i indexed by positive
integers.

Figure 5.16 presents another example of mission, now assuming a diffeo-
morphism defined by

ht(r, θ) =

(
x1(t) + rcos(θ + ψ(t))
x2(t) + r sin(θ + ψ(t))

)
(5.23)

for r ∈ [0, 1] and θ ∈ [0, 2π). In this new mission, we have associated to the
illustrated point p the set

Tp = {t ∈ [0, T ] | t1 ≤ t ≤ t2 or t3 ≤ t ≤ t4} = [t1, t2] ∪ [t3, t4]

Moreover, we present the following definition:
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x(0) x(t1) x(t2)

x(t3)x(t4)

p

Figure 5.16: Point p is explored twice by the robot during the illustrated
mission. It enters the visible area at instant t1 and t3, and it leaves it at t2
and t4, staying on the visible area for two continuous time intervals [t1, t2] and
[t3, t4].

Definition 30 (Coverage Measure). The number of connected components of
Tp defines what we call “the number of times our robot sees p”, or its coverage
measure cm(p).

For point p on Figure 5.15, the set Tp associated to this point has only one
connected component, therefore cm(p) = 1. And for point p on Figure 5.16
we have cm(p) = 2.

The topological approach established for one-dimensional sensors needs to
be proved valid for the case of the two-dimensional visible area, considering
this new, more general, definition of the coverage measure. For that we define
three sets that will be important in this context: the entrance, exit and contour
sets.

Entrance, Exit and Contour Sets

Before defining these sets we define gt(p) ∈ R2 as the opposite vector flow for
a point p ∈ R2 at instant t. It represents the point’s relative speed in the
robot’s perspective. Let pr

t be the representation of a point p = (p1, p2) in the
robot’s coordinate frame at some instant t, then we have

pr
t =

(
cos(ψ(t))(p1 − x1(t)) + sin(ψ(t))(p2 − x2(t))
− sin(ψ(t))(p1 − x1(t)) + cos(ψ(t))(p2 − x2(t))

)
(5.24)

The opposite vector flow of this point is

gt(p) =
∂pr

t

∂t
(5.25)
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The entrance set at time t is denoted E(t), and contains all points entering
the visible area at instant t. It can be defined as a subset of ∂V(t) such that
the opposite vector flow gt(p) is pointing towards the interior of V(t) for all
p ∈ E(t).

The boundary ∂V(t) is defined by points with polar coordinates of the
form (1, θ), with θ ∈ [0, 2π) through the orientation preserving diffeomorphism
ht. In this case, entrance sets can be deduced from the computation of the
determinant of the Jacobian of (t, θ)→ ht(1, θ):

det Jh =

∣∣∣∣∣ ∂hx
t

∂t
(1, θ)

∂hx
t

∂θ
(1, θ)

∂hy
t

∂t
(1, θ)

∂hy
t

∂θ
(1, θ)

∣∣∣∣∣ (5.26)

writing ht = (hxt , h
y
t ). Then we have:

E(t) = {ht(1, θ) | det Jh(1, θ) > 0}

Similarly, we define X(t), the exit set at time t:

X(t) = {ht(1, θ) | det Jh(1, θ) < 0}

and C(t) the contour set is:

C(t) = {ht(1, θ) | det Jh(1, θ) = 0}

Figure 5.17 illustrates the vector field gt1 considering the context presented
for the mission illustrated on Figure 5.15 at instant t1. For this example we
have

gt1(p) =

(
−ẋ1(t1)

0

)
(5.27)

for any point p ∈ R2. We can see the illustrated point p, that represents
the same point in Figures 5.17 and 5.15, entering the robot’s visible area, as
expected on the example at instant t1. All the other points on ∂V(t1) with
vectors pointing towards the interior of the visible area are also entering the
visible area at this instant.

Now, consider the following example:

Example 1. We assume a Dubins vehicle with unit linear velocity and constant
angular velocity ψ̇ = a ∈ R. We have

g(x(t), ψ(t)) =

(
cos(ψ(t))
sin(ψ(t))

)
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x(t1)
x1

x2

p

E(t1)

X(t1)

C(t1)

Figure 5.17: Robot represented at instant t1 considering the context of the
mission illustrated on Figure 5.15. The vector field gt1 is also represented.
The dashed curved is composed of points on the boundary of the visible area
V(t1) entering the robot’s visible range. The solid line contains points on the
boundary leaving the visible area at instant t1.

The visibility region is a disk of radius 1, parameterized as follows:

(
vx(r, θ)
vy(r, θ)

)
=

(
rcos(θ)
r sin(θ)

)

The visibility region is, at all times t, a translation of the disk of radius
1, oriented at angle ψ(t) and centered at (x1(t), x2(t)). Overall, this gives a
parameterization represented by the diffeomorphism in (5.23).

We first compute the contour set C(t). For that, in order to compute (5.26),
we define the following derivatives of ht(1, θ) with respect to θ and t:
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∂ht

∂θ
(1, θ) =

(
− sin(θ + ψ(t))
cos(θ + ψ(t))

)
∂ht

∂t
(1, θ) =

(
cos(ψ)− sin(θ + ψ(t))a
sin(ψ) + cos(θ + ψ(t))a

)
The determinant of these two vectors is det Jh(1, θ):∣∣∣∣ cos(ψ(t))− sin(θ + ψ(t))a − sin(θ + ψ(t))

sin(ψ(t)) + cos(θ + ψ(t))a cos(θ + ψ(t))

∣∣∣∣
= cos(ψ(t)) cos(θ + ψ(t)) + sin(ψ(t)) sin(θ + ψ(t))
= cos((θ + ψ(t))− ψ(t))
= cos(θ)

The contour set is given by det Jh(1, θ) = 0, for θ ∈ [0, 2π], hence the contour
set is given by two points: c1(t) = ht(1, π/2) and c2(t) = ht(1, 3π/2).

We now make two assumptions that will be necessary to formalize a relation
between the topological degree and the coverage measure of two-dimensional
sensors. In what follows, we will write S+ ⊆ S1 (resp. S− ⊆ S1) for the strict
eastern (resp. western) hemisphere, i.e. points (x1, x2) of S1 such that x1 > 0
(resp. x1 < 0).

V(t)
D2

ht

c1(t) = ht(1, π/2)

c2(t) = ht(1, 3π/2)

(1, π/2)

(1, 3π/2)

Figure 5.18: The robot is illustrated at some position x(t) with dynamic vector
g(x(t), ψ(t)) for some t ∈ [0, T ]. In this example, the contour set C(t) is
composed of two points c1(t) and c2(t), these are the only two points where
vector gt is tangent to the boundary ∂V(t). All other points on the boundary
are either entering or leaving the visible area. We choose ht as illustrated so
that points on the contour set are represented in (1, π/2) and (1, 3π/2) on D2.
The dashed (resp. bold) lines represent S− (resp. S+) on the disk and X(t)
(resp. E(t)) on the visible area V(t).
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Assumption 2 We suppose that C(t) is composed of exactly two distinct
points c1(t) and c2(t) for all t ∈ [0, T ], as it is the case in the example before.

This implies that E(t) and X(t) are open intervals of S1, for all t ∈ [0, T ].
In addition, we suppose that the diffeomorphism ht : D2 → V(t), varying
continuously in t, is chosen such that, once again as in the example before:

• ht(1, π/2) = c1(t),

• ht(1, 3π/2) = c2(t),

• ht(S
+) = E(t),

• ht(S
−) = X(t)

This is always possible up to reparameterization.
Figure 5.18 illustrates a possible mapping ht.

Assumption 3 We assume we can find a curve α on D2 from (1, 3π/2) to
(1, π/2), such that α : [−1, 1]→ D2 and

• α(−1) = (1, 3π/2),

• α(1) = (1, π/2).

And we suppose that we have two suitable families of curves from S− to α :

pre : [−1, 0]× [−1, 1]→ D2

and from α to S+:

post : [T, T + 1]× [−1, 1]→ D2

such that:

• u→ pre(−1, u) sweeps S−, and u→ pre(0, u) is equal to u→ α(u);

• pre(s, 1) = (1, π/2), pre(s,−1) = (1, 3π/2) for any s ∈ [−1, 0];

• u→ post(T +1, u) sweeps S+, and u→ post(T, u) is equal to u→ α(u);

• post(s, 1) = (1, π/2), post(s,−1) = (1, 3π/2) for any s ∈ [−1, 0].

We also note

• bpre(s, u) = h0(pre(s, u));

• bpost(s, u) = hT (post(s, u));
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D2

α S+
S−

(a)

c1(0)

c2(0)
c2(T )

c1(T )

h0(α([−1, 1])) hT (α([−1, 1]))

h0(pre(−1, [−1, 1])) hT (post(T + 1, [−1, 1]))
(b)

Figure 5.19: In (b) we illustrate a mission where the robot moves straight
forward in the environment with a visible area V as the one illustrated in
Figure 5.11. Dashed lines represent in (a) curves of family pre and in (b) their
image by function h0. Bold solid lines represent in (a) curves of family post
and in (b) their image by function hT . The fine solid line in (a) represents
curve α and in (b) fine solid lines represent the image of α by ht with t ∈ [0, T ].
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• b(s, u) = hs(α(u)).

We suppose that determinants det(Jbpre), det(Jbpost) and det(Jb) are strictly
positive.

Figure 5.19 represents these families of curve considering the simple ex-
ample of a robot moving straight forward during a mission. One can notice
that curves from pre, along with curves from post and α cover space D2 and
functions bpre, bpost and b do the same for the explored area of the mission.

We can then define B : [−1, T + 1]× [−1, 1]→ R2 by:

B(s, u) =


bpre(s, u) if s ∈ [−1, 0)
b(s, u) if s ∈ [0, T ]

bpost(s, u) if s ∈ (T, T + 1]

Assumptions 1,2 and 3 allow us to demonstrate on next section that the
seemingly more complex problem of determining the coverage measure for two-
dimensional visible areas can be reduced to the one-dimensional case.

5.2.2 Coverage Measure and Topological Degree

Lemma 5.2.1. Under the assumptions 1, 2 and 3, we have

B([−1, T + 1], [−1, 1]) = AE (5.28)

More precisely, writing for p ∈ R2,

N(p) = # {τ ∈ [−1, T + 1] | ∃u ∈ [−1, 1], B(τ, u) = p} (5.29)

and
N(p) = cm(p) (5.30)

if det JB(τ, u) > 0 for all τ ∈ [−1, T + 1] and u ∈ [−1, 1].

Proof. We recall that, by Definition 30, we have N = cm(p) closed intervals

[ai, bi], such that Tp =
N⋃
i=1

[ai, bi]. We have three cases for each interval [ai, bi]:

• [ai, bi] is a proper sub-interval of [0, T ]: time ai is the moment when
point p enters the visibility region of the robot, necessarily at a point in
E(ai) ∪ C(ai), for the ith time, and time bi is the moment when point
p leaves the visibility region, necessarily at a point in X(bi) ∪ C(bi).
Since det(Jp) is strictly positive, the image of curve α, by ht, with t ∈
[ai, bi], is sweeping the set of points on the plane in the direction of the
differential flow, and will only intersect point p once during this time
interval. As ai > 0 and bi < T , this corresponds to a unique (s, u) within
[ai, bi]× [−1, 1], such that B(s, u) = p.
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• Time ai is equal to 0 and bi < T : this means that p was already in
the visibility region of the robot at the beginning of the mission, and
leaves it at some point of X(bi) ∪ C(bi) at time bi. As pre(−1, [−1, 1])
is the curve S− and ht(S

−) = X(t), curves from family pre sweep the
area between X(0) to curve b(0, [−1, 1]). Furthermore, since det(Jbpre) is
always strictly positive, this sweep is made in the direction of the flow of
the underlying dynamical system. In this case, it can be concluded that
there is a unique (s, u) within [−1, bi]× [−1, 1], such that B(s, u) = p.

• Time bi is equal to T and ai > 0: this means that p enters the vis-
ibility region of the robot, necessarily at a point in E(ai) ∪ C(ai), for
the ith time, and stays within the visibility region up to the end of the
mission at instant T . This is similar to the case above and we have
post(T +1, [−1, 1]) that is the curve S+ and ht(S

+) = E(t). Curves from
family post sweep the area from curve b(T, [−1, 1]) to curve E(T ). Since
det(Jbpost) is always strictly positive, this sweep is made in the direction
of the flow of the underlying dynamical system. Therefore, there is a
unique (s, u) within [ai, T + 1]× [−1, 1], such that B(s, u) = p.

This shows that there is a bijection between the set of connected components
of Tp and the number of solutions (s, u) to equation B(s, u) = p.

Lemma 5.2.1 makes it possible to reduce the computation of the number
of times a robot with a two-dimensional visibility region sees a point p ∈ R2

to the same computation considering a one-dimensional visibility region (given
by the curve u → B(τ, u) for a parametrization τ ∈ [−1, T + 1]). This allows
us to use the topological degree of map B, to compute cm(p) using the winding
number of some associated cycle:

Proposition 2. Let γ be the curve which is the concatenation of u →
B(−1,−u) (seen as a path with u evolving from -1 to 1) with t → B(t,−1)
(a path with t evolving from t = 0 to t = T ), with u → B(T + 1, u) (with u
varying from -1 to 1) and with t → B(T − t, 1) (with t varying from 0 to T ).
Then γ is the mission contour associated to the mission and we have

cm(p) = η(γ,p)

Proof. We define space W = [−1, T + 1] × [−1, 1] as a space whose points
have all been explored, represented in a relative coordinate system. Space
W is equivalent to the waterfall space that we had for the one-dimensional
scenario and function B is equivalent to the sweep function, that maps points
from the waterfall space to a global coordinate frame. Furthermore, cycle γ,
as defined in the proposition, is the image of the boundary of space W by B,
as expected.
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Example 2. We assume again the context presented on Example 1, where we
have

g(x(t), ψ(t)) =

(
cos(ψ(t))
sin(ψ(t))

)
and ψ̇ = a ∈ R is constant. The visibility region is a disk of radius 1 respecting
the diffeomorphism in (5.23).

Consider now the curve:

α(u) =

(
0
u

)
in cartesian coordinates with u ∈ [−1, 1]. Using an orientation preserving
transform of α by ht, with t ∈ [0, T ], we obtain a set of curves on the global
coordinate frame. These curves do not span the entire explored area, still, we
can use them to characterize the coverage measure as shown above.

First, we prove that for such a choice, the induced b function has a Jacobian
with positive determinant under some mild conditions. We compute:

b(t, u) =

(
−u sin(ψ) + x1(t)
u cos(ψ) + x2(t)

)
And:

det Jb =

∣∣∣∣ (1− au) cos(ψ) − sin(ψ)
(1− au) sin(ψ) cos(ψ)

∣∣∣∣
Therefore det(Jb) = (1− au) which is strictly positive for all u ∈ [−1, 1] if and
only if −1 < a < 1. Assuming an angular velocity small enough to respect this
condition is a reasonable hypothesis.

Now we define pre : [−1, 0)× [−1, 1]→ D2 by:

pre(r, u) = β(1/r, u/|arcsin(1/r)|)

where
β(s, θ) =

(
rcos(θ) +

√
s2 − 1

r sin(θ)

)
for r ∈ (−∞,−1], and θ ∈

[
−arcsin

(
1
s

)
, arcsin

(
1
s

)]
. We extend it at 0 by

continuity.
Checking det(Jbpre) > 0 is equivalent to checking de(Jc), where

c(θ) = h0(β(r, θ))

up to the change of coordinate we made (which is orientation preserving). We
compute:
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bpre(s, θ) =

(
scos(θ + ψ(0)) +

√
s2 − 1 cos(ψ(0))

s sin(θ + ψ(0)) +
√
s2 − 1 sin(ψ(0))

)
+

(
x1(0)
x2(0)

)
We have now:

∂b

∂t
=

(
s′ cos(θ + ψ) + ss′√

s2−1
cos(ψ)

s′ sin(θ + ψ) + ss′√
s2−1

sin(ψ)

)
and,

∂b

∂θ
=

(
−s sin(θ + ψ)
s cos(θ + ψ)

)
Finally:

det(Jbpre) = ss′
(
1 +

s√
s2 − 1

cos(θ)

)
But:

−
√
s2 − 1

s
≤ cos(θ) ≤ 1

and s < 0, hence:

1 +
s√

s2 − 1
≤ 1 +

s√
s2 − 1

cos(θ) ≤ 0

Supposing s′ > 0 we get det(Jbpre) ≥ 0 (and only 0 for θ = π/2 and θ = 3π/2).
Defining post similarly from curve:

β′(s, θ) =

(
s cos(θ)−

√
s2 − 1

s sin(θ)

)
for s ∈ [1,∞) depending on t ∈ [0, T ] and θ ∈

[
−arcsin

(
1
s

)
, arcsin

(
1
s

)]
enjoys the properties we need.

5.2.3 Sweeping backwards and Uncertainties

By taking the mission contour γ as defined in Proposition 2, we can imme-
diately apply relations established in extensions (5.12) and (5.16) to the two-
dimensional scenario.



5.3. CONCLUSION 157

5.3 Conclusion

In conclusion, this chapter formally defined the key concepts of coverage mea-
sure and explored area within two distinct scenarios, one involving a one-
dimensional sensor and the other extending the method to encompass two-
dimensional sensors. The chapter presents the main contribution of this work
that establishes a relation between the topological degree and the coverage
measure.

Furthermore, we expanded our problem definition to include the crucial
aspect of uncertainty, acknowledging the real-world challenges that robots face
during exploration tasks. This theoretical discussion has provided a foundation
for addressing the primary objective of this thesis that is tackled on the next
chapter.
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The previous chapter introduced a method to estimate the coverage mea-
sure of a point within the environment through the computation of certain
winding numbers. It becomes evident that if we can define the coverage mea-
sure for all the points within an area of interest, we can determine which part
of this area has been explored during a mission. Therefore, in this chapter,
we address the challenge of developing an algorithm to estimate the coverage
measure for all points within a subset of the plane. This is an area charac-
terization problem, which is centered around defining the environment within
a particular context, and the context considered here revolves around classi-
fying points based on their coverage measure. To achieve this objective, we
use the concepts introduced in Chapter 3 and approach the problem from the
perspective of interval analysis.

6.1 Problem Definition

We are going to assume that the actual trajectory x∗ of the robot during the
mission is known to be inside a set of possible trajectories Sx, as presented on
last chapter in Section 5.1.3.

In practice, this collection of possible solutions is represented by a tube
[x] ∈ IF2 that encompasses all possible elements of Sx in such a way that any
x ∈ Sx also belongs to [x], see Figure 6.1. In this context, the orientation
of the robot and derivatives are also represented by tubes. Employing tubes
to represent uncertainty in the dynamics of a mobile robot is a customary
approach in robotics [120] [121] [122], offering a guaranteed framework for
addressing the problem.

The interval [0, T ] ∈ IR represents the time interval during which the mis-
sion takes place, and S ∈ IR2 is a box representing a subset of the environment
to be characterized, or the area of interest of the mission. We assume that the
area explored during the mission is completely inside S, i.e. AE ⊂ S. Then,
we assume that the following data concerning the dynamics of the robot is
available:

(i) [x] ∈ IF2 represents all possible trajectories of the robot for the mis-
sion. This tube is obtained during the process of localization, not within
the focus of this study, that typically involves the integration of propri-
oceptive information. This integration introduces uncertainty into the
estimation. To mitigate this uncertainty, data from exteroceptive sen-
sors are often fused with proprioceptive data [123] [124]. The tube [x]

Images in this chapter use the AUV icon for illustrative purposes. However, the
algorithms presented here can be applied to different types of mobile robots.
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x∗
x∗

[x]

x∗

[x]

x2(m)

x1(m)

Figure 6.1: The robot is represented at the end of the mission at instant T .
Function x∗, that represents the ground-truth trajectory of the robot during
the mission, is unknown. Instead, we will be dealing with a tube [x] known to
enclose x∗. The tube [x] starts out narrow at the beginning of the mission, and
uncertainty increases over time. This is a typical feature of tubes enveloping
the trajectory of a mobile robot. The growth in uncertainty is a consequence
of the propagation of uncertainty through the data integration process as time
progresses. This Figure was generated using the Codac library [98].
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encapsulates the final estimation and envelops the resulting uncertainty
derived from the localization process;

(ii) [ẋ] ∈ IF2 is a tube representing the derivative of [x], it can be obtained
through integration of data or through direct sensor measurements;

(iii) [ẍ] ∈ IF2 is a tube representing the second derivative of [x]. It is usually
obtained by direct sensor measurements, such as accelerometers, and
incorporates the inherent uncertainties associated with these sensors;

(iv) [ψ] ∈ IF envelopes all functions possibly representing the orientation
of the robot during time. This tube is also obtained as a result of the
localization process through integration of data from embedded sensors;

(v) [ψ̇] ∈ IF represents the first derivative of [ψ]. The tube [ψ̇] is typ-
ically obtained through direct sensor measurements, from gyroscopes,
for example. These measurements inherently include associated sensor
uncertainties that are enveloped by tube [ψ̇];

From this information, and considering the characteristics of the visible
area of the sensor employed for exploration, a tube [γ] representing all possible
mission contours can be computed, along with [γ+] and [γ−]. Tube [γ+] rep-
resents the set of potential mission contours surrounding points swept by the
robot in the same direction as its advancement movement. Tube [γ−] denotes
the set of possible mission contours surrounding those swept in the opposite
direction. Notice we employ the notation established in Section 5.1.2. In Fig-
ure 6.2 we illustrate the mission contour for the mission presented in Figure
6.1. In Section 6.2, we discuss in details the process of creating these tubes.

The final output of the area characterization algorithm is a subpaving of
box S according to the coverage measure of its points. With this purpose,
we compute the extended winding number of tubes [γ+] and [γ−], and then
the coverage measure can be obtained as proposed on Equation (5.17). There-
fore, winding number computation is the principal building block of the area
characterization algorithm and Section 6.3 elaborates on the development of
methods to fulfill this purpose.

6.2 Creating the Mission Contour

In this section, we portray the process of generating tubes [γ+] and [γ−], along
with their corresponding derivatives [γ̇+] and [γ̇−], assuming an exploration
sensor with one-dimensional visible area. We consider the configuration de-
scribed in Section 2.2.4 where two colinear side-scan sonars are deployed, each
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x1(m)

x2(m)

Figure 6.2: In this example, where the trajectory of the robot is represented by
the blue tube, the mission contour [γ] is represented by the gray tube. All the
points are swept forward during this mission, therefore [γ] = [γ+] and there is
no tube [γ−] associated to the mission.
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scanning one side of the robot. For the sake of simplicity in presentation, we
assume that the maximal visibility range is represented by a fixed constant
value L ∈ R. However, in practical applications, this constant can be substi-
tuted with a time-dependent function if the visibility range changes over time.
Additionally, it can even be replaced with a tube representation if not only
does the range vary over time but is also subject to uncertainty.

[f ](L, T ) [f ](0, T ) = [x](T )

[f ](−L, T )

x2(m)

x1(m)

Figure 6.3: Tube [f ]([−L,L], T ) illustrating the visible area of the robot at in-
stant T assuming the mission illustrated on Figure 6.1. The red box represents
[x](T ) within the tube and black boxes represent [f ](−L, T ) and [f ](L, T ).
This Figure was generated using the Codac library [98].
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In this context, let us assume the following sweep function:

f(l, t) = x+ l

(
sin(ψ(t))
− cos(ψ(t))

)
(6.1)

where l ∈ [−L,L] and t ∈ [0, T ]. Figure 6.3 illustrates the resultant visible
area at final instant T if this sweep function is applied on the context of the
mission presented on Figure 6.1.

We can compute the Jacobian matrix of this sweep function to obtain

Jf (l, t) =

[
∂f1
∂l
(l, t) ∂f1

∂t
(l, t)

∂f2
∂l
(l, t) ∂f2

∂t
(l, t)

]
=

[
sin(ψ(t)) ẋ1(t) + lcos(ψ(t))ψ̇(t)

− cos(ψ(t)) ẋ2(t) + lsin(ψ(t))ψ̇(t)

]
(6.2)

The cycle γ+, on the literature developed on this document, surrounds
points (l, t) ∈ W where the determinant of the Jacobian matrix Jf (l, t) is
greater than zero. As discussed on last chapter, the mapping defined by f
maintains orientation for these specific points. This signifies that the order of
points in the input space remains unchanged in the target space, without any
flipping or reversing. Hence, we refer to these points as being swept in the
direction of the advancement of the robot.

x(t) g(x(t), ψ(t))

Figure 6.4: Example of robot positioned at x(t) and with derivatives repre-
sented by vector g(x(t), ψ(t)) for some instant t during the mission. At this
moment ψ̇(t) = 0 and the speed vector of any point within the visible area
(represented by the bold black line) is parallel to the one of the robot.

To illustrate this concept, we consider a scenario in which a robot moves
forward with a constant angular speed ψ̇ = 0 throughout its mission, as de-
picted in Figure 6.4. At any given moment, the velocity vector at each point
within the visible area aligns with the velocity vector of the robot, resulting
in all points being swept in the same direction as the advancement movement
of the robot.
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x(t)

g(x(t), ψ(t))
ψ̇(t)

fpr

Figure 6.5: Robot with a non-null angular velocity. The fixed point of rotation
fpr represented by the red cross divides the visible area between points that
turn on the same direction of the robot and points that turn on the opposite
direction. This is illustrated by the speed vectors of points on the visible area.

However, when the robot has a non-zero angular speed, the fixed point of
rotation becomes crucial in determining which points on the line perpendicular
to the speed vector of the robot turn counterclockwise and which ones turn
clockwise, as illustrated in Figure 6.5. If the robot itself is turning counter-
clockwise, points that also turn counterclockwise exhibit a positive determi-
nant of the Jacobian on their representatives in the original domain. Same
thing for points turning clockwise if the robot is also turning clockwise. Con-
versely, points turning on the opposite direction of the robot exhibit a negative
determinant of the Jacobian on their representatives in the original domain.

If the lateral distance of the robot to the fixed point of rotation falls within
the range of its visible area, namely [−L,L], this implies that there are visible
points being swept in a backward direction. Otherwise, all points within the
visible area are swept forward, even when the robot has some angular speed.

The lateral distance lfpr of the fixed point of rotation to the robot at instant
t ∈ [0, T ] can be obtained by analyzing det(Jf (lfpr(t), t)) = 0. We have

lfpr(t) = −
(ẋ1(t) cos(ψ(t)) + ẋ2(t) sin(ψ(t)))

ψ̇(t)
(6.3)

It’s worth observing that parameter lfpr exhibits an inverse relationship with
the angular speed rate. When ψ̇(t) approaches zero, the fixed point of rotation
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effectively becomes located at infinity and lies beyond the bounds of the visible
area. Consequently, all the points falling within a lateral distance range of
[−L,L] are swept in the same direction as the motion of the robot. Generally,
as the rate of rotation increases, the number of points swept in the backward
direction increases. As a consequence, the chances of having the fixed point
of rotation creating a division of rotation direction within the visible area also
increases.

For this reason, in order to define [γ+], the first step is to compute a tube
[lfpr] with the lateral distance of the fixed point of rotation to the robot during
the mission:

[lfpr](t) = −
([ẋ1](t) cos([ψ](t)) + [ẋ2](t) sin([ψ](t)))

[ψ̇](t)
(6.4)

This allows to define tubes [Lr] and [Ll]:

[Lr](t) =

{
[lfpr](t) ∩ [0, L] if [lfpr](t) ∩ [0, L] ̸= ∅
[L,L] otherwise

(6.5)

[Ll](t) =

{
[lfpr](t) ∩ [−L, 0] if [lfpr](t) ∩ [−L, 0] ̸= ∅
[−L,−L] otherwise

(6.6)

These two tubes represent the maximal range of visibility, respectively, on the
right and left side of the robot, if we take into consideration only points that are
swept forward. Finally, the set of cycles [γ+] can be defined as a concatenation
of tubes

[γ+] = [f ]([Lr](t), t)
t=0→T

∗ [f ](l, T )
l=[Lr](T )→[Ll](T )

∗ [f ]([Ll](t), t)
t=T→0

∗ [f ](l, 0)
l=[Ll](0)→[Lr](0)

(6.7)

as its derivative

[ ˙γ+] = [ḟ ]([Lr](t), t)
t=0→T

∗ [ḟ ](l, T )
l=[Lr](T )→[Ll](T )

∗ [ḟ ]([Ll](t), t)
t=T→0

∗ [ḟ ](l, 0)
l=[Ll](0)→[Lr](0)

(6.8)

where the symbol ∗ indicates concatenation.
The set S− of points (l, t) ∈ W for which Jf (l, t) < 0 can be an unconnected

set in W , and in this case, γ− = f(∂S−) can be a set of disconnected cycles in
the plane. For this reason, we define {[γ−]}, that is a set of tubes, each one
enveloping a connected component of f(∂S−). Furthermore, each one of these
cycles can be associated to a connected time interval [t] = [t−, t+] ⊂ [0, T ] for
which [lfpr]([t]) ⊂ [−L,L] such that for any [γ−] ∈ {[γ−]} we have

[γ−] = [f ](−L, t)
t=t+→t−

∗ [f ]([Ll](t), t)
t=t−→t+

(6.9)
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and
[γ̇−] = [ḟ ](−L, t)

t=t+→t−
∗ [ḟ ]([Ll](t), t)

t=t−→t+
(6.10)

The process of creating [γ+] and {[γ−]} is illustrated in Figures 6.6 and
6.7 for two different missions. Once these cycles are defined along with their
derivatives, their winding numbers can be computed.

6.3 Computing the Extended Winding Number

In the introductory chapter of this document, we discussed how existing meth-
ods in the literature for topological degree computation in the plane compute
the winding number of a cycle with respect to a single point. These methods
require individual application to each point inside an area of interest for an en-
tire characterization. In addition, they were designed primarily for calculating
the winding number of a single cycle, and to obtain all the conceivable winding
number values, a computation would need to be done to every potential cycle.
This approach would not be feasible in our context given the infinite number of
possible cycles we need to consider. In this scenario, here, we introduce three
novel set-membership algorithms developed during this thesis, for efficiently
determining the winding number of a continuous cycle with respect to all the
points within an area of interest. Methods 1 and 2 can compute the winding
number for uncertain cycles that are represented by tubes, whereas the third
approach has not been evaluated in the uncertain scenario, this should be a
subject of future research.

The first approach is based on the line-crossing principle used in point-
in-polygon algorithms [125]. This method is the most suitable, among the
three methods discussed here, when we want to estimate the extended winding
number of a tube with respect to a single box in the environment. Nevertheless,
it does come with the highest computational complexity when the goal is to
calculate the extended winding number for multiple boxes, particularly within
the context of area characterization.

The second method presented is based on combinatorial rules proposed by
[126]. It stands out as the most computationally efficient method for area
characterization. However, it does rely on certain strong assumptions regard-
ing self-intersections within the tube for which the winding number is being
calculated.

The final approach we propose involves partitioning the cycle into Jordan
curves, making the winding number computation on each segment straight-
forward. It serves as a viable alternative when the cycle fails to respect the
conditions necessary for the application of the second method.
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x2(m)

x1(m)

(a)

l(m)

t(s)

[Lr]

[Ll][Ll]

(b)
x2(m)

x1(m)

x2(m)

(c)

x1(m)

x2(m)

(d)

x1(m)

x2(m)

(e)

Figure 6.6: (a): [x] with robot illustrated at instant T; (b): Maximal range
of visibility, considering only points that are swept forward, on the right side
[Lr] and on the left side [Ll]. For this mission we have L = 5m, and we can
notice that there are no points swept backwards; (c): In gray: [f ]([Lr], [0, T ]);
(d): In gray: [f ]([Ll], [0, T ]); (e): In gray: [γ+].
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x2(m)

x1(m)

(a)

l(m)

t(s)

[Lr]

[Ll]

[T1] [T2] [T3] [T4]

(b)
x2(m)

x1(m)

(c)

x2(m)

x1(m)

(d)
x2(m)

x1(m)

(e)

x2(m)

x1(m)

[γ−] associated to [T1]

[γ−] associated to [T2]

[γ−] associated to [T3]

[γ−] associated to [T4]

(f)

Figure 6.7: (a): [x] with robot illustrated at instant T; (b): Maximal range
of visibility, considering only points that are swept forward, on the right side
[Lr] and on the left side [Ll]. For this mission we have L = 3.6m. There are
four intervals of time [T1], [T2], [T3] and [T4] during which points are swept
backwards during the mission; (c): In gray: [f ]([Lr], [0, T ]); (d): In gray:
[f ]([Ll], [0, T ]); (e): In gray: [γ+]; (e): In gray: {[γ−]} that is a list of four
tubes representing the illustrated cycles.
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These three approaches are now presented.

6.3.1 Method 1: Turning Around

This first approach is inspired by the classical problem in computational ge-
ometry, which involves determining whether a point is inside a polygon. The
utilization of axis-crossing methods has long been recognized as a viable solu-
tion to this problem [127], [128], and [129] introduced the concept of winding
numbers using this methodology.

In more recent times, at the beginning of the 21st century, [130] presented
a new algorithm for determining if a point resides inside a polygon. To achieve
this objective, the algorithm calculates the winding number of a polygon with
respect to the point, employing the axis-crossing method. Indeed, a non-zero
winding number suffices to establish whether the polygon contains the point.

Now, we introduce the axis-crossing technique for computing winding num-
bers, assuming a continuous closed curve in the plane, rather than a polygon.

Let us assume a path γ : [0, 1] → R2, with γ(0) = γ(1), and p ∈ R2\γ.
Sunday’s algorithm [130] for computing the winding number of γ with respect
to p consists of choosing an infinite ray cast from p in any direction, that we
name D, and we initialize the result variable with 0. Then, we identify inter-
sections of D with γ. For each intersection we analyze if γ is crossing D from
right to left or from left to right. Based on the direction, the result variable
is updated. Intersections crossing D from right to left add +1 to the result
and intersections crossing from left to right add −1. After summing all inter-
sections according to the direction of crossing, the resultant value correspond
to the winding number of γ with respect to p. This process is exemplified on
Figure 6.8.

In Figure 6.9, we consider a more complex example of cycle γ. Here, for
illustration purposes, we choose a random cycle, not necessarily representing
a mission contour. One can see that visually determining how many times γ
winds around point zero is easy with the axis-crossing method, independently
of the complexity of the considered cycle. This is one of the advantages of the
method.

Now, we formalize this approach for computing the winding number of
loops with respect to point 0 ∈ R2. We set p = 0 and D = {0} × [0,∞]. We
assume that γ intersects D on a finite number of instants and in this context,
the two following set-valued functions can be defined:

T−(t) = {τ ∈ [0, t] | γ(τ) ∈ D and γ̇1(τ) > 0} (6.11)

T+(t) = {τ ∈ [0, t] | γ(τ) ∈ D and γ̇1(τ) < 0} (6.12)
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γ

η(γ,p) = +1− 1 = 0

p

D

(a)

γp

D

η(γ,p) = +1− 1 = 0

(b)

γp

D

η(γ,p) = +1− 1 = 0

(c)

γ

p

D

η(γ,p) = +1 + 1 = 2

(d)

Figure 6.8: In [130] an algorithm was presented for computing the winding
number of a loop with respect to a point in the plane. In this figure we
demonstrate this algorithm for cycle γ and point p as illustrated in Figure
(a); (b): We start by defining an infinite ray D from p; (c): We identify the
intersections of γ with D. We sum +1 for the ones crossing D from right to
left and −1 for the ones crossing it from left to right. For this example the
result is η(γ,p) = +1− 1 = 0. (d): We apply the method to another point p
such that γ intersects the new D twice, crossing it from right to left in both
cases. Therefore, for this example, we have η(γ,p) = +1 + 1 = 2.
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γ

η(γ,p) = +1− 1 = 0

p

D

D
γ

x2

x1

Figure 6.9: We consider a more complex cycle and we choose D = {0} ×
[0, 1]. The objective is to demonstrate that the axis-crossing method facilitates
the visual calculation of winding numbers. Here, for example, we can easily
determine that intersections of γ with D that are represented in blue sum +1
and intersections represented in pink sum −1. And finally we can conclude
that η(γ,0) = +1.

where t ∈ [0, 1]. We also define the notion of cross number wγ : [0, 1] → Z
that determines how many times loop γ crosses D, considering the direction
of each crossing, from its start at 0 till some instant t ∈ [0, 1]. By definition

wγ(t) = #T+(t)−#T−(t) (6.13)

and we have
η(γ,0) = wγ(1) (6.14)

This equation can be easily generalized to p ∈ R2\γ considering that

η(γ,p) = η(γ − p,0) (6.15)

Where γ−p is a displacement of the original cycle γ where point p is mapped
to 0. In this context, (6.14) can be used in order to compute the winding
number of this new cycle. A generalization for computing the winding number
of γ with respect to a point p ∈ γ is straightforward considering the extended
winding number definition presented in Section 5.1.2.

Implementation

In practice, we want to apply this method for a tube [γ], and in the context of
the area characterization problem, we want to compute the extended winding
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[s]

D

[γ]

(a)

D

[γ]− [s]

(b)

Figure 6.10: (a): The tube represents the uncertain mission contour [γ] and
we want to determine its winding number with respect to box [s]; (b): Instead
of computing [η]([γ, [s]]), we compute [η]([γ − [s],0]).

number of [γ] with respect to boxes. With this purpose, we developed an
algorithm for computing the extended winding number of a tube [γ] with
respect to a box [s]. The algorithm analyzes how [γ]− [s] intersects the infinite
ray D = {0}× [0,∞] and computes [η]([γ]− [s],0), that is equal to [η]([γ], [s]),
see Figure 6.10.

We represent the cross number of [γ] by the set-valued function [w] :
[0, 1]→ IZ that we define as follows:

[w](t) =
⊔
γ∈[γ]

wγ(t) (6.16)

and [η]([γ], [s]) = [w](1).
The algorithm starts by setting [γ] = [γ]− [s] and this new tube is divided

into slices. Denote [γ]([τ ]) ∈ IR2 a slice of the tube. It is the smallest box
such that

[γ]([τ ]) = [{p ∈ R2 | ∃τ ∈ [τ ] and γ ∈ [γ] s.t. γ(τ) = p}] (6.17)

We start by analyzing slice [γ]([0, 1]), and we verify if it intersects D. If
this is not the case, then [η]([γ], [s]) = [0, 0]. Otherwise, we divide [γ] into a
finite number k ∈ N of consecutive slices [γ]1,[γ]2, . . ., [γ]k. The division is
made such that there is no slice [γ]i, with i ∈ {1, 2, . . . , k}, for which 0 ∈ [γ]i,
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0 ∈ [γ̇1]i and 0 ∈ [γ̇2]i. If such a division is impossible, the algorithm returns
[η]([γ], [s]) = [−∞,∞], because it can not determine the number of times a
curve in [γ] might wind around zero.

Let [τi] be a subset of [0, 1] such that [γ]i = [γ]([τi]), we know that

k⋃
i=1

[τi] = [0, 1] (6.18)

and [τi]− [τj] ⊂ R− ∪{0} if j > i and i, j ∈ {1, 2, . . . , k}. We use notation [w]i
for representing [w](τ+i ).

Assuming that [γ]1∩D = ∅, we can initialize [w]1 = [0, 0]. Then, we analyze
the next slices in order, and we update the uncertain cross number value on
each slice according to the following rules:

1. Rule 1: 
[γ]i ∩ D = ∅
|i− j| = 1

[γ]j ∩ D = ∅
⇒ [w]i = [w]j

2. Rule 2: 
[γ]i ∩ D ≠ ∅
0 /∈ [γ]i

i− j = 1

⇒ [w]i = [w]j + [ε]

with

[ε] =


[0, 1] if [γ1]j ⊂ R+

[−1, 0] if [γ1]j ⊂ R−

[0, 0] otherwise

Figure 6.11 provides an example of application of rule 2.

3. Rule 3: 
0 ∈ [γ]i

0 /∈ [γ̇1]i or 0 /∈ [γ̇2]i

i− j = 1

0 /∈ [γ]j

⇒ [w]i = [w]l + [−1, 1]

where l = max(1, . . . , j) s.t [γ]l ∩ D = ∅.
The second condition, concerning the derivatives of [γ]i, determines that
there is no γ ∈ [γ] that winds around zero inside this slice. This is
illustrated in Figure 6.12.



6.3. COMPUTING THE EXTENDED WINDING NUMBER 177

D

[γ]i[γ]j [w]i = [w]j

x1

x2

Figure 6.11: Example of application of Rule 2.

x2

x1

[γ]i

[γ]j

[γ]l

[w]i = [w]l + [−1, 1]

(a)

[γ]i

[γ]j

[γ]l

[γ]i
0 ∈ [γ̇1]i
0 ∈ [γ̇2]i

x1

x2

(b)

Figure 6.12: (a): Example of application of rule 3; (b) : Rule 3 can not be
applied, and the algorithm returns [−∞,∞].
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4. Rule 4:
[γ]i ∩ D = ∅
i− j = 1

[γ]j ∩ D ≠ ∅
⇒

{
[w]i = [[w]−j , [w]

+
j − 1] if [γ1]i ⊂ R+ and [γ1]l ⊂ R−

[w]i = [[w]−j + 1, [w]+j ] if [γ1]i ⊂ R− and [γ1]l ⊂ R+

where l = max(1, . . . , j − 1) s.t [γ]l ∩ D = ∅.

x2

x1

[γi]
[γ]j

[γ]l

[w]j = [w]l + [−1, 0]

[w]i = [[wj]
−, [wj]

+ − 1] = [w]l + [−1,−1]

Figure 6.13: Example of application of rule 4.

Figure 6.13 provides an example of application of this rule.

5. Rule 5:
0 ∈ [γ]i

0 /∈ [γ̇1]i or 0 /∈ [γ̇2]i

i− j = 1

0 ∈ [γ]j

⇒


[w]i = [w]j,

if 0 /∈ [γ̇1]([τ
−
j , τ

+
i ]) or 0 /∈ [γ̇2]([τ

−
j , τ

+
i ])

[w]i = [w]j + [−1, 1],
otherwise

These rules can be easily proven considering that γ is continuous.

Figure 6.14 provides a simple example of the application of these rules
and Figure 6.15 an overview of the steps of the algorithm for winding number
computation.

In order to do an area characterization of box S in terms of the coverage
measure of its points, this method can be applied. Algorithm 4 was developed
with this purpose, where set {[γ]} represents the union of tube [γ+] with all
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Algorithm 4 Area Characterization (Axis-Crossing Method)
in: S,{[γ]}, {[γ̇]}, ϵ
1: Q← S

2: if Q ̸= ∅ then take a box [s] ∈ Q and remove it from Q else return
endif

3: [cm] = [0, 0] ▷ Initialize the coverage measure of the box with [0, 0]

4: for ([γ], [γ̇]) in ({[γ]}, { ˙[γ]}) do
▷ Compute the extended winding number of ([γ], [γ̇]) w.r.t. [s] using the
axis-crossing method and sum the result to [cm].

5: end for

6: if [cm] is a singleton then
7: ▷ The coverage measure of points in [s] can be uniquely determined.
8: elseif w([s]) < ϵ or ([s] ∈ [γ], for any [γ] ∈ {[γ]}, and c+m − c−m = 1) then
9: ▷ The box is already smaller than the required precision ϵ or its coverage

measure value can not be refined through bisection.
10: else
11: bisect [s] into [s](1) and [s](2)

12: Q← Q ∪ {[s](1), [s](2)}
endif

13: Return to line 2.
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[w]1 = [0, 0]

[w]2 = [0, 0]

[w]3 = [−1, 1]

[w]4 = [0, 1]

[w]5 = [−1, 1]
[w]6 = [−1, 1] [w]7 = [−1, 0]

Figure 6.14: Example of application of rules for the update of the initial cross
number [w]1.

the tubes from set {[γ−]}. These tubes are previously computed considering
the context of the mission.

Utilizing this method for area characterization is not optimized due to the
need to apply the axis-crossing method to compute the winding number for
every box in the paving. Depending on the characteristics and uncertainty
associated with [γ], parsing slices could become more time-consuming, poten-
tially leading to overly pessimistic results. Furthermore, this approach does
not leverage the property of winding numbers to be constant within connected
regions in R2\[γ]. The next approach, that we present in the following section,
Section 6.3.2, uses this property and significantly reduces the computational
complexity of the area characterization computation.

6.3.2 Method 2: Alexander Theorem

Let γ : [0, 1]→ R2 be a closed path such that γ(0) = γ(1). A self-intersection,
or vertex, of loop γ is determined by two parameters τ0, τ1 ∈ (0, 1), with
τ0 ̸= τ1, and it is a point p such that p = γ(τ0) = γ(τ1). The multiplicity of
such self-intersection is the number, finite or infinite, of distinct τ ∈ [0, 1] such
that p = γ(τ), minus one. Then, we make the following assumptions, similar
to those of [126]:

• γ has a finite number of self-intersections, each one of them with multi-
plicity one;

• At each self-intersection, the two tangent vectors to γ are linearly inde-
pendent.
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[γ]1
[w]1 = [0, 0]

(a)

[γ]1
[w]1 = [0, 0]

[γ]2
[w]2 = [0, 0]

[γ]3
[w]3 = [0, 0]

[γ]4
[w]4 = [0, 1]

(b)
[γ]4
[w]4 = [0, 1]

[γ]5
[w]5 = [0, 1]

[γ]6
[w]5 = [1, 1]

(c)

[γ]5
[w]5 = [0, 1]

[γ]7
[w]7 = [1, 1]

(d)

[γ]9
[w]9 = [1, 2]

[γ]8
[w]8 = [1, 1]

(e)

[γ]10
[w]10 = [η]([γ], [s]) = [2, 2]

(f)

Figure 6.15: These figures demonstrate the steps of the turning around al-
gorithm for computing the winding number of tube [γ] with respect to box
[s], as illustrated in Figure 6.10. (a): The first slice of the new tube does
not intersect D, and we can initialize the output with [w]1 = [0, 0]; (b): We
apply rule 1 consecutively to obtain [w]2 = [0, 0] and [w]3 = [0, 0] and rule 2
to obtain [w]4 = [0, 1]; (c): We apply rule 2 again for [γ]5 and rule 4 on [γ]6
to obtain [w]6 = [1, 1]; (d): We apply rule 1 at [γ]7 and at [γ]8; (e): Rule 2
is applied on [γ]9 and we have [w]9 = [1, 2]; (f): Finally, we apply rule 4 to
obtain [w]10 = [2, 2] and [w]10 = [η]([γ, [s]]) = [η]([γ − [s],0]).
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Such a cycle divides R2 \ γ into a finite number of connected open regions,
one of which is not compact. Each one of these regions can be seen as a 2−cell
of the CW complex C(γ), constructed from the cycle γ. To be fully formal,
we would need to use the fact that γ determines a cell decomposition of the
one-point compactification of the plane, homeomorphic to the 2-sphere S2,
Figure 6.16. The 0-cells of C(γ) are self-intersections of γ, and the 1-cells are
connected components of γ minus its self-intersections, it can also be seen as
parts of the curve separating the 2-cells.

Since all open 2-cells are homotopy equivalent to a point within that cell
and considering the degree axioms presented in Definition 27, we can conclude
that all the points within the same open 2-cell of C(γ) have the same winding
number value. In this context, a correct and coherent numbering of the 2-cells
is enough for determining the winding number value of all the points in the
plane.

With this purpose, we can use a combinatorial rule proposed by Möbius in
1865 [131]. The rule says that two contiguous 2-cells that are separated by a
1-cell are numbered with a value that must differ by exactly 1. The winding
number of the region on the left, considering the orientation of the curve, is
greater. This method leads to a unique numbering of the space considering
that the winding number in the non-compact region, that we name A0, is
known and equal to 0 for all of its points. This is true because, if we assume
that γ is the image of the boundary of the waterfall space ∂W by the sweep
function f and that A0 is not bounded by γ, differently from the other 2-cells
of C(γ), then we know that A0 ⊆ R2\f(W ). This implies, from Definition 28,
that for any p ∈ A0, η(γ,p) = 0.

In Figure 6.17 we apply this rule. We start with the numbering of A0 with
0 in Figure 6.17a. Then, all its adjacent 2-cells can be numbered according
to Möbius. Using cell names proposed in Figure 6.16, we have cells A1, A3,
and A5 numbered with +1. This happens because they are on the left side
of the 1-cells, represented by a dashed line in Figure 6.17b, separating them
from the non-compact region. Then, in Figure 6.17c, cells A2 and A4 can be
respectively numbered with 2 and 0. The first is because it is on the left side
of the boundary a5, shared with A3, and the second because it is on the right
side of the boundary a6, also shared with A3.

As a direct application of Möbius rules, a method proposed by Alexander
[126] allows a coherent numbering of the regions only through an analysis of
the tangent vectors to the curve on its self-intersections.

Let v ∈ R2 be a self-intersection of γ represented by the pair (τ0, τ1) with
τ1 > τ0. Considering the assumptions adopted for γ, a self-intersection v will
divide the plane into four regions. There are only two rules for numbering
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v2

v3

v0
v1

(a)

a0
a1

a2

a3

a4

a5

a6

a7

(b)

A1
A2

A3

A5

A4

A0

(c)

Figure 6.16: (a): CW (γ) is the CW complex created from cycle γ. In this
example, it has four 0-cells {v0,v1,v2,v3} ; (b): eight 1-cells, connected com-
ponents of γ \ {v0,v1,v2,v3}; (c): The plane is divided into six 2-cells, five
compacts (from A1 to A5) and one extending to the infinity (A0).
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0
(a)

0
1

1

1

(b)

0
1

1

1
0

2

(c)

Figure 6.17: Propagation of the winding number value through regions that
share a boundary according to Möbius.

these four regions, according to whether γ̇(τ1) crosses γ̇(τ0) from the right to
the left or from the left to the right, as illustrated in Figure 6.18.

In Figure 6.19 we consecutively apply the Alexander numbering rules to
the example considered previously. We start by numbering regions around v2,
Figure 6.19a. For that, we assume that A0 has a winding number value of
0 and that the later self-intersection, represented by the dashed line, crosses
the previous one from left to the right. The same is done around vertices
v3 and v1 on Figures 6.19b and 6.19c, respectively, resulting in a complete
characterization of 2-cells in terms of winding number values.

To fully characterize the plane, it is essential to number points on the 1-
cells and the 0-cells based on their extended winding numbers. Within this
framework, we extend Alexander rules so points within a 1-cell of γ have
assigned to them the same winding number value as the 2-cell located on their
left side. As for the 0-cells of γ, they are numbered based on the 2-cell with the
highest winding number value among the four that surround each individual
0-cell. The resultant complete numbering has edges a1, a3, a5 and a7, as well
as vertices v0, v1, v2 and v3 numbered with +2, and edges a0, a2, a4 and a6
numbered with +1.

Once a complete numbering of the plane is done we can define the winding
sets of γ. We denote Wi

γ a winding set associated with γ and with a natural
number i, by definition

Wi
γ := {p ∈ R2 | η(γ,p) ≥ i} (6.19)

There are, for example, two non-empty winding sets associated with the
curve γ considered on this section, as illustrated on Figure 6.20. They are W1

γ

and W2
γ.
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γ̇(τ1)

γ̇(τ0)
v

w + 1 w

w w − 1

(a)

γ̇(τ1)

γ̇(τ0)
v

w w + 1

w − 1 w

(b)

Figure 6.18: Alexander numbering of 2-cells surrounding a self-intersection
represented by point v = γ(τ0) = γ(τ1) with w ∈ Z if : (a): γ̇(τ1) crosses γ̇(τ0)
from right to left; (b): γ̇(τ1) crosses γ̇(τ0) from left to right.

Let χWi
γ
: R2 → {0, 1} be the characteristic function for a winding set Wi

γ,
we have

χWi
γ
(p) =

{
1, if p ∈Wi

γ,

0 otherwise
(6.20)

Then, as proved in [132], the winding number η(γ,p) of a point p ∈ R2 \ γ,
and therefore its extension η(γ,p) for any p ∈ R2, can be calculated using the
winding sets of γ,

η(γ,p) =
∑
i>0

χWi
γ
(p) (6.21)

Uncertain Alexander Numbering

In practice, cycle γ is represented by a tube [γ] : [0, 1] → IF2, and now we
adapt the original Alexander theorem presented in this section to deal with this
context. We will be using the tube [γ] represented in Figure 6.21 to illustrate
the ideas that are developed next.

The notion of self-intersections on tubes, and how to detect them, was
extensively discussed in Section 3.6. We assume that all self-intersections of
[γ] are represented by two parameters [τ1] ∈ IR and [τ2] ∈ IR such that
[τ1]− [τ2] ⊂ R− and we make the following assumptions:

• ∀γ ∈ [γ], ∃!(τ1, τ2) ∈ [τ1]× [τ2] | γ(τ1) = γ(τ2);

• At each self-intersection, the two tangent vectors to [γ], [γ̇]([τ1]) and
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0
1 2

1

(a)

0
1 2

1 0

1

(b)

0
1 2

1 0

1

1

(c)

Figure 6.19: Numbering of regions according to Alexander around : (a): v2;
(b): v3 and (c): v1. The dashed line represents the later tangent vector to
γ on the self-intersection, and we analyze if it crosses the solid vector from
right to left or left to right in order to decide which Alexander rule to apply
on the numbering of the concerned 2-cells. Notice that the numbering of all
the 2-cells can be done by analyzing different 0-cells than the ones chosen, or
in a different order, but the result will be the same.

[γ̇]([τ2]), are linearly independent. In other words

0 /∈ ([γ̇]([τ1])× [γ̇]([τ2])) (6.22)

• [γ] has a finite number of self-intersections, each one of them with mul-
tiplicity one.

We can then define C([γ]), that is an equivalent of the CW-complex for a
set of cycles [γ]. In this scenario, a 0-cell is no longer a point in R2 but a set
of points of possible self-intersections of [γ] within a period of time. Or, it can
also be seen as the union of 0-cells of each γ ∈ [γ]. For example, each 0-cell
is represented by {v} ∈ P(R2) and it is associated with a self-intersection
of the tube that is defined by parameters [τ1] and [τ2], and that respects the
conditions listed above. Then, we have

{v} = {v ∈ R2 | ∃γ ∈ [γ],∃(τ1, τ2) ∈ [τ1]× [τ2] s.t. γ(τ1) = γ(τ2) = v} (6.23)

These sets are illustrated in 6.22 for the example considered here. A 1-cell is
a connected component of [γ] after removing its 0-cells, and 2-cells of C([γ])
are connected components of R2\[γ].

For any p ∈ R2, we have [η]([γ],p) that is the interval union of the extended
winding number value of all γ ∈ [γ] with respect to p. Formally [η]([γ],p) ∈ IR
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W1
γ

W2
γ

Figure 6.20: Winding sets W1
γ and W2

γ associated with curve γ from the illus-
trating example used on this section.

and
[η]([γ],p) =

⊔
γ∈[γ]

η(γ,p) (6.24)

Notice that 2-cells are still homotopy equivalent to a point within the cell,
and therefore all the points inside the same 2-cell have the same winding
number value. Furthermore, this value is independent of the cycle γ ∈ [γ] and
[η]([γ],p) is a singleton for any p in a 2-cell of C([γ]).

If ([γ̇]([τ1])× [γ̇]([τ2])) ⊂ R−, we can conclude that [γ̇]([τ2]) crosses [γ̇]([τ1])
from the left to right, otherwise it crosses from the right to the left. Using
this information, the fours 2-cells surrounding the self-intersection represented
by pair ([τ1], [τ2]) can be numbered using the same Alexander rules presented
previously.

The extended winding number value for points on 1-cells and 0-cells, on the
other hand, will differ depending on cycle γ ∈ [γ]. Therefore, these cells are
numbered with their uncertain extended winding number values. This uncer-
tain numbering can be obtained from the 2-cells for which 1-cells and 0-cells
are a boundary, and considering the conditions established for [γ], there are
only two rules for numbering all the cells of C([γ]). These rules are illustrated
on Figure 6.23 and constitute an extension of the original Alexander rules to
deal with uncertainty.
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[γ]

Figure 6.21: Example of tube [γ].

{v0}
{v1}

{v2}
{v3}

Figure 6.22: 0-cells of C([γ]) representing all the possible self-intersections in
[γ].

To the tube [γ] we associate winding sets represented by thick sets, that
were introduced in Chapter 3, Section 3.5.1. We denote JWi

[γ]K = [W−
i ,W

+
i ],

for i ∈ N, a winding set associated to tube [γ], such that

W−
i =

⋂
γ∈[γ]

Wi
γ (6.25)

W+
i =

⋃
γ∈[γ]

Wi
γ (6.26)

A set-membership analysis to winding sets can be applied to determine
the winding number of points, and therefore, considering the exploration con-
text, to determine the coverage measure of these points. In this scenario, the
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w

w − 1w

w + 1

[η] = [w − 1, w]

[η] = [w,w + 1]

[γ̇]([τ2])

[γ̇]([τ1])

[η] = [w − 1, w + 1]

(a)

w + 1

ww − 1

w

[η] = [w − 1, w]

[η] = [w,w + 1]

[γ̇]([τ2])

[γ̇]([τ1])

[η] = [w − 1, w + 1]

(b)

Figure 6.23: Uncertain Alexander numbering with w ∈ Z if: (a): [γ̇](τ2) crosses
[γ̇](τ1) from the right to the left. Equivalently we have ([γ̇]([τ1])× [γ̇]([τ2])) ⊂
R+; (b): [γ̇](τ2) crosses [γ̇](τ1) from the left to the right. Equivalently we have
([γ̇]([τ1]) × [γ̇]([τ2])) ⊂ R−. The 2-cells are numbered as they are numbered
on the original rules, the 1-cells and 0-cells are numbered with their uncertain
extended winding number value [η].

clear zone of a winding set JWi
[γ]K, represented by W−

i , translates as a set of
points that were certainly explored at least i times. Analogously, the dark
zone R2\W+

i is a set of points that have a coverage measure smaller than i,
independently of which of the cycles in [γ] is the ground truth for the mission
contour. The penumbra W+

i \W−
i is a set of points whose coverage measure

might be equal or greater than i, depending on each of the cycles γ ∈ [γ] is
the ground truth for the exploration mission.

We redefine the characteristic function to deal with thick sets on the plane,
we have [χ] : R2 → IN and

[χ]JWi
[γ]

K(p) =


[1, 1], if p ∈W−

i ,

[0, 1], if p ∈W+
i \W−

i ,

[0, 0], otherwise
(6.27)

Then, adapting (6.21) we obtain

[η]([γ],p) =
∑
i>0

χJWi
[γ]

K(p) (6.28)
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W−
1

W+
1 \W−

1

(a)

W−
2

W+
2 \W−

2

(b)

Figure 6.24: Uncertain winding sets associated with [γ]. On Figure (a) we
have JW1

[γ]K and on Figure (b) we have JW2
[γ]K.

In Figure 6.24 we have an illustration of thick sets JW1
[γ]K and JW2

[γ]K for the
example considered through this section and in Figure 6.25 the resultant un-
certain extended winding number values considering these sets.

Implementation

The first step of the implementation of this approach is to identify the self-
intersections on tube [γ+] and on each of the tubes in {[γ−]}. With this
purpose, Algorithm 3 can be applied. Then, in order to determine if the
tubes in question respect the conditions established by the method, we need
to analyze if each of its self-intersections can be proved [133]. By proved, we
mean if for each self-intersection ([τ1], [τ2]) there is indeed (τ1, τ2) ∈ [τ1]× [τ2]
such that γ(τ1) = γ(τ2), for all γ ∈ [γ]. In addition, we verify the uniqueness
of a solution within this self-intersection for each possible cycle in [γ] with,
for example, a Newton’s approach [134], [105] or a topological approach [133].
Last verification consists of making sure that the derivatives of [γ] on each self-
intersection are linearly independent by analyzing its cross-product. From now,
we explain the implementation considering an individual tube [γ], knowing that
the method is applied to each [γ] in [γ+] ∪ {[γ−]}.

The combination of 0-cells and 1-cells within [γ] can be numerically rep-
resented as a graph, where 0-cells are the vertices and edges are the union of
1-cells with the vertices they are connecting. These elements have a partic-
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[η] = [1, 1]
[η] = [0, 1]
[η] = [1, 2]
[η] = [0, 2]

[η] = [2, 2]

Figure 6.25: Graphical representation of the uncertain extended winding num-
ber value of [γ] with respect to points in the plane.

ular structure carrying intrinsic information about [γ], and they are related
to each other in a well-defined structure. For example, vertices are the self-
intersections that we computed on the precedent step. An edge is a subset of
[γ] defined within two consecutive intervals of time that can be deduced from
its self-intersections.

We are going to illustrate this using the tube constructed on the example
presented in Figure 6.6. Let us consider Figure 6.26, we have four proved 0-
cells in this example. These self-intersections are represented by pairs of time
intervals ([τ1], [τ4]), ([τ2], [τ5]), ([τ3], [τ8]), and ([τ6], [τ7]), with [τi] − [τj] ⊂ R−,
for i, j ∈ {1, 2, 3, . . . , 8} and i < j. The precision of the estimation of time
intervals representing a self-intersection will depend on the precision set by
parameter ϵ on Algorithm 3. In practice, this estimation is guaranteed but
usually has some pessimism. In this case, as it can be seen in Figure 6.26,
time intervals [τi], for i ∈ {1, 2, 3, . . . , 8} are not optimal but guaranteed to
contain all possible self intersections of the tube.

Then, we have eight edges that are tubes [γ]([τ−i , τ
+
j ]), for i ∈ {1, 2, . . . , 7}

and j = i+1, plus the result of the concatenation [γ](t)
t=τ−8 →1

∗ [γ](t)
t=0→τ+1

. These edges

are represented in Figure 6.27.
Edges carry information about the initial τ−i and ending time τ+j of the

curve within [γ] they represent, as well as the winding number value of points
on their right side and left side. Additionally, each edge has an update pa-
rameter u ∈ {−1, 1} that determines how speed vectors on [γ] at the initial
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[γ]([τ4])

[γ]([τ1])
[γ]([τ2])

[γ]([τ3])

[γ]([τ6])

[γ]([τ5])

[γ]([τ7])

[γ]([τ8])

Figure 6.26: Self-intersections of tube [γ] computed using Algorithm 3.

vertex of the edge cross each other. For example, an update parameter u = −1
means that, at the initial vertex of this edge, we have the other speed vector
that defines this self-intersection crossing [γ̇]([τi]) from the right to the left.
We will have u = +1 if the crossing happens from the left to the right. This
information is essential for propagating the winding number values that sur-
round this edge through the other edges of the graph according to Alexander
theorem.

We number the values surrounding the 1-cells using the two Alexander rules
presented in Figure 6.23 and an arbitrary winding number value represented
by variable w ∈ Z. This numbering process is presented in Figure 6.28. We
know that the smallest winding number value in the plane, in the exploration
context considered here, is 0. In this case, we can replace variable w by real
values, see Figure 6.28e.

Once the edges are numbered according to the winding number value on
both of its sides, we can construct the winding sets associated to [γ]. To each
non-empty winding set JWi

[γ]K we construct a separator S i. For that, we build
two image contractors, as presented in Section 3.3.8, one representing the set
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(a) [γ]([τ−1 , τ+2 ]) (b) [γ]([τ−2 , τ+3 ])

(c) [γ]([τ−3 , τ+4 ]) (d) [γ]([τ−4 , τ+5 ])

(e) [γ]([τ−5 , τ+6 ]) (f) [γ]([τ−6 , τ+7 ])

(g) [γ]([τ−7 , τ+8 ])
(h) [γ](t)

t=τ−8 →1

∗ [γ](t)
t=0→τ+1

Figure 6.27: Edges of [γ], each one representing the union of a 1-cell with the
vertices they connect.
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w

w − 1u = +1

(a)

w

w − 1
u = −1

w − 1

w − 2

(b)

w

w − 1

u = +1

w − 1

w − 2

w − 1

(c)

w

w − 1

u = −1

w − 1

w − 2

w − 1

w − 2

(d)

0

0

1

1

1

2

(e)

Figure 6.28: Numbering of the 2-cells surrounding each edge according to
Alexander rules. We start with the numbering of the first edge represented
in Figure (a) and then we propagate this value to all the consecutive edges
considering their associated update value u. Figures from (a) to (d) illustrate
this process on some edges, enough to have a complete numbering of all the
2-cells. Then, we know that the smallest value must be 0 and in this case,
w − 2 = 0. In Figure (e) we replace w by 2 to obtain the final numbering of
2-cells.
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of points that belong to W+
i , and the other, for those inside S\W−

i , where S
is the subset of the space to be characterized.

To illustrate this step of the algorithm we present here how separators S1

and S2 for winding sets JW1
[γ]K and JW2

[γ]K, associated to the mission exemplified
in Figure 6.6, are created.

(a) (b) (c) (d)

(e) (f)

Figure 6.29: Process for creating images Bin
S1 and Bout

S1 . In these figures, black
pixels correspond to pixels with value +1 and white pixels are pixels with value
set to 0. Figures from (a) to (d) illustrate the construction of Bin

S1 through the
drawing of edges that have the region on its left side numbered with +1. After
filling the area surrounded by these edges we obtain in Figure (e) the final Bin

S1 .
In Figure (f) we have Bout

S1 .

For i ∈ {1, 2}, we create a binary image Bin
Si where pixels representing a

subset of the space with at least one point inside W+
i are set to 1 and all the

others are set to 0, as stated on (3.20) assuming S = W+
i . For that, we start

with Bin
Si filled by zeros. Then, we draw on the image the edges numbered with

i on their left side, as demonstrated on Figures 6.29 and 6.30. By drawing we
mean that we set to 1 pixels that represent these edges on the image. Then,
using a graphical library, such as OpenCV in Python or C++ [135], we can fill
the pixels inside the area surrounded by the closed cycle, resultant of the union
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(a) (b) (c) (d)

(e) (f)

Figure 6.30: Process for creating images Bin
S2 and Bout

S2 . In these figures, black
pixels correspond to pixels with value +1 and white pixels are pixels with value
set to 0. Figures from (a) to (d) illustrate the construction of Bin

S2 through the
drawing of edges that have the region on its left side numbered with +2. After
filling the area surrounded by these edges we obtain in Figure (e) the final Bin

S2 .
In Figure (f) we have Bout

S2 .
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of the edges drawn on the image, with 1, see Figures 6.29e and 6.30e. From
this resulting binary image we create an image contractor Sout

i for contracting
points outside W+

i .
Then, in order to construct separator S i, we also need a contractor S in

i

for contracting points inside W−
i . We construct another binary image Bout

Si
whose pixels representing a subset of the space with at least one point inside
the solutions set S = S\W−

i are set to 1 and all the others are set to 0. We
can obtain Bout

Si by defining the value on each of its pixels as the result of the
binary sum between their equivalent in Bin

Si and 1, in addition we redraw the
edges numbered with i on their left side on the image. The result is illustrated
in Figures 6.29f and 6.30f.

Each of these separators can then be used to create a paving of the environ-
ment using Algorithm 2, and the result for the considered example is presented
on Figure 6.31.

Using the approach just described, we create separators for the non-empty
winding sets of [γ+] and for each non-empty winding set for all [γ−] in {[γ−]}.
At the end we have a list of separators {S} that can be used to do a charac-
terization of the environment in terms of the coverage measure of its points as
presented in Algorithm 5. The result for the example considered here is illus-
trated in Figures 6.32 and 6.33. In practice, the pessimism from last steps is
propagated, and the resultant characterization is guaranteed but not optimal.

The result can be refined by creating binary images with more pixels that
can provide a more accurate representation of the environment. Additionally,
decreasing the ϵ value in Algorithms 5 and 3 can contribute to this refine-
ment. However, it is important to note that augmenting precision also in-
creases computational complexity, so these adjustments should be tailored to
suit the specific requirements of the application.

6.3.3 Method 3: Jordan Curves Sum

In the context of this thesis, the last approach that we introduce for charac-
terizing areas based on the coverage measure dispenses the need for imposing
robust assumptions concerning the self-intersections of the mission contour γ.
Nevertheless, like the previous approach, it continues to utilize the consistency
of winding numbers within connected 2-cells of the CW complex C(γ).

In order to apply this approach we are going to assume that the robot’s
trajectory x is not uncertain and that all the points are swept forward during
the mission.

The approach is based on the idea of dividing the mission contour γ into
tubes representing Jordan Curves. A Jordan curve is a continuous, closed
curve in the plane that does not cross itself except at its endpoints. One of
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(a)

(b)

Figure 6.31: Paving of the environment using separator S1 on Figure (a) and
S2 on Figure (b). Green boxes correspond to the inner approximation to
the solution set. The union of green boxes with yellow boxes offer an outer-
approximation to the set of points with winding number equal or greater than
1 in (a) and equal or greater than 2 in (b). Blue boxes correspond to points
that are not in the solution set.
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Algorithm 5 Area Characterization (Alexander Method)
in: S,{S}, ϵ
1: Q← S
2: if Q ̸= ∅ then take a box [s] ∈ Q and remove it from Q else return

endif

▷ Compute the uncertain coverage measure of box [s] using separators.
3: [cm]← [0, 0]
4: for S in {S} do
5: [sin],[sout] ← S([s])
6: if [sin] is empty then
7: [cm]← [cm] + [1, 1]

8: elseif [sout] is not empty then
9: [cm]← [cm] + [0, 1]

10: end for

11: if [cm] is a singleton then
12: ▷ The coverage measure of points in [s] can be uniquely determined.
13: ▷ Draw box with its correspondent color.
14: elseif w([s]) < ϵ or ([s] ∈ [γ], for any [γ] ∈ {[γ]}, and c+m − c−m = 1) then
15: ▷ The box is already smaller than the required precision ϵ or its coverage

measure value can not be refined through bisection.
16: ▷ Draw box with its correspondent color.
17: else
18: bisect [s] into [s](1) and [s](2)

19: Q← Q ∪ {[s](1), [s](2)}
endif

20: Return to line 2.
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Figure 6.32: Resultant paving from Algorithm 5 using {S} = {S1,S2}. Points
inside blue boxes have [cm] = [2, 2], in green boxes [cm] = [1, 1], in white boxes
[cm] = [0, 0], and in black boxes η− < η+.
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Figure 6.33: Resultant paving from Algorithm 5 using {S} = {S1,S2}. Points
inside blue boxes have [cm] = [0, 1], in yellow boxes [cm] = [0, 2], and in pink
boxes [cm] = [1, 2].
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the important properties of a Jordan curve is that it divides the plane into
two connected regions: an interior region and an exterior region. The interior
region of a Jordan curve consists of all the points in the plane that are enclosed
by the curve. The exterior region, on the other hand, consists of all the points
in the plane that are outside the area enclosed by the curve. The exterior
region can also be seen as the unbounded connected region in R2\γ, if γ is a
Jordan curve. This property is proved by the Jordan Curve Theorem, which
is a fundamental result in topology [136].

β

(a)

β

I

E
(b)

Figure 6.34: In these figures β : S1 → R2 is a Jordan Curve that divides the
plane into an interior I and an exterior E. If the curve is counterclockwise
oriented, as illustrated in Figure (b), the winding number of points in the
interior region is +1.

Moreover, another property that is important for our context is that the
winding number of a Jordan curve around the plane can only be +1, 0, or −1.
The interior region is numbered with +1 or −1 depending on the orientation
of the curve, and the exterior is always numbered with 0. See Figure 6.34.

Considering our exploration context, a Jordan curve γ, representing the
mission contour, can be obtained when the robot moves with small variations
in its orientation throughout the mission. Figure 6.35 provides an example. In
this illustration, all points inside the interior region I have a winding number,
and a coverage measure, of +1, and all points in E were not explored, having
a coverage measure of 0.

Hence, this approach consists of breaking down the exploration mission
into submissions, ensuring that each submission has an associated contour
that is a Jordan Curve. For that, if x : [0, T ] → R2 is the original trajectory
of the robot, we divide it into k ∈ N sub trajectories x1, . . . ,xk that are a
restriction of the original time domain [0, T ] to a subset [t−i , t

+
i ] ⊆ [0, T ] such

that xi = x|[t−i ,ti+], for i ∈ {1, . . . , k}.
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x

(a)

γ

(b)

I

E

γ

(c)

Figure 6.35: We assume a robot exploring with two one-dimensional sensors,
one on each of its sides. If during a mission, the trajectory of the robot
is represented by x, as illustrated in (a), we obtain the mission contour γ in
Figure (b), that is a Jordan curve. This curve divides the plane into an interior
and an exterior region, Figure (c).
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γ

(a)

γ1
ẋ(0)

ẋ(t+1 )

(b)

γ2

ẋ(t+2 )
ẋ(t−2 )

(c)

γ3

ẋ(t+3 )

ẋ(t−3 )

(d)

γ4

ẋ(t−4 )

(e)

Figure 6.36: Division of cycle γ illustrated in (a) into Jordan cycles; (b):
γ1 is the mission contour associated to the trajectory x|[0,t+1 ]; (c): γ2 is the
mission contour associated to the trajectory x|[t−2 ,t+2 ]; (d): γ3 is the mission
contour associated to the trajectory x|[t−3 ,t+3 ] and (d): γ4 is the mission contour
associated to the trajectory x|[t−4 ,T ].
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We start with t−1 = 0, for the first trajectory, and the criterion for division
is ẋ(t−i ) · ẋ(t+i ) = 0. For example, take Figure 6.36. The original cycle γ
associated to x is not a Jordan curve. Then, the figure illustrates a possible
division of the trajectory to create γ1, γ2,γ3 and γ4, that are Jordan curves.
This division is not optimal, we could have the original γ divided into two
Jordan curves instead of four, for example. We chose, however, the presented
division criterion, so we will not have to verify if the sub mission contours γi,
with i = 1, . . . , n, self-intersects, reducing computational complexity.

I1

I2
I3

I4

(a)

I1

I2
I3

I4

J1
J2

J3

(b)

Figure 6.37: (a): The original cycle is divided into five Jordan curves, they
are: γ1, γ2, γ3 and γ4; (b): For this division we have junction set J1 = V(t+1 ) =
V(t−2 ), J2 = V(t+2 ) = V(t−3 ) and J3 = V(t+3 ) = V(t−4 ).

We also define the juncture sets Ji, with i ∈ {1, . . . , k − 1}:
Ji = V([t−i , t

+
i ] ∩ [t−i+1, t

+
i+1]) (6.29)

Where V is the visible area set function. The juncture sets associated to the
previous example are illustrated in Figure 6.37.

From the set of simple cycles {γi}, i ∈ {1, . . . , k} and juncture sets {Ji},
i ∈ {1, . . . , k−1}, we can compute the extended winding number of the original
loop γ with respect to any point p ∈ R2:

η(γ, b) =
k∑

i=1

χIi −
k−1∑
i=1

χJi
(6.30)

where Ii is the closure of the interior of the Jordan curve γi. Figure 6.38
provides some examples of calculation for some points.

In practice, we can construct a separator for the closure of the interior of
each Jordan curve and a separator for each juncture set, using the technique
presented last section with image contractors. And then, a characterization of
the environment can be obtained with an algorithm similar to Algorithm 5.
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I1

I2
I3

I4

J1
J2

J3
p

(a)

I1

I2
I3

I4

J1
J2

J3p

(b)

I1

I2
I3

I4

J1
J2

J3

p

(c)

Figure 6.38: (a): Point p, as illustrated, belongs to the interior of curve γ3 and
η(γ,p) = 1; (b): Point p belongs to the interior of curves γ1 and γ3, therefore
η(γ,p) = 2; (c): Point p belongs to the closure of the interior of curves γ1 and
γ2 but also to J1, then η(γ,p) = 1 + 1− 1 = 1.
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6.4 Waterfall Characterization

Once the area of interest S is fully characterized in terms of the coverage
measure of its points, we can use a set inversion algorithm, as presented in
Algorithm 1, to characterize the waterfall space associated to the mission.

x

γ

Figure 6.39: The robot is illustrated at final instant T , the robot’s trajectory
x is represented in red and in blue we have the associated mission contour γ.

For illustrating this idea we are going to assume that the trajectory of
the robot is known, without uncertainty. In this case, the set Sx of possible
trajectories is a singleton. We illustrate the robot’s trajectory and the mission
contour γ that we consider in this Section in Figure 6.39.

Figure 6.40 presents the waterfall characterization as a result of Algorithm
6, that is an adaptation of Algorithm 1.

One can see that there are many uncertain boxes in the waterfall display,
mostly around its borders. This uncertainty is a result of the propagation of
pessimism by the sweep function [f ], as illustrated in Figure 6.41. Some solu-
tions could be tailored for reducing this uncertainty on borders. For example,
we know that all points in the Waterfall space were explored by the robot at
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Figure 6.40: Characterization of the waterfall space W = [−5, 5] × [0, 1.8].
Green boxes contain points with coverage measure equal to 1, blue boxes with
coverage measure equal to 2 and the others can not be uniquely determined.
Pink boxes contain points with a coverage measure that can be represented by
[0, 1], gray boxes [1, 2] and black boxes [0, 2].
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Algorithm 6 Waterfall Characterization
in: W = [−L,L]× [0, T ],f , ϵ
1: Q← W
2: if Q ̸= ∅ then take a box [w] ∈ Q and remove it from Q else return

endif

3: [m]← [f ]([w])

4: ▷ Compute [cm], the uncertain coverage measure of box [m] using one of
the three methods proposed in this chapter.

5: if [cm] is a singleton then
6: ▷ The coverage measure of points in [w] can be uniquely determined.
7: ▷ Draw box [w] with its correspondent color on the waterfall.
8: elseif w([w]) < ϵ or ([m] ∈ [γ], for any [γ] ∈ {[γ]}, and c+m − c−m = 1)

then
9: ▷ The box is already smaller than the required precision ϵ or its coverage

measure value can not be refined through bisection.
10: ▷ Draw box [w] with its correspondent color on the waterfall.
11: else
12: bisect [w] into [w](1) and [w](2)

13: Q← Q ∪ {[w](1), [w](2)}
endif

14: Return to line 2.
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t

−L L0

T+

T−

x2

x1

f

W M

[w]
f ([w])

[f ]([w])

Figure 6.41: Take a box [w] ∈ W , the image of this box on the mosaic space
by the sweep function f is a set that can assume any form. Numerically, we
work with an interval representation of this set, that is [f ]([w]), that adds
some pessimism in order to obtain a guaranteed approximation. Therefore,
when [w] is close to a border of W , there is a high possibility that its interval
image [f ]([w]) will intersect f(∂W ). As a consequence this adds uncertainty
to the coverage measure estimation. Notably, for the example on the Figure,
we have [cm](f([w])) = [2, 2] and [cm]([f ]([w])) = [1, 2].
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least once, therefore, pink boxes in Figure 6.40, representing a coverage mea-
sure of [0, 1], should be replaced by green boxes with coverage measure of [1, 1].
Other solutions should be explored on future work.

6.5 Conclusion

In conclusion, this chapter is focused on the challenge of estimating the cov-
erage measure of points within a subset of the plane. Our aim was to develop
an algorithm that could efficiently compute the coverage measure for various
points, using the principles of interval analysis discussed in Chapter 3.

We began by outlining the process for numerically generating tubes [γ+]
and [γ−], along with their corresponding derivatives [γ̇+] and [γ̇−]. Then, we
introduced three novel set-membership algorithms for determining the winding
number of cycles concerning all the points within an area of interest.

Finally, we demonstrated that a characterization of the waterfall space in
terms of the coverage measure of its points is also a possibility.

In the following chapter, the algorithms introduced in this chapter will
be applied to address real-world data within the framework of two distinct
robotics experiments.
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Throughout this thesis, we conducted experiments to illustrate the methods
studied during our research. In this chapter, we present real-world applications
of the algorithms introduced in the previous chapter. For this purpose, we
use datasets acquired by two distinct platforms: the autonomous underwater
vehicle, Daurade, and the unmanned surface vehicle, Speboat. The details and
results of these experiments are presented in the following sections.

For the experiment with Daurade we did not have access to a complete
dataset from the mission, only to its proprioceptive data. We apply the Alexan-
der method for winding number computation when characterizing the explored
area. This illustrates that the proposed algorithm consistently produces reli-
able characterizations from real dataset, but it also shows its limitations.

With SpeBoat we had greater flexibility in designing missions and access
to the complete dataset acquired during exploration. We used estimations of
the explored area to manually plan, through aid of an interface, autonomous
missions that avoided redundancy in exploration. Furthermore, we explored
the exteroceptive data related to each mission, which helps understand how
the coverage measure can provide valuable insights about the mission and ideas
for future work.

7.1 AUV Daurade with One-Dimensional Exploration
Sensor

Figure 7.1: The AUV Daurade in the roadstead of Brest.

The autonomous underwater vehicle, known as Daurade and depicted in
Figure 7.1, was designed and constructed by ECA Robotics. It has been
employed in missions by the Direction Générale de l’Armement - Techniques
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Navales (DGA - TN) and the Service Hydrographique et Océanographique de
la Marine (SHOM). This robot was developed with the objective of performing
Rapid Environment Assessment (REA) missions, whose purpose is to conduct
environmental surveys of specific locations to detect potential threats. More
precisely, Daurade was conceptualized in the context of counter-mine warfare,
and it maps the seafloor, using acoustic sensors, for the detection of potential
underwater mines.

In November 2015, Daurade was deployed in the roadstead of Brest, located
in Brittany, France, where it executed a 45-minute survey path as part of an
REA mission. The data acquired during this mission constitutes a dataset of
proprioceptive measurements, that was first used in [29]. The exteroceptive
dataset, with data acquired by the sonars, is not publicly available.

Daurade employs two side-scan sonars (Klein 5500), with one scanning
its right side and the other scanning its left side. The observable area of
each sensor can be individually represented as a line-sweep sensor in a two-
dimensional plane. Assuming a configuration where there is neither a visibility
gap nor an overlap between the ranges of visibility of the two sensors, as
proposed in Section 2.2.4 of Chapter 2, the combination of both sensors can
be conceptualized as a single line-sweep sensor.

The position and orientation of the robot underwater are determined
through the integration of data collected by two key components: an Inertial
Measurement Unit (IMU), which measures angular speed and linear acceler-
ations, and a Doppler Velocity Logger (DVL), responsible for measuring the
speed of the robot with respect to the seabed. Additionally, a pressure sensor
can be incorporated to estimate depth, enabling a complete three-dimensional
localization. Initially, we assume that the result of this estimation, that we
name x̃, is exact, as illustrated in Figure 7.2.

As illustrated in Figure 2.2, it is evident that the altitude h of the robot
has a direct impact on the range of visibility, represented as L, of the side-scan
sonar. Given the availability of bathymetry data for the roadstead of Brest and
the inclusion of a depth sensor within Daurade, it was possible to estimate its
altitude during the mission. Using the intrinsic information of the employed
sensors, we could conclude that L varied from 41 to 50 meters. In this initial
analysis where we are not considering uncertainties, we make the assumption
that L remains constant, with a fixed value of 45 meters on each side, resulting
in the mission contour γ̃ illustrated in Figure 7.3. The division of the mission
contour into γ̃+ and γ̃− is also illustrated.

In the given scenario, the first method for area characterization, presented
in Section 6.3.1 in the previous chapter, would be impractical due to the ex-
tensive area that needs to be characterized. Given that the area in question is
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x2(m)

x1(m)

Figure 7.2: Trajectory x̃ of the robot in the plane, without uncertainty, esti-
mated through integration of proprioceptive data acquired during the mission.
Daurade is represented by the AUV icon at its final pose.
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x1(m)

x2(m)

(a)
x2(m)

x1(m)

(b)

x2(m)

x1(m)

(c)

Figure 7.3: (a): The mission contour γ̃ associated to trajectory x̃. (b): γ̃+
surrounding points swept forward; (b): For this mission we have 10 con-
tours γ̃− surrounding points swept backwards. All the contours are counter-
counterclockwise oriented.
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[cm] =

[1, 1] [2, 2] [3, 3] [4, 4] [5, 5]

Figure 7.4: Result of the area characterization algorithm for the classification
of the explored area. Boxes in black have an uncertain coverage measure value.
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[cm] = [1, 2]

[cm] = [2, 3]

[cm] = [1, 3]

Figure 7.5: Example of classification of boxes with an uncertain coverage mea-
sure value.
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large, we opted for the second method outlined in Section 6.3.2. Notably, this
choice was driven by the fact that all self-intersections of γ̃ meet the conditions
required by the method. After applying the area characterization algorithm
based on the Alexander method, we obtain the paving illustrated in Figure
7.4. Uncertain boxes, surrounding contour γ̃+ and all the contours γ̃− are
represented in black. The uncertain winding number value for each of these
black boxes can also be defined. In Figure 7.5, we give an overview of the
classification of these boxes for a part of the mission.

Now, when we account for the uncertainties related to sensor measurements
that are propagated during pose estimation, we obtain a tube denoted as
[x]. This tube is a guaranteed representation of all the possible trajectories
of Daurade during the mission, and as a consequence, the mission contour
naturally becomes uncertain. If in addition we set the range L as an interval
L = [41, 50], we obtain the uncertain mission contour [γ]. These tubes are
represented in Figure 7.6.

One can notice that certain self-intersections within [γ] fail to meet the con-
ditions stipulated by the Alexander method, particularly the non-colinearity
condition, which is essential for dividing the environment into four distinct
regions around the self-intersection. This division is necessary for the appli-
cation of Alexander’s rules for numbering. Consequently, the issue at hand
cannot be directly resolved using the Alexander method as it was done for the
case without uncertainty.

However, we have applied the Alexander method around a specific un-
certain self-intersection within [γ], which adheres to the non-colinearity as-
sumption. This application serves to illustrate the extension of the Alexander
algorithm to uncertain curves. The outcome of this application is depicted in
Figure 7.7.

In this context, we believe that the Jordan curves method, outlined in
Section 6.3.3, would be the most appropriate method for characterizing the
environment explored by Daurade while accounting for uncertainties. However,
the method has not been evaluated with uncertainties during this work, and
it has not been formalized for accounting for points swept backwards. This is
a prospective for future work.

Next section presents the robot SpeBoat, that was also used for explo-
ration missions, but this time using a 2-dimensional sensor for covering the
environment.
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x2(m)

x1(m)

(b)

Figure 7.6: (a): The tube [x] envelopes all the possible trajectories of Daurade
in the plane during the mission; (b): and tube [γ] all the possible mission
contours.
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[cm] =

[1, 2] [0, 1] [0, 2]

Figure 7.7: Application of the uncertain Alexander Rule for one self-
intersection that respects the conditions established by the method. Boxes
in light gray are guaranteed to have been explored once, and in dark gray
twice. Other boxes have an uncertain coverage measure with values guaran-
teed to be within the intervals presented on the legend.

Figure 7.8: USV SpeBoat.
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7.2 USV SpeBoat with Two-Dimensional Exploration
Sensor

The Speboat is an USV that was designed and built at ENSTA Bretagne
as part of the research conducted by [137], and it was kindly loaned to us
for conducting tests during the course of this doctoral thesis. This USV was
tailored for operations in shallow waters, and it was primarily designed for
seafloor mapping and surveillance missions. It offers the flexibility of being
teleoperated over considerable distances or to operate autonomously.

GPS Antennas Camera

IMU

Figure 7.9: Speboat Sensors.

To estimate its position, it relies on a satellite positioning system (GPS),
specifically the u-blox ZED-F9P chip paired with a dual-frequency antenna.
The two antennas allow an estimation, in addition of the position, of the
orientation of the drone. This data is further processed via a Kalman filter that
incorporates gyroscope data from an embedded IMU. Environment exploration
is done by an underwater camera looking downward placed on the bottom of
its hull, as illustrates Figure 7.9.

The vehicle is propelled by a hydrojet, that draws water from an open
cavity under the hull and expels it on the rear of the robot, propelling it
forward. The output of the hydrojet is visible in Figure 7.10, and it can be
oriented to the right or to the left using a servo motor that is attached to it
from the interior of the robot.

In terms of its electronic architecture, the motor is controlled by a water-
cooled Electronic Speed Control (ESC), and the onboard computer is an Intel
NUC, used for autonomous computation of control commands. For example,
the robot can autonomously follow lines and track waypoints, and the system
has the Robot Operating System (ROS) as its middleware. An Arduino board
handles the reception of either autonomous commands from the NUC or remote
control signals, transmitting Pulse-Width Modulation (PWM) commands to
the actuators.
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Figure 7.10: Hydrojet output on the rear of the robot. The tube for water
collection retrieves water that circulates through a flexible watertight tube
surrounding the internal electronics, serving the purpose of cooling the system.
The water from the cooling system is ultimately expelled through the exit
eyelet.

Figure 7.11: Human-Machine Interface of Speboat. The green point denotes
the starting point. Visited locations are marked with blue points, while the
next chosen waypoints for the mission are indicated by red points. The dotted
black trajectory represent GPS measurements of the robot’s real position, with
the current robot location indicated by the robot icon.
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The trajectory of the robot can be chosen and displayed in real-time
through the Human-Machine Interface (HMI) developed by [137], see Figure
7.11. This HMI was created using QT Creator and during this thesis it has
been customized to accommodate additional functionalities, such as visualizing
trajectories from rosbags and the explored area.

During this thesis, we did some exploration missions using this robot for
exploring the Guerlédan lake, in Brittany, France. They are now presented.

Exploring the Guerlédan Lake

The Guerlédan lake is an artificial lake in center Brittany in France with a
hydroelectric dam on one of its ends. It is responsible for producing every
day the equivalent of the daily electricity consumption of 15000 people. Often,
mobile robots are required to navigate the lake [138] with the objective of
identifying potential hazards underwater, such as loose tree trunks, that could
affect the good functioning of the hydroelectric station.

Figure 7.12: Research team for the AUV Riptide at the Guerlédan lake. The
SpeBoat was employed on its research by the group composed by three master
students from ENSTA Bretagne. From left to right, Yohann Gourret, Katell
Lagattu and Bernardo Hummes Flores.

In this context, I supervised a group of three master students in a project
where we were inspired by a problem that frequently occurs during robotics tri-
als, that is the lost of material. Indeed, during one of the tests that took place
in the lake, the AUV Riptide, in orange in Figure 7.12, was lost underwater,
and the SpeBoat was used as part of the research team.
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(a)

(b)

Figure 7.13: (a): Positioning of orange buoys for reenacting the situation of a
lost AUV by boat; (b): And Katell positioning them by swimming.
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Subsequently, after finding the lost Riptide, we reenacted the situation by
replacing the AUV with a buoy of the same color, positioned approximately
one meter below the surface, Figure 7.13. The objective was then to search for
the buoy using algorithms for estimating the area already explored. This was
crucial to identify areas that are not relevant for the search because they have
already been analyzed.

(a) (b)

Figure 7.14: (a): Display of the area already explored on the HMI that would
guide the planning of new missions when searching for the submerged buoy;
(b): Detection of the orange buoy by the underwater camera.

The missions of exploration were autonomous and planned on the HMI
taking into consideration an estimation of the area already explored, in order to
avoid redundancy. The search would cease when the orange buoy was detected
by the underwater camera, as presented in Figure 7.14.

In a similar context, Speboat was subsequently employed in an exploration
mission aimed at locating two submerged storage LEGO bricks. These storage
bricks, which represent potential underwater hazards for identification, are
distinguishable by their colors, one being red and the other yellow, and each
measures 18x50x24 cm. The primary goal was to showcase the capability of
mobile robots in conducting underwater target research. The algorithms for
area characterization presented in this study were utilized to ascertain which
parts of the environment had already been explored by the robot and how many
times, thereby enhancing the capacity for well-informed decision-making.

Each LEGO brick was connected to a rigid bar that was submerged at
a depth of one meter below the surface. This depth was achieved through a
balance between anchors on the bottom and buoys on the surface. The scheme
for the positioning of the bricks is represented on Figure 7.15, and the buoys
stay over the surface.

The robot navigated autonomously following points previously selected on
the available HMI. In Figure 7.16 we can see the trajectory of the robot x
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rigid bar

Figure 7.15: Representation of the structure adopted for the placement of the
LEGO storage brick.

x2(m)

x1(m)

Figure 7.16: The robot is represented at its final pose at the end of the mission.
In red its trajectory x and in blue the mission contour γ.
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and the mission contour γ associated to the final mission. In this example, we
ignore the uncertainty associated to the trajectory. For defining the mission
contour we consider that the visible area at one meter depth can be represented
by a closed disc of 2 meters radius centered on the position of the robot and
oriented according to its heading.

Figure 7.17 illustrates the resultant characterization of the environment
using the Alexander method.

On the video recorded by the camera during the mission, one of the bricks,
the red brick, appears twice and the other, the yellow brick, appears four times.
The number of times that each of the bricks appears on the video corresponds
to the number of times the brick entered on the robot’s visibility area and
therefore, the coverage measure of its position on the plane. This information
can be coupled with the knowledge of the coverage measure of the points of
the environment. This allows a refinement on the estimation of the position
of the bricks in the lake by contracting the original knowledge about their
position, that we considered to be the whole area to be explored. This process
is illustrated in Figures from 7.18 to 7.21.

We can conclude that the coverage measure estimation plays a crucial role
in refining the initial knowledge about the positioning of targets in the environ-
ment. By considering the number of times a specific area has been explored or
surveyed, we can narrow down the possibilities for the location of these targets
by coupling external information. This leads us to a possible future appli-
cation of the method into Simultaneous Localization and Mapping (SLAM)
algorithms.

SLAM involves the construction of a map of an unknown environment while
simultaneously localizing the robot within that environment. While SLAM is
a powerful tool, its computational complexity grows with the amount of data
the robot needs to process and the size of the environment it is exploring. One
of the primary issues with traditional SLAM techniques is that they often treat
all parts of the environment equally, leading to exhaustive exploration, which
can be extremely time-consuming and resource-intensive. This inefficiency be-
comes more pronounced when the robot is equipped with sensors that generate
high volumes of data, such as LIDAR or high-resolution cameras. In this con-
text, the coverage measure provides a valuable solution to this problem. By
integrating the coverage measure into SLAM algorithms, the robot can make
informed decisions about where to focus its attention.
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x2(m)

x1(m)

Figure 7.17: Resultant paving of the environment in terms of the coverage
measure of its points. Green boxes contain points whose coverage measure is
equal to one, blue boxes represent a coverage measure of two, pink boxes a
coverage measure of three and gray areas have points with a coverage measure
of four.
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Figure 7.18: Paving of the environment where pink boxes have points for which
the coverage measure value is equal to two. The red brick enters entirely in the
robot’s range of visibility at two different times during the mission. Therefore,
the red brick is completely inside one of the highlighted areas in pink.
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Figure 7.19: Paving of the environment where pink boxes have points for which
the coverage measure value is equal to four. The yellow brick enters entirely
in the robot’s range of visibility at four different times during the mission.
Therefore, the yellow brick is completely inside one of the highlighted areas in
pink.
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Figure 7.20: Georeferenced representation of the area explored twice on the
Guerlédan map. The initial knowledge about the positioning of the red was
that it was inside the area surrounded by the blue rectangle. Using the coverage
measure estimation this area is contracted to the areas represented in grey on
the lake.



7.2. USV SPEBOAT WITH TWO-DIMENSIONAL EXPLORATION SENSOR235

Figure 7.21: Georeferenced representation of the area explored four times on
the Guerlédan map. The initial knowledge about the positioning of the yellow
was that it was inside the area surrounded by the blue rectangle. Using the
coverage measure estimation this area is contracted to the areas represented
in grey on the lake.
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7.3 Conclusion

To sum up, this chapter provided practical demonstrations of our algorithms in
real-world applications. We showcased the implementation of our area char-
acterization algorithms using real data acquired in these scenarios. These
experiments illustrate the value of understanding the coverage measure of the
environment. This understanding not only guides mission planning for effi-
cient area coverage, avoiding redundancy, but also offers valuable insights into
the data collected during these missions. The following chapter will provide
a detailed summary of our work and outline potential directions for future
research.
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Accuracy and reliability of mobile robots are essential not only to ensure
the success of their missions but also to the safety of the mission overall.
In this context, verification methods can enhance the trust and confidence
in robotic systems and facilitate their wider adoption across diverse domains.
Furthermore, as it was presented in the introductory chapter of this document,
Chapter 1 underscores the critical importance of algorithm verification in the
context of cost reduction for robotic systems and their missions. Promoting
affordability in robotics is a key factor in democratizing access to information
about challenging-to-reach environments, such as the underwater environment.
Generally, as mobile robots continue to play a growing role in our daily lives,
the development of effective verification techniques becomes an indispensable
step towards fully unlocking their potential for the benefit of society.

Safety-critical operations, such as mine countermeasure and search and res-
cue, often take the form of area-covering missions. In such scenarios, covering
a broad area is essential to locate and address potential threats or victims ef-
ficiently. In this context, it appeared necessary to develop tools for estimating
the extent of the area covered by a mobile robot during a mission, that takes
into account the uncertainty associated to the environment and algorithms.
For example, it would be inconceivable, and indeed, extremely perilous, to
permit watercraft to navigate an area of risk, such as a potential minefield,
without absolute assurance that an underwater robot tasked with mine detec-
tion has thoroughly surveyed the entire region beforehand.

Hence, this thesis focus on determining the area explored by mobile robots
using topological concepts and interval analysis.

8.1 Summary of Contributions

In addition to assess the extent of exploration by mobile robots, our objective
was to develop a method that could classify different regions of the environ-
ment based on how many times they have been explored. This measure is
valuable for various mission scenarios, including optimizing paths and assess-
ing revisiting missions, for example, for redundancy-based improvements. In
Chapter 2, we also explored how this metric could enhance the underwater
target classification process.

In Chapter 5 we formally define the problem at hand. We first define the
problem considering a one-dimensional exploration sensor, inspired by side-
scan sonars exploration. Subsequently, we extend the definitions to accommo-
date two-dimensional exploration sensors, like cameras. In this chapter we also
establish a relation between the topological degree and the coverage measure
of points explored by the robot. We introduce the notion of uncertain cov-
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erage measure and uncertain winding number for dealing with an uncertain
mission. The relation established between the topological degree and the ex-
ploration problem in the plane, presented and proved in this chapter offers a
new framework for developing algorithms for characterizing the explored area.
This framework is explored in Chapter 6.

Chapter 6 presents two methods for efficiently computing the winding num-
ber of an uncertain cycle, and one method for estimating the winding number
of a cycle, with respect to all the points in R2. The three approaches are based
on set-membership analysis. These algorithms are then used for characterizing
the environment and the Waterfall space in terms of the coverage measure of
its points.

Finally, the use of these algorithms are illustrated through real world exper-
iments in Chapter 7. We exemplify in this chapter how our area characteriza-
tion algorithms can be effectively employed in practical applications, using real
data collected in these scenarios. We understand, through the missions done
by SpeBoat, how the coverage measure furnishes invaluable insights into the
acquired data. Exploring these insights, along with analyses of exteroceptive
data, should be the subject of future work.

8.2 Prospects

The work developed in this thesis can be extended to different contexts:

1. We strongly believe that topological concepts can be useful and should
be explored for solving problems in robotics. We defined in this work
the concept of uncertain topological degrees in order to deal with the
uncertainty inherent to the localization process of mobile robots in real
world. Studying the link between this uncertain topological degree with
persistent homology, as in e.g. [38], is a prospect for extending the work
of this thesis;

2. We are also convinced that the coverage measure can be integrated in
SLAM algorithms to reduce the exteroceptive data that has to be com-
pared to find possible feature matching. This would reduce the complex-
ity of the algorithms, and it can minimize false matches in homogeneous
environments, such as the underwater environment;

3. Another possibility is to explore the applicability of the developed
method in collaborative multi-robot systems. The use of set-membership
methods in the development of algorithms in this thesis should make this
extension straightforward if we consider the inclusion-exclusion principle
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[139]. We consider that each robot will have its mission contour γ in
the plane, and when we want to estimate the total coverage measure of
points, considering each one of these curves, we can use the inclusion-
exclusion principle to compute the net result;

4. Additionally, the inclusion-exclusion principle can also be applied for
modeling more complex two-dimensional visible areas. In this work we
formalized our method assuming two-dimensional visible areas that are
diffeomorphic to the disk D2. However, in cases where a visible area does
not adhere to this condition but can be expressed as a finite union, or
as the difference, of topological spaces that do meet this criterion, the
inclusion-exclusion principle offers a means for area characterization.

For instance, consider a scenario where the explored area takes the form
of a disk with a hole, and this hole is itself diffeomorphic to D2. In this
context, we can separately characterize the explored area for the disk and
the hole, and subsequently, subtract the latter from the former to obtain
the true characterization of the explored area. This technique is equally
applicable for relaxing the assumption of no visibility gap between two
side-scan sonars mounted on the same carrier, as discussed in Section
2.2.4;

5. Extension of the presented method for characterizing the explored area
in three-dimensional environments;

6. Explore the relation between the Euler integral of the sweep function f
around the boundaries of the waterfall space and the concept of turning
number. The turning number is the number of times the tangent vector
along a closed curve (γ in our context) makes a full revolution, and it is
directly related to the winding number of γ in the complex plane [140]
[132];

7. Extend the method presented in Section 6.3.3 to encompass uncertainty
and points swept backwards;

8. Develop methods for reducing the wrapping effect in the waterfall char-
acterization presented in Section 6.4;

9. Incorporating the coverage measure into path-planning algorithms.





Bibliography

[1] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom. Towards New
Comput. Princ. Robot. Autom. (CIRA), pp. 146–151, 07 1997.

[2] S. Tzafestas. Amsterdam, The Netherlands: Elsevier, 2013.

[3] D. S. Navare, Y. R. Kapde, S. Maurya, D. Pardeshi, and P. William,
“Robotic bomb detection and disposal: Application using arduino,” in
2022 7th International Conference on Communication and Electronics
Systems (ICCES). IEEE, 2022, pp. 479–483.

[4] J.-H. Kim and B. Y. Lattimer, “Real-time probabilistic classification
of fire and smoke using thermal imagery for intelligent firefighting
robot,” Fire Safety Journal, vol. 72, pp. 40–49, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:110491792

[5] J. Casper and R. R. Murphy, “Human-robot interactions during the
robot-assisted urban search and rescue response at the world trade cen-
ter,” IEEE Trans Syst Man Cybern B Cybern., vol. 3, no. 33, 2003.

[6] H. Ha, S. Han, and J. Lee, “Fault detection on transmission lines using
a microphone array and an infrared thermal imaging camera,” IEEE
Transactions on Instrumentation and Measurement, vol. 61, pp. 267–275,
2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:
3089142

[7] K. C. Galloway, K. P. Becker, B. T. Phillips, J. Kirby, S. Licht,
D. Tchernov, R. J. Wood, and D. F. Gruber, “Soft robotic grippers for
biological sampling on deep reefs,” Soft Robotics, vol. 3, pp. 23 – 33, 2016.
[Online]. Available: https://api.semanticscholar.org/CorpusID:330615

[8] B. Nguyen, B. M. J. Pizarro, A. Shende, and D. J. Stilwell, “An approach
to subsea survey for safe naval transit,” OCEANS’11 MTS/IEEE KONA,
vol. 19, no. 1, pp. 1–6, 2011.

243

https://api.semanticscholar.org/CorpusID:110491792
https://api.semanticscholar.org/CorpusID:3089142
https://api.semanticscholar.org/CorpusID:3089142
https://api.semanticscholar.org/CorpusID:330615


244 BIBLIOGRAPHY

[9] S. B. Williams, O. R. Pizarro, M. V. Jakuba, C. R. Johnson, N. S. Bar-
rett, R. C. Babcock, G. A. Kendrick, P. D. Steinberg, A. J. Heyward, P. J.
Doherty, I. Mahon, M. Johnson-Roberson, D. Steinberg, and A. Fried-
man, “Monitoring of benthic reference sites: Using an autonomous un-
derwater vehicle,” IEEE Robotics and Automation Magazine, vol. 19,
no. 1, pp. 73–84, 2012.

[10] N. Oceanic and A. Administration., “The ocean,” https:
//globalocean.noaa.gov/the-ocean/#:~:text=The%20ocean%20covers%
2071%25%20of,97%25%20of%20the%20Earth%27s%20water., [Accessed
16-October-2023].

[11] E. O. Nasa, “Oxygen factories in the southern ocean,” 2016.

[12] U. S. E. P. Agency, “Climate change indicators: Sea surface tempera-
ture,” 2023.

[13] S. S. Myers, M. R. Smith, S. Guth, C. D. Golden, B. Vaitla, N. D.
Mueller, A. D. Dangour, and P. Huybers, “Climate change and global
food systems: potential impacts on food security and undernutrition,”
Annual review of public health, vol. 38, pp. 259–277, 2017.

[14] R. Silva, E. Mendoza, I. Mariño-Tapian, M. L. Martínez, and
E. Escalante, “An artificial reef improves coastal protection and
provides a base for coral recovery,” 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:133259636

[15] R. W. Button, J. Kamp, T. B. Curtin, and J. Dryden, A Survey of
Missions for Unmanned Undersea Vehicles. Santa Monica, CA: RAND
Corporation, 2009.

[16] C. Gambi, M. Canals, C. Corinaldesi, A. Dell’Anno, E. Manea,
A. Pusceddu, A. Sanchez-Vidal, and R. Danovaro, “Impact of
resuspended mine tailings on benthic biodiversity and ecosystem
processes: The case study of portmán bay, western mediterranean
sea, spain,” Environmental Pollution, vol. 301, p. 119021, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0269749122002354

[17] N. Oceanic and A. Administration., “Boldly explore where no
one has explored before,” https://www.boem.gov/newsroom/
ocean-science-news/boldly-explore-where-no-one-has-explored#:~:
text=Although%20the%20ocean%20covers%20about,unmapped%2C%
20with%20even%20more%20unexplored., [Accessed 16-October-2023].

https://globalocean.noaa.gov/the-ocean/#:~:text=The%20ocean%20covers%2071%25%20of,97%25%20of%20the%20Earth%27s%20water.
https://globalocean.noaa.gov/the-ocean/#:~:text=The%20ocean%20covers%2071%25%20of,97%25%20of%20the%20Earth%27s%20water.
https://globalocean.noaa.gov/the-ocean/#:~:text=The%20ocean%20covers%2071%25%20of,97%25%20of%20the%20Earth%27s%20water.
https://api.semanticscholar.org/CorpusID:133259636
https://www.sciencedirect.com/science/article/pii/S0269749122002354
https://www.sciencedirect.com/science/article/pii/S0269749122002354
https://www.boem.gov/newsroom/ocean-science-news/boldly-explore-where-no-one-has-explored#:~:text=Although%20the%20ocean%20covers%20about,unmapped%2C%20with%20even%20more%20unexplored.
https://www.boem.gov/newsroom/ocean-science-news/boldly-explore-where-no-one-has-explored#:~:text=Although%20the%20ocean%20covers%20about,unmapped%2C%20with%20even%20more%20unexplored.
https://www.boem.gov/newsroom/ocean-science-news/boldly-explore-where-no-one-has-explored#:~:text=Although%20the%20ocean%20covers%20about,unmapped%2C%20with%20even%20more%20unexplored.
https://www.boem.gov/newsroom/ocean-science-news/boldly-explore-where-no-one-has-explored#:~:text=Although%20the%20ocean%20covers%20about,unmapped%2C%20with%20even%20more%20unexplored.


BIBLIOGRAPHY 245

[18] C. J. Ashton, A. S. Bruce, G. Colledge, and M. Dickinson, “The search
for mh370,” Journal of Navigation, vol. 68, pp. 1 – 22, 2014. [Online].
Available: https://api.semanticscholar.org/CorpusID:129463592

[19] K. Picard, B. Brooke, and M. Coffin, “Geological insights from malaysia
airlines flight mh370 search,” 2017.

[20] A. Tal, I. Klein, and R. Katz, “Inertial navigation system/doppler
velocity log (ins/dvl) fusion with partial dvl measurements,” Sensors
(Basel, Switzerland), vol. 17, 2017. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:2913970

[21] J. Wang, T. Xu, and Z. Wang, “Adaptive robust unscented kalman
filter for auv acoustic navigation,” Sensors (Basel, Switzerland), vol. 20,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
209435233

[22] Y. Wu, X. Ta, R. Xiao, Y. Wei, D. An, and D. Li, “Survey of
underwater robot positioning navigation,” Applied Ocean Research,
vol. 90, p. 101845, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0141118718305546

[23] M. Ferrera, V. Creuze, J. Moras, and P. Trouvé-Peloux, “Aqualoc: An
underwater dataset for visual–inertial–pressure localization,” The Inter-
national Journal of Robotics Research, vol. 38, no. 14, pp. 1549–1559,
2019.

[24] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman fil-
ter for vision-aided inertial navigation,” in Proceedings 2007 IEEE Inter-
national Conference on Robotics and Automation, 2007, pp. 3565–3572.

[25] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,”
in Proceedings. 1985 IEEE International Conference on Robotics and
Automation, vol. 2, 1985, pp. 116–121.

[26] C. Luo and S. X. Yang, “A bioinspired neural network for
real-time concurrent map building and complete coverage robot
navigation in unknown environments,” IEEE Transactions on Neural
Networks, vol. 19, pp. 1279–1298, 2008. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:9307717

[27] A. C. Kapoutsis, S. A. Chatzichristofis, and E. B. Kosmatopoulos, “Darp:
Divide areas algorithm for optimal multi-robot coverage path planning,”

https://api.semanticscholar.org/CorpusID:129463592
https://api.semanticscholar.org/CorpusID:2913970
https://api.semanticscholar.org/CorpusID:2913970
https://api.semanticscholar.org/CorpusID:209435233
https://api.semanticscholar.org/CorpusID:209435233
https://www.sciencedirect.com/science/article/pii/S0141118718305546
https://www.sciencedirect.com/science/article/pii/S0141118718305546
https://api.semanticscholar.org/CorpusID:9307717
https://api.semanticscholar.org/CorpusID:9307717


246 BIBLIOGRAPHY

Journal of Intelligent & Robotic Systems, vol. 86, pp. 663–680, 2017.
[Online]. Available: https://api.semanticscholar.org/CorpusID:25496234

[28] A. K. Lakshmanan, R. E. Mohan, B. Ramalingam, A. V. Le,
P. Veerajagadeshwar, K. Tiwari, and M. Ilyas, “Complete coverage path
planning using reinforcement learning for tetromino based cleaning and
maintenance robot,” Automation in Construction, vol. 112, p. 103078,
2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
214475070

[29] B. Desrochers and L. Jaulin, “Computing a guaranteed approximation of
the zone explored by a robot.” IEEE Transactions on Automatic Control,
vol. 62, pp. 425–430, 2017.

[30] V. Drevelle, L. Jaulin, and B. Zerr, “Guaranteed characterization of
the explored space of a mobile robot by using subpavings,” in IFAC
Symposium on Nonlinear Control Systems, 2013. [Online]. Available:
https://api.semanticscholar.org/CorpusID:3134550

[31] D. P. Williams and J. Groen, “Multi-view target classification
in synthetic aperture sonar imagery,” 2009. [Online]. Available:
https://api.semanticscholar.org/CorpusID:18815823

[32] I. Quidu, J.-P. Malkasse, G. Burel, and P. Vilbé, “Mine classification
based on a multiview characterisation,” 2001. [Online]. Available:
https://api.semanticscholar.org/CorpusID:17420884

[33] B. Ding and G. Wen, “Exploiting multi-view sar images for robust target
recognition,” Proceedings of the 3rd International Conference and Exhi-
bition on Underwater Acoustic Measurements: Technologies and Results,
vol. 9, 2017.

[34] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” CoRR, vol.
abs/1505.00880, 2015. [Online]. Available: http://arxiv.org/abs/1505.
00880

[35] D. P. Williams, F. Baralli, M. Micheli, and S. Vasoli, “Adaptive
underwater sonar surveys in the presence of strong currents,” 2016
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2604–2611, 2016. [Online]. Available: https://api.semanticscholar.
org/CorpusID:15911335

https://api.semanticscholar.org/CorpusID:25496234
https://api.semanticscholar.org/CorpusID:214475070
https://api.semanticscholar.org/CorpusID:214475070
https://api.semanticscholar.org/CorpusID:3134550
https://api.semanticscholar.org/CorpusID:18815823
https://api.semanticscholar.org/CorpusID:17420884
http://arxiv.org/abs/1505.00880
http://arxiv.org/abs/1505.00880
https://api.semanticscholar.org/CorpusID:15911335
https://api.semanticscholar.org/CorpusID:15911335


BIBLIOGRAPHY 247

[36] Y. Baryshnikov and R. Ghrist, “Target enumeration via euler
characteristic integrals,” SIAM Journal on Applied Mathematics,
vol. 70, no. 3, pp. 825–844, 2009. [Online]. Available: https:
//doi.org/10.1137/070687293

[37] V. De Silva and R. Ghrist, “Coordinate-free coverage in sensor networks
with controlled boundaries via homology,” The International Journal
of Robotics Research, vol. 25, no. 12, pp. 1205–1222, 2006. [Online].
Available: https://doi.org/10.1177/0278364906072252

[38] V. De Silva and G. R., “Coverage in sensor networks via persistent
homology,” Algebraic & Geometric Topology, vol. 7, no. 1, pp. 339 –
358, 2007. [Online]. Available: https://doi.org/10.2140/agt.2007.7.339

[39] F. Stenger, “Computing the topological degree of a mapping in Rn,”
Numerische Mathematik, vol. 25, pp. 23–38, 1975.

[40] P. Franek, “Effective topological degree computation based on interval
arithmetic,” Mathematics of Computation, vol. 84, no. 293, p. 1265–1290,
2014.

[41] N. Oceanic and A. Administration., “What is sonar?” https://
oceanservice.noaa.gov/facts/sonar.html, [Accessed 15-June-2023].

[42] M. Ludvigsen and A. J. Sørensen, “Towards integrated autonomous un-
derwater operations for ocean mapping and monitoring,” Annual Reviews
in Control, vol. 42, pp. 145–157, 2016.

[43] D. D. Sternlicht, J. E. Fernandez, R. Holtzapple, D. P. Kucik, T. C.
Montgomery, and C. M. Loeffler, “Advanced sonar technologies for au-
tonomous mine countermeasures,” OCEANS, pp. 1–5, 2011.

[44] D. of Sound in the Sea, “The first studies of un-
derwater acoustics: The 1800s,” https://dosits.
org/people-and-sound/history-of-underwater-acoustics/
the-first-studies-of-underwater-acoustics-the-1800s/, [Accessed 15-
June-2023].

[45] D. M. McLean, “Confronting technological and tactical change: Allied
antisubmarine warfare in the last year of the battle of the atlantic.” Naval
War College Review, vol. 47, no. 1, pp. 87–104, 1994.

[46] P. Blondel and B. Murton, Handbook of Seafloor Sonar Imagery. New
York: Wiley, 1997.

https://doi.org/10.1137/070687293
https://doi.org/10.1137/070687293
https://doi.org/10.1177/0278364906072252
https://doi.org/10.2140/agt.2007.7.339
https://oceanservice.noaa.gov/facts/sonar.html
https://oceanservice.noaa.gov/facts/sonar.html
https://dosits.org/people-and-sound/history-of-underwater-acoustics/the-first-studies-of-underwater-acoustics-the-1800s/
https://dosits.org/people-and-sound/history-of-underwater-acoustics/the-first-studies-of-underwater-acoustics-the-1800s/
https://dosits.org/people-and-sound/history-of-underwater-acoustics/the-first-studies-of-underwater-acoustics-the-1800s/


248 BIBLIOGRAPHY

[47] A. Burguera and G. Oliver, “High-resolution underwater mapping using
side-scan sonar,” PLoS One, vol. 11, no. 1, 2016.

[48] C. P. and C. De Moustier, “Sidescan sonar image processing techniques,”
IEEE Journal of Oceanic Engineering, vol. 18, no. 2, pp. 108–122, 1993.

[49] D. J. and C. R., “Resolution measurement for synthetic aperture sonar,”
OCEANS 2019, pp. 1–6, 2019.

[50] H. J. Flowers and J. E. Hightower, “A novel approach to surveying
sturgeon using side-scan sonar and occupancy modeling,” Marine and
Coastal Fisheries: Dynamics, Management, and Ecosystem Science,
vol. 5, no. 1, pp. 211–223, 2013.

[51] M. Bouvet and B. Murton, Traitements des signaux pour les systèmes
sonar. Paris: Elsevier-masson, 1997.

[52] A. Penko, J. Calantoni, and B. T. Hefner, “Modeling and observations
of sand ripple formation and evolution during trex13,” IEEE Journal of
Oceanic Engineering, vol. 42, no. 2, pp. 260–267, 2017.

[53] K. A. Kastens and M. B. Cita, “Tsunami-induced sediment transport
in the abyssal mediterranean sea,” GSA Bulletin, vol. 92, no. 11, pp.
845–857, 1981.

[54] G. T., S. K., and Y. Petillot, “Three-dimensional reconstruction of un-
derwater objects using wide-aperture imaging sonar,” Journal of Field
Robotics, vol. 35, no. 6, pp. 890–905, 2018.

[55] T. Sheffer and H. Guterman, “Geometrical correction of side-scan sonar
images,” IEEE International Conference on the Science of Electrical En-
gineering in Israel (ICSEE), pp. 1–5, 2018.

[56] M. F. Fallon, M. Kaess, H. Johannsson, and J. J. Leonard, “Efficient auv
navigation fusing acoustic ranging and side- scan sonar,” Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
pp. 1–8, 2011.

[57] S. Reed, Y. Petillot, and B. J., “An automatic approach to the detection
and extraction of mine features in sidescan sonar.” IEEE Journal of
Oceanic Engineering., vol. 28, no. 1, pp. 90–105, 2003.

[58] M. Legris, K. Lebart, F. Fohanno, and b. zerr, “Les capteurs d’imagerie
en robotique sous-marine: tendances actuelles et futures,” Traitement du
Signal, vol. 20, pp. 137–164, 01 2003.



BIBLIOGRAPHY 249

[59] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach
to spatial filtering,” IEEE ASSP Magazine, 1988.

[60] S. Rohou, B. Desrochers, and L. Jaulin, “Set-membership state estima-
tion by solving data association,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 4393–4399.

[61] M. Magazines, “The journey to helping auvs think: How
marine roboticists are turning auv sight into perception,”
https://www.maritimemagazines.com/marine-technology/202010/
the-journey-to-helping-auvs-think/, [Accessed 15-June-2023].

[62] X. K. Li, L. Xie, and Y. Qin, “Underwater target feature extraction using
hilbert-huang transform,” Journal of Harbin Engineering University, p.
542–546, 2009.

[63] R. Baran and J. Coughlin, “A neural network for target classification
using passive sonar.” In Proceedings of the Conference on Analysis of
Neural Network Applications, p. 188–198, 1991.

[64] D. Singh and M. Valdenegro-Toro, “The marine debris dataset
for forward-looking sonar semantic segmentation,” CoRR, vol.
abs/2108.06800, 2021. [Online]. Available: https://arxiv.org/abs/
2108.06800

[65] A. Sethuraman and K. A. Skinner, “Towards sim2real for shipwreck de-
tection in side scan sonar imagery,” 3rd Workshop on Closing the Reality
Gap in Sim2Real Transfer for Robotics, 2022.

[66] D. Neupane and J.-H. Seok, “A review on deep learning-based approaches
for automatic sonar target recognition,” Electronics, vol. 9, p. 1972, 2020.

[67] H. Peyvandi, M. Farrokhrooz, H. Roufarshbaf, and S. J. Park, SONAR
Systems and Underwater Signal Processing: Classic and Modern Ap-
proaches. London: IntechOpen, 2011.

[68] S. Hozyn, “A review of underwater mine detection and classification in
sonar imagery.” Electronics, vol. 10, p. 2943, 2021.

[69] K. Ghorbal, E. Goubault, and S. Putot, “A logical product approach
to zonotope intersection,” CoRR, vol. abs/1002.2236, 2010. [Online].
Available: http://arxiv.org/abs/1002.2236

https://www.maritimemagazines.com/marine-technology/202010/the-journey-to-helping-auvs-think/
https://www.maritimemagazines.com/marine-technology/202010/the-journey-to-helping-auvs-think/
https://arxiv.org/abs/2108.06800
https://arxiv.org/abs/2108.06800
http://arxiv.org/abs/1002.2236


250 BIBLIOGRAPHY

[70] E. Walter and H. Piet-Lahanier, “Exact recursive polyhedral description
of the feasible parameter set for bounded-error models,” IEEE Transac-
tions on Automatic Control, vol. 34, no. 8, pp. 911–915, 1989.

[71] A. Rauh and L. Jaulin, “A novel thick ellipsoid approach for verified outer
and inner state enclosures of discrete-time dynamic systems,” IFAC-
PapersOnLine, vol. 54, no. 87, pp. 601–606, 2021.

[72] L. Jaulin and E. Walter, “Set inversion via interval analysis for nonlinear
bounded-error estimation,” Automatica, vol. 29, no. 4, pp. 1053–1064,
1993.

[73] L. Jaulin, I. Braems, and E. Walter, “Interval methods for nonlinear iden-
tification and robust control.” Proceedings of the 41st IEEE Conference
on Decision and Control, vol. 4, pp. 4676–4681, 2002.

[74] H. Schichl and A. Neumaier, “Interval analysis on directed acyclic graphs
for global optimization.” J Glob Optim, vol. 33, no. 1, p. 541–562, 2005.

[75] P. Saraev, “Numerical methods of interval analysis in learning neural
network.” Autom Remote Control, vol. 73, p. 1865–1876, 2012.

[76] L. Jaulin and F. Le Bars, “An interval approach for stability analysis: Ap-
plication to sailboat robotics.” IEEE Transactions on Robotics, vol. 29,
no. 1, pp. 282–287, 2013.

[77] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis.
London: Springer London, 2001.

[78] R. E. Moore and C. Yang, “Interval analysis i. technical document lmsd-
285875,” Lockheed Missiles and Space Division, Sunnyvale, CA, USA.,
1959.

[79] J. Trevor and J. Palsberg, “Type inference in systems of recursive types
with subtyping,” Available on authors’ web page, 1999.

[80] P. Hell and J. Nešetřil, “Colouring, constraint satisfaction, and complex-
ity,” Computer Science Review, vol. 2, no. 3, pp. 143–163, 2008.

[81] H. Simonis, “Sudoku as a constraint problem.” CP Workshop on modeling
and reformulating Constraint Satisfaction Problems, vol. 12, pp. 13–27,
2005.

[82] V. Kumar, “Algorithms for constraint-satisfaction problems: A survey.”
AI magazine, vol. 13, no. 1, pp. 32–32, 1992.



BIBLIOGRAPHY 251

[83] L. Jaulin, “Solving set-valued constraint satisfaction problems.” Comput-
ing, vol. 94, pp. 297–311, 2012.

[84] ——, “Range-only slam with occupancy maps: A set-membership ap-
proach.” IEEE Transactions on Robotics, vol. 27, pp. 1004–1010, 2011.

[85] G. Chabert and L. Jaulin, “Contractor programming,” Artificial
Intelligence, vol. 173, no. 11, pp. 1079–1100, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0004370209000381

[86] S. Rohou, “Reliable robot localization: a constraint programming ap-
proach over dynamical systems,” PhD thesis, 2017.

[87] F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget, “Revising hull
and box consistency,” Int. Conf. on Logic Programming, p. 230–244,
1999.

[88] B. Desrochers and L. Jaulin, “A minimal contractor for the polar equa-
tion: Application to robot localization.” Engineering Applications of Ar-
tificial Intelligence, vol. 55, p. 83–92, 2016.

[89] L. Jaulin and B. Desrochers, “Introduction to the algebra of separators
with application to path planning,” Engineering Applications of Artificial
Intelligence, vol. 33, no. 1, pp. 141–147, 2014.

[90] B. Desrochers, “Simultaneous localization and mapping in unstructured
environments.” Universite Bretagne Loire, 2018.

[91] J. Sliwka, F. Le Bars, O. Reynet, and L. Jaulin, “Using interval meth-
ods in the context of robust localization of underwater robots,” Annual
Meeting of the North American Fuzzy Information Processing Society,
pp. 1–6, 2011.

[92] R. Guyonneau, S. Lagrange, L. Hardouin, and P. Lucidarme, “Guaran-
teed interval analysis localization for mobile robots,” Advanced Robotics,
vol. 28, no. 16, pp. 1067–1077, 2014.

[93] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features.” In Proceedings of the 2001 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition., vol. 1, p.
I–511–I–518, 2001.

[94] ——, “A note on the computation of high-dimensional integral images.”
Pattern Recognition Letters., vol. 32, no. 2, p. 197–201, 2011.

https://www.sciencedirect.com/science/article/pii/S0004370209000381


252 BIBLIOGRAPHY

[95] B. Desrochers, S. Lacroix, and L. Jaulin, “Set-membership approach to
the kidnapped robot problem.” In IEEE International Conference on
Intelligent Robots and Systems, p. 3715–3720, 2015.

[96] L. Jaulin and E. Walter, “Set inversion via interval analysis for nonlinear
bounded-error estimation,” Automatica, vol. 29, pp. 1053–1064, 1993.

[97] D. Dubois, L. Jaulin, and H. Prade, Thick Sets, Multiple-Valued Map-
pings and Possibility Theory, 2021, pp. 101–109.

[98] S. Rohou, B. Desrochers et al., “The Codac library – Constraint-
programming for robotics,” 2022, http://codac.io.

[99] K. Apt, “The essence of constraint propagation.” Theoretical Computer
Science, vol. 221, no. 1-2, p. 179–210, 1998.

[100] J. Yao, Y. Yao, V. Kreinovich, P. P. da Silva, S. Starks, G. Xiang, and
H. T. Nguyen, “Towards more adequate representation of uncertainty:
From intervals to set intervals, with the possible addition of probabili-
ties and certainty degrees.” Proceedings of the IEEE World Congress on
Computational Intelligence, p. 983–990, 2008.

[101] B. Desrochers and L. Jaulin, “Thick set inversion.” Artificial Intelligence,
vol. 249, pp. 1–18, 2017.

[102] A. B. Kurzhanski and T. F. Filippova, “On the theory of trajectory
tubes - a mathematical formalism for uncertain dynamics, viability and
control.” Advances in Nonlinear Dynamics and Control: A Report from
Russia, p. 122–188, 1993.

[103] F. Le Bars, J. Sliwka, L. Jaulin, , and O. Reynet, “Set-membership state
estimation with fleeting data.” Automatica, vol. 48, no. 2, p. 381–387,
2012.

[104] A. Bethencourt and L. Jaulin, “Solving non-linear constraint satisfaction
problems involving time-dependant functions.” Mathematics in Com-
puter Science, vol. 8, no. 3, p. 503–523, 2014.

[105] R. D. Clément Aubry and L. Jaulin, “Loop detection of mobile robots
using interval analysis,” Automatica, vol. 49, no. 2, pp. 463–470, 2013.

[106] C. Gorini, “Geometry for the artist: An interdisciplinary consciousness-
based course,” SSRN Electronic Journal, vol. 3, 2018.



BIBLIOGRAPHY 253

[107] R. Ghrist, Elementary Applied Topology, 2014. [Online]. Available:
https://www2.math.upenn.edu/~ghrist/notes.html

[108] J. M. Lee, Introduction to Topological Manifolds, 1st ed., ser. Graduate
Texts in Mathematics. Springer, 2000, vol. 202.

[109] A. Hatcher, Algebraic Topology, ser. Algebraic Topology. Cambridge
University Press, 2002. [Online]. Available: https://pi.math.cornell.edu/
~hatcher/AT/AT.pdf

[110] M. W. Hirsch, Differential Topology, ser. Graduate Texts in Mathemat-
ics. Springer New York, NY, 1976.

[111] J. R. Munkres, Topology, 2nd ed. Prentice Hall, Inc., 2000.

[112] M. A. Armstrong, Basic Topology. McGraw-Hill Book Company, Maid-
enhead, UK, 1979.

[113] S. Willard, General Topology. Dover Publications, 2004.

[114] R. B. Melrose, “Differential analysis on manifolds with corners,” 1996.

[115] D. Joyce, “On manifolds with corners,” 2010.

[116] N. Jacobson, Basic Algebra I. Dover Publications, 2009.

[117] E. H. Spanier, Algebraic Topology. Springer, 1996.

[118] E. Outerelo and J. M. Ruiz, Mapping Degree Theory. American Math-
ematical Soc., 2009, vol. 108.

[119] W. J. Kaczor and M. T. Nowak, Problems in Mathematical Analysis:
Real numbers, sequences, and series. American Mathematical Society,
2000, vol. 1.

[120] I. Kurzhanski, A. ad Valyi. Boston, MA: Birkhäuser, 1997.

[121] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, and S. M.
Veres, “Guaranteed computation of robot trajectories,” Robotics and
Autonomous Systems, vol. 93, pp. 76–84, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889016304006

[122] F. Le Bars, J. Sliwka, L. Jaulin, and O. Reynet, “Set-membership
state estimation with fleeting data,” Automatica, vol. 48, no. 2, pp.
381–387, 2012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0005109811005322

https://www2.math.upenn.edu/~ghrist/notes.html
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://www.sciencedirect.com/science/article/pii/S0921889016304006
https://www.sciencedirect.com/science/article/pii/S0005109811005322
https://www.sciencedirect.com/science/article/pii/S0005109811005322


254 BIBLIOGRAPHY

[123] H. Agarwal and R. G. Tiwari, “Exploiting sensor fusion for mobile robot
localization,” Third International conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud) (I-SMAC), pp. 463–466, 2019.

[124] M. Kam, X. Zhu, and P. Kalata, “Sensor fusion for mobile robot naviga-
tion,” Proceedings of the IEEE, vol. 85, no. 1, pp. 108–119, 1997.

[125] D. Alciatore and R. Miranda, “A winding number and point-in-polygon
algorithm,” 1995.

[126] J. W. Alexander, “Topological invariants of knots and links,” Transac-
tions of the American Mathematical Society, vol. 30, p. 275–306, 1928.

[127] A. Kulowski, “Optimization of a point-in-polygon algorithm for computer
models of sound field in rooms,” Applied Acoustics, vol. 35, pp. 63–74,
1992.

[128] M. Shimrat, “Algorithm 112: Position of point relative to polygon,” Com-
munications of the ACM, vol. 5, no. 8, p. 434, 1962.

[129] L. Guibas, L. Ramshaw, and J. Stolfi, “A kinetic framework for compu-
tational geometry,” in 24th Annual Symposium on Foundations of Com-
puter Science (sfcs 1983), 1983, pp. 100–111.

[130] D. Sunday, “Inclusion of a point in polygon,” https://web.archive.
org/web/20130126163405/http://geomalgorithms.com/a03-_inclusion.
html, [Accessed 20-Septembre-2023].

[131] A. Möbius, “Über die bestimmung des inhaltes eines polyëders,” Berichte
über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wis-
senschaften, Mathematisch-Physische Klasse, vol. 17, pp. 31–68, 1865.

[132] M. McIntyre and G. Cairns, “A new formula for winding numbers,” Ge-
ometriae Dedicata, vol. 46, 1993.

[133] S. Rohou, P. Franek, C. Aubry, and L. Jaulin, “Proving the existence
of loops in robot trajectories,” The International Journal of Robotics
Research, vol. 37, no. 12, pp. 1500–1516, 2018. [Online]. Available:
journals.sagepub.com/doi/full/10.1177/0278364918808367

[134] C. Li, W.-H. Zhang, and X.-Q. Jin, “Convergence and uniqueness prop-
erties of gauss-newton’s method,” Computers & Mathematics with Ap-
plications, vol. 47, no. 6-7, pp. 1057–1067, 2004.

https://web.archive.org/web/20130126163405/http://geomalgorithms.com/a03-_inclusion.html
https://web.archive.org/web/20130126163405/http://geomalgorithms.com/a03-_inclusion.html
https://web.archive.org/web/20130126163405/http://geomalgorithms.com/a03-_inclusion.html
journals.sagepub.com/doi/full/10.1177/0278364918808367


BIBLIOGRAPHY 255

[135] Itseez, “Open source computer vision library,” https://github.com/
itseez/opencv, 2015.

[136] G. Berg, W. Julian, R. Mines, and F. Richman, “The constructive jordan
curve theorem,” The Rocky Mountain Journal of Mathematics, pp. 225–
236, 1975.

[137] F. Bars, R. Sanchez, L. Jaulin, S. Rohou, and A. Rauh, “An online
interval-based inertial navigation system for control purposes of au-
tonomous boats,” Frontiers in Control Engineering, vol. 2, p. 786188,
03 2022.

[138] “Hydrographes et roboticiens explorent guerlédan,” https://guerledan.
ensta-bretagne.fr, accessed: 2023-08-24.

[139] S. S. Sane and S. S. Sane, “The inclusion-exclusion principle,” Combina-
torial Techniques, pp. 57–79, 2013.

[140] R. Ghrist, R. Levanger, and H. Mai, “Persistent homology and euler
integral transforms,” Journal of Applied and Computational Topology,
vol. 2, pp. 55–60, 2018.

https://github.com/itseez/opencv
https://github.com/itseez/opencv
https://guerledan.ensta-bretagne.fr
https://guerledan.ensta-bretagne.fr

	Introduction
	Planet Ocean
	Robotics Terminology
	Thesis Context
	Outline

	I Theoretical Background
	Sonars
	Introduction
	Side-Scan Sonar
	Waterfall and Mosaic Images
	Mosaicking
	Features Detection in Sonar Images
	Hypotheses Adopted on the Side-Scan Sonar Model

	Coverage Measure to Aid in the Post-Treatment Process
	Conclusion

	Interval Analysis
	Introduction
	Set Theory
	Operations on Sets
	Set Image

	Interval Analysis
	Intervals
	Boxes or Interval Vectors
	Inclusion Functions
	Set-Valued Constraint Satisfaction Problems (SVCSPs)
	Definition of a SVCSP
	Contractors
	Separators
	Image Contractor

	Subpaving
	Set Inversion Via Interval Analysis (SIVIA) Algorithm
	Paver

	Dedicated Sets
	Interval of Sets or Thick Sets
	Interval of Functions or Tubes

	Detection of Self-Intersections on Tubes
	Conclusion

	Topology
	Common Euclidean Subspaces
	Topological Spaces
	Common Examples of Topologies
	Representation of Arbitrary Sets on Topological Spaces
	Convergence
	Continuity
	Basis for a Topology

	Interesting Topological Spaces
	Hausdorff Spaces
	Manifolds
	Quotient Spaces

	Connectedness and Compactness
	Connected Space
	Compact Space
	Compactification

	The Fundamental Group
	Groups and Isomorphism
	Homotopy
	Homotopy Equivalence
	Construction of the Fundamental Group

	CW Complexes
	Homology
	Homology Group

	Topological Degree
	Winding Number

	Conclusion


	II Contributions
	Coverage Measure and Explored Area
	One-Dimensional Sensors
	Problem Statement
	Coverage Measure and the Topological Degree
	Dealing with Uncertainties

	Two-Dimensional Sensors
	Problem Statement
	Coverage Measure and Topological Degree
	Sweeping backwards and Uncertainties

	Conclusion

	Area Characterization
	Problem Definition
	Creating the Mission Contour
	Computing the Extended Winding Number
	Method 1: Turning Around
	Method 2: Alexander Theorem
	Method 3: Jordan Curves Sum

	Waterfall Characterization
	Conclusion

	Experiments
	AUV Daurade with One-Dimensional Exploration Sensor
	USV SpeBoat with Two-Dimensional Exploration Sensor
	Conclusion

	Conclusions and Prospects
	Summary of Contributions
	Prospects



