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Machine Learning and Robotics

Machine Learning is important for robotics / intelligent vehicles

= Perception

= \/ision, Lidar, Multi-sensor systems
= Object/obstacle detection, road/path detection, sensor fusion, mapping, localization...

= Decision
= Trajectory prediction, manoeuvre prediction

= Risk estimation

= Action
= Learning model for MPC / tuning ‘classical’ controllers

= |mitation learning (e.g.: end to end driving)
= Reinforcement learning
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RL in Robotics vs Games

Deep
Reinforcement
Learning

Self-taught Al software
attains human-level
invideo games

Reinforcement
Learning
for robotics
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Big (cheap) data

Slow Learning (millions of interactions with
environment =» simulation)

Learn one task defined by researcher

Quite unstable (hyperparameters, ...)

Little (expensive) data

Would need fast incremental learning during
interaction with real world

Learn multiple tasks
No researcher = autonomous learning

Needs to be stable, robust
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Machine Learning and Robotics

Robotics constraints

= Data are expensive (vs games), robots are slow, break easily
= Search (behaviour) space are huge, enough (iid) data difficult to gather
® |ncremental learning, multi-tasks learning ...

How to improve efficiency of machine learning on real robots ?
= | earnin simulation and transfer to real life

= Use auxiliary tasks to accelerate learning in real life

= | earn compact representation to accelerate learning in real life

All of the above ?
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Exploiting simulated data

Estimating depth from video

= |nput multiple images / randomize appearance -> focus on optical flow
= Exploit stabilized orientation of UAV -> simplify depth prediction

= (enerate database in S|mulat|on with randomized shapes/textures
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Exploiting simulated data

Estimating depth from video
= Train a neural network to predict depth (supervised)

A

convolutional fl\/lultiScale
network 'L L1 Loss

= CNN regularizes around POE and uniform areas [Finard &al., ECMR17]
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Exploiting simulated data

Estimating depth from video

= Additional unsupervised fine tuning using photometric consistency for
transfer on real data

= No dependence on appearance
Input Ground truth Zhou et al |2] Ours
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Exploiting simulated data

Transferring from simulation to reality

= Pinard & al. is just an example in a simple transfer case

= Many other techniques :
= Domain randomization
= Domain adaptation
= Learning residual models of sim/real differences

= See e.g., https://twitter.com/sim2realAlorg
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Using auxiliary tasks

End to end driving
= | earn to follow road, avoid obstacles, negociate intersections from image

= Using CARLA simulator
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Using auxiliary tasks

Learning in simulation
= Perform Reinforcement Learning (PPO) in simulation
= | earn action choice to maximize long term reward

= Accelerate / stabilize with auxiliary tasks
® Task : semantic segmentation

[Carton et al. 21]
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Using auxiliary tasks

Auxiliary tasks improve generalization
= Simulation to simulation transfer with different conditions

Training | New Weather | New Town | New Town

Condition & Weather
RL [9] 14% 2% 3% 6%
CIRL [16] 93 % 86% 53% 68%
Auxiliary task 90% 92 % 78 % 68 %

= Better than (semantic) data augmentation and pre-training

Training Training | New weather | New town | New Town
conditions & weather
No da 34% 6% 9% 2%
Classic da 57% 60% 22% 4%
Da w/ seg 67% 60% 34% 28%
Training Training | New weather | New town | New Town
conditions & weather
Pretraining 82% 98 % 49% 40%
Auxiliary task 90 % 92% 78 % 68 %
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Using auxiliary tasks

Auxiliary tasks improve generalization
= Simulation to simulation transfer with different conditions

Training conditions New town, new weather
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Using auxiliary tasks

Auxiliary tasks

= Semantic segmentation improves stability, training speed, generalization
= But supervised task, not so useful in real life

= Would be better with unsupervised tasks (i.e., without human labels)

=> State Representation Learning

Improving data efficiency for machine learning in
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States ?

Often, robot controllers require simple, ‘high-level’, low dimension
inputs (the ‘state’ of the robot/world)
= E.g., grasping: object position, gripper position
driving: road direction, obstacle positions, ...
Vision based control requires filtering to get this information
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Why learning states ?

- : DREAM approach
Facilitate adaptation to new task [Doncieux et al., FiN18]

= Discover the relevant state from exploration/demonstrations

Controllers are easier to train in such lower dimension

= Possibly faster than end-to-end; Could help transfer across tasks

ReinfoiRem&mtement
Learnifgarning
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SRL approaches

Learning state representation using self-supervision

= Several objectives can be exploited without human labelling
= (QObjectives can be combined

[Lesort & al., NN18]
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Reconstructing the observation

Train a state that is sufficient for
reconstructing the input observation

Eal

= (Bi)GANs
Downside: sensitive to irrelevant variations (wrt actions)

Variational Autoencoder

Encoder
E

&~ N(p,0)

ncoded

distribution
Input (mean and varianee) Reconstructed

vector input
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Forward models

Find state from which it is easy to
predict next state o

= Additional constraints to avoid fixed o
representations (AE, triplet loss...)

= Impose constraints on forward model (e.g., ) )
linear model) ‘ -

Naturally discard irrelevant features

Model may be useful
® in model based RL
" |n planning
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Inverse models

Find a state sufficient to recover action from 2

observations
= |mpose constraints on model (e.g., linear model)

- T~

Focus on states that can be controlled

Useful for a direct control model
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Prior models

Encode high-level constraints on the states

= Temporal continuity
= Controllability
" |nertia

= efc....

May exploit rewards
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Robotic Priors

[Jonschkowski et. al. 2015]

Use a priori knowledge to learn representations relevant to the
task

» Temporal coherence Prior: Two states close to each other in time
are also close to each other in the state representation space.

Lremp(D, ¢) = E[|| AS; ”2] ; (1)
» Proportionality Prior: Two identical actions should result in two
proportional magnitude state variations.

Lpop(D, 0) = E[(l| A%, || — || A&, [)%an = ar) . (2)

» Repeatability Prior: Two identical actions applied at similar states
should provide similar state variations, not only in magnitude but also in
direction.

Lrep(D, @) = E[e W=l || A%, — A3, ||?] 2 = ay)] | (3)

» Causality Prior: If two states on which the same action is applied give
two different rewards, they should not be close to each other in the state
representation space.

LCaus(D: (B) = E[e_||§t2—§t1"2 | atl = atz', rt1+l ?é rt2+1] ' (4)
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Mixing objectives

Integrating several approaches

St St+1
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Embed to Control (E2C)

[Watter'18]

Multiple objectives

= Reconstruct observation using VAE
= | earnalocally linear forward model
= Exploit this forward model in optimal control setting
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SRL : state of the art

Contents [Lesort et al, NN18]
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State representation learning Toolbox

SRL Toolbox https://github.com/araffin/robotics-rl-stl
. [Lesort et al. 18]
= Set of environments [Raffin et al. 18]]

RL Performance

Learning Curve
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SRL Toolbox

A set of baselines

= Auto Encoders

= \Variational Auto Encoders
= Robotic priors

= Forward Models

" |nverse models

A set of evaluation tools
= RL (Stable Baselines)
= PPQO, CMA-ES,ARS, ...
= KNN-MSE

= Ground truth correlation

Improving data efficiency for machine learning in
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SRL Toolbox

Real-time SRL Interactive scatter

A set of visualization tools

0\ 1of B
:..l‘.‘ | \ osd v
Latent visualization —— . I o
l ! .
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SRL Toolbox

A set of visualization tools

Correlation Matrix: 5 = Predicted states | 5 = Agent's position
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SRL Toolbox

Some lessons learned

= Many methods’ performance is quite task specific
= E.g. robotic priors fail on robotic arms

= Autoencoders/VAE work quite well if extreme (small or large) noise
= Predicting a forward and inverse model often efficient

= Random states often reasonably efficient

= SRL + RL usually more efficient than end-to-end RL

= Encoding robot state AND environment state may be difficult
= E.g. robotic priors work with fixed goal, but not moving goal

Improving data efficiency for machine learning in
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SRL - Split model

Learning structured state representation [Raffin et al. SPIRL19]

= Structure / disentangle / split state representation
= Forward/inverse models -> robot state
= Autoencoder/reward -> environment state
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SRL - Split model

Learning structured state representation [Raffin et al. SPIRL19]

= (Can learn representation with moving goal

= Better sample efficiency / robustness
Navigation 2D Target
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SRL - Split model

Learning structured state representation [Raffin et al. SPIRL19]

= But not so efficient on more complex tasks

Robotic Arm Random Target
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Conclusion

Machine learning has difficulties linked to the robotics context,

but can exploit constraints/knowledge
Take advantage of the domain

= [ earninsimulation using easy to simulate features (e.g. 3D motion)
= Exploit constraints on relevant info (low dim, controllable, predictable...)
= Exploit unsupervised (self supervised) learning

Many approaches

= Many existing approaches that can be combined
= Proposed a new way to combine AE & models

Improving data efficiency for machine learning in ENSTA
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Perspectives

Very active domain

= Many Sim to Real transfer approaches (domain randomization, domain
adaptation, ...)

= Many new state representation learning approaches associated to
unsupervised pretraining of CNNs

= Some fixed representation may be useful (e.g., Fourrier features)
[Brellman et al. 21]

= Define / improve representation disentanglement (explicability)
= Merge everything ?
= Supervised/self supervised pre-training in simulation with SRL, randomization, ...

= Ensure disentanglement/interpretability in simulation
= Fine tuning on real data with continual learning and SRL as auxiliary tasks

Improving data efficiency for machine learning in
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