

Improving data efficiency for machine learning in robotics

Sciences et techniques avancées

David Filliat U2IS ENSTA Paris École Nationale Supérieure de **Techniques Avancées**

Machine Learning and Robotics

Machine Learning is important for robotics / intelligent vehicles

- Perception
 - Vision, Lidar, Multi-sensor systems
 - Object/obstacle detection, road/path detection, sensor fusion, mapping, localization...
- Decision
 - Trajectory prediction, manoeuvre prediction
 - Risk estimation
- Action
 - Learning model for MPC / tuning 'classical' controllers
 - Imitation learning (e.g.: end to end driving)
 - Reinforcement learning

RL in Robotics vs Games

Deep Reinforcement Learning

Reinforcement Learning for robotics Big (cheap) data

- Slow Learning (millions of interactions with environment → simulation)
- Learn one task defined by researcher
- Quite unstable (hyperparameters, ...)
- Little (expensive) data
- Would need fast incremental learning during interaction with real world
- Learn multiple tasks
- No researcher \rightarrow autonomous learning
- Needs to be stable, robust

Machine Learning and Robotics

Robotics constraints

- Data are expensive (vs games), robots are slow, break easily
- Search (behaviour) space are huge, enough (iid) data difficult to gather
- Incremental learning, multi-tasks learning ...

How to improve efficiency of machine learning on real robots ?

- Learn in simulation and transfer to real life
- Use auxiliary tasks to accelerate learning in real life
- Learn compact representation to accelerate learning in real life

All of the above ?

Estimating depth from video

- Input multiple images / randomize appearance -> focus on optical flow
- Exploit stabilized orientation of UAV -> simplify depth prediction
- Generate database in simulation with randomized shapes/textures

Estimating depth from video

Train a neural network to predict depth (supervised)

CNN regularizes around POE and uniform areas [Pinard & al., ECMR17]

Estimating depth from video

 Additional unsupervised fine tuning using photometric consistency for transfer on real data

Parrot

Transferring from simulation to reality

- Pinard & al. is just an example in a simple transfer case
- Many other techniques :
 - Domain randomization
 - Domain adaptation
 - Learning residual models of sim/real differences
 - ...
- See e.g., https://twitter.com/sim2realAlorg

End to end driving

- Learn to follow road, avoid obstacles, negociate intersections from image
- Using CARLA simulator

Learning in simulation

- Perform Reinforcement Learning (PPO) in simulation
- Learn action choice to maximize long term reward
- Accelerate / stabilize with auxiliary tasks

[Carton et al. 21]

list

ceatech

IP PARIS

Auxiliary tasks improve generalization

Simulation to simulation transfer with different conditions

	Training	New Weather	New Town	New Town
	Condition			& Weather
RL [9]	14%	2%	3%	6%
CIRL [16]	93%	86%	53%	68%
Auxiliary task	90%	92%	78%	68%

Better than (semantic) data augmentation and pre-training

Training	Training New weather N		New town	New Town
	conditions			& weather
No da	34%	6%	9%	2%
Classic da	57%	60%	22%	4%
Da w/ seg	67%	60%	34%	28%

Training	Training	New weather	New town	New Town
	conditions			& weather
Pretraining	82%	98%	49%	40%
Auxiliary task	90%	92%	78%	68%

Auxiliary tasks improve generalization

Simulation to simulation transfer with different conditions

New town, new weather

ceatect

Improving data efficiency for machine learning in robotics - David Filliat

Training conditions

Auxiliary tasks

- Semantic segmentation improves stability, training speed, generalization
- But supervised task, not so useful in real life
- Would be better with unsupervised tasks (i.e., without human labels)
 - => State Representation Learning

States ?

Often, robot controllers require simple, 'high-level', low dimension inputs (the 'state' of the robot/world)

 E.g., grasping: object position, gripper position driving: road direction, obstacle positions, ...

Vision based control requires filtering to get this information

Many solutions, often hand-crafted, task specific

Why learning states ?

Facilitate adaptation to new task

DREAM approach [Doncieux et al., FiN18]

Discover the relevant state from exploration/demonstrations

Controllers are easier to train in such lower dimension

Possibly faster than end-to-end; Could help transfer across tasks

SRL approaches

Learning state representation using self-supervision

Several objectives can be exploited without human labelling

Reconstructing the observation

Train a state that is sufficient for reconstructing the input observation

- AE, DAE, VAE
- (Bi)GANs

Downside: sensitive to irrelevant variations (wrt actions)

 s_t

 O_t

 \hat{o}_t

Forward models

Find state from which it is easy to predict next state

- Additional constraints to avoid fixed representations (AE, triplet loss...)
- Impose constraints on forward model (e.g., linear model)

Naturally discard irrelevant features

Model may be useful

- in model based RL
- In planning

Inverse models

Find a state sufficient to recover action from 2 observations

Impose constraints on model (e.g., linear model)

Focus on states that can be controlled

Useful for a direct control model

Prior models

Encode high-level constraints on the states

- Temporal continuity
- Controllability
- Inertia
- etc....

May exploit rewards

Robotic Priors

[Jonschkowski et. al. 2015]

Use a priori knowledge to learn representations relevant to the task

Temporal coherence Prior: Two states close to each other in time are also close to each other in the state representation space.

$$\mathcal{L}_{Temp}(D,\hat{\phi}) = \mathsf{E}[\|\Delta \hat{s}_t\|^2] , \qquad (1$$

Proportionality Prior: Two identical actions should result in two proportional magnitude state variations.

$$L_{Prop}(D,\hat{\phi}) = \mathsf{E}[(\|\Delta \hat{s}_{t_2}\| - \|\Delta \hat{s}_{t_1}\|)^2 | \mathbf{a}_{t_1} = \mathbf{a}_{t_2}], \qquad (2)$$

Repeatability Prior: Two identical actions applied at similar states should provide similar state variations, not only in magnitude but also in direction.

$$L_{Rep}(D,\hat{\phi}) = \mathsf{E}[e^{-\|\hat{s}_{t_2} - \hat{s}_{t_1}\|^2} \| \Delta \hat{s}_{t_2} - \Delta \hat{s}_{t_1} \|^2 | a_{t_1} = a_{t_2}], \quad (3)$$

Causality Prior: If two states on which the same action is applied give two different rewards, they should not be close to each other in the state representation space.

$$L_{Caus}(D,\hat{\phi}) = \mathsf{E}[e^{-\|\hat{s}_{t_2} - \hat{s}_{t_1}\|^2} \mid a_{t_1} = a_{t_2}, r_{t_1+1} \neq r_{t_2+1}] , \qquad (4)$$

Integrating several approaches

Embed to Control (E2C)

[Watter'18]

Multiple objectives

- Reconstruct observation using VAE
- Learn a locally linear forward model
- Exploit this forward model in optimal control setting

 $\hat{s}_{t+1} \sim \mathcal{N}(\mu = W * \hat{s}_t + U * a_t + V, \sigma)$

SRL : state of the art

State Representation Learning for Control: An Overview

Timothée Lesort^{1, 2}, Natalia Díaz-Rodríguez¹, Jean-François Goudou², and David Filliat¹

¹U2IS, ENSTA ParisTech, Inria FLOWERS team, Université Paris Saclay, Palaiseau, France., {timothee.lesort, natalia.diaz, david.filliat}@ensta-paristech.fr ²Thakes, Theresis Laboratory, Palaiseau, France., {jean-francois.goudou@thalesgroup.com

Contents

3

[Lesort et al, NN18]

1 Introduction

2 Formalism and definitions

2.1	SRL Formalism	
	State representation characteristics	
2.3	State representation learning applications	•
Lea	rning objectives	
	Reconstructing the observation	
	Learning a forward model	
3.3	Learning an inverse model	
3.4	Using feature adversarial learning	

				~							
3.5	Exploiting rewards										
3.6	Other objective functions										
3.7	Using hybrid objectives										

4 Building blocks of State Representation Learning

4.1	Learning tools					
	4.1.1 Auto-encoders					
	4.1.2 Denoising auto-encoders (DAE).					
	4.1.3 Variational auto-encoders (VAE)					
	4.1.4 Siamese networks					
4.2	Observation/action spaces					
4.3	Evaluating learned state representations					
4.4	Evaluation scenarios					

5 Discussion and future trends

- 6 Conclusion
- 7 Acknowledgements

State representation learning Toolbox

SRL Toolbox https://github.com/araffin/robotics-rl-srl

Set of environments

[Lesort et al. 18] [Raffin et al. 18]]

GT states (Env. 2)

Learned States

RL Performance

Improving data efficiency for machine learning in robotics – David Filliat

SRL Toolbox

A set of baselines

- Auto Encoders
- Variational Auto Encoders
- Robotic priors
- Forward Models
- Inverse models

A set of evaluation tools

- RL (Stable Baselines)
- PPO, CMA-ES, ARS, …
- KNN-MSE
- Ground truth correlation

Ground Truth States Learned States

-0.75

1.00

RL Performance

3.5

1.5 2.0

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

1.00

A set of visualization tools

Latent visualization

SRL Toolbox

A set of visualization tools

State / GT correlation

State vs State plot

SRL Toolbox

Some lessons learned

- Many methods' performance is quite task specific
 - E.g. robotic priors fail on robotic arms
- Autoencoders/VAE work quite well if extreme (small or large) noise
- Predicting a forward and inverse model often efficient
- Random states often reasonably efficient
- SRL + RL usually more efficient than end-to-end RL
- Encoding robot state AND environment state may be difficult
 - E.g. robotic priors work with fixed goal, but not moving goal

SRL - Split model

Learning structured state representation

[Raffin et al. SPIRL19]

- Structure / disentangle / split state representation
- Forward/inverse models -> robot state
- Autoencoder/reward -> environment state

SRL - Split model

Learning structured state representation

- Can learn representation with moving goal
- Better sample efficiency / robustness

[Raffin et al. SPIRL19]

IP PARIS

SRL - Split model

Learning structured state representation

But not so efficient on more complex tasks

[Raffin et al. SPIRL19]

Conclusion

Machine learning has difficulties linked to the robotics context, but can exploit constraints/knowledge

Take advantage of the domain

- Learn in simulation using easy to simulate features (e.g. 3D motion)
- Exploit constraints on relevant info (low dim, controllable, predictable...)
- Exploit unsupervised (self supervised) learning

Many approaches

- Many existing approaches that can be combined
- Proposed a new way to combine AE & models

Perspectives

Very active domain

- Many Sim to Real transfer approaches (domain randomization, domain adaptation, ...)
- Many new state representation learning approaches associated to unsupervised pretraining of CNNs
- Some fixed representation may be useful (e.g., Fourrier features)

[Brellman et al. 21]

- Define / improve representation disentanglement (explicability)
- Merge everything ?
 - Supervised/self supervised pre-training in simulation with SRL, randomization, ...
 - Ensure disentanglement/interpretability in simulation
 - Fine tuning on real data with continual learning and SRL as auxiliary tasks

Behind these results

Students

- Florence Carton
- Hugo Caselles-Dupré
- Timothée Lesort
- Clément Pinard
- Antonin Raffin
- Ashley Hill
- René Traoré

Colleagues

- Laure Chevalley
- Natalia Diaz
- Michael Garcia Ortiz
- Jean François Goudou
- Antoine Manzanera
- Quoc Cong Pham
- Jaonary Rabarisoa
- Projects
- H2020 DREAM
- H2020 VeriDREAM

https://www.veridream.eu/

References

[Pinard & al., ECMR17] Multi range Real-time depth inference from a monocular stabilized footage using a Fully **Convolutional Neural Network** Clément Pinard, Laure Chevalley, Antoine Manzanera, David Filliat European Conference on Mobile Robotics,

[Pinard & al., ECCV18] Learning structure-from-motion from motion Clément Pinard, Laure Chevalley, Antoine Manzanera, David Filliat ECCV GMDL Workshop, Sep 2018

[Lesort et al, NN18] **State Representation Learning for Control: An Overview.** Timothée Lesort, Natalia Díaz-Rodríguez, Jean-François Goudou, David Filliat Neural Networks, Elsevier, 2018, 108, pp.379-392.

[Raffin et al, SPIRL19] **Decoupling feature extraction from policy learning: assessing benefits of state representation learning in goal based robotics** Antonin Raffin, Ashley Hill, René Traoré, Timothée Lesort, Natalia Díaz-Rodríguez, David Filliat SPIRL 2019 : Workshop on Structure and Priors in Reinforcement Learning at ICLR 2019.

[Lesort et al, IF20] **Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges.** Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., & Díaz-Rodríguez, N. (2020). Information fusion, 58, 52-68.

[Caselle-Dupré et al., IJCNN21] **S-trigger: Continual state representation learning via self-triggered generative replay.** Caselles-Dupré, H., Garcia-Ortiz, M., & Filliat, D. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7).

[Carton et al. 21] **Using Semantic Information to Improve Generalization of Reinforcement Learning Policies for Autonomous Driving** Florence Carton, David Filliat, Jaonary Rabarisoa, Quoc Pham IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops

[Brellman et al. 21] Fourier Features in Reinforcement Learning with Neural Networks David Brellmann, Goran Frehse, David Fiilliat, submitted JCNN 2022

