Set theoretic approach for target localization and tracking using a fleet of drones

H. Piet-Lahanier ¹ J. Ibenthal ¹ M. Kieffer ² L. Meyer ¹

¹DTIS, ONERA, Univ. Paris Saclay

²L2S, Univ. Paris Saclay

Séminaire Ensta Bretagne, July 2022

Outline

$1. \ {\rm Introduction}$

2. Accounting for decoys

3. Detailed Framework

4. Conclusion

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Context

Considered problem:

- Searching, detecting, and tracking mobile targets
- Potentially large region of interest
- Cooperative agents (*e.g.* UAVs)

Search process usually based on probabilistic information [Bertuccelli and How, 2005, Khodayi-mehr et al., 2019, Li and Duan, 2017, Moon, 2008, Sun et al., 2014, Yao et al., 2016, Yang et al., 2007, Zhang et al., 2017]

- Efficiency depends on
 - availability,
 - quality,
 - and reliability of the information.

Context

Considered problem:

- Searching, detecting, and tracking mobile targets
- Potentially large region of interest
- Cooperative agents (*e.g.* UAVs)

Search process usually based on probabilistic information [Bertuccelli and How, 2005, Khodayi-mehr et al., 2019, Li and Duan, 2017, Moon, 2008, Sun et al., 2014, Yao et al., 2016, Yang et al., 2007, Zhang et al., 2017]

- Efficiency depends on
 - availability,
 - quality,
 - and reliability of the information.

비 에 프 비 프 님

Problem statement

Performance sensitive to *a priori* assumptions on Probability Density Function of process [Gu et al., 2015].

Alternative assumption:

• Noises and uncertainties bounded

Approach:

- Set-membership state estimation [Reynaud et al., 2018, Reboul et al., 2019]
- Set-membership compliant Model Predictive Control (MPC)

Problem statement

Performance sensitive to *a priori* assumptions on Probability Density Function of process [Gu et al., 2015].

Alternative assumption:

• Noises and uncertainties bounded

Approach:

- Set-membership state estimation [Reynaud et al., 2018, Reboul et al., 2019]
- Set-membership compliant Model Predictive Control (MPC)

Objectives

Targets search considering the following issues:

- Limited field of view and communication range
- Unknown displacement of targets
- Presence of decoys/false targets
- Confusion between target tracks
- Non-detection occurrences
- Uncertainties of the position of each drone

Main objective:

- Developing set-membership estimator
- Designing cooperative guidance scheme

Outline

1. Introduction

2. Accounting for decoys

3. Detailed Framework

4. Conclusion

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Limited FoV and presence of decoys

Considering localization within search area:

- of a priori unknown number of targets
- in presence of static decoys
- search area uncluttered
- non-detection not considered

Robust state estimator processes sets guaranteed to contain state of true targets already detected.¹

¹J. Ibenthal, L. Meyer, M. Kieffer, H. Piet-Lahanier, Bounded-error target localization and tracking in presence of decoys using a fleet of UAVs, presented at 21st IFAC World Congress in Berlin, Germany, 2020 - 200

Limited communication, obstacles and moving decoys

Considering localization within search area:

- of a priori unknown number of indistinguishable targets
- in presence of moving decoys
- search area with known obstacles
- limited communication
- non-detection not considered herein²

Figure: Simulations

²J. Ibenthal, L. Meyer, H. Piet-Lahanier, M. Kieffer, Target search and tracking using a fleet of UAVs in presence of decoys and obstacles, presented at IEEE CDC, Jeju Island, 2020.

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Generalization of the prior approaches

Considering localization within search area:

- of a priori unknown number of targets
- in presence of moving decoys
- with limited and delayed communication
- non-detection still not considered³

- Identification condition modeled by unknown geometric conditions
- Extensive study of the parameters in simulations

³J. Ibenthal, M. Kieffer, L. Meyer, H. Piet-Lahanier, Bounded-error target localization and tracking using a fleet of UAVs, Automatica, accepted 2021.

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Outline

- 1. Introduction
- 2. Accounting for decoys
- 3. Detailed Framework
- 4. Conclusion

もって 正則 エル・エット 白マ

Outline

1. Introduction

2. Accounting for decoys

3. Detailed Framework

Problem formulation

- Evolution of the set estimates
- Cooperative control design
- Simulation

4. Conclusion

315

(4) E (4) E (4)

Consider

- fleet of UAVs equipped with optical seekers
- moving true targets
- moving false targets
- detection and identification under specific conditions

-

UAVs and targets

Region of interest and possible target locations X_0 Time is discretized: at time instant t = kT

• state vector $\mathbf{x}_{i,k}^{u}$ of UAV $i = 1, \dots, N_{u}$ evolves as

$$\mathbf{x}_{i,k+1}^{\mathsf{u}} = \mathbf{f}_{k}^{\mathsf{u}}\left(\mathbf{x}_{i,k}^{\mathsf{u}},\mathbf{u}_{i,k}\right),$$

with control input $\mathbf{u}_{i,k} \in \mathbb{U}$

• state vector $\mathbf{x}_{j,k}^{t}$ of target j evolves as

$$\mathbf{x}_{j,k+1}^{t} = \mathbf{f}_{k}^{t} \left(\mathbf{x}_{j,k}^{t}, \mathbf{v}_{j,k} \right),$$

with state perturbation $\mathbf{v}_{j,k} \in [\mathbf{v}_k]$

• false targets may be static or moving

Measurements

UAVs equipped with optical seekers:

• Field of view $\mathbb{F}_i(\mathbf{x}_i^{u})$

・ロト・日本・日本・日本・日本・ション

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Measurements for false targets

◆□▶ ◆□▶ ▲目▶ ▲目▶ ④ ●●

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Multi-target detection and tracking

20 / 67

Measurements for false targets

◆□▶ ◆□▶ ▲目▶ ▲目▶ ④ ●●

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Measurements for false targets

◆□▶ ◆□▶ ▲目▶ ▲目▶ ④ ●●

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Multi-target detection and tracking

22 / 67

Measurements for false targets

◆□▶ ◆□▶ ▲目▶ ▲目▶ ④ ●●

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Measurements for false targets

◆□▶ ◆□▶ ▲目▶ ▲目▶ ④ ●●

Measurements for false targets

◆□▶ ◆□▶ ▲目▶ ▲目▶ ④ ●●

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Measurements for false targets

◆□▶ ◆□▶ ▲目▶ ▲目▶ ④ ●●

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

Observation

Noisy observation of target state

$$\mathbf{y}_{i,j,k} = \mathbf{h}_i \left(\mathbf{x}_{i,k}^{\mathsf{u}}, \mathbf{x}_{j,k}^{\mathsf{t}} \right) + \mathbf{w}_{i,j,k}$$

 $\mathbf{w}_{i,j,k}$ represents the measurement noise, bounded in some known box $[\mathbf{w}]$

Figure: Collecting observations

나 수준에 수준에 드립니

Communication

Two UAVs in the vicinity are able to communicate.

Exchanged Information:

- UAV state value
- Control inputs
- Set estimates

Assumption:

communication without error

315

- A - E

Outline

1. Introduction

2. Accounting for decoys

3. Detailed Framework

- Problem formulation
- Evolution of the set estimates
- Cooperative control design
- Simulation

4. Conclusion

315

(E) (E)

Estimates

Unexplored set $\overline{\mathbb{X}}_{i,k}$

Possible states of not yet detected targets

Target state estimate $\mathcal{X}_{i,k} = \{X_{i,j,k}\}_{j \in \mathcal{L}_{i,k}}$ for identified targets

- may not contain a target due to presence of decoys
- $\mathcal{L}_{i,k}$: *list* of indices of targets already detected

Target state estimate \mathbb{X}_{k}^{U} for unidentified targets

• may contain targets and decoys

Nonlinear recursive set-membership state estimator

Initialization at k = 0:

- $\mathcal{L}_{i,0} = \emptyset$,
- $\mathcal{X}_{i,0} = \emptyset$,
- $\mathbb{X}_{i,0}^{\mathsf{U}} = \emptyset$
- and $\overline{\mathbb{X}}_{i,0} = \mathbb{X}_0$ for $i = 1, \dots, N_u$

지금 지지 말 지 않는 것 같다.

Prediction

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Set estimate update from measurements

$$k \rightarrow k+1|k \rightarrow k+1|k+1 \rightarrow k+1$$

Updating unexplored set $X_{i,k+1|k}$

When no target is detected

(本語) (《曰) (《曰) (三) (三)

 $k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$ Updating unexplored set $\overline{\mathbb{X}}_{i,k+1|k}$

When no target is detected

$$\overline{\mathbb{X}}_{i,k+1|k+1} = \overline{\mathbb{X}}_{i,k+1|k} \setminus \mathbb{F}_i\left(\mathbf{x}_{i,k+1}^{\mathsf{u}}\right)$$

「二」 (中) (日) (日) (日)

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

$$\mathbb{X}_{i,j,k+1|k+1} = \mathbb{X}_{i,j,k+1|k} \setminus \mathbb{F}_i\left(\mathbf{x}_{i,k+1}^{\mathsf{u}}\right)$$

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating unidentified target set estimate $X_{i,k+1|k}^{U}$

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating unidentified target set estimate $X_{i,k+1|k}^{U}$

$$\mathbb{X}^{\mathsf{U}}_{i,k+1|k+1} = \mathbb{X}^{\mathsf{U}}_{i,k+1|k} \setminus \mathbb{F}_{i}\left(\mathsf{x}^{\mathsf{u}}_{i,k+1}\right)$$

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

- detected again
- and identified

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

- detected again
- and identified

$$\begin{split} \mathbb{S}_1 &= \left\{ \mathbf{x} \in \mathbb{X}_{i,j,k+1|k} \mid \\ \mathbf{h}_i \left(\mathbf{x}_{i,k+1}^{\mathsf{u}}, \mathbf{x} \right) \in \mathbf{y}_{i,j,k+1}^{\mathsf{l}} - [\mathbf{w}_{i,k}] \right\} \end{split}$$

$$\begin{aligned} \mathbb{X}_{i,j,k+1|k+1} &= \\ \left(\mathbb{X}_{i,j,k+1|k} \setminus \mathbb{F}_i\left(\mathbf{x}_{i,k+1}^{\mathsf{u}}\right) \right) \bigcup \mathbb{S}_{i} \end{aligned}$$

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

- detected again
- and not identified

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

When a new target is identified

◆□▶ ◆圖▶ ★≧▶ ★≧▶ 差目目 ���

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

When a new target is identified

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

When a unidentified target is identified

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

When a unidentified target is identified

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating target set estimate $X_{i,j,k+1|k}$

Accounting for all cases

 $k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$

Updating unidentified target set estimate $X_{i,k+1|k}^{U}$

- detected again
- and not identified

 $k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$

Updating unidentified target set estimate $X_{i,k+1|k}^{U}$

- detected again
- and not identified

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating unidentified target set estimate $X_{i,k+1|k}^{U}$

When new target is not identified

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating unidentified target set estimate $X_{i,k+1|k}^{U}$

When new target is not identified

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Updating unidentified target set estimate $X_{i,k+1|k}^{U}$

Accounting for all cases

Correction from communication

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

At the end of each time step k UAV i communicates with its neighbors

Exchanged information:

- Target set estimate
- Unexplored set
- Receiving the corresponding sets from its neighbors.

Correction from communication

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

Correction from communication

$$k \rightarrow k+1 | k \rightarrow k+1 | k+1 \rightarrow k+1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ のQ@

Outline

1. Introduction

2. Accounting for decoys

3. Detailed Framework

- Problem formulation
- Evolution of the set estimates

• Cooperative control design

Simulation

4. Conclusion

315

▶ < ∃ ▶</p>

Cooperative distributed control design

Target state estimation uncertainty at time k for UAV i

$$\Phi\left(\mathcal{X}_{i,k}, \mathbb{X}_{i,k}^{\mathsf{U}}, \overline{\mathbb{X}}_{i,k}\right) = \phi\left(\left(\bigcup_{\mathbb{X}_{i,j,k}\in\mathcal{X}_{i,k}} \overline{\mathbb{X}}_{i,j,k}\right) \cup \mathbb{X}_{i,k}^{\mathsf{U}} \cup \overline{\mathbb{X}}_{i,k}\right)$$

Each UAV

- has access to $\mathbb{X}_{i,j,k}$, $\mathbb{X}_{i,k}^{U}$, and $\overline{\mathbb{X}}_{i,k}$
- · determines sequence of control inputs minimizing estimation uncertainty

We rely on a model predictive control approach

Simulation

Outline

1. Introduction

3. Detailed Framework

- Problem formulation
- Evolution of the set estimates
- Cooperative control design
- Simulation

4. Conclusion

315

Image: A test in te

< E

Simulation conditions

The performance of the proposed approach is evaluated via simulations:

- $\bullet\,$ Targets move on the ground with a constant speed module V^t
- UAVs fly at constant altitude and with constant speed
- UAVs are equipped with identical optical sensors
- The control input applied to yaw rate derivative
- Area of interest $\mathbb{X}_0:$ cube of $[0,400]\times[0,400]\times[0,100]~m^3$

Results - Impact of the fleet size

Figure: Mean values (line) and standard deviation (shaded area) of $\overline{\Phi}_k$ evaluated for 30 simulations with 3 true targets, 3 false targets, and 2 to 6 UAVs.

Figure: Mean values of $\phi(\overline{\mathbb{X}}_k), \phi(\mathbb{X}_k^{\mathsf{U}})$, and $\phi(\mathbb{X}_k)$ evaluated with 3 true and 3 false targets, considering 2, 4 and 6 UAVs.

(DTIS, ONERA, Univ. Paris Saclay, L2S, Univ. Paris Sa

비로 세종에 세종에

Outline

- 1. Introduction
- 2. Accounting for decoys
- 3. Detailed Framework
- 4. Conclusion

Conclusion

Development of several approaches solving the following issues:

- Cooperative target localization and tracking
- Static and dynamic targets
- Identification or detection of a target depends deterministically on the point of view
- Presence of static and dynamic decoys
- Presence of obstacles
- Distributed UAV control scheme

Conclusion

Other developments include

- Study of non-detection with moving targets
- Improve displacement strategies of UAVs accounting for their points of view
- Compare proposed approaches with probabilistic target search
- Implement on test platform (quadrotors)

Perspectives:

• Investigate game theory for cooperative guidance

References I

Bertuccelli, L. F. and How, J. (2005).

Robust uav search for environments with imprecise probability maps. In *Proc. 44th IEEE CDC*, pages 5680–5685. IEEE.

Gu, F., He, Y., and Han, J. (2015).
 Active persistent localization of a three-dimensional moving target under set-membership uncertainty description through cooperation of multiple mobile robots.
 IEEE Trans. Ind. Electron., 62(8):4958–4971.

Khodayi-mehr, R., Kantaros, Y., and Zavlanos, M. M. (2019). Distributed state estimation using intermittently connected robot networks. *IEEE Trans. Robot.*, 35(3):709–724.

지금 지지 말 지 모님

References II

Li, P. and Duan, H. (2017).

A potential game approach to multiple uav cooperative search and surveillance. *Aerosp. Sci. Technol.*, 68:403–415.

Moon, G. (2008).
 Improved cooperative planning for air vehicles searching for a ground object.
 In Carapezza, E. M., editor, *Proc. SPIE 7112, Unmanned/Unattended Sensors and Sensor Networks V*, pages 220 – 230. Inter. Soc. for Optics and Photonics, SPIE.

Reboul, L., Kieffer, M., Piet-Lahanier, H., and Reynaud, S. (2019).
 Cooperative guidance of a fleet of uavs for multi-target discovery and tracking in presence of obstacles using a set membership approach.
 In *Proc. IFAC ACA*, pages 340–345.

0 0 0 E E A E A E A E A

References III

- Reynaud, S., Kieffer, M., Piet-Lahanier, H., and Reboul, L. (2018).
 A set-membership approach to find and track multiple targets using a fleet of uavs.
 In *Proc. IEEE CDC*, pages 484–489.
- Sun, L., Baek, S., and Pack, D. (2014).
 Distributed probabilistic search and tracking of agile mobile ground targets using a network of unmanned aerial vehicles.
 In *Human behavior understanding in networked sensing*, pages 301–319. Springer.
- Yang, Y., Polycarpou, M. M., and Minai, A. A. (2007).
 Multi-uav cooperative search using an opportunistic learning method.
 J. Dyn. Sys., Meas., Control., pages 716–728.

References IV

Yao, P., Wang, H., and Ji, H. (2016).

Multi-uavs tracking target in urban environment by model predictive control and improved grey wolf optimizer. *Aerosp. Sci. Technol.*, 55:131–143.

Zhang, M., Song, J., Huang, L., and Zhang, C. (2017).
 Distributed cooperative search with collision avoidance for a team of unmanned aerial vehicles using gradient optimization.

J. Aero- Eng., 30(1):04016064.