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[fc] ([x]) Centred form inclusion function for
f ([x])
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L f
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Tubes
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[x] (t) Evaluation of the tube x (·) at time t
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[x] (k) kth slice of the tube x (·) (k ∈N)
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1.1 context

1.1.1 And there was light

Our civilisation runs on energy. This fact has never been more true
than today: between 1973 and 2018, the world’s total energy consump-
tion has more than doubled, according to the recent annual report
issued by the International Energy Agency [44]. However, this rise in
energy consumption comes with that of CO2 emissions, among other
environmental issues. Most countries of the world are thus increas-
ingly looking towards renewable energy as a serious alternative to
traditional fossil fuels and nuclear energy: in 2019, 75% of new power
generating installations were using renewable energies, while this
share was of less than 50% in 2009, according to the report published
recently by the Renewable Energy Policy Network for the 21st Century [86].

Renewable energy comes from different sources. The most devel-
oped today are hydropower, wind (onshore and offshore) and solar
photovoltaic power: in 10 years, the wind power production capacity
has more than quadrupled, and this trend is accelerating. In particular,
offshore wind power production, despite representing only 5% of the
total wind power capacity, accounted for 10% of the new installations

1
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in 2019. One can think of the newly installed wind farms in the North
Sea or off the Chinese coast. As of today, more than 3000 offshore windAn extensive list of

offshore wind farms
is available on the

4C Offshore website
(https:

//www.4coffshore.

com/windfarms/)

turbines have been deployed, and at least a thousand more will be
installed in the next two years. Another lesser-known source of renew-
able energy is ocean power (understand the body of water), despite
the latter’s enormous potential: energy production via exploitation of
tidal streams and waves are being studied from Europe to Northern
America and China. While these projects are still in the early stages
of development, investments in that domain are steadily increasing,
reflecting the growing interest of governments and industries in ocean
power.

Figure 1.1: Map displaying the existing offshore wind farms in the North Sea
(https://windeurope.org/about-wind/interactive-offshore-maps/)

These installations, however, require more inspection and mainte-
nance operations than their inshore counterparts: pressure, corrosion,
marine life (in particular the so-called fouling, a mix of algae, barna-
cles and other marine organisms), and industrial waste are a threat
to their integrity. Until recently, inspection and maintenance opera-
tions of offshore installations, such as oil platforms, were realised
thanks to a combination of highly skilled divers in diving suits and
robots piloted from the surface (usually known as Remotely Operated
Vehicle (ROV)). However, because of the risks of deep diving in an
industrial environment, and because of the size of the boat required
to launch, operate and recover these robots, the inspection and main-
tenance costs are particularly high. Therefore, the growing number of
offshore installations triggered the need for cheaper inspection and
maintenance processes.

https://www.4coffshore.com/windfarms/
https://www.4coffshore.com/windfarms/
https://www.4coffshore.com/windfarms/
https://windeurope.org/about-wind/interactive-offshore-maps/
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Figure 1.2: Maintenance operation on an underwater structure by a work
class ROV (Released by Oceaneering in the public domain)

1.1.2 Dawn of the robots

As mentioned earlier, the robots used for maintenance operations are
called ROVs. In short, a robot is launched by a surface vessel, to which
it remains linked via a tether for power and communication [7], [19].
The main reasons for using a ROV instead of an Autonomous Under-
water Vehicle (AUV) are the power demand during these operations
that is usually too high for batteries to sustain, and sometimes the
complexity of the mission (soldering pipes, guiding the installation
of a new wellhead. . . ). They are usually classified into two categories
[19, Chapter 1], [25]:

• Work class ROVs weigh between a few hundred kilograms to a
few tons. They are usually equipped with various tools such as
robotic arms, probes, rotating brushes, spotlights. . . The latter are
often powered using a hydraulic pump, and so are the thrusters.
They embed a variety of classical sensors: Inertial Measurement
Unit (IMU), pressure sensor, cameras, altimeter, Doppler Velocity
Log (DVL), sonars, and more sophisticated acoustic localisation
systems (usually a transducer to interact with Long Base Line
(LBL) transponders or a transponder to interact with a vessel
mounted Ultra Short Base Line (USBL) antenna). Their missions
usually consist in heavy maintenance or deployment operations
on the ocean floor.

• Observation class ROVs are lighter than the work class ones (usu-
ally less than 300 kg). They embed fewer pieces of equipment,
usually a couple of cameras and spotlights, a Conductivity-
Temperature-Depth (CTD) probe and a reduced set of sensors
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for localisation purposes. Their missions typically fall in the
inspection category: checking an underwater pipeline or the wall
of a dam, exploring a wreck. . . They can sometimes be used for
light maintenance operations, such as the cleaning of underwater
structures.

Operating such heavy equipment requires major financial, material
and human resources. First of all, deploying a ROV is only achievable
from a boat, equipped with a Launch And Recovery System (LARS)
and a power generator (except for the micro ROVs embedding batteries,
which can be launched manually). Secondly, an acoustic positioning
system is used most of the time, either a LBL, which requires the
deployment and the calibration of acoustic transponders underwater,
or an USBL, which requires an antenna adequately calibrated on the
surface vessel and a transponder on the robot. Thirdly, a Tether Man-
agement System (TMS), and a clump weight must be used, depending
on the operating depth and the robot’s mass and power. Indeed, a
small robot cannot counter the tether’s drag when diving too deep. In
that case, the clump weight tenses the tether, and the TMS controls the
length being released or rewound. The most sophisticated versions of
these pieces of equipment are automated to some extent: the ROV usu-
ally provides semi-automated manual control (e. g. for station keeping
or maintaining depth), while the TMS can mitigate the swell-induced
jerks in the tether.

Figure 1.3 shows the different steps of a ROV operation, and some
of the equipment mentioned above can be spotted on the pictures.

1.1.3 Towards autonomous ROVs

In this context of offshore installation growth, keeping such operation
procedures is therefore very costly in terms of time, human, mate-
rial and financial resources. Thus, offshore companies have started
investing time and money in research and development programs
towards task automation, particularly inspection missions. Multiple
approaches are being considered:

• Using resident ROVs, whether autonomous or not, to perform in-
spection missions. Resident ROVs are deployed once and parked
in a garage at the bottom of the sea. These garages embed a
TMS, and are linked to the shore to communicate with and
power the robot. The latter can then be operated directly from
the shore without the need for a surface vessel, and regardless
of the weather conditions.

• Using a ROV deployed from a Unmanned Surface Vehicle (USV).
The latter’s goal is to enable powering and communicating with
the robot from the surface (and from the shore via satellites or a
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(a) The LARS launches Argos and its
garage

(b) The tether is managed manually
by a crew member

(c) Argos overhanging a plane wreck by 40 m depth, linked to the surface by its tether

Figure 1.3: Pictures taken during sea trials of the observation class ROV
Argos (Courtesy of Forssea Robotics/Balao)

more common data network) while reducing the costs involved
by a larger vessel, mainly due to the crew wages and the fuel
consumption.

• Using a smaller than usual ROV deployed from a lighter than
usual surface vessel; the robot, the launch and recovery manoeu-
vres ideally being automated. Doing so also reduces operational
expenses while providing the security of having humans ready
to intervene, should any problem arise.

Variants of the two last scenarios also involve a garage hanging from
the surface unit to allow for easier recovery.

1.1.4 Current issues in autonomous underwater robotics

Creating an autonomous underwater robot is no easy task. Multiple
constraints have to be taken into account [19, Chapter 2]. Since the
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robot will be evolving underwater, the physical constraints inherent to
this environment must be considered: pressure, corrosion, darkness,
electrochemical reactions, temperature; all these force the constructors
to choose the materials used on the robot carefully. The latter’s de-
sign must also account for the possibly rough operating conditions,
involving shocks, vibrations, and potentially careless handling by
operators.

1.1.4.1 Positioning of autonomous underwater robots

Unlike in terrestrial and aerial robotics, positioning a robot underwater
is quite tricky. While pressure sensors allow computing the robot’s
depth quite precisely, there are no equivalent sensors for the robot’s
horizontal position. There is no such thing as an underwater Global
Positioning System (GPS): positioning systems exist for underwater
applications (we already mentioned LBL and USBL acoustic systems),
but they are much more expensive, usually less precise, and require
specific calibration processes. In their absence, underwater robots
generally rely on an IMU (which can be – and ought to be – much more
precise than their aerial and terrestrial counterparts), the acceleration
and angular speed of which are integrated over time to obtain a rough
approximation of the robot’s position. The latter can be enhanced by
using other sensors, such as the DVL, which measures the robot’s
relative speed with respect to the ground, or the surrounding body of
water.

Cameras can be used to localise the robot with respect to a nearby
obstacle [29], [128], [130]. However, cameras are of little help in detect-
ing points of interest or obstacles farther than a few meters because of
the surrounding darkness passed a hundred meters depth and water
turbidity. Additionally, the lack of identifiable natural visual mark-
ers is problematic in some applications. Special techniques such as
polarised light and lenses, adapted filtering algorithms, and artificial
markers ought to be used to achieve practical results [39], [106], [129].
Sonars can be used, especially since the appearance of small, low-cost
units. However, in both cases, the data’s online processing is computa-
tionally expensive, involving delays in the positioning algorithms and
a relatively low measurement frequency.

Argos, the autonomous observation class ROV developed by Forssea
Robotics (see Figure 1.4), embeds the sensors mentioned above.

1.1.4.2 Accuracy of localisation & control algorithms

The accuracy and the precision of a robot’s estimated position depend
on its sensors and positioning strategy. Measurements can be of two
different types: proprioceptive, in which case the sensor is self-contained



1.1 context 7
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Figure 1.4: Argos, an autonomous ROV developed by Forssea Robotics (Cour-
tesy of Forssea Robotics)

and measures its own dynamical characteristics (acceleration, rota-
tional speed for example); and exteroceptive, when the sensor mea-
sures a quantity linked to the environment (pressure, light, acoustic
waves. . . ).

Usually, the robot’s computer embeds a predictor-corrector algo-
rithm for localisation. In the absence of exteroceptive measurements,
the robot evolves in dead-reckoning. Its position is estimated by inte-
grating proprioceptive data. Therefore, it can drift, and its accuracy
decreases quickly with time, depending on the offsets and noise of the
sensors and the associated filtering algorithm. This corresponds to the
predictor part of the localisation algorithm. When exteroceptive mea-
surements are performed, the corrector comes into play: the prediction
is computed using the newly obtained data, and if the precision and
accuracy of the data are high enough, the ones of the estimated posi-
tion will be adjusted. These predictor-corrector algorithms are most
of the time implemented using a flavour of Kalman filter [48, Chap-
ter 7], [121, Chapter 3], [111, Chapter 4]. These algorithms usually
require mathematical models of the robot and its sensors. However,
the parameters of the latter are not necessarily perfectly known.

Other factors can influence the precision of a robot’s estimated
position, in particular underwater, in a dead reckoning scenario:

• underwater currents can reach a few meters per second;

• in shallow water, the swell induces circular translation of the
body of water and of what it encompasses;

• the drag caused by the tether can be non-negligible, in particular
for small ROVs. The authors of [65], [66] proposed a solution to
that problem in the form of an actionable tether.
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Therefore, the estimated position of a robot is uncertain. The control
algorithms then process uncertain data, outputting uncertain com-
mands, which results in an uncertain robot’s behaviour.

1.2 autonomous underwater docking

In Section 1.1.3, we presented the three different scenarios envisioned
by offshore companies to increase automation in their inspection
and maintenance processes. What characterises the latter is that in
each case, the robot needs to cruise back autonomously to a specific
area to be recovered, either a garage, the moon pool of a USV, or the
recovering area of a surface vessel. In other words, the robot must
perform a docking manoeuvre onto a specific target, whether it is the
centre point of a specific imaginary area, an underwater garage, or an
energy outlet to recharge its batteries. A well known, recent example
of an autonomous docking manoeuvre is the one performed by new-
generation cargo ships on the International Space Station (ISS) (see
Figure 1.5).

Figure 1.5: A SpaceX Dragon performing a docking manoeuvre with the ISS
(Copyright free picture from NASA)

1.2.1 Literature review

The subject of autonomous underwater docking started mushrooming
in the early nineties when the required technologies (control & lo-
calisation algorithms, computational power. . . ) reached a sufficiently
mature stage. Different approaches have been proposed: while the
most common one is based on a physical or imaginary funnel in which
the robot must enter [115], [117], [126], other designs include string-
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based systems (the robot has to catch a string, which then pulls the
former towards the docking station) [33], [64], [114] or grasping-based
docking (an embedded robotic arm drives the docking manoeuvre)
[30], [91]. Usually, a docking mission is split into two phases [58],
[61], [117], [126]: the long-range, rough approach, during which the
robot must join a specific area located near its docking target; and a
short-range, precise approach which is usually triggered only if all
the safety conditions and localisation requirements are met. While
the robot mainly uses acoustic localisation systems or dead reckoning
during the long-range approach, it switches to more precise sensors
for the final manoeuvre: cameras aiming for lights or visual markers
is usually the preferred solution [24], [61], [77], [91], [122], [126] al-
though other methods such as electromagnetic [31] or electric field
[13] guidance have been studied . Chosen control methods range from
classical PID controllers [58], [91] to fuzzy logic [93], [115].

Therefore, many different approaches do exist to complete an au-
tonomous docking mission underwater. At Forssea Robotics, the choice
has been made to orientate the efforts towards the "two-phases" ap-
proach, using visual markers detection as a short-range localisation
strategy. A classical chain of command controls the robot (see Fig-
ure 1.6), and the garage has a funnel shape to ease the manoeuvre (see
Figure 1.7).

1.2.2 Research approach

As we highlighted earlier, there are many different methods to per-
form a docking mission: differences lie in the docking station, the
chosen controller or localisation method. All of these methods have
proved to be efficient to some extent. However, to deploy an entirely
autonomous ROV and recover it through a docking station demands
more guarantees. Indeed, it might be possible that the ROV cannot
dock into its garage because of some external events, or that the cho-
sen control method fails in certain conditions, or that the localisation
algorithm does not indicate the correct position of the robot. Therefore,
there is a need for a validation method that could prove feasibility
of a mission, and in our case of a docking manoeuvre. In this thesis,
we thus chose to work on validation methods applied to the docking
problem.

1.2.2.1 Presentation of the approach

An autonomous ROV is a complex machine, embedding various sen-
sors measuring data from the environment, and actuators acting on
the latter. All these pieces of equipment are controlled by a computer,
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Argos
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Figure 1.6: Software architecture of Argos, an autonomous ROV devel-
oped at Forssea Robotics (https://forssea-robotics.fr/index.php/
products/rovs)

Figure 1.7: Argos manoeuvring to enter its garage (Courtesy of Forssea Robotic-
s/Balao)

https://forssea-robotics.fr/index.php/products/rovs
https://forssea-robotics.fr/index.php/products/rovs
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which is a discrete machine: its programs are paced by a clock, such
that it issues commands and reads sensors data at a specific pace.
Therefore, an autonomous ROV (and more generally any robot) can
be modelled as a hybrid system, with continuous- and discrete-time
processes interacting together. Thus, our goal is to prove feasibility
of a docking mission for a specific robot (or hybrid system). In other
words, we want to find a method capable of validating the engineering
choices made for a particular robot. Again, we believe that such a
method can be of interest, especially for industrial applications, where
proofs of correct functioning are usually required to allow the large
scale deployment of a system. Indeed, knowing that a docking mission
will always succeed if the robot starts from a specific area, or that
it might fail if it is not equipped with a particular sensor will be of
interest to the designer and the users of such a robot.

It is worth noting that similar methods exist in different domains.
Special programming languages do exist to validate software for criti-
cal systems [20], rigorously simulating and verifying hybrid systems
[3], [12], [118]. However, these tools do not fully meet our require-
ments, because they concentrate on the software part of a system,
they focus primarily on simulating the system, or they are mainly
intended for linear systems verification. In our case, we want to deal
with non-linear uncertain hybrid systems and prove a priori that a
robot can dock into its garage if initialised in a given area.

In this thesis, we explored two different approaches to solve this
problem. We refer the reader to Chapter 2 for a more in-depth intro-
duction of the mathematical tools and concepts mentioned below.

1.2.2.2 Reachability analysis

Checking that a system can reach a specific area is known as reacha-
bility analysis. Multiple methods exist to verify such a property (see
[1] for an extensive list and presentation of related research subjects).
The most intuitive one, especially in an industrial context, consists in
modelling the system using a mathematical formalism and simulating
the outcomes resulting from different initial conditions: tools such as
the ubiquitous Matlab/Simulink, or the open source Gazebo simu-
lation software are often used in robotics industries. Such a method
often leads to simulating as many outcomes as possible to obtain
a rough idea of the system’s behaviour with various initial condi-
tions. While easy to understand and implement, this method lacks
the mathematical guarantees we seek for our approach. To meet this
requirement, methods falling in the field of symbolic reachability analy-
sis can be used [2], [36], [38], [69], [95], [97]. Their working principle
consists in enclosing all the possible states taken by a system inside
a mathematical object, and studying the latter’s evolution. Then, the
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Set of possible trajectories

Recalibration zone

Garage
Structures

Docking area

Figure 1.8: Reachability analysis of a robot leaving from its garage, equipped
with a specific set of sensors and controlled by a specific controller.
When entering the blue areas, the robot is able to recalibrate its
estimated position.

proof of reachability comes down to checking whether it is contained
inside the desired specific area. Similarly, proving that a system will
not enter a specific zone can be done using the same tools. The reader
may refer to Chapter 4 to have more details about this approach.

1.2.2.3 Stability analysis

We will take the following image to introduce this approach: imagine
that the robot is a marble, evolving on a cloth presenting hills and
valleys. Assume also that the robot has to reach one of the latter.
Proving that the robot will end up in the desired valley comes down
to proving that it is initialised in its catchment; or that it has enough
speed and the right heading to climb the hills separating it from the
right valley. This approach falls into the field of stability analysis. Again,
various methods are available to study the stability of a system [41].
Their working principles differ, ranging from eigenvalues evaluation
to the use of Lyapunov’s theorems. Proving stability for an uncertain
system has also been studied [49], [101], as well as stability of hybrid
systems [14], [35]. We refer the reader to Chapter 3 for more details
about this approach.
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v0 = 5
v0 = 0

v0 = 5 v0 = 0

Figure 1.9: Stability analysis of a marble on a cloth: the green marbles will
end up in the green valley, because of their initial position or their
initial velocity, to the contrary of the red marbles.

1.3 contributions

Aside from the two approaches we studied to prove feasibility of a
docking mission, we developed various tools that can have a broader
use than the one for which they were initially intended. We listed the
main ones below.

• Comprehensive derivation of Lohner’s algorithm, and an exam-
ple of implementation (see Section 2.4.5);

• Algorithm to compute the centred form of an iterated function,
to allow for tighter image set enclosures (see Section 3.4.2);

• Stability contractor, a formalism allowing to easily prove stability
of a system (see Section 3.4.1);

• Lohner contractor for tubes, to obtain tighter enclosures for
trajectories, and its implementation in the Tubex library (see
Section 4.3.2);

• Comprehensive examples using the CAPD library, to broaden
its usage among the interval robotics community.
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2.1 introduction

In this chapter, we will present the mathematical tools and the concepts
used later in this thesis.

We recall that this work’s goal is to propose a method to prove
feasibility of a docking mission between a robot and an underwater
asset.

Therefore, we start by introducing the different ways of modelling
dynamical systems, and robots more specifically. Doing so will provide

15



16 mathematical tools and concepts

us with a mathematical tool to predict a robot’s behaviour in time,
given an initial state. This subject is tackled in Section 2.2.

Now, as good as a model can be, it will always approximate the real-
life system, for reasons ranging from lack of computational power to
unknown effects acting on the robot, to unpredictable events occurring
during an operation. Since we seek mathematical proof of feasibility
of a mission, we will need to use specific tools to consider those
uncertainties while predicting the robot’s behaviour. In this thesis, the
tool we chose to deal with the modelling of errors and uncertainties is
interval analysis, which we introduce in Section 2.3.

We then introduce different methods to model dynamical systems’
evolution using interval analysis in Section 2.4. Thanks to the latter,
these methods perform guaranteed integration of a system’s model,
which can then be interpreted to ensure its properties.

2.2 modelling robots

Mobile robots are unmanned vehicles, sometimes autonomous, which
evolve on land, in the air, on or under water, or even in space. These
robots can usually sense their environment and act on it via sensors,
actuators and an internal computer. Therefore, their behaviour is
dictated by the laws of physics and the internal logic of the embedded
computer [32], [48], [111].

2.2.1 Dynamical systems

Mathematically speaking, mobile robots can be modelled as dynamical
systems, i. e. a set of mathematical equations describing the system’s
evolution in time. A general definition for a dynamical system can be
found in [37, Chapter 1]:

Definition 2.1. A dynamical system is a function φ : T × S → S such
that

1. T is one of the following: N, Z, R, R+. t ∈ T is the evolutionIf T = N or
T = R+, it is

common to talk
about semi

dynamical systems.

parameter of the system and T its time set;

2. S is a non-empty set, the state space of the system containing its
state x;

3. φ (0, .) is the identity function: for any x ∈ S , φ (0, x) = x;

4. φ (t, φ (s, x)) = φ (t + s, x) for any t, s ∈ T and for any x ∈ S .

Remark 2.1. The Item 3 imposes that the system’s state cannot change
over a null duration, i. e. it cannot instantaneously teleport itself to
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another point in its state space. The Item 4 imposes that the future
system’s state depends on the current one.

Let us introduce a few notations and terms:

• If we take x = x0 as constant, then it is the initial state of the
system. φx0 (t) is the flow of the system passing through x0;

• If we take the duration t as constant, then φt (x) is called the
state transition of duration t, t-transition or t-advance of the system;

• If T = R or R+, the system is called continuous-time (see Sec-
tion 2.2.2)

• If T = N or Z, the system is said to be discrete (see Section 2.2.3).

Remark 2.2. In the rest of this thesis, we will assume that T = R or Z,
although t will be positive most of the time. We will also assume that
S = Rn, where n ∈N∗.

2.2.2 Continuous-time dynamical systems

2.2.2.1 Definition

Continuous-time dynamical systems are used to model phenomenons
that evolve continuously over time. These are widely found in real-life
problems’ models, from moving vehicles to biological and chemical
processes. Definition 2.1 can be adapted to continuous dynamical
systems [41, Chapter 7], [92, Chapter 3]:

Definition 2.2. A continuous-time dynamical system is a function
φ : R×Rn → Rn such that

1. φ (0, .) is the identity function: for any x ∈ Rn, φ (0, x) = x

2. φ (t, φ (s, x)) = φ (t + s, x) for any t, s ∈ R and for any x ∈ Rn.

2.2.2.2 Relation between dynamical systems and ordinary differential equa-
tions

Differential equations (ordinary or partial) are widely used to model
continuous phenomenons: they are used for systems ranging from
atmospheric phenomenons [41, Chapter 14], [76], [123] to electrical
oscillators’ behaviour [41, Chapter 12], [127], biological processes
[41, Chapter 11], [47], physical & astronomical phenomenons [41,
Chapter 13], [57], [132], [133], and vehicles’ and robots’ trajectories [22,
Chapter 4], [32, Chapter 7], [48, Chapter 1], [111, Part A & F]. To model
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the latter, one usually uses classical mechanics and usually obtains an
Ordinary Differential Equation (ODE) such as Equation (2.1).

ẋ (t) = f (x (t)) (2.1)

where f ∈ Ck (Rn), t ∈ R represents the time and x (t) ∈ Rn the
robot’s state. This equation fully describes the system’s behaviour,
and only depends on its current state: it is said to be autonomous.
Sometimes, the function f can also depend on an input u (t), which
can be used to take external commands into account.

Autonomous systems are closely related to dynamical systems, in
the sense that Equation (2.1) has a unique solution φt (x0) passingThis is a consequence

of the existence and
uniqueness theorem
[41, Chapter 7], [59,

Chapter 3].

through a point x0 ∈ Rn at a given time t = 0. This solution actually
corresponds to the flow of the associated dynamical system initialised
at x0 ∈ Rn and t = 0.

Remark 2.3. It is rarely possible to find an analytical expression for
φ (t, x), except in particular cases, e. g. when f is linear with respect to
x. However, using numerical methods, it is possible to evaluate φ at a
specific time for a specific initial state [41, Chapter 7].

Also, note that for some ODEs, some solutions might only be defined
locally in time, i. e. might blow up to infinity in a finite time. Therefore,
they may be used to define local dynamical systems only.

Definition 2.3. Solving an Initial Value Problem (IVP) consists in find-
ing the trajectory of a system described by{

ẋ = f (x)

x (t0) = x0
(2.2)

over a time interval
[
t0, t f

]
.

IVPs are very practical since their solution is actually a prediction of
the system’s state evolution over time. In the rest of this thesis, most
of our work somehow consists in solving IVPs.

Geometrically, in the state space of the system, Equation (2.1) can
be interpreted as a vector field, and its flow as a field line passing
through a specific point, or equivalently a trajectory of the system.

Example 2.1. Consider for example the Van der Pol oscillator [127],
described by the following equation

ẋ = f (x) =

(
ẋ1

ẋ2

)
=

(
x2(

1− x2
1

)
x2 − x1

)
(2.3)

The state space of the system is R2 and its time set is R. In Figure 2.1,
we have represented the concepts presented earlier: vector field, flow
and t-transition.
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Figure 2.1: Illustration of the Van der Pol oscillator

2.2.2.3 Derivatives of the flow

Depending on the application, one might need to compute the deriva-
tives of φ with respect to t or x. The following theorems, derived in
[41, Chapter 7], are of importance when doing so.

2.2.2.3.1 about the existence of the space and time derivatives

Theorem 2.1. Consider the system ẋ = f (x) where f ∈ C1 (Rn). Then
φ (t, x) is C1, i. e. ∂φ

∂t and ∂φ
∂x exist and are continuous in t and x. . . . provided that

x (t) is defined.

In particular, considering a point x0 ∈ Rn the following equations
stand

∂φ

∂t
(t, x0) = f (φ (t, x0)) (2.4)

∂φ

∂x
(t, x0) = Jφt (x0) (2.5)

where Jφt is the Jacobian of φt (x).
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Thus, computing the time-derivative of φ comes down to evaluat-
ing the function f (φ (t, x0)). However, because finding an analytical
expression for φ (t, x) is not always possible, another approach than
symbolic differentiation is required to calculate ∂φ

∂x .

2.2.2.3.2 about the variational equation

Definition 2.4 (Variational equation). Consider a system ẋ = f (x)
where f ∈ C1 (Rn). Let x (t) be a trajectory of the system defined on
the time interval

[
t0, t f

]
, such that x (t0) = x0. Then the variational

equation along x (t) is given by

U̇ (t) = A (t) ·U (t) (2.6)

where A (t) = Jf (x (t)) is the Jacobian of f evaluated at x (t) and U (t)
is a matrix.

Remark 2.4. The initial condition for U (t) is often chosen to be the
identity matrix. This choice will be explained in the next paragraph.

Equation (2.6) is called the variational equation [41, Chapter 7] (or sen-
sitivity equation [59, Chapter 3]) along the solution x (t). This equation
has a solution for every initial condition U0.

Note that this equation is often given in a vector form instead of a
matrix one in textbooks

u̇ (t) = A (t) · u (t) (2.7)

Using this notation, it is easier to understand the denomination sen-
sitivity equation: this equation allows studying the sensitivity of the
trajectory x (t) to the initial condition x0. The next example illustrates
this property.

Example 2.2. Consider the Van der Pol oscillator described by Equa-
tion (2.3). Consider a trajectory of this system x (t) such that x (0) = x0

and t ∈
[
t0, t f

]
. Consider another trajectory y (t) of the system ini-

tialised near the first one at x0 + u0, u0 being a small vector. Let us
define the vector

u (t) = y (t)− x (t)

I. e. for every t ∈
[
t0, t f

]
, u (t) corresponds to the error vector between

the trajectories x (t) and y (t).

In Figure 2.2, we plotted the trajectories x (t) and y (t), as well as
the vector u (t) at arbitrary moments in time. To illustrate the matrix
form of the variational equation, we also plotted the trajectories of
the system initialised in c1, y1 = x1 + u1 and y2 = x1 + u2. The
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Figure 2.2: Impact of the initial state on the trajectory - variational equation

red parallelepiped helps understand how sensible the system is with
respect to the state vector’s different components.

Now, let us differentiate u (t) with respect to time

du
dt

(t) =
dy
dt

(t)− dx
dt

(t)

= f (y (t))− f (x (t))

= f (x (t) + u (t))− f (x (t))

= f (x (t)) +
df
dx

(x (t)) · u (t) + o (u (t))− f (x (t))

' Jf (x (t)) · u (t)

where Jf is the Jacobian of f. Let us define A (t) = Jf (x (t)), and we
obtain Equation (2.7).

2.2.2.3.3 about the link between space-derivative and varia-
tional equation

We will now see that the variational equation can be used to compute
the space-derivative of a trajectory.
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Consider a system ẋ = f (x) where f ∈ C1 (Rn) for t ∈
[
t0, t f

]
. Let

x (t0) = x0 be an initial state in Rn. Then for every t ∈
[
t0, t f

]
,

φ (t, x0) = x0 +
∫ t

t0

f (φ (s, x0)) ds

Differentiating this equation with respect to x yields

∂φ

∂x
(t, x0) =

∫ t

t0

∂f
∂x

(φ (s, x0)) ·
∂φ

∂x
(s, x0) ds

Differentiating the last equation with respect to time yields

d
dt

(
∂φ

∂x
(t, x0)

)
=

∂f
∂x

(φ (t, x0)) ·
∂φ

∂x
(t, x0)

Finally, let us define u (t) = ∂φ
∂x (t, x0) and A (t) = Jf (φ (t, x0)), and

we obtain Equation (2.6)

u̇ (t) = A (t) · u (t)

The matrix form of this last equation can be obtained by choosing two
different initial conditions and by concatenating the resulting vector
variational equations.

According to [41, Chapter 7], one can compute ∂φ
∂x using the follow-

ing theorem.

Theorem 2.2. Consider a system ẋ = f (x) where f ∈ C1 (Rn). Let x (t)
be a solution defined for t ∈

[
t0, t f

]
such that x (t0) = x0. Let U (t) be the

solution of the variational equation along x (t) such that U (t0) = U0. Then

∂φ

∂x
(t, x0) ·U0 = U (t) (2.8)

In other words, computing ∂φ
∂x for a given initial state x0 at a certain

time t simply comes down to integrating the associated variational
equation for a duration t, in particular if we choose U0 = In. We will
now illustrate this theorem with a few examples.

Example 2.3. Consider the system described by the following differen-
tial equationThe system is

intentionally chosen
linear to ease
calculations. ẋ = f (x) =

[
1 1

1 −1

]
· x = A · x

On the one hand, one can easily compute the trajectory of the system
initialised at x (0) = x0

φ (t, x0) = eAt · x0
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Then, differentiating φ with respect to x yields

∂φ

∂x
(t, x0) = eAt

On the other hand, let us define the variational equation along the
solution x (t), x (0) = x0

u̇ (t) = A (t) · u (t)

The solution of the latter equation, when u (0) = u0 is

u (t) = eAt · u0

As Theorem 2.2 states, we have
∂φ

∂x
(t, x0) · u0 = eAt · u0 = u (t)

Example 2.4. Consider a simple pendulum, which state vector x is
composed of its angle θ and its angular speed ω, described by the
following differential equation

ẋ = f (x) =

{
ω

− sin (θ)−ω
(2.9)

Let x (t) be a solution of Equation (2.9) with x (0) = x0, and y (t)
be a solution of Equation (2.9) with y (0) = x0 + u0 where u0 is a
small vector of R2. It is not possible to find a analytic expression for
x (t), so the goal of this example will not be to illustrate Theorem 2.2,
but one of its consequences. We will show graphically that we can
approximate a trajectory y (t) initialised near x0 using the variational
equation along x (t).

But first, let us express the latter

u̇ (t) = Jf (x (t)) · u (t) =

[
0 1

− cos (θ) −1

]
· u (t) (2.10)

Let u (t) be the solution of Equation (2.10) with u (0) = u0. Equa-
tions (2.9) and (2.10) can be concatenated into the following system

ż = g (z) =


θ̇

ω̇

u̇1

u̇2

 =


ω

− sin (θ)−ω

u2

− cos (θ) u1 − u2

 (2.11)

Note that it is necessary to rearrange the system as such since Jf
depends on x (t): both Equations (2.9) and (2.10) must be integrated
jointly.

Now, we can numerically integrate Equation (2.9) with x0, Equa-
tion (2.9) with y0 = x0 + u0 and Equation (2.11) with z (0) = (x0, u0)

T.

Define the trajectory ŷ (t) = x (t) + u (t). Figure 2.3 shows that both
y (t) and ŷ (t) evolve closely for a certain time, before diverging.
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Figure 2.3: Approximation of a trajectory using the variational equation

2.2.2.4 Conclusion

To sum up, we recalled a definition of a continuous dynamical system
and presented a few related concepts. More will be presented in
Section 3.2. We recall the importance of such a mathematical tool, as it
is the most used to describe the evolution over time of a mechanical
system, and particularly of vehicles and robots.

2.2.3 Discrete dynamical systems

2.2.3.1 Definition

Discrete dynamical systems are used to model phenomenons occurring
punctually, at specific moments in time. Following Definition 2.1, let
us propose the following definition of a discrete dynamical system:

Definition 2.5. A discrete dynamical system is a function φ : N×This actually defines
a discrete

semi-dynamical
system. For the sake

of simplicity, we will
drop the "semi" in

the rest of this thesis.

Rn → Rn such that

1. φ (0, .) is the identity function: for any x ∈ Rn, φ (0, x) = x

2. φ (p, φ (q, x)) = φ (p + q, x) for any p, q ∈N and for any x ∈ Rn.

Remark 2.5. In the rest of this thesis, when dealing with discrete-
time systems, we will drop the first argument of φ for the sake of
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clarity. Then, we will write φ (1, x) = φ (x) and φ (k, x) = φk (x) =

(φ ◦ · · · ◦ φ)︸ ︷︷ ︸
k

(x).

Note that k does not necessarily correspond to a number of time
units, but merely to the number of mapping by φ.

2.2.3.2 Relation between discrete systems and mathematical sequences

Consider a function φ : N×Rn → Rn, and a vector x0 ∈ Rn represent-
ing the initial state of a discrete system. Then the successive mapping
of x0 by φ forms a sequence(

x0, φ (x0) , φ ◦ φ (x0) , . . . , φk (x0)
)
= (x0, x1, x2, . . . , xk)

where k ∈ N. Therefore, we will often use an equation defining a
mathematical sequence to describe a discrete-time system

xk+1 = f (xk) (2.12)

2.2.3.3 Examples of discrete systems

Example 2.5. A classic example of discrete system is the logistic map.
This one-dimensional system is described by Equation (2.13), where
ρ ∈ [0, 4] is a parameter and x0 ∈ [0, 1]. This very simple system
in appearance can actually display highly complex behaviours and
becomes chaotic for ρ ≥ 3.57.

xk+1 = ρ · xk · (1− xk) (2.13)

In Figure 2.4, we represented the various behaviours of the system
for different values of ρ. In each case, we chose x0 = 0.79, and we
computed xk up to k = 500. To build the trajectory in the plane
(xk, xk+1), we start by choosing x0 and place it on the line xk+1 = xk,
i. e. at the point (x0, x0). Then, we join the parabola, which corresponds
to the logistic map, at the point (x0, x1). We then project this point on
the line, and start the process repeatedly to find the sequence (xk).

While Figures 2.4a to 2.4e display a trajectory converging towards
a point or oscillations between specific points, Figure 2.4f is a typical
example of chaotic behaviour: a slight change in the initial value of x0

will result in a completely different trajectory. More insight about the
logistic map will be given in Section 3.2.2.

Example 2.6. Discrete dynamical systems are often used in robotics
to model a continuous system that has been discretised over time (in
that case, the index k can actually refer to a number of time units),
for example when implementing a Kalman filter [48, Chapter 7], [121,
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Figure 2.4: Trajectory (in red) of the logistic map in the plane (xk, xk+1)

Chapter 3] or a numerical integration method. Consider the differential
equation ẋ = f (x). Let x0 be the initial state of the system. Then, a
simple Euler integration method can be seen as a discrete system:

xn+1 = φ (xn)

where

φ (xn) = xn + hf (xn)
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2.2.4 Hybrid dynamical systems

Hybrid dynamical systems are used to model the interactions between
a continuous-time and a discrete-time system [70]. These systems
are typically found in robotics: a mobile robot is a physical system
evolving in the real world (hence the continuous part of the model)
being driven by a computer (which is an inherent discrete system).

2.2.4.1 Definition

Mathematically speaking, a hybrid system is often defined as a sextu-
ple [54], [112] or a septuple [15], [34], [35], depending on the necessity
of a control model in the hybrid system.

Definition 2.6. A hybrid system is a sextuple H = (Q, E ,D,F ,G,R)
where:

1. Q = {q0, . . . , qm} is the countable set of discrete states ofH, with
cardinality m + 1;

2. E ⊆ Q×Q is the set of edges (or transitions) between discrete
states;

3. D =
{

Dqi , qi ∈ Q
}

is the collection of domains of H, where
∀qi ∈ Q, Dqi is a non-empty subset of Rn;

4. F =
{

fqi , qi ∈ Q
}

is the collection of vector fields, where for every
qi ∈ Q, fqi ∈ C1 (Dqi

)
and its associated dynamical system is

denoted φqi (t, x);

5. G = {Ge, e ∈ E} is the collection of guards, each guard delimit-
ing a boundary between two sets Dqi and Dqj : ∀e =

(
qi, qj

)
∈

E , Ge ⊂ Dqi ;

6. R = {Re, e ∈ E} is the collection of resets, such that for each
e =

(
qi, qj

)
∈ E , Re : Ge → 2Dqj , where 2Dqj denotes the powerset

of Dqj . In the rest of this thesis, we will simply consider Re as a
map Re : Ge → Dqj .

The state of a hybrid system is therefore composed of a discrete
variable qi ∈ Q and of a continuous variable x ∈ Rn. Its evolution
through time is called execution and is represented in Figure 2.5: the
system is in a given state (qi, x). The continuous variable x evolves
through time in the set Dqi according to the vector field defined by fqi ,
until reaching the guard Ge, e =

(
qi, qj

)
. When the guard is reached,

the associated reset Re is triggered and resets the value of x. Then, the
discrete variable qi switches to qj, and the execution keeps going.

Remark 2.6. 1. One can notice that the system evolves exactly like a
continuous dynamical system in between the discrete transitions.
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Dqi DqjGe

x

φqi (t, x)
φqj (t, x′)

x′

Figure 2.5: Illustration of the execution of a hybrid system

2. A hybrid system may only have one discrete state q (see Sec-
tion 2.2.4.2).

2.2.4.2 Examples of hybrid systems

Let us give some examples to illustrate the definition. We will start by
a prevalent one, the bouncing ball, and then apply the definition to a
simple robot driven by a discrete controller.

Example 2.7 (Bouncing ball). Imagine a ball made out of rubber, free-
falling and hitting the ground. After impact, the ball will bounce back
up, although the ground has absorbed a part of the energy. This simple
phenomenon can be modelled as a hybrid system.

Let z be the altitude of the ball above the ground, and v its vertical
speed. The continuous part of the state is x = (z, v) ∈ R2. There is
only one discrete state q, since the ball is always bouncing in the same
subset of R2,

Dq =
{

x ∈ R2 ∣∣ z ≥ 0
}

The ball’s behaviour is described by the differential equation

ẋ = fq (x) = (v,−mg)

where m is the ball’s mass and g the acceleration of gravity
The system has a single guard

G(q,q) =
{

x ∈ R2 ∣∣ z = 0, v ≤ 0
}
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which is crossed whenever the ball touches the ground; and a single
reset function

R(q,q) (x) = (0,−cv)

where c is a constant modelling the energy lost during the impact.

Figure 2.6 illustrates the execution of this model.

z

v

G(1,1)

R(1,1)

x0

Figure 2.6: Execution of the model of a bouncing ball, in the phase plane
(z, v)

Example 2.8 (Robot control). Consider a robot modelled as a Dubin’s
car, equipped with all the sensors required to perform a full state
estimation at a given frequency f (let h = 1/ f be the associated
period).

The continuous part of the robot’s state is composed of its position Adding τ to the state
vector allows
defining a guard
with respect to time,
which in turn allows
resetting the desired
heading θd at a given
frequency. Adding
ωd makes the
differential equation
autonomous between
two command
updates.

and heading, but also of a time variable τ and a desired angular
velocity ωd: x = (x, y, θ, τ, ωd) ∈ R5. While τ increases linearly with
time (it is the embedded timer of the system), ωd is a constant updated
at the frequency f .

There is only one possible discrete state q, since the robot evolves in
a single subset of Rn

Dq =
{

x ∈ R5 ∣∣ τ ≤ h
}

The robot’s behaviour is driven by the following differential equation

ẋ = fq (x) =



ẋ

ẏ

θ̇

τ̇

ω̇d


=



cos (θ)

sin (θ)

ωd

1

0
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The single guard of the system is defined by

G(q,q) =
{

x ∈ R5 ∣∣ τ = h
}

And crossing the latter triggers the reset function

R(q,q) (x) = (x, y, θ, 0, sin (θd − θ))

where θd is the desired heading for the robot.

Therefore, the robot moves according to a command ωd = sin (θd − θ)
issued at a frequency f , i. e. when the time variable τ reaches h. Fig-
ure 2.7 illustrates this system’s execution with f = 0.33 Hz and
θd = π/4, and Figure 2.8 represents the values taken by the state
vector’s components over time.
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t = 0, τ = 0

t = 1.5, τ = 1.5

t = 3.0, τ = 1.5
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t = 6.0, τ = 1.5

Figure 2.7: Execution of the robot in the plane (x, y)

2.3 interval analysis

It is rarely possible to build a perfect model for a robot: the latter’s
parameters are possibly not entirely known, additional forces can act
on it and modify its behaviour, sensory data is often noisy. . . Therefore
if one wants to predict a robot’s behaviour, these uncertainties must
be taken into account to reach a plausible prediction. In this thesis,
we chose to use interval analysis to represent uncertainties, whether
from model, measurement or control data. Therefore, each uncertain
quantity will be described as an interval containing the exact un-
known value, thus allowing to perform guaranteed, but pessimistic,
computations. The goal of this section is to introduce this field.
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Figure 2.8: Robot’s state’s components plotted against time

2.3.1 Background

Interval analysis is a branch of mathematics where computations are
made using a pair of number a and b to represent a real x, such that
a ≤ x ≤ b, instead of directly using x. This pair of numbers is called an
interval. One of the primary motivations for doing so is the ability to
enclose errors occurring in floating-point computations and inherent
to mathematical models rigorously, and therefore yield guaranteed
results. Thus, interval analysis can prove useful when a mathematical
proof is wanted for a system or a property of the latter.

Remark 2.7. Since intervals are sets of R, this approach is named
set-membership approach. Another widely used method to tackle
uncertainties representation is the probabilistic one, which results
are given in the form of probability distribution functions (see [121]
for a good introduction). While the provided results are then not
guaranteed, this approach can be less computationally expensive, and
its results are usually easier to interpret.

2.3.1.1 Round-off errors in computations

Inside a computer’s memory, numbers are usually represented by a
finite number of bytes. This means that a computer can use only a finite When numbers are

represented following
the IEEE 754
standard, used by
many consumer
processing units.

set of real numbers, all the others "in-between" them being rounded to
the nearest representable number. Thus, there exists an error between
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the result of a finite precision arithmetic computation and its exact
counterpart: the round-off error. The existence of this error can be
easily checked in a Python interpreter: If the error remains relatively

1 >>> print(0.1 + 0.2)

2 0.30000000000000004

Program 2.1: Round-off error in Python

small in this example, they can accumulate and cause a significant
difference in the end (see [107] for more examples). Consequently,
when a proof based on numerical calculus is wanted, one cannot allow
such errors to propagate, whence the use of interval analysis.

Every real number x is then represented in memory by an interval
denoted by [a, b] where a and b are both representable numbers inside
the computer’s memory. Computation is then performed using only
representable numbers, yielding an interval which contains the exact
result.

2.3.1.2 Interval analysis in robotics

Using interval analysis in robotics has another motivation. Using
intervals to represent a robot’s state vector’s components, every mea-
surement made by embedded sensors and every command sent to the
actuators will allow performing guaranteed computation and proving
statements about a robot’s behaviour. The robot’s uncertain parameters
(friction coefficients, apparent weight...) also ought to be represented
as intervals, after a step of parameter estimation [16], [90], [98]. As
presented in Section 2.5, interval analysis also allows the introduction
of constraints in robotics problems. These are two of the main advan-
tages of using intervals instead of probability distribution functions
in robotics. However, the set-membership approach’s main drawback
is its pessimism: it may prove that a robot lays within a 1 km3 box,
which may not be useful for accurate control.

2.3.2 Interval arithmetic

This section briefly introduces the tools and notations used later in
this thesis, with a few comprehensive examples. For more details,
subtleties of implementation and examples, the reader may refer to
[50], [82], [84].
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2.3.2.1 Intervals

As presented earlier in simpler terms, an interval is a connected subset
of R. We will denote by IR the set of all intervals of R. It is represented
by a pair of numbers, its upper and lower bounds. Throughout this
document, we will denote by [x] an interval of R, and by x− and x+

its lower and upper bounds

[x] =
{

x ∈ R
∣∣ x− ≤ x ≤ x+

}
(2.14)

Note that these bounds can be infinite. In most implementations of
interval arithmetic, a function yielding the lower/upper bound is
provided

lb ([x]) = x− (2.15)

ub ([x]) = x+ (2.16)

Usual set operations can be extended to intervals with care. Let [x]
and [y] be two intervals of R.

[x] ∩ [y] = {x ∈ R | x ∈ [x] , x ∈ [y]} (2.17)

=

∅ if x+ < y−;

[max (x−, y−) , min (x+, y+)] otherwise.
(2.18)

[x] t [y] =
{

z ∈ R, min
(

x−, y−
)
≤ z ≤ max

(
x+, y+

)}
(2.19)

Remark 2.8. t is called the interval hull operator, and is the extension of
the union operator to intervals. It is required, since when [x] ∩ [y] = ∅,
[x] ∪ [y] is not an interval (it is not connected).

Example 2.9. • [−1, 2.1], [0,+∞], [−∞,+∞], [7, 7] are intervals;

• [1, 1] = {1} 6= ∅ is a degenerate interval;

• [−2,−1] ∪ [1, 2] is not an interval, since it is not connected;

• [−2,−1] t [1, 2] = [−2, 2];

• [−2, 2] ∩ [0, 0] = [0, 0];

• [−2,−1] ∩ [0, 0] = ∅.

One can define the midpoint, the width and the absolute value of an
interval

mid ([x]) =
x+ + x−

2
(2.20)

width ([x]) = x+ − x− (2.21)

|[x]| = max
(∣∣x−∣∣ ,

∣∣x+∣∣) (2.22)
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Usual arithmetic operators can also be defined over IR. Let � ∈
{+,−, ·, /}, then

[x] � [y] = {x � y | x ∈ [x] , y ∈ [y]} (2.23)

(2.24)

These operations can be implemented using intervals’ bounds. How-
ever, special care must be taken, especially with product and division
of intervals, because of signs and division by zero that may occur (we
refer the reader to [50] for more details).

2.3.2.2 Interval vectors & matrices

Intervals can be stacked into vectors, known as interval vectors or boxes;
and concatenated into so-called interval matrices. IRn denotes the set
of axis-aligned boxes of Rn.

The operators and functions defined in Section 2.3.2.1 can be applied
component-wise to interval vectors/matrices.

Example 2.10.

mid

[
[1, 2] [3, 4]

[−1, 1] [−2,−2]

]
=

[
1.5 3.5

0 −2

]

lb

(
[1, 2]

[−5, 0]

)
=

(
1

−5

)

The norm of an interval vector [x] with components [xi] is defined
as follows

‖ [x] ‖ = max
i

(|[xi]|) (2.25)

Operations between intervals, boxes and interval matrices do not
pose any specific difficulty, since they reduce to component-wise and
thus scalar interval arithmetic.

The next proposition illustrates the link between the norm of an
interval vector and the fact that it belongs to another box.

Lemma 2.1. Let [a] and [b] be two boxes of Rn. Then

[a] ⊂ [b] =⇒ ‖ [a] ‖ ≤ ‖ [b] ‖ (2.26)

Proof.

[a] ⊂ [b]⇐⇒ ∀i b−i ≤ a−i ≤ a+i ≤ b+i
⇐⇒ ∀i b−i ≤ a−i ≤ a+i ≤ b+i ≤ |[bi]|
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⇐⇒ ∀i |[ai]| ≤ |[bi]|
⇐⇒ ∀i |[ai]| ≤ |[bi]| ≤ ‖ [b] ‖
=⇒ ∀i |[ai]| ≤ ‖ [b] ‖
=⇒ max

i
|[ai]| ≤ ‖ [b] ‖

=⇒ ‖ [a] ‖ ≤ ‖ [b] ‖

�

2.3.3 Interval functions

Interval functions are the generalisation of real functions to intervals.
Let X and Y be two sets (e. g. Rn or Rn×n), and consider the function
f : X → Y . Then the image of the set A ⊆ X is

f (A) = { f (x) | x ∈ A}

Similarly, the image set of an interval [x] (or box or interval matrix) by
this function f is

f ([x]) = { f (x) | x ∈ [x]} (2.27)

The image set might be an interval (or a box, or an interval matrix)
with elementary functions, but this is usually not the case, whence the
introduction of inclusion functions.

Definition 2.7. [f] is an inclusion function for f : Rn → Rm if

∀ [x] ∈ IRn, f ([x]) ∈ [f] ([x]) (2.28)

Therefore, an inclusion function returns an enclosure of the image set
of [x] in the form of an interval, interval vector of interval matrix. The
interest is that those sets can be much more easily dealt with using
the same operators as in interval arithmetic.

Remark 2.9. Consider a function f : Rn → Rn, and a box [x] ∈ IRn.
Then not all points in [f] ([x]) have an inverse image inside [x]. This
phenomenon is called wrapping effect.

For a given function f, one can define multiple different inclusion
functions:

• [f] is minimal if for all [x] ∈ IRn, [f] ([x]) is the smallest box
containing the set f ([x]). It is then denoted by [f ([x])]. The
minimal inclusion function introduces the least wrapping effect
in the image box;

• [f] is natural when each variable x of f is replaced by an interval
variable [x] 3 x;
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• More complex formulations based on the derivatives of f (see
Section 2.3.4).

Usually, finding a minimal inclusion function is not easy, or even
impossible (see Section 2.4.4 for more details), whence the use of other
formulations... The latter’s goal is to find a balance between simplicity
(e. g. the natural inclusion is very simple to implement) and precision
(i. e. reduced wrapping effect).

Example 2.11. In Figure 2.9 are represented the concepts of image set,
inclusion function and minimal inclusion function.

x1

x2

y1

y2

x f ([x])
[f] ([x])

[f ([x])]

Figure 2.9: Set image, inclusion function and minimal inclusion function

Example 2.12. Let f : R → R such that f (x) = exp (x) · sin (x). The
natural inclusion function of f is given by f ([x]) = exp ([x]) · sin ([x]).

Example 2.13. The goal of this example is to illustrate the wrapping
effect occurring when naively composing interval functions. Consider
the function given by Equation (2.29), which simply rotates a point of
R2 around the origin by a π

4 rad angle.

f : R2 → R2

x 7→
[ √

2
2 −

√
2

2√
2

2

√
2

2

]
· x

(2.29)

Let us define the sequences of boxes [xk] = [f] ([xk−1]) and fk ([x0])
where [x0] = ([−1, 1] , [−1, 1]). In Figure 2.10, we displayed the first
members of both sequences. It is clear that composing an inclusion
function can lead to critically overestimate the actual image of the
initial box.

This example leads to the following result used later in this thesis.

Lemma 2.2. Let f : Rn → Rn be a function and [x0] be a box of Rn. Let us
define the sequence [xk+1] = [f] ([xk]), where [f] (·) is an inclusion function
for f. Then we have

fk+1 ([x0]) ⊆ f ([xk]) (2.30)
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(f) [x5] and f5 ([x0])

Figure 2.10: Illustration of the wrapping effect due to the composition of
inclusion functions

Proof. This lemma is easily derived by induction.

Lemma 2.2 is true for k = 0

f1 ([x0]) = f ([x0])

Let us assume that it is also true for a given k, we will now prove that
it is true for k + 1.

fk+1 ([x0]) ⊂ f ([xk]) =⇒ fk+2 ([x0]) ⊂ f (f ([xk]))

=⇒ fk+2 ([x0]) ⊂ f ([f] ([xk]))

=⇒ fk+2 ([x0]) ⊂ f ([xk+1])

which concludes this proof. �

2.3.4 Centred form

Let us now introduce the centred form of an interval function, which
is an inclusion function for the latter.

Definition 2.8. Consider a function f : Rn → Rn, with a Jacobian
matrix Jf. Then, for all [x] ∈ IRn, the centred form [fc] associated to f is
given by

[fc] ([x]) = f (m) + [Jf] ([x]) · ([x]−m) (2.31)

where m ∈ [x] (e. g. m = mid ([x])).
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Proposition 2.1. The centred form is an inclusion function for f

∀ [x] ∈ IRn, f ([x]) ⊂ [fc] ([x]) (2.32)

provided it is defined over [x].

The main interest of the centred form is that it tends towards the
minimal inclusion function when the width of [x] tends towards 0

lim
width([x])→0

width ([fc] ([x]))
width (f ([x]))

= 1 (2.33)

This means that very little wrapping effect is induced by this formula-
tion when the initial box is small enough.

Example 2.14. Consider the function f (x) = cos (x) + sin (x), and
the two intervals [xa] = [1.2, 1.5] and [xb] = [1.2, 1.8]. Denote by ma

and mb the centres of [xa] and [xb] respectively. Using the natural
extensions of f , we have

[ f ] ([xa]) = [1.016 . . . , 1.541 . . . ]

[ f ] ([xb]) = [0.523 . . . , 1.652 . . . ]

Using the centred form extension of f , we get the enclosures

[ fc] ([xa]) = [1.068 . . . , 1.474 . . . ]

[ fc] ([xb]) = [0.427 . . . , 1.779 . . . ]

As expected, because [xb] is not small enough, we have

width ([ fc] ([xa])) < width ([ f ] ([xa]))

width ([ fc] ([xb])) > width ([ f ] ([xb]))

The results are represented in Figure 2.11. The green dashed lines
represent the upper and lower bounds of the Jacobian of f . They are
horizontally centred on ma (or mb on the second figure), and vertically
on f (ma) (or f (mb)). This allows obtaining [ fc] ([xa]) (or [ fc] ([xb])) by
projection, symbolised by grey dashed lines.

2.4 guaranteed integration

In Section 2.2, we presented dynamical systems, and in particular
continuous-time systems. Those are often represented as a differential
equation, which can be integrated over time to determine the system’s
trajectory from a given initial condition. However, as we pointed out
in Section 1.1.4.2, initial conditions and parameters of a robot can be
uncertain. Section 2.3 introduced interval analysis, which allows us to
represent uncertainty in a guaranteed way. Therefore, in this section,
we will present the tools that can be used to integrate an uncertain
differential equation in a guaranteed manner, i. e. such that all the
solutions are enclosed in the smallest possible box.
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(a) Enclosures for [ f ] ([xa]) and
[ fc] ([xa])
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(b) Enclosures for [ f ] ([xb]) and
[ fc] ([xb])

Figure 2.11: Illustration of the centred form extension

Remark 2.10. As pointed out in Remark 2.7, uncertainties can be repre-
sented by probability density functions or random point clouds. While
these approaches can be used to obtain a good approximation of the
set resulting from the integration, there is no guarantee that it will
contain all the possible solutions. Common probabilistic approaches
are based on the Monte-Carlo method [78], [121, Chapter 8], which
simulates as many trajectories as possible.

We will present the concepts linked to guaranteed integration along
the section and illustrate them with a few lines of code using the
Computer Assisted Proofs in Dynamics (CAPD) library [120]. We be-
lieve that doing so will allow broader use of this library for robotics
applications. We will not cover all the functionalities of CAPD, and the
reader may refer to [56] for more details.

2.4.1 Background

Historically, finding a guaranteed enclosure for the integral of a func-
tion is an old problem: Moore and Krückeberg were the first to propose
such a method to solve an IVP [60], [81], [82]. The main problem of the
algorithms introduced back then was the wrapping effect, which led
to the enclosure’s explosion after a few integration steps. Algorithms
developed since then aimed at reducing this phenomenon to obtain
sharper enclosures [28], [46], [75], [87]. More recently, these algorithms
have been extended to allow the computation of enclosures for state-
and time-derivatives of the system’s flow function [134], [135]. Similar
algorithms have been adapted to hybrid systems [6], [99], [100].

Usually, these algorithms work with relatively small intervals, to
maximise the beneficial effect of the centred form, which they use,
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on the wrapping effect’s reduction. Therefore, they are used in fields
where uncertainties are small and enclose mainly the round-off errors
introduced by numerical computations.

2.4.2 Guaranteed integration algorithms

Consider the continuous-time dynamical system described by Equa-
tion (2.34), with an initial state x0.

ẋ = f (x) (2.34)

In the case of an underwater robot, this initial condition is usually
uncertain, and can therefore be represented by a box [x0]. Additionally,
the function f, which describes the system’s behaviour over time, uses
parameters such as the mass, friction coefficients or even the position
of buoyancy elements on the robot, which are usually not entirely
known. These parameters can also be represented as intervals. In that
case, Equation (2.34) can be rewritten as Equation (2.35) and is called
differential inclusion.

ẋ ∈ [f] ([x]) (2.35)

Remark 2.11. In the rest of this thesis, the functions used to define
the studied systems can be differential inclusions, as long as their
uncertain parameters are constant. The reason for that is the following:
some algorithms described later need to differentiate the function f
with respect to time, which means that if the uncertain parameters
are not constant (and thus their derivatives zero), an enclosure for
their derivatives would be required by the differentiation process.
Unfortunately, the latter is rarely available in a robotics context.

Example 2.15. Consider a differential drive robot modelled by Equa-
tion (2.36), where ad denotes the desired acceleration, ωd the desired
angular velocity, and x = (x, y, θ, v) the robot’s state vector.

ẋ = f (x) =


v · cos (θ)

v · sin (θ)

ωd

ad

 (2.36)

Program 2.2 implements Equation (2.36) using CAPD.

1 using capd::autodiff::Node;

2

3 void f(Node t, Node x[], int dimX, Node f[], int dimF, Node

params[], int dimP) {

4 f[0] = x[3] * cos(x[2]); // ẋ = v · cos (θ)
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5 f[1] = x[3] * sin(x[2]); // ẏ = v · sin (θ) Note that the
developers of CAPD
recommend using
representable
numbers when
defining intervals,
i. e. write
capd::interval(1,

2) / 10.. We will
not do that in the
rest of this document,
for the sake of
simplicity.

6 f[2] = params[0]; // θ̇ = ωd
7 f[3] = params[1]; // v̇ = ad
8 }

9

10 int main(int argc, char** argv) {

11 int dimX = 4, dimF = 4, dimP = 2;

12 capd::IMap vf(f, dimX, dimF, dimP); // create an interval

vector field

13 vf.setParameter(0, -0.5); // set the desired angular rate

14 vf.setParameter(1, capd::interval(0.1, 0.2)); // set the

desired acceleration (here, an interval)

15 capd::IOdeSolver solver(vf, 30); // create a one-step ODE

solver, using the 30 first derivatives of f
16 capd::ITimeMap timeMap(solver); // create a long-time

integration solver, built on top of solver

17 // ...

18 return EXIT_SUCCESS;

19 }

20

Program 2.2: Implementing a differential equation with CAPD in C++

A naive solution to integrate this interval differential equation would
be to use the natural inclusion function of f, in an Euler integration
scheme, as such

[x] (t + dt) = [x] (t) +
∫ t+dt

t
[f] ([x] (τ)) dτ (2.37)

To implement Equation (2.37) in a computer, and to guarantee the
result of the integration, one must then find an enclosure

[
xg
]

for all
the trajectories starting from [x] (t) and evolving for a duration dt. This
enclosure is called the global enclosure of the solution. Unfortunately,
there is no direct way to find this global enclosure, and an iterative
approach is often used. Once it is found, Equation (2.37) becomes

[x] (t + dt) = [x] (t) + [0, dt] · f
([

xg
])

(2.38)

This concept is presented in details in Section 2.4.5.3.

However, another problem arises. Depending on the considered
system, one might need better than an Euler integration method to
obtain correct results. Most guaranteed integration algorithms can
then be split into two groups:

• The ones based on the Taylor expansion method (e. g. [28], [60],
[75], [134], [135])

• The ones based on the Hermite-Obreshkov expansion method
(see [87])

This thesis will not detail the Hermite-Obreshkov method, but the
Lohner algorithm, which is based on the Taylor expansion method
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(see Section 2.4.5.2). Since the latter uses successive derivatives of the
function f, we give a rough introduction to automatic differentiation in
Section 2.4.3.

Finally, the representation of the state [x] is of importance to avoid
the wrapping effect. Indeed, an axis-aligned box is not necessarily the
best way of enclosing a subset of Rn (see Section 2.4.4).

2.4.3 Automatic differentiation

Consider a function f : R → R. The Taylor expansion of the latter
around x ∈ R is given by Equation (2.39). While formal differentiation
of f may be straightforward for the first and second-order, it becomes
quite cumbersome as the order grows.

f (x + h) = f (x) +
∞

∑
i=1

hi

i!
· f (i) (x) (2.39)

The concept of automatic differentiation aims at easing that process.
By representing a function and its variables by a tree of simpler
components, and using a set of differentiation rules (among which
the chain rule plays a major role), evaluating a function’s successive
derivatives becomes a task that a computer can tackle. Automatic
differentiation is a field in computer sciences per se, so apart from
giving a few simple examples, we will not extend much on the matter.
We refer the reader to [94], which gives an extensive introduction to
the subject.

Example 2.16. Consider the function given by Equation (2.40).

y = x1 · cos (x2) + x2 · sin (x1) (2.40)

The goal is now to represent Equation (2.40) as a binary tree of vari-
ables, that we will name after the elements of a sequence wi.

w1 = x1

w2 = x2

w3 = cos (w2)

w4 = sin (w1)

w5 = w1 · w3

w6 = w2 · w4

w7 = w5 + w6

y = w7

This sequence of simple equations can be represented in the computer
memory by a binary tree, as depicted in Figure 2.12a. To evaluate y
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(a) Representation of Equation (2.40)
in a binary tree form

(b) Representation of ∂y
∂x1

in a binary
tree form

Figure 2.12: Binary tree used for automatic differentiation

with specific values of x1 and x2, one just needs to descend through
the graph until the bottom node.

Now, imagine that we want to evaluate ∂y
∂x1

. The first step is to
evaluate each one of the wi. Then, the solution is obtained by traversing
the graph from the bottom up using usual differentiation rules and
the chain rule

∂y
∂x1

=
∂y

∂w1

=
∂y

∂w7︸︷︷︸
1

·∂w7

∂w1

=
∂w7

∂w5︸︷︷︸
1

·∂w5

∂w1
+

∂w7

∂w6︸︷︷︸
1

·∂w6

∂w1

=
∂w1

∂w1︸︷︷︸
1

·w3 +
∂w3

∂w1︸︷︷︸
0

·w1 +
∂w2

∂w1︸︷︷︸
0

·w4 +
∂w4

∂w1
· w2

= w3 + cos (w1) · w2

This result corresponds to the actual expression of ∂y
∂x1

∂y
∂x1

= cos (x2) + x2 · cos (x1)

Then, since w1, w2 and w3 are known, evaluating ∂y
∂x1

is straightforward.

This process can be iterated over as many differentiation steps as
required. For example, let us propose the set of equations and the
binary tree (Figure 2.12b) for ∂2y

∂2x1
. Pose z = ∂y

∂x1
.

w8 = cos (w1)
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w9 = w8 · w2

w10 = w3 + w9

z = w10

Again, traversing the graph from the bottom up yields

∂2y
∂2x1

=
∂z

∂w1

=
∂w10

∂w1

=
∂w3

∂w1︸︷︷︸
0

+
∂w9

∂w1

=
∂w8

∂w1
· w2 +

∂w2

∂w1︸︷︷︸
0

·w8

= − sin (w1) · w2

which corresponds to the actual expression of ∂2y
∂2x1

∂2y
∂2x1

= − sin (x1) · x2

Of course, automatic differentiation can be applied to multidimen-
sional functions and interval-valued functions [84, Chapter 9], [94,
Chapters 7-10].

Example 2.17. In the CAPD library, automatic differentiation is available
and used according to the user’s instructions. Consider the following
lines of code, extracted from Program 2.2. One can notice that the

1 void f(Node t, Node x[], int dimX, Node f[], int dimF, Node

params[], int dimP); // define the function f
2 // ...

3 capd::IMap vf(f, dimX, dimF, dimP); // create an interval

vector field

4 // ...

5 capd::IOdeSolver solver(vf, 30); // implements and ODE solver

object using the derivative of f to the 30th order with

respect to time

6 // ...

7

Program 2.3: Automatic differentiation in CAPD

concept of state variable, and more generally of mathematical variable,
is enclosed in the Node object, for easier manipulation by a computer. In
other words, each wi from the previous examples would be modelled
as Node, and the functions applied to them reimplemented to yield
results in terms of Node.
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2.4.4 Interval computation and pessimism

In this section, we give a brief overview of the existing classes of
representable sets that can be used to enclose a subset of Rn. The choice
of such a class will impact positively or negatively the enclosure
yielded by the guaranteed integration algorithm. For a more extensive
presentation, the reader may refer to [56], [75], [85].

Remark 2.12. The figures presented below have been obtained us-
ing CAPD, by integrating Equation (2.41) with d = 0.5 and [x0] =

([0.9, 1.1] , [0.4, 0.6]) during 3 s.

ẋ = f (x) =

(
x2

− sin (x1)− d · x2

)
(2.41)

The goal here is not to detail the integration algorithm itself, or even
compare the different representable sets in terms of performance, but
to display their different components. Let us define the C++ class
MyRepresentableSet, which defines a representable subset of Rn and
its different operations. Then, the code used to obtain the figures
presented below is the following

1 void f(Node, Node x[], int, Node f[], int, Node params[], int)

{

2 f[0] = x[1];

3 f[1] = -sin(x[0]) - 0.5 * x[1];

4 }

5

6 int main(int argc, char** argv) {

7 int dimX = 2, dimF = 2, dimP = 0;

8 capd::IMap vf(f, dimX, dimF, dimP);

9 capd::IOdeSolver solver(vf, 30);

10 capd::ITimeMap timeMap(solver);

11

12 capd::IVector x0 = {{0.9, 1.1}, {0.4, 0.6}}; // Initial state

of the pendulum

13 MyRepresentableSet set(x0, 0); // Here the definition of the

chosen representable set, at time t = 0
14 capd::IVector x5 = timeMap(5, set); // box enclosing x (t = 5)

for all x ∈ [x0]
15 return EXIT_SUCCESS;

16 }

17

Program 2.4: Implementation of a damped pendulum system in CAPD

In Figures 2.13 to 2.15 and 2.17, the black shape roughly represents
the exact set of solutions of this system. It has been obtained using
a Monte-Carlo method and a concave hull algorithm [108]. After
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simulating hundreds of the system’s trajectories, all initialised in [x0],
we obtained a point cloud which borders were approximated using
this concave hull algorithm.

2.4.4.1 Interval vectors

We already introduced this set in Section 2.3.2.2. A box is an axis-
aligned subset of Rn, usually given as a vector of intervals. When used
in a guaranteed integration algorithm, the box [x] is usually decom-
posed into a point vector c ∈ Rn and an interval vector containing 0,
[r] ∈ IRn. This set is given by

[x] = c + [r] (2.42)

The main drawback of interval vectors is their inadequacy in repre-
senting a set that is not somewhat compact and box-shaped. Indeed,
they introduce much wrapping effect in the computations, especially
when rotations or non-linear transformations are involved in the com-
putations.

2.4.4.2 Parallelepipeds

Parallelepipeds were the first solution developed to solve the wrapping
effect problem in computations ([60], [81]). Instead of representing
a given set as an axis-aligned box, it is enclosed in a parallelepiped,
reducing the wrapping effect significantly (see Figure 2.13). A paral-
lelepiped, denoted by (c, B, [r]), is parametrised by a point vector c, a
matrix B and a box [r] containing 0. The corresponding interval vector
is defined by

[x] = c + B · [r] (2.43)

The box [x] is displayed in green, the corresponding parallelepiped
in blue, and the red point corresponds to c.

Remark 2.13. In the CAPD library, B is represented as an interval matrix.
This simply allows for guaranteed matrix inversion. The elements of
[B] are then extremely thin compared to that of [r], since they only
account for floating-point errors and not the system’s uncertainties.

Parallelepipeds allow enclosing sets that do not look like boxes
with less wrapping effect, since one degree of freedom is added (the
parallelepiped’s shape, parametrised by B, which is fixed in the case
of a box).

Singularity can be a problem when trying to invert the matrix B,
which occurs each time an operation involving two parallelepipeds is
executed (we refer the reader to [85] for more details).
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x2

x1

c

[x]

(c, B, [r])

Figure 2.13: Parallelepiped enclosure

The following piece of code is the parallelepiped implementation of
the set of solutions of the damped pendulum in CAPD

1 capd::IVector c = {1, 0.5}; // center of [x0]
2 capd::IVector r = {{-0.1, 0.1}, {-0.1, 0.1}}; // [x0]−mid ([x0])
3 capd::IMatrix B = {{1, 0}, {0, 1}}; // Identity matrix

4 capd::C0PpedSet set(c, B, r, 0); // Definition of the

parallelepiped at time t = 0

Program 2.5: Implementation of a parallelepiped enclosure in CAPD

2.4.4.3 Cuboids

Lohner introduced cuboids in [75] to overcome the potential singu-
larity of the matrix B in the parallelepiped representation. Lohner
advises considering an orthogonal matrix Q. A cuboid is then denoted
by (c, Q, [q]), and the corresponding interval vector is then given by

[x] = c + Q · [q] (2.44)

The box [x] is drawn in green, the corresponding cuboid in blue,
and the red point corresponds to c.

This method loses slightly in terms of wrapping effect compared
to the parallelepiped one (see Figure 2.14), but avoids singularity
problems in computations.

The following piece of code is the parallelepiped implementation of
the set of solutions of the damped pendulum in CAPD
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x1

x2

[x]

(c, Q, [q])

Figure 2.14: Cuboid enclosure

1 capd::IVector c = {1, 0.5}; // center of [x0]
2 capd::IVector q = {{-0.1, 0.1}, {-0.1, 0.1}}; // [x0]−mid ([x0])
3 capd::IMatrix Q = {{1, 0}, {0, 1}}; // Identity matrix

4 capd::C0RectSet set(c, Q, q, 0); // Definition of the cuboid at

time t = 0

Program 2.6: Implementation of a cuboid enclosure in CAPD

2.4.4.4 Doubletons

Doubletons have also been introduced in [75] as an extension of
cuboids. They allow for a large initial condition (compared to the
uncertainties introduced during integration). The doubleton, denoted
by (c, C, [r0] ,S) is parametrised by a parallelepiped and another rep-
resentable set S (being either a parallelepiped or a cuboid)

[x] = c + C · [r0] + S (2.45)

Figure 2.15a represents a parallelepiped based enclosure, while
Figure 2.15b uses a cuboid for S .

For the sake of clarity, Figure 2.16 shows the different steps of com-
puting a doubleton. The shapes drawn with a more intense shade
correspond to the actual representable sets, while the less intense,
bordered by dashed lines correspond to their respective interval enclo-
sures.

The following piece of code is the cuboid-based doubleton imple-
mentation of the set of solutions of the damped pendulum in CAPD
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x1

x2

[x]

(B, [r])

(c, C, [r0])

c

(a) Parallelepiped-based dou-
bleton enclosure

x1

x2

[x]

(Q, [q])

(c, C, [r0])

c

(b) Cuboid-based doubleton
enclosure

Figure 2.15: Doubleton enclosures based on parallelepiped and cuboid (iden-
tical scale)

c

x1

x2

c + C · [r0](c, C, [r0])

+ =

(Q, [q]) Q · [q]

=

[x]

(c, C, [r0]Q, [q])

Figure 2.16: Representation of a cuboid-based doubleton

1 capd::IVector c = {1, 0.5}; // center of [x0]
2 capd::IVector r0 = {{-0.1, 0.1}, {-0.1, 0.1}}; // [x0]−mid ([x0])
3 capd::IMatrix C = {{1, 0}, {0, 1}}; // Identity matrix

4 capd::IVector q = {0, 0}; // empty q vector

5 capd::IMatrix Q = {{1, 0}, {0, 1}}; // Identity matrix

6 capd::C0Rect2Set set(c, C, r0, Q, q, 0); // Definition of the

cuboid-based doubleton at time t = 0

Program 2.7: Implementation of a cuboid-based doubleton enclosure in
CAPD
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2.4.4.5 Tripletons

Tripletons are another way of representing sets, used in CAPD ([56],
[120]). A tripleton is a mix between as a cuboid-based and a paral-
lelepiped based doubleton

[x] = c + C · [r0] + Q · [q] ∩ B · [r] (2.46)

where [Q] is orthogonal. This set is represented in Figure 2.17.

x1

x2

c

[x]

(c,C, [r0])

(B, [r])

(Q, [q])

Figure 2.17: Tripleton enclosure

The following piece of code is the tripleton implementation of the
set of solutions of the damped pendulum in CAPD. The developer can
either define each component of Equation (2.46) manually or directly
provide a box for [x0] that will be correctly decomposed into the
different components.

1 capd::IVector x0 = {{0.9, 1.1}, {0.4, 0.6}}; // [x0]
2 capd::C0Rect2Set set(x0, 0); // Definition of the tripleton at

time t = 0

Program 2.8: Implementation of a tripleton enclosure in CAPD

We represented the different steps of computing a tripleton in
Figure 2.18.

Remark 2.14. The attentive reader may have noticed that C0 prefixes
each representable set implemented in the CAPD library. This prefix
allows computing the solution of an IVP. Other prefixes are available,
e. g. C1 allows solving an IVP and its associated variational equation.
More details about these features are available in [56].

In the rest of this thesis, we will only need C0 and C1 representable
sets.
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x1

x2

c+C · [r0](c,C, [r0]) (Q, [q]) Q · [q]

(B, [r]) B · [r]

+ ∩( ) = =

[x]

(c,C, [r0] ,B, [r] ,Q, [q])

(B, [r] ,Q, [q])B · [r] ∩Q · [q]

Figure 2.18: Representation of a tripleton

2.4.5 Lohner’s algorithm

In [73], [75], Lohner presented an algorithm allowing to solve IVPs
and boundary value problems rigorously. This subsection aims to
give a simple version of this algorithm by explaining and illustrating
the different steps to ease its implementation in robotics applications.
More details about enclosing the solutions of IVPs can be found in the
thesis of Joudrier [55].

We first introduce the algorithm’s aim and its operating principle in
Section 2.4.5.1; then, we present the latter’s theory in Sections 2.4.5.2
to 2.4.5.4. To illustrate the latter, we give a simple implementation
(see Section 2.4.5.5) and an example (see Section 2.4.5.6). Finally, we
provide some perspectives about Lohner’s algorithm in Section 2.4.5.7.

2.4.5.1 Introduction

Consider the IVP given by Equation (2.47), where f ∈ C p (Rn), and let
us denote by φ (t, x) the flow function of the system.{

ẋ = f (x)

x (t0) = x0
(2.47)

Similarly to a non-rigorous (i. e. not using intervals) method, Lohner’s
algorithm is capable of integrating Equation (2.47), and thus obtain a
sequence of intervals ([xk])k∈N, where k denotes the integration time
tk, such that

∀x0 ∈ [x0] , φ (tk, x0) ∈ [xk]

as illustrated in Figure 2.19. Given an interval [x] ∈ IRn and t ∈ R,
we write

φ[x] (t) = {y = φ (t, x) | x ∈ [x]} (2.48)
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[x0]
x1

x2

[x1]

[x2]

[x3]

φ[x0] (t1)

φ[x0] (t2)

φ[x0] (t3)

Figure 2.19: Rigorous integration of an IVP

2.4.5.2 Theory behind Lohner’s algorithm

2.4.5.2.1 taylor-lagrange expansion of the solution at time

tk+1

Let x (t) be a solution of the IVP such that x (0) = x0 ∈ [x0], let xk
denote x (tk), and let h denote the integration step tk+1 − tk. Finally,
let [x0] be the initial enclosure of the solution, such that

[x0] = x0 + [z0] (2.49)

and denote by x0,j, j ∈ [1, n] the components of x0.

Since f ∈ C p (Rn) and according to Theorem 2.1, we can apply the
Taylor-Lagrange’s formula to the pth order to the dynamical system
φ (t, x0). Doing so around time tk yields

φx0
(tk + h) = φx0

(tk) +
p−1

∑
i=1

hi

i!
φ
(i)
x0 (tk) + zk+1 (2.50)

where

φ
(i)
x0 (tk) =

∂iφx0

∂ti (tk)

and zk+1 denotes the Lagrange remainder. The latter’s components
are denoted by zk+1,j, defined by

zk+1,j =
hp

p!
φ
(p)
x0,j

(
τk+1,j

)
and τk+1,j ∈ [tk, tk+1]. The Lagrange remainder is also called the discreti-
sation error: it corresponds to the difference between the true solution
at time tk+1 and its Taylor series approximation.
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To simplify notation, we will let x(i)k and x(i) respectively stand for

φ
(i)
x0 (tk) and φ

(i)
x0 (t). Then, Equation (2.50) can be rewritten as follows

xk+1 = xk +
p−1

∑
i=1

hi

i!
x(i)k +

hp

p!
x(p) (τk+1) (2.51)

0.0 0.5 1.0 1.5 2.0
x1

0.0

0.5

1.0

1.5

2.0

2.5

x 2

xk

xk+1

hφ
(1)
x0 (tk)

h2

2
φ

(2)
x0 (tk)

h3

3!
φ

(3)
x0 (tk)

zk+1

φx0 (t)

Figure 2.20: Taylor-Lagrange expansion up to order 4, where zk+1 =
h4

4! x(4) (τk+1) denotes the Lagrange remainder

As represented in Figure 2.20, Equation (2.51) is an exact expression
of xk+1, provided that τk+1 is chosen carefully. This means that using
the successive derivatives

(
x(i)
)

0≤i≤p
, one can find an exact expression

of xk+1. The main interest of such an expansion lies in our ability to
express those derivatives in terms of x, using automatic differentiation
(see Section 2.4.3).
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Then, for q ≥ 2, let us define the function Φq:

Φq : R×Rn → Rn

(t, x) 7→ 1
h

q−1

∑
i=1

hi

i!
φ(i) (t, x)

(2.52)

For simplicity of notation, we write Φq (xk) instead of Φq (tk, x0). It is
worth noticing that Φq is C p with respect to x, and C p−q+1 with respect
to t.

We denote by zk+1 the Lagrange remainder

zk+1 =
hp

p!
x(p) (τk+1) (2.53)

Combining Equations (2.51) and (2.52) yields

xk+1 = xk + hΦp (xk) + zk+1 (2.54)

2.4.5.2.2 recursive form of the taylor-lagrange expansion

Now, one can notice that xk+1 recursively depends on (zi)0≤i≤k+1, if
we choose z0 ∈ [z0]. Equation (2.54) can then be rewritten:

xk+1 = xk+1 (z0, . . . , zk+1) (2.55)

Additionally, xk+1 is continuously differentiable with respect to each
one of the (zi)0≤i≤k+1. To find a tighter enclosure for xk+1, one can then
use the mean-value theorem component-wise around the (mi)i∈[0,k+1]

xk+1 = x̂k+1 +
k+1

∑
i=0

∂xk+1

∂zi
(ẑk+1) · (zi −mi) (2.56)

where ẑk+1 denotes the intermediate vectors of the mean-value theo-
rem and x̂k+1 = xk+1 (m0, . . . , mk+1)

x̂k+1 = x̂k + hΦp (x̂k) + mk+1 (2.57)

Remark 2.15. In [75], Lohner proposes to choose the mi as the mid-
points of the discretisation errors’ enclosures, i. e. [zi]. Since the ẑk+1
are unknown, they may be replaced by their enclosure [zk+1]. Hence
the interval counterpart of Equation (2.56) corresponds to the mean-
value form of xk+1 (z0, . . . , zk+1)

[xk+1] = x̂k+1 +
k+1

∑
i=0

∂xk+1

∂zi
([zk+1]) · ([zi]−mi) (2.58)
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Considering that the members of Equation (2.58) are known up to
step k, x̂k+1 can be computed using Equation (2.57). Now, let us find a

recursive formula for
∂xk+1

∂zi
(ẑk+1).

First, rearranging Equation (2.54) in terms of ẑk and ẑk+1 yields

xk+1 (ẑk+1) = xk (ẑk) + hΦp (xk) + zk+1 (2.59)

Then, consider the case i ≤ k, and let us differentiate Equation (2.59)
with respect to zi

∂xk+1

∂zi
(ẑk+1) =

∂xk

∂zi
(ẑk) + h

∂Φp

∂zi
(xk) +

∂zk+1

∂zi︸ ︷︷ ︸
0

=
∂xk

∂zi
(ẑk) + h

∂Φp

∂x
(xk)

∂xk

∂zi
(ẑk)

=

(
I + h

∂Φp

∂x
(xk)

)
︸ ︷︷ ︸

Ak

·∂xk

∂zi
(ẑk)

= Ak
∂xk

∂zi
(ẑk)

Now, consider the case i = k + 1, then we have

∂xk+1

∂zk+1
(ẑk+1) =

∂xk

∂zk+1
(ẑk)︸ ︷︷ ︸

0

+h
∂Φp

∂zk+1
(xk)︸ ︷︷ ︸

0

+
∂zk+1

∂zk+1︸ ︷︷ ︸
I

= I

In conclusion,
∂xk+1

∂zi
(ẑk+1) can be computed recursively as follows

∂xk+1

∂zi
(ẑk+1) =


Ak

∂xk

∂zi
(ẑk) if i ≤ k;

I if i = k + 1.
(2.60)

where we define

Ak =

(
I + h

∂Φp

∂x
(xk)

)
(2.61)
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Now, let us define Ak+1,i =
∂xk+1

∂zi
. Combining Equations (2.56),

(2.57) and (2.60) yields

xk+1 = x̂k + hΦp (x̂k) + mk+1 +
k+1

∑
i=0

Ak+1,i · (zi −mi)

= x̂k + hΦp (x̂k) + mk+1 +
k

∑
i=0

Ak+1,i · (zi −mi)

+ (zk+1 −mk+1)

= x̂k + hΦp (x̂k) +
k

∑
i=0

Ak+1,i · (zi −mi) + zk+1

= x̂k + hΦp (x̂k) + Ak

k

∑
i=0

Ak,i · (zi −mi) + zk+1 (2.62)

Now, the goal is to find a proper interval evaluation for Equa-
tion (2.62). In [75], Lohner gives a sequence of steps which are detailed
in the next paragraphs. The first step is to find an enclosure [x̃k] for
x (t) over [tk, tk+1]. This can be seen as a prediction step. The second
step (which Lohner splits into substeps for the sake of simplicity)
comes down to using the latter to find a local enclosure [xk+1] such
that for every xk ∈ [xk], φxk

(h) ∈ [xk+1]. This is the algorithm’s correc-
tion step since it contracts the original estimate of [x̃k]. This procedure
can be iterated over a single time step until reaching a fixed point
to contract even more the solution. The principle of the algorithm is
illustrated in Figure 2.21.

x1

x2

[xk]

φ[xk ]
(t) , t ∈ [0, h]

[
φ[xk ]

(h)
]

[x̃k]

Figure 2.21: Schematic of the Lohner’s algorithm

2.4.5.3 Global enclosure of the solution

Consider that the algorithm could solve Equation (2.47) up to time
tk. All the quantities required by Equation (2.62) are then known
at time tk or computed using quantities known at time tk, except for
zk+1. Indeed, zk+1 is the discretisation error due to the Taylor-Lagrange
expansion and depends on the solution x (t) at an unknown time value
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τk+1 ∈ [tk, tk+1]. Since this quantity is unknown, Lohner proposes to
find an enclosure x̃k for x (t) between the times tk and tk+1

[x̃k] = [{x (t) | t ∈ [tk, tk+1] , x (tk) ∈ [xk]}] (2.63)

This quantity is named global enclosure and has been introduced by
Moore in [82]. More details about this concept can also be found in
[83, Chapter 8], [84, Chapter 10].

This method is called First-Order Enclosure (FOE) (as opposed to
high-order enclosure presented in [23], [89], which is supposed to tackle
some of the drawbacks of the FOE method, such as the size of the
time step). As explained in [88], the FOE method is based on the
Picard-Lindelöf operator and the Banach fixed point theorem.

Definition 2.9. Consider the system ẋ = f (x) such that f ∈ C1 (Rn)
and x (tk) = xk. The Picard-Lindelöf operator of this system is

Πx (t) = xk +
∫ t

tk

f (x (s)) ds (2.64)

Now, consider that [xk] is the enclosure of the trajectory x (t) of the
system at time tk. Then the interval enclosure of the operator is given
by The exponent of

[
x̃0

k
]

corresponds to an
index, not a power
function.

Πx (tk+1) = xk +
∫ tk+1

tk

f (x (s)) ds

∈ [xk] +
∫ tk+1

tk

f
([

x̃0
k
])

ds

⊆ [xk] + [0, h] f
([

x̃0
k
])

=̂
[
x̃1

k

]
(2.65)

where
[
x̃0

k

]
is an a priori estimate of [x̃k].

Now, if
[
x̃1

k

]
⊆
[
x̃0

k

]
, then the Banach fixed-point theorem ensures

the existence and uniqueness of the trajectory φxk
(t) such that

φxk
(t) ∈

[
x̃1

k

]
for all t ∈ [tk, tk+1] and for all xk ∈ [xk] (for the derivation, we refer
the reader to [88]). Otherwise, one simply needs to inflate

[
x̃0

k

]
, say by

a factor ε > 0, and start over the process.

The problem now lies in the choice of
[
x̃0

k

]
. Lohner proposes the

strategy presented by Algorithm 1. Depending on the choice of h, this
method might not work, hence the automatic reduction of the time
step by a factor µ ∈ [0, 1] in the algorithm after a given number of
iterations N. A graphical interpretation of this algorithm is represented
in Figure 2.22. [xk+1] is only

represented to recall
the concept of global
enclosure, but is
actually unknown by
the FOE method.

Therefore, Algorithm 1 returns a global enclosure of the solution
φxk

(t) with t ∈ [tk, tk+1]. Lohner himself indicated that this FOE
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x1

x2
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[
x̃1

k
]

[0, h] ·
[
f
([

x̃0
k
])]

[xk] =
[
x̃0

k
]

[xk+1]

(a) First iteration:
[
x̃1

k
]
6⊂
[
x̃0

k
] x1
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[
x̃0

k
]

[
x̃1

k
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[0, h] ·
[
f
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x̃0
k
])]

[xk]
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(b) Second iteration:
[
x̃1

k
]
⊂
[
x̃0

k
]

Figure 2.22: Global enclosure algorithm

method might reduce the time step much more than a high-order
enclosure method, such as the one proposed by [89]. Although it may
be a problem due to the computer’s limited computational power in
certain cases, this algorithm is easy to understand and implement.

Algorithm 1 GlobalEnclosure (in: [xk], h, N, µ, out: [x̃k], h)[
x̃0

k

]
← [xk]

2:
[
x̃1

k

]
← [xk] + [0, h] f

([
x̃0

k

])
n← 0

4: while
[
x̃1

k

]
6⊆
[
x̃0

k

]
do

n← n + 1 Increase the number of iterations
6: if n ≥ N then

n← 0 Reset the iteration counter
8: h← µ · h Reduce the time step by a factor µ

Reset the a priori estimates
10:

[
x̃0

k

]
← [xk][

x̃1
k

]
← [xk] + [0, h] f

([
x̃0

k

])
12: end if[

x̃0
k

]
← (1 + ε)

[
x̃1

k

]
− ε

[
x̃1

k

]
Inflate the a priori estimate

14:
[
x̃1

k

]
← [xk] + [0, h] f

([
x̃0

k

])
Compute the new a priori estimate

end while
16: return

[
x̃0

k

]

2.4.5.4 Local enclosure of the solution

Thanks to the global enclosure [x̃k], we can now compute an enclosure
for the discretisation error term zk+1, and then focus on the local
enclosure of the solution [xk+1]. Here, we will consider that we have
access to an enclosure of all the quantities used in Equation (2.62) at
time tk (i. e. ũk, [xk], [zk], mk and ([Ak,i])i∈[0,k]), and we explain how
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to compute their enclosures at time tk+1 (i. e. ũk+1, [xk+1], [zk+1], mk+1
and [Ak]).

2.4.5.4.1 enclosing the discretisation error

Now that we have a global enclosure for the trajectories φxk (t) over
[tk, tk+1], computing an enclosure for the discretisation error zk+1 is
straightforward.

Using automatic differentiation, one can express zk+1 in terms of
x (τk+1) , τk+1 ∈ [tk, tk+1]. Since [x̃k] is an enclosure for x (τk+1), [zk+1]
can in turn be computed.

2.4.5.4.2 enclosing the taylor series terms

The last unknown quantity required by Equation (2.62) to evaluate
[xk+1] is [Ak] (see Equation (2.61)).

Consider the IVP given by Equation (2.66), where xk ∈ [xk], and
[xk] is the enclosure of the solution of the initial IVP given by Equa-
tion (2.47) at time tk.{

ẋ = f (x)

x (tk) = xk
(2.66)

As presented in Paragraph 2.2.2.3.2, its associated variational equation
is given by U̇ =

∂f (x (t))
∂x

U

U (tk) = I
(2.67)

The pth order Taylor-Young formula applied to the dynamical system
φ associated to Equation (2.66) around tk is written as follows

φ (h, xk) = φ (0, xk) + Φp (xk) + o (hp) (2.68)

Now, differentiating Equation (2.68) with respect to x yields

U (tk + h) =
∂φ

∂x
(h, xk)

=
∂φ

∂x
(0, xk) + h

∂Φp

∂x
(xk) + o (hp)

= I + h
∂Φp

∂x
(xk)︸ ︷︷ ︸

Ak

+o (hp) (2.69)
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Therefore, Ak corresponds to the pth order Taylor approximation of
∂φ

∂x
(h, xk) around tk, and consequently of U (tk + h), which yields

Ak = U (tk) + h
p−1

∑
i=1

hi−1

i!
U(i) (tk) (2.70)

This expression can be reformulated in terms of x (tk) and the suc-
cessive derivatives of f with respect to x at time tk, which can be
computed using automatic differentiation.

Example 2.18. Let us compute the three first time-derivatives of U (tk)

U (tk) = I

U(1) (tk) =
∂f
∂x

(xk) ·Utk

=
∂f
∂x

(xk)

U(2) (tk) =
d
dt

(
∂f
∂x

(xk)

)
·Utk +

∂f
∂x

(xk) ·U(1) (tk)

=
∂

∂x

(
d
dt

(f (x (tk)))

)
+

(
∂f
∂x

(xk)

)2

=
∂

∂x

(
∂f
∂x

(xk) · f (xk)

)
+

(
∂f
∂x

(xk)

)2

=
∂2f
∂2x

(xk) + 2
(

∂f
∂x

(xk)

)2

Finally, an enclosure for Ak can be obtained using Equation (2.70)
where each occurrence of xk is replaced by its enclosure [xk].

2.4.5.4.3 local enclosure

The local enclosure [xk+1] can now be computed using the previous
results

[xk+1] = x̂k + hΦp (x̂k) + [Ak]
k

∑
i=0

[Ak,i] ([zi]−mi) + [zk+1] (2.71)

However, depending on how the sum in Equation (2.71) is repre-
sented, the resulting local enclosure will be more or less tight. This is
due to the wrapping effect caused by the product between the sum
and the matrix [Ak]. In [73]–[75], Lohner advises representing it as a
product of a point matrix Bk and an interval vector [rk] to reduce this
wrapping effect (for more details, we refer the reader to Section 2.4.4)

Bk+1 [rk+1] =
k+1

∑
i=0

[Ak+1,i] ([zi]−mi) (2.72)
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where B0 = I and [r0] = [z0] − m0. Then, assuming that Bk+1 is
invertible, this yields

[rk+1] = B−1
k+1

k+1

∑
i=0

[Ak+1,i] ([zi]−mi)

= B−1
k+1

k

∑
i=0

[Ak+1,i] ([zi]−mi) + B−1
k+1 ([zk+1]−mk+1)

= B−1
k+1 [Ak]

k

∑
i=0

[Ak,i] ([zi]−mi) + B−1
k+1 ([zk+1]−mk+1)

[rk+1] =
(

B−1
k+1 [Ak]Bk

)
[rk] + B−1

k+1 ([zk+1]−mk+1) (2.73)

Due to the matrix inversion appearing in Equation (2.73), which can
lead to instability, Lohner advises choosing

Bk+1 = Qk+1 (2.74)

where Qk+1 corresponds to the orthogonal part of the QR factorisation
of the midpoint of [Ak]Bk

mid ([Ak]Bk) = Qk+1Rk+1 (2.75)

Therefore, Bk+1 is orthogonal and always invertible.

2.4.5.4.4 contracting the global enclosure

Using both [xk] and [xk+1], the global enclosure presented in Sec-
tion 2.4.5.3 can now be contracted. Doing so and going through the
previous steps (enclosing the discretisation error and the Taylor ex-
pansion) can yield a tighter enclosure for [xk+1]. This process can be
repeated a few times until reaching a fixed point.

The process of contracting the global enclosure is done using the
Picard-Lindelöf operator (see Equation (2.65)).

Proposition 2.2. Let [xk] and [xk+1] denote the local enclosures of the
solution x (t) at times tk and tk+1. Write [x̃k] the associated global enclosure.
Then for all t ∈ [tk, tk+1]{

x (t) ∈ [xk] + (t− tk) f ([x̃k])

x (t) ∈ [xk+1] + (t− tk+1) f ([x̃k])
(2.76)

Proof. First, consider xk ∈ [xk]. According to Definition 2.9, for all
t > tk

x (t) = xk +
∫ t

tk

f (s) ds

∈ [xk] +
∫ t

tk

f ([x̃k]) ds

∈ [xk] + (t− tk) f ([x̃k])
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Secondly, consider xk+1 ∈ [xk+1]. Using Definition 2.9 back in time,
i. e. for all t < tk+1, yields

x (t) = xk+1 +
∫ tk+1

t
−f (s) ds

∈ [xk+1]−
∫ tk+1

t
f ([x̃k]) ds

∈ [xk+1] + (t− tk+1) f ([x̃k])

�

Then, since [x̃k] is an enclosure for x (t) for t ∈ [tk, tk+1], the inter-
section between the former and both enclosures in Equation (2.76) will
provide a tighter global enclosure, which can be used to compute a
tighter enclosure [xk+1], as given by Equation (2.77).

[x̃k]← [x̃k]∩ [xk] + (t− tk) f ([x̃k])∩ [xk+1] + (t− tk+1) f ([x̃k]) (2.77)

2.4.5.5 Implementation of Lohner’s algorithm

Here, we will implement a simple Lohner algorithm, of the form of
that presented in [75], using the Taylor-Lagrange expansion formula
up to the second-order. This algorithm has been implemented in C++,We limited our

implementation to
the second-order

because Ibex does not
provide automatic

differentiation
algorithms to the nth

order, to the extent of
our knowledge.
Differentiating
further may be

useful in some cases.
However, doing so in

robotics might not
always be possible

given that the
time-derivative of

some uncertain
parameters of the
system might be

unknown.

using the library Ibex (we refer the reader to [17] for more details) and
tested on the examples we give below.

We use the same notations as in Equation (2.47), and we write
[x0] the initial enclosure of x (t = 0). To keep the algorithm short
and simple, we will assume that the integration step h is constant,
and that the global enclosure [x̃k+1] is computed at each iteration
of the algorithm using Algorithm 1. Also, for simplicity of notation,
given a matrix M, we write Qr (M) the orthogonal part of the QR
factorization of M. Finally, we write N the desired number of iterations
of the algorithm, and Jf the Jacobian of f.

2.4.5.6 Application

Here, we will give one example to illustrate the operating principle of
Algorithm 2.

Example 2.19.

Example 2.19.1 : Simplified Lohner algorithm.
Consider a simple pendulum, such as the one described by Equa-
tion (2.9). Let us choose the initial box [x0] = ([0.5, 0.53] , [0, 0.03]).
Figure 2.23 has been obtained using Algorithm 2, and represents the
first steps of the evolution of the system initialised at [x0]. Starting from
the top right red box, representing [x0], the algorithm first estimates
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Algorithm 2 SimpleLohner (in: [x0], out: [xN ])

Initialisation:
2: x̂0 ← mid ([x0])

[z0]← [x0]− x̂0

4: m0 ← mid ([z0]) = 0
[r0]← [z0]−m0 = [z0]

6: B0 = I
Main loop:

8: for k = 0 to N − 1 do
[x̃k] , h←GlobalEnclosure([xk] , h) see Algorithm 1

10: [Ak]← I + h [Jf] ([xk])

[zk+1]←
h2

2
[Jf] ([x̃k]) [f] ([x̃k])

12: mk+1 ← mid ([zk+1])
Bk+1 ← Qr (mid ([Ak]Bk))

14: [rk+1]←
(

B−1
k+1 [Ak]Bk

)
[rk] + B−1

k+1 ([zk+1]−mk+1)

x̂k+1 ← x̂k + hf (x̂k) + mk+1
16: [xk+1]← x̂k+1 + Bk+1 [rk+1]

end for
18: return [xN ]

the top right green a priori enclosure, thanks to which it computes the
orange cuboid and finally the blue box representing [x1]. For the sake
of clarity, we jumped a few integration steps before displaying [x5],
[x6] and their a priori enclosure. The red dotted line is the trajectory
of mid ([x0]).

Example 2.19.2 : CAPD integration.
This example aims to compare qualitatively the results obtained by our
simplified version of the Lohner algorithm, and its CAPD equivalent
(i. e. using a cuboid enclosure and a second-order Taylor expansion).

So far, the pieces of code we provided only showed how to perform
long-time integration, without the possibility of access to the solution’s
enclosures before the final time of the integration. Program 2.9 allows
doing so, and in particular to obtain Figure 2.24. The differences
between Figures 2.23 and 2.24 are due to a series of improvements
and optimisations made by the developers of CAPD, e. g. the automatic
time-step adjustment.

2.4.5.7 Conclusion

In this section, we introduced, explained and illustrated the algorithm
given by Lohner in [75]. This algorithm is part of the long development
of guaranteed integration methods, which have led to the development
of libraries such as CAPD. While more performing algorithms exist
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Figure 2.23: Integration of a simple pendulum by Algorithm 2

1 double finalTime = 3.0, dt = 0.1;

2 // ...

3 ITimeMap timeMap(solver);

4 capd::IVector x0 = {{0.5, 0.53}, {0, 0.03}};

5 capd::C0RectSet set(x0, 0);

6 ITimeMap::SolutionCurve curve(initTime); // allows accessing

the enclosure at any time between 0 and finalTime

7 timeMap(finalTime, x0, curve);

8

9 for (int i = 1; i < 30; ++i) {

10 capd::IVector x = curve(i * dt); // returns the enclosure

of x (t = i · dt)
11 }

12

Program 2.9: Guaranteed integration of a damped pendulum with CAPD

nowadays, it seemed important to introduce this one in a robotics
context, where it is not widely known. We believe that it can lead to
improvements in various existing interval analysis libraries used in
a robotics context ([17, Ibex], [103, Tubex]) since it allows for sharper
guaranteed integration than the existing algorithms. In particular,
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Figure 2.24: Integration of a simple pendulum by Program 2.9 (the global
enclosure is not displayed because it is not easily accessible in
CAPD.)

Section 4.3 adapts this algorithm to the Tubex library and transforms
it into a contractor, to standardise its use.

However, there are constraints that one should keep in mind while
using such an algorithm: it only performs well because of the small
size of the intervals involved in the computations (since it uses the
centred form to reduce the wrapping effect). Handling small intervals
in a robotics context might not always be possible (sometimes, the
uncertainties are too large), and using paving algorithms might be
necessary (see Section 2.6).

2.5 constraint satisfaction problems and contractors

A successful approach to deal with underwater robot localisation is
based on contractors [50, Chapter 4]. Its principle is the following:
assuming a priori that the robot is located inside a very large box
(say, the ocean’s size), the enclosure for its actual position is then
improved using constraints thanks to which impossible positions are
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removed. This approach allows dealing with far larger intervals than
usual guaranteed enclosure algorithms. Chapter 4 will explore the
possibilities of combining both approaches to solve problems in a
guaranteed way.

In this section, we will introduce the concepts of Constraint Sat-
isfaction Problem (CSP) and contractors. We will not introduce each
existing contractor, but merely give a simple example to illustrate
the definitions of the concepts mentioned above. More details and
examples about CSP and contractors can be found in [18, Chapter 3],
[50, Chapter 4].

Definition 2.10. Consider a triplet H = (x,L, [x]) such that

1. x ∈ Rn is a set of variables;

2. L is a set of constraints
{
L f1 , . . . ,L fm

}
, where fi : Rn → R is the

function describing the constraint fi (x) = 0;

3. [x] ∈ IRn is the set of domains for x.

The solution set of H is defined as

S = {x ∈ [x] | ∀i, fi (x) = 0}
Solving the Constraint Satisfaction Problem associated to H consists in
finding its solution set.

Example 2.20. Imagine an USV equipped with a compass and a camera
and measuring the bearings of three lighthouses α1, α2 and α3 (see
Figure 2.25).

[α1]

[α2]

[α3]

Figure 2.25: Triangulating a robot

These measurements are not perfect and are thus enclosed in three
intervals [α1], [α2] and [α3]. Using the principle of triangulation, the
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USV can determine its position (given that the lighthouses’ positions
are known, and that the latter are distinguishable from one another).

This localisation problem can be formalized using a CSP

1. Let x and y be the position of the USV in a cartesian plane, then
set x = (x, y, α1, α2, α3).

2. Let (x1, y1), (x2, y2) and (x3, y3) be the positions of the light-
houses. Then let us define the three following constraints

L f1 : f1 (x) = tan α1 −
y1 − y
x1 − x

= 0

L f2 : f2 (x) = tan α2 −
y2 − y
x2 − x

= 0

L f3 : f3 (x) = tan α3 −
y3 − y
x3 − x

= 0

3. The set of domains for x is as follows

[x] = ([−∞, ∞] , [−∞, ∞] , [α1] , [α2] , [α3])

In Figure 2.25, the green box represents the domain for x and y, while
each angular domain corresponds to a bearing measurement. The
resulting set of solutions, in dark grey, is obtained via contraction of
the CSP (see below).

Now, finding the solution of a CSP might not always be possible,
according to [50, Chapter 4]. Instead, it is possible to find an enclosure
for S by contracting the CSP H, i. e. finding a domain [y] such that
S ⊂ [y] ⊂ [x]. To do so, each constraint can be transformed into a
contractor, which is an operator used to contract the set [x], i. e. remove
the solutions from [x] that do not satisfy that constraint.

Definition 2.11. A contractor associated to a constraint L f of a CSP H
with a solution set S is an operator C f : IRn → IRn such that

1. ∀ [x] ∈ IRn, C f ([x]) ⊂ [x]

2. ∀ [x] ∈ IRn, [x] ∩ S ⊆ C f ([x])

One of the main interests of contractors is that they can be combined
through operations (e. g. intersection, union, composition. . . ) to yield
a smaller enclosure for S .

Example 2.21. Consider the previous example. Each constraint splits
the R2 plane into two zones: the one where it is satisfied and the rest.
Assuming that the lighthouses have an infinite range, and if we only
consider axis-aligned boxes of R2, we have drawn in Figure 2.26 the
result of the initial domain contraction [x].
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C2 ([x])

C3 ([x])

C1 ([x])

C1 ([x]) ∩ C2 ([x]) ∩ C3 ([x])

Figure 2.26: Using contractors to localise a robot

In this thesis, we will present two new contractors. The first one (see
Section 3.4.1) is adapted to stability analysis and does not aim to be
used as a contractor for CSP. The second one (see Section 4.3) adapts
the Lohner algorithm to contract tubes, which are intervals of trajecto-
ries, i. e. subsets of R×Rn. It corresponds to a so-called differential
constraint, i. e. the one introduced by a differential equation.

2.6 paving algorithms

Sometimes, especially in robotics, the uncertainties might be too large
to handle for integration algorithms or contractors, i. e. they introduce
too much wrapping effect in the computations, no matter what in-
telligent algorithm is used to reduce the latter. A handy method to
get a better approximation for a set is to use paving algorithms [50,
Chapter 3] as a last resort. Their working principle is straightforward:
instead of using one large box to enclose a set, the latter is paved by a
list of non-overlapping smaller boxes, which allows enclosing much
more complex sets. Algorithms using this paradigm have been im-
plemented to perform accurate set inversion [53] or used jointly with
contractors [18] to get a more accurate approximation of the result
set (see Figure 2.27). Usually, two approximations can be given when
characterizing a set S : the inner one (in red in Figure 2.27) and the
outer one (both the red and yellow boxes in Figure 2.27).

Despite being very useful, these algorithms are only used as a last
resort and in low dimensional systems. Indeed, each new dimension
is a new one to pave, increasing the number of boxes to be treated and
the need for computational power and processing time. There are ways
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S

Figure 2.27: Inner and outer paving of a set S : red boxes are inside S , green
ones outside, and nothing can be said about yellow boxes

to pave "intelligently" a set, to avoid useless additional computations
e. g. using a bisection strategy coupled with a binary tree to store
resulting boxes. This thesis’s contributions are not based on paving
algorithms, the latter are only used to illustrate the methods presented
later.
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3.1 introduction

This chapter is devoted to the first approach we explored to solve the
docking problem. The outline of the problem is simple: we want to
prove that a specific robot can dock onto a specific target.

On the one hand, the robot embeds various sensors and actuators,
managed by a computer and computer programs. All of these are
known to us in details: we have a model and a set of identified
parameters for each component, possibly under the form of intervals.
On the other hand, the target can be a garage equipped with a docking
station deployed underwater, or hanging from a cable attached to a
surface vessel; or even another robot such as an AUV cruising in the
ocean. What is important is for us to have access to its model and its
state, which implies that the target is cooperating with the robot.

71
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Then, by combining the different models of the couple robot/target,
we can get a global model describing the latter, parametrised by values
known more or less precisely. The fact that the robot reaches the target
translates to the convergence of one or more state variables towards a
given value. For example, the position of the robot’s docking interface
and the target’s one should end up being the same. Mathematically
speaking, we have just described a stable system: starting from an
initial point in its state space, the dynamical system formed by the
couple robot/target should converge towards a stable point.

This leads us to the introduction of Section 3.2, in which we recall
the concepts linked to stability of dynamical systems, starting from
the definition of the latter to the existing methods for proving sta-
bility of a system, whether continuous, discrete or hybrid. Then, in
Section 3.3, we formalise the docking problem as a stability problem,
using the concepts introduced earlier. Finally, in Sections 3.4 and 3.5,
we introduce the tools we created while developing our approach,
we present methods that allow us to prove stability of discrete-time,
continuous-time and hybrid uncertain systems and we illustrate the
latter through comprehensive examples.

3.2 stability of dynamical systems

This section presents some preliminaries about stability of dynamical
systems, and the methods traditionally used to prove stability for
a dynamical system, whether continuous- or discrete-time. We also
briefly present the case of hybrid systems.

3.2.1 Stability of continuous-time dynamical systems

3.2.1.1 Stability according to Lyapunov

We graphically introduced the concept of stability in Figure 1.9. In this
example, the marble would oscillate around the bottom of the valley
before immobilising there. If the marble were slightly shifted to either
side, it would come back to that point. Now, it is straightforward that
the marble’s behaviour in a neighbourhood of a given equilibrium
point depends on the shape of the cloth, the position and velocity of
the marble, and many other physical parameters. The lowest point of
the valley is a stable equilibrium state.

Consider the autonomous system described by Equation (3.1), where
f ∈ Ck (Rn).

ẋ (t) = f (x (t)) (3.1)
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A state x̄ is an equilibrium point if f (x̄) = 0, i. e. if the system remains
still when initialised at x̄. To study equilibrium points, and assess their
stability, one usually checks the linearised system’s eigenvalues at the
point x̄, given by Equation (3.2).

ẋ = Jf (x̄) · x (3.2)

Figure 3.1 shows a few possible behaviours for a planar system, de-
pending on its eigenvalues [40, Chapter 13], [41, Chapter 8]. The

Re(z) < 0
Im(z) = 0

Re(z) > 0
Im(z) = 0

Re(z) < 0
Im(z) 6= 0

Re(z) > 0
Im(z) 6= 0

Stable equilibria Stable equilibriaUnstable equilibria Unstable equilibria

Figure 3.1: Different types of equilibria, where z corresponds to the eigenval-
ues of the system

equilibria represented in Figure 3.1 are called hyperbolic since the real
parts of their eigenvalues are all non-zero.

Let us now give the usual definitions of stability of a continuous-
time system [59, Chapter 4] (initially proposed by Lyapunov in [72]).

Definition 3.1 (Stability). The state x̄ is stable for the system described
by Equation (3.1) if

∀ε > 0, ∃δ > 0, ‖x (0)− x̄‖ < δ =⇒ ∀t > 0, ‖x (t)− x̄‖ < ε (3.3)

Otherwise, it is unstable.

This definition implies that if the system is initialised close enough
to the equilibrium point x̄, it will remain in its neighbourhood.

Definition 3.2 (Asymptotic stability). The state x̄ is asymptotically stable
for Equation (3.1) if it is stable and the following property holds.

∃δ > 0, ‖x (0)− x̄‖ < δ =⇒ lim
t→∞

x (t) = x̄ (3.4)

This definition is stronger than the previous one since it implies
that the system will reach the state x̄ after an infinite time.

Definition 3.3 (Exponential stability). The state x̄ is exponentially stable
for Equation (3.1) if there exist α > 0 and β > 0 such that

∃δ > 0, ‖x (0)− x̄‖ < δ =⇒ ‖x (t)− x̄‖ ≤ α‖x (0)− x̄‖e−β·t (3.5)
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This definition implies that the system converges faster than a
decreasing exponential. It also implies asymptotic stability.

The definitions given above are illustrated in Figure 3.2 for a one-
dimensional system, to grasp the meaning of the neighbourhoods ε

and δ.

t

t

t

x(t)

x(t)

x(t)

x̄

x̄

x̄

δ

x̄ + α|x(0)− x̄|e−β·t

x̄− α|x(0)− x̄|e−β·t

δ

ε

δ
ε

Figure 3.2: Illustration of Definition 3.1 (top), Definition 3.2 (middle), and
Definition 3.3 (bottom) on a one-dimensional system: its trajectory
remains in a given neighbourhood around the equilibrium point
x̄

Example 3.1. Hyperbolic equilibrium points having only eigenvalues
with negative real parts are asymptotically stable, contrary to hyper-
bolic equilibrium points that are unstable.

3.2.1.2 Proving stability using Lyapunov’s theorem

What happens when of the linearised system’s eigenvalues are pure
imaginary, i. e. the equilibrium point is not hyperbolic? In that case,
the method widely used to determine stability is the one developed
by Lyapunov [41, Chapter 9], [59, Chapter 4]. This method is based on
Theorem 3.1, which is illustrated in Example 3.2.

Theorem 3.1. Consider the system described by Equation (3.1), and an
equilibrium point x̄ of the latter. If there exists a function V : Rn → R such
that V (x̄) = 0 and V (x) > 0 in a neighbourhood E of x̄, then
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• if
dV
dt

(x) ≤ 0 for all x ∈ E, x̄ is stable;

• if
dV
dt

(x) < 0 for all x ∈ E\ {x̄}, x̄ is asymptotically stable;

• if
dV
dt

(x) > 0 for all x ∈ E\ {x̄}, x̄ is unstable.

Example 3.2. The goal of this example is to illustrate Theorem 3.1.
Consider the system described by Equation (3.6).

ẋ = f (x) = −x (3.6)

This equation generates an attractive field towards the origin (see
Figure 3.3), which is an equilibrium point: f (0) = 0. Now, we need to
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Figure 3.3: Attractive vector field of Equation (3.6) and contour lines of V (x),
in R2

find a function V : Rn → R such that V (0) = 0 and V (x) > 0 around
the origin. Take for example

V (x) = ‖x‖2
2 =

n

∑
i=1

x2
i

which satisfies these properties. Let us now compute V̇ (x):

V̇ (x) = 2 · xT · ẋ
= −2 · xT · x
< 0, ∀x ∈ Rn\ {0}

This proves asymptotic stability of the equilibrium point 0, according
to Theorem 3.1.
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Geometrically speaking, this theorem can be interpreted as follows:
if the vector field defined by f is only incoming along a contour line of
the function V, then the system is stable since it will never leave the
neighbourhood enclosed by this surface level.

Remark 3.1. In the previous example, finding the Lyapunov function
V was quite easy. In the case of a more complex system, it might
not be as easy. In some cases, e. g. when systems represent a physical
phenomenon, physical understanding of the system can be of help.
Take the damped pendulum equation, for example. It has two equilib-
rium points: pendulum pointing upwards (unstable) and downwards
(stable). A good candidate for a function decreasing as these equilibria
are approached is the system’s total energy.

Lyapunov’s theory is the foundation of many methods related to
stability of dynamical systems. For example, it is often used in control
theory [51], [116] to prove stability of feedback loops and non-linear
control methods.

3.2.1.3 Periodic orbits & Poincaré maps

3.2.1.3.1 about periodic orbits

Oscillating systems can display stable behaviour when their oscilla-
tions tend towards the same pattern over time. Mathematically speak-
ing, a system oscillates when for a given non-stable initial condition
x0, its flow map φ : R×Rn → Rn satisfies

∀t ≥ 0, φx0 (t + T) = φx0 (t)

where T is called the period of the oscillations. The set defined by
γ = {φx0 (t) , t ≥ 0} is then a closed trajectory, called a closed orbit.
Note that an orbit of the system is not necessarily closed: an open orbit
corresponds to a trajectory displaying a somewhat periodic pattern,
that can asymptotically converge towards a closed orbit, diverge from
it, or even display chaotic behaviour. A closed orbit can be stable,
i. e. its neighbouring trajectories converge towards it as time tends to
infinity, or unstable when the neighbouring trajectories are divergent.
In those cases, the periodic orbit is usually called a limit cycle. Figure 3.4
illustrates the concepts mentioned above.

Usually, a limit cycle cannot be described by an analytical expression.
However, numerical approaches based on set-membership methods
can be used to find rigorous enclosures for limit cycles [62], [68].
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Figure 3.4: Approximating the limit cycle of the Van der Pol oscillator (Equa-
tion (2.3)). Neighbouring trajectories converge towards a limit
cycle.

3.2.1.3.2 about poincaré maps

Analysing stability of a limit cycle is however more complex than with
an equilibrium point. The classical tool used to do so is the Poincaré
map or first recurrence map [41, Chapter 10], [92, Chapter 3].

Definition 3.4 (Poincaré map). Consider a system with a flow function
φ : R×Rn → Rn, and a closed orbit γ of this system. Define a local
section S crossing γ at a point x0 ∈ Rn. Choose x ∈ S . Then the
Poincaré map Π associated to γ is given by Equation (3.7), where
τS : Rn → R is the function returning the smallest positive time such
that φ (τS (x) , x) ∈ S .

Π : S → S
x 7→ φ (τS (x) , x)

(3.7)

The section S is called the Poincaré section, and is usually defined by
a function σ : Rn → R such that σ (x) = 0. It is an (n-1)-dimensional . . . provided that 0 is

a regular value of σhypersurface of Rn.

However, this definition restricts the Poincaré map to one surface S ,
and the use of that tool to periodic orbits. A more general definition is
sometimes used [45], [120] and called local Poincaré map [124], [125].

Definition 3.5 (Local Poincaré map). Consider a system with a flow
function φ : R × Rn → Rn, and a sequence of surfaces (Sk)k∈N,
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S

γ
x0

x
Π (x) = φ (τS (x) , x)

φ (t, x)

Figure 3.5: Illustration of the Poincaré map (Definition 3.4)

respectively transversal to the flow at points forming the sequence
(xk)k∈N. Then the local Poincaré map Πk is defined by Equation (3.8),
where τSk : Rn → R is the function returning the smallest positive
time such that φ (τSk (x) , x) ∈ Sk.

Πk : Sk → Sk+1

xk 7→ φ
(
τSk+1 (xk) , xk

) (3.8)

This definition allows the use of Poincaré maps to non-periodic
trajectories (see Figure 3.6) and broadens its possible uses.

S0

S1

S2

Φ (t, x0)
x0

Π0 (x0) = x1

Π1 (x1) = x2

Figure 3.6: Illustration of the local Poincaré map (Definition 3.5)

In most cases, there is no analytical expression for a Poincaré map
[125]. Usually, the differential equation describing the system is in-
tegrated over time until reaching the desired Poincaré section. The
integration then stops, and the crossing point is returned as the result
of the Poincaré map. Depending on the shape of the section, and
whether it is orthogonal or not to the trajectory, different strategies
must be used, like adjusting the integration step or using the trajec-
tory’s local derivative. More information can be found in [125], and
insight on how Poincaré maps are computed in the CAPD library is
available in [131].
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3.2.1.3.3 computing the derivative of a poincaré map

Given that the function f describing the system is sufficiently continu-
ous and differentiable, one can define the derivative of the Poincaré
map associated with that system by Equation (3.9).

∂Π
∂x

(x) =
∂

∂x
(φ (τS (x) , x))

=
∂φ

∂x
(τS (x) , x) +

(
∂φ

∂t
(τS (x) , x)

)T

· ∂τS
∂x

(x)

=
∂φ

∂x
(τS (x) , x) + (f (φ (τS (x) , x)))T · ∂τS

∂x
(x)

=
∂φ

∂x
(τS (x) , x) + (f (Π (x)))T · ∂τS

∂x
(x) (3.9)

Assuming that Π (x) and τS (x) are known, and considering that
finding ∂φ

∂x (τS (x) , x) comes down to finding the solution at time τS (x)
of the system’s variational equation (see Paragraph 2.2.2.3.2), it only
remains to compute the state-derivative of τS (x).

Proposition 3.1. Consider a system with a flow function φ : R×Rn → Rn

and a Poincaré section S defined by the function σ : Rn → R. Let x ∈ Rn

and let T = τS (x) denote its return time to the section S and define
y = φ (T, x) = Πx. Denote by JφT (x) the Jacobian matrix of the t-transition
φ (T, x) and by∇σ (y) the gradient of the section. Then, the space-derivative
of τS is given by

∂τS
∂x

(x) = − ∇σT (y)
∇σT (y) · f (y) · JφT (x) (3.10)

Proof. We introduce the notations used below in Figure 3.7. One can
notice that a small offset dx on the original state x will induce an offset
dy of the impact point on the Poincaré surface S .

x
dx y = Π (x)

dy

S : σ (x) = 0

f (y)

φ (t, x)

∇σ (y)

Figure 3.7: Computing the state derivative of the return time function
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Since dy is orthogonal to ∇σ (y) for all y ∈ S , we have

∇σT (y) · dy = 0

=⇒ ∇σT (y) · dΠ (x) = 0

=⇒ ∇σT (y) · dφ (τS (x) , x) = 0

=⇒ ∇σT (y) · (dtφ (τS (x) , x) + dxφ (τS (x) , x)) = 0

=⇒ ∇σT (y) ·
(

dτS (x) ·
dφ

dt
(T, x) + dxφ (T, x)

)
= 0

=⇒ ∇σT (y) · (dτS (x) · f (y) + dxφ (T, x)) = 0

=⇒ dτS (x) = −
∇σT (y)

∇σT (y) · f (y) · dxφ (T, x) (3.11)

Furthermore, by definition, we have

dτS (x) =
∂τS
∂x

(x) · dx (3.12)

and

dxφ (T, x) =
∂φ

∂x
(T, x) · dx = JφT (x) · dx (3.13)

Finally, combining Equations (3.11) to (3.13) yields Equation (3.10),
which concludes this proof. �

Example 3.3. This example will explain how to compute a Poincaré
map and its first derivative for a simple pendulum system using CAPD.

Consider a simple pendulum such as described by Equation (2.41),
with a damping coefficient d = 5× 10−5. Let us define the section S ,
described by Equation (3.14).

σ : R2 → R(
θ, θ̇
)
7→ θ̇ − 0.5 · θ (3.14)

The following piece of code illustrates how CAPD can compute a
Poincaré map and its first derivative.

3.2.1.3.4 about poincaré maps and stability of limit cycles

The main purpose of the Poincaré map is to transform a possibly
complex continuous-time system into a discrete one, which is much
simpler to study. Indeed, the original continuous-time system given
by Equation (3.1) can be transformed into the discrete-time system
defined by Equation (3.15) by using Definition 3.4.

xk+1 = Π (xk) (3.15)
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1 void f(Node, Node x[], int, Node f[], int, Node params[], int)

{

2 f[0] = x[1];

3 f[1] = -sin(x[0]) - 0.00005 * x[1];

4 }

5

6 int main(int argc, char** argv) {

7 int dimX = 2, dimF = 2, dimP = 0;

8 double epsilon = 1e-6;

9 capd::IMap vf(f, dimX, dimF, dimP);

10 capd::IOdeSolver solver(vf, 30);

11 capd::ITimeMap timeMap(solver);

12

13 capd::INonlinearSection section("var : x1 , x2 ; fun : x2−0.5*x1 ; ");
// define the Poincaré section S

14 IPoincareMap pm(solver, section, capd::poincare::MinusPlus);

// define the crossing direction of the section, in that case

when s (x) changes from negative to positive

15

16 capd::IVector x0 = {{1 - epsilon, 1 + epsilon}, {0.5 -

epsilon, 0.5 + epsilon}}; // Initial state of the pendulum

17 C1Rect2Set set(x0); // we chose a doubleton set to represent

the solutions. Note the C1..., which allows computing the

first derivative of the solution’s trajectory

18

19 IMatrix monodromyMatrix(2, 2); // Matrix to store JφT (x0)
20 capd::interval returnTime; // Interval to store τS (x0)
21

22 IVector x1 = pm(set, monodromyMatrix, returnTime); // x1 is

the value of Π (x0); monodromyMatrix and returnTime are set

23 IMatrix dP = pm.computeDP(x1, monodromyMatrix, returnTime);

// dP corresponds to ∂Π
∂x (x0)

24

25 return EXIT_SUCCESS;

26 }

27

Program 3.1: Computing a Poincaré map and its derivative with CAPD

In other words, the notion of time is suppressed (or, more precisely,
dissimulated) using of Poincaré maps: its behaviour is now repre-
sented by discrete jumps in the state space, which can be regularly
distributed in time (when the system evolves on a limit cycle for
example) or not.

According to [119, Chapter 12], a limit cycle’s stability can be proved
using a Poincaré map.

Theorem 3.2. Consider the continuous-time system described by Equa-
tion (3.1), with f ∈ C1 (Rn). Denote by γ a limit cycle of the system. Let Π
be a Poincaré map associated to a Poincaré section S crossing γ at a point
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x̄. Then, γ is (asymptotically) stable if and only if x̄ is an (asymptotically)
stable equilibrium of Π.

In other words, proving stability of a limit cycle comes down to
proving stability of the discrete-time system associated to its Poincaré
map (see Section 3.2.2).

Poincaré maps have been used to prove the existence of limit cycles
of multiple systems, usually using set-membership methods for rigor-
ousness [123], [132], [133]. Each time, a computer program was used
to issue the proof (whence the use of interval computation methods).

3.2.1.4 Attractors & basins of attraction

Depending on the system’s dynamics, the latter’s trajectories can
sometimes converge towards a stable point or a stable limit cycle. These
mathematical objects are sometimes called attractors. Each attractor lies
in an area where each trajectory tends towards it: its basin of attraction
(see Figure 3.8).

x̄

(a) Stable equilibrium point x̄

γ

(b) Stable limit cycle γ

Figure 3.8: Attractors x̄ and γ and their basin of attraction (in red)

Once again, finding an enclosure for a basin of attraction is no easy
task. Set-membership methods are particularly suited for it [26], [71],
[96], [109]. The resulting approximation of the basin of attraction is
then a subpaving of non-overlapping boxes (see Section 2.6), the union
of which either corresponds to the inner or the outer approximation
of the actual basin.

3.2.2 Stability of discrete dynamical systems

The definitions of stability introduced in Section 3.2.1 are also valid
for discrete-time systems [41, Chapter 16]. In their case, however,
it is usually simpler to prove their stability, since they are defined
by a recurrence map, not a differential equation requiring rigorous
integration. When discussing discrete systems, the expressions fixed
point and periodic orbits are generally used in place of equilibrium
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points and limit cycles. Let us recall the general form of a discrete-
time dynamical system

xk+1 = f (xk) (3.16)

where f ∈ Cm (Rn).

Let us now introduce the Lyapunov’s definitions of stability for
discrete-systems.

Definition 3.6 (Stability). The system described by Equation (3.16) is
stable around the fixed point x̄ if

∀ε > 0, ∃δ > 0, ‖x0 − x̄‖ < δ =⇒ ∀k ≥ 0, ‖xk − x̄‖ < ε (3.17)

Otherwise, it is unstable.

Definition 3.7 (Asymptotic stability). The system is asymptotically
stable around x̄ if it is stable and

∃δ > 0, ‖x0 − x̄‖ < δ =⇒ lim
k→∞

xk = x̄ (3.18)

Definition 3.8 (Exponential stability). The system is exponentially stable
around x̄ if there exist α > 0 and β > 0 such that

∃δ > 0, ‖x0 − x̄‖ < δ =⇒ ‖xk − x̄‖ ≤ α‖x0 − x̄‖e−β·k (3.19)

3.2.2.1 Stability of fixed points

To study stability of an equilibrium point x̄ of a continuous-time
system could be achieved by checking its linearised counterpart’s
eigenvalues around x̄. This is still true for a discrete-time system.

Proposition 3.2. Consider the system described by Equation (3.16), where
Jf (x̄) is the Jacobian matrix of f evaluated at the fixed point x̄. Then,

• if the eigenvalues (λi)i∈[1,n] of Jf (x̄) are inside the unit circle, i. e. |λi| <
1, then x̄ is asymptotically stable for the system described by f;

• if one of the eigenvalues (λi)i∈[1,n] of Jf (x̄) is outside the unit circle,
then x̄ is unstable;

• otherwise, x̄ is either stable, unstable or neutral.

Example 3.4. To illustrate this proposition, we will use the logistic map
(already introduced in Example 2.5). We recall here its expression and
compute its derivative.

xk+1 = f (xk) = ρ · xk · (1− xk) (3.20)

f ′ (xk) = ρ · (1− 2 · xk) (3.21)



84 approach by stability analysis

It is straightforward to find its fixed points:

x̄1 = 0

x̄2 =
ρ− 1

ρ

Let us study their stability:

f ′ (x̄1) = ρ

f ′ (x̄2) = 2− ρ

We can then conclude that x̄1 is asymptotically stable if 0 < ρ < 1. Note
that for those values of ρ, x̄2 is not "valid", since xk is required to remain
in the interval [0, 1]. We can also conclude that x̄2 is asymptotically
stable if 1 < ρ < 3.

For ρ ≥ 3 the fixed points are not stable any more, but that does
not mean that the system cannot converge towards another stable
behaviour, e. g. a periodic orbit (see Example 3.5).

3.2.2.2 Stability of periodic orbits

A discrete-time system describing a periodic orbit evolves according
to a fixed-size sequence of points:

x0, x1, . . . , xN−1, x0, x1, . . . , xN−1, x0, x1, . . . , xN−1, . . .

The point x0 is called the orbit’s seed, and N corresponds to the latter’s
period. Now, since each point xi is a fixed point of the system described
by fN , proving stability of the periodic orbit comes down to proving
stability of one xi, which can be done as explained in the previous
section.

Example 3.5. Let us resume the development of Example 3.4, with
ρ ≥ 3. In that case, we start observing periodic orbits. For example,
take ρ = 3.4: a periodic orbit of size 2 can be observed in Figure 2.4c.
In other words, the sequence of (xk)k∈N converges towards a sequence
alternating between two points x̄3 and x̄4. The latter are the roots of
the following equation (fourth-order polynomial):

x̄ = f ◦ f (x̄) (3.22)

Their values can be observed in Figure 3.9a. We can also observe
graphically that the derivative of f 2 is negative for x̄3 and x̄4, meaning
that the latter are stable fixed points for f 2, which proves stability
of the periodic orbit. Similarly, for ρ = 3.5, an oscillating trajectory
between four values can be observed (see Figure 3.9b).
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(a) Graph of f (x) (solid line),
f 2 (x) (dashed line) in the plane
(xk, xk+1) and resulting periodic
orbit (in red)
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(b) Graph of f (x) (solid line),
f 4 (x) (dashed line) in the plane
(xk, xk+1) and resulting periodic
orbit (in red)

Figure 3.9: Examples of periodic orbits of the logistic map

3.2.3 Stability of hybrid systems

In this section, we will discuss the stability of hybrid systems, the
formalism of which we introduced in Section 2.2.4. In [34], [35], Girard
gives an extensive introduction about stability of hybrid systems, upon
which we based this section. This subject has also been addressed in
earlier publications [42], [43], [113].

The main problem encountered in the literature is to prove sta-
bility of hybrid limit cycles. The latter are analogous to continuous
ones or periodic orbits, to the difference that both the discrete and
continuous parts of the system’s state must describe a periodic pat-
tern: (q (t) , x (t)) = (q (t + T) , x (t + T)) where T is the period of the
system. In the rest of this chapter, we will consider that the studied
hybrid systems have limit cycles.

The principle of the methods developed in [34], [35] is based on the
use of the Poincaré map (see Paragraph 3.2.1.3.2). Consider a hybrid
system H = (Q, E ,D,F ,G,R) and an initial state (q0, x0). Each guard
Geij of the system, which delimits the domains Dqi and Dqj , can be
interpreted as a Poincaré section. That is, for each Geij , a local Poincaré
map Πqi associated with the vector field fqi can be defined as follows:

Πqi : Dqi → Geij

x 7→ φqi

(
τGeij

(x) , x
) (3.23)

Therefore, the continuous state of the system can be described by a
sequence of discrete points (xk)k∈N, as given by Equation (3.24) if we
assume that the transitions between the discrete states qi ∈ Q are
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executed in the order of increasing k. N corresponds to the number of
discrete states.

xN+1 = ΠqN ◦ · · · ◦Πq0 (x0)

= Π (x0)
(3.24)

Π is called the hybrid Poincaré map of H [34], and is illustrated in
figure 3.10.

Dq0
Dq2

Dq1

Ge12

Ge20

Ge01

x1 = Πq0 (x0)

x2 = Πq1 (x1)

x0 = Πq2 (x2)

= Π (x0)

φq1 (t, x1)

φq2 (t, x2)

φq0 (t, x0)

Figure 3.10: Graphical representation of the hybrid Poincaré map on a limit
cycle of the system

Remark 3.2. Note that since Πqi (x) ∈ Geij , the associated reset function
Reij is triggered by the Poincaré map. Therefore, each Poincaré map
Πqi maps the reset state Reij (x). For the sake of clarity, we will not
make this appear in the equations later.

Considering that each vector field fqi is continuous and smooth
enough, the derivative of Π with respect to x is expressed as follows:

∂Π
∂x

(x) =
0

∏
i=N

∂Πqi

∂x
(
Πqi−1 ◦ · · · ◦Πq0 (x0)

)
(3.25)

where
∂Πqi

∂x corresponds to the derivative of a local Poincaré map (see
Equation (3.9)).

Finally, to conclude about stability of H, one simply needs to apply
Proposition 3.2, i. e. check that the eigenvalues of ∂Π

∂x are inside the
unit circle.
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For example, Girard has applied this method to prove stability of
the limit cycles of piecewise-linear hybrid systems in [34], [42].

3.3 formalisation of a docking mission as a stability

problem

In this section, we will formalise a docking mission as a stability
problem. We will then highlight the different challenges inherent to
this formalisation and the various tools available to solve the problem.

As explained earlier in this thesis, a robot can be modelled as a
hybrid system: the physical phenomenons acting on the robot and the
thrusts of its propellers can be modelled as a continuous system, and
its sensors, localisation and control algorithms as a discrete system. De-
note by x (t) ∈ Rn the continuous state (e. g. the position, orientation,
linear and angular velocities. . . ), by x̂ ∈ (t)Rm the state estimation,
contained inside the robot’s computer, by u (t) the command issued
by the controller, and by y (t) the vector of measurements. Denote by
δ > 0 the update period of the computer, and a sequence of update
times (tk)k∈N such that tk = kδ.

Since the state estimation, the commands issued to the motors and
the measurements are processed by the computer, we have

∀k > 0, ∀t ∈ [tk, tk+1] ,


x̂ (t) = x̂ (tk) = x̂k

u (t) = u (tk) = uk

y (t) = y (tk) = yk

(3.26)

The complete model of the robot is

∀k > 0,


ẋ (t) = ϕ (x (t) , uk) , ∀t ∈ [tk, tk+1]

x̂k+1 = ϕ̂ (x̂k, yk, uk)

uk = γ (x̂k)

yk = ζ (x (tk))

(3.27)

Equation (3.27) can be reformulated into

∀k > 0,

{
ẋ (t) = f (x (t) , x̂k) , ∀t ∈ [tk, tk+1]

x̂k+1 = f̂ (x̂k, x (tk))
(3.28)

Concerning the target of the docking mission, we assume that its
state is somehow known by the robot’s computer. For example, if the
target is moving (e. g. an USV onto which the robot must dock), this
assumption implies that its state x̄ (tk) is sent periodically to the robot.
The target’s state can then be used as a variable of the controller, and
combined inside Equation (3.28). If the target is fixed (e. g. a garage
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ẋ (t) = ϕ (x (t) , uk)

x̂k+1 = ϕ̂ (x̂k, yk, uk)

uk = γ (x̂k) yk = ζ (x (tk))

x (t)
Robot model

Sensors

Estimator

Controller

yk

x̂k

uk

Figure 3.11: Representation of the robot’s model

placed on the sea bottom), its position must be communicated to the
robot prior to the mission, and will then be used as a parameter inside
the controller. To sum up, Equation (3.28) is a model for the robot and
its target, and is sufficient to determine the robot’s behaviour over
time.We consider one

single discrete state
q, because we

consider that the
laws describing the

robot’s behaviour are
the same no matter

its position,
orientation,

etc. . . Furthermore,
since x̂ is constant

over a time step, we
have ˙̂x = 0m

Now, the system described by Equation (3.28) can be formalised
as a hybrid system, exactly like explained in Example 2.8. The robot
only has one discrete state q, its continuous state being the vector
z ∈ Rn+m+1 composed of x (t), x̂ (tk) and of a time variable τ. Its
behaviour is defined by

∀k > 0, ∀t ∈ [tk, tk+1] , ż =

 f (x (t) , x̂k)

0m

1

 (3.29)

The only guard of the system G(q,q) is defined by

G(q,q) =
{

z ∈ Rn+m+1, τ = δ
}

(3.30)

and triggers the reset function defined by

R(q,q) =
(

x (t) , f̂ (x̂k, x (tk)) , 0
)

(3.31)

If the localisation and control algorithms are well implemented, and
the robot correctly modelled, the latter should reach the target state x̄k.
In other words, both x (t) and xk should converge towards x̄k. Now,
one can notice that the variable τ is periodic, by definition. Therefore,
G(q,q) is a Poincaré section, crossed every τ seconds by the system.
Thus, proving that the robot will converge towards its target comes
down to proving that its hybrid Poincaré map converges towards a
stable hybrid cycle.

Now, the different models introduced earlier, their parameters and
their states can be uncertain. Furthermore, they are most certainly
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non-linear. Therefore, we need a method able to prove stability of a
hybrid limit cycle described by a non-linear uncertain hybrid system.
As explained in the previous section, this comes down to proving
stability of a discrete system (defined by the hybrid Poincaré map). To
the extent of our knowledge, such a method does not exist. Moreover,
it is likely that the controllers and the localisation method might be
working, i. e. driving the system towards its target, only in a given area
of the state space. Knowing that the target is attracting the robot is
therefore not sufficient for the robot’s user, who also needs information
regarding the "safe" zones inside which the robot can be initialised
to reach its target. To the extent of our knowledge, a method able to
provide a neighbourhood inside which a system is stable does not
exist either.

These are the challenges we tackle in the rest of this chapter.

3.4 proving stability of uncertain dynamical systems

Now that we have introduced the basics of stability of dynamical sys-
tems, we will focus on this thesis’s first contributions. We propose here
a general method for proving stability of uncertain discrete, continu-
ous and hybrid systems. Existing methods tackle these problems by
checking the eigenvalues of the linearised system [49], by approximat-
ing the system using piecewise linear functions [34] or by considering
only linear systems [101]. Unlike some of the latter, our method is
not based on a Lyapunov function, which simplifies the problem for
complex dynamical systems. It can be applied to non-linear systems
and can deal with uncertainties. Finally, it allows finding a value for
the neighbourhoods ε and δ of the Lyapunov’s definitions of stability,
which is not achievable by any other existing method for complex
non-linear systems, to the extent of our knowledge.

Our method is based on two major concepts: the stability contractor,
that we introduce in Section 3.4.1, and iterative algorithms to com-
pute the centred form of a composition of functions, presented in
Section 3.4.2.

3.4.1 Stability contractor

We briefly introduced the concept of contractor in Section 2.5, which is
an operator that contracts a set according to a set of constraints. Here,
we adapted this tool to create a stability contractor, i. e. an operator that
can contract a box in a way that can imply asymptotic stability of
the system which state is enclosed by that box. Note that we initially
introduced this tool in [10].
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Definition 3.9. Let [x0] 3 0 be a box of Rn, and choose any [a] 3 0
and [b] 3 0 inside [x0]. A stability contractor of rate α < 1 is an operator
Ψ : IRn → IRn which satisfies

[a] ⊂ [b] =⇒ Ψ ([a]) ⊂ Ψ ([b]) (monotonicity) (3.32)

Ψ ([a]) ⊂ [a] (contractance) (3.33)

Ψ (0) = 0 (equilibrium) (3.34)

Ψ ([a]) ⊂ α · [a] =⇒ ∀k ≥ 1, Ψk ([a]) ⊂ αk · [a] (convergence) (3.35)

where for k ≥ 1, Ψk denotes the operator composition Ψ ◦ · · · ◦Ψ︸ ︷︷ ︸
k

, and

Ψ0 the identity function.

Example 3.6. Consider the operators given by Equation (3.36) and
Equation (3.37).

Ψ1 : IR→ IR

[x] 7→ [x] ∩−0.9 [x]
(3.36)

Ψ2 : IR→ IR

[x] 7→ −0.9 [x]
(3.37)

Ψ1 is a stability contractor, while Ψ2 is not (the contractance prop-
erty is not verified, take for example [x] = [−1, 2], then Ψ2 ([x]) =

[−1.8, 0.9] 6⊂ [x]).

Proposition 3.3. If Ψ is a stability contractor of rate α < 1, then

Ψ ([x]) ⊂ α · [x] =⇒ lim
k→∞

Ψk ([x]) = 0 (3.38)

Proof. Let [x] ∈ IRn and Ψ be a stability contractor of rate α < 1. It
follows that

Ψ ([x]) ⊂ α · [x] =⇒ Ψk ([x]) ⊂ αk · [x]
according to Equation (3.35)

=⇒ lim
k→∞

Ψk ([x]) = 0 since αk → 0 as k→ ∞

�

Corollary 3.1. Consider a discrete-time system described by xk+1 = f (xk)
such that f (0) = 0. Denote by [x0] 3 0 the enclosure of the initial state x0,
and let Ψ be a stability contractor of rate α < 1 such that Ψ ([x0]) ⊂ α · [x0].
If for all k ≥ 0, fk ([x0]) ⊆ Ψk ([x0]), then the system is asymptotically
stable in the neighbourhood [x0].
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Proof. Let Ψ be a stability contractor of rate α < 1 such that Ψ ([x0]) ⊂
α · [x0]. Assume that for all k ≥ 0, fk [x0] ⊆ Ψk ([x0]). Then, according
to Proposition 3.3 it follows that

Ψ ([x0]) ⊂ α · [x0] =⇒ lim
k→∞

Ψk ([x0]) = 0

=⇒ lim
k→∞

fk ([x0]) = 0

since ∀k ≥ 0, fk ([x0]) ⊆ Ψk ([x0])

=⇒ ∀x0 ∈ [x0] , lim
k→∞

fk (x0) = 0

=⇒ ∀x0 ∈ [x0] , lim
k→∞

xk = 0

This corresponds to the definition of asymptotic stability (see Defini-
tion 3.7), which means that each x0 ∈ [x0] will converge asymptotically
towards the fixed point 0. �

Remark 3.3. Note that this corollary allows proving stability for discrete
systems having 0 as a fixed point and for neighbourhoods [x0] 3 0.
If the fixed point is non zero, i. e. f (x̄) = x̄, x̄ 6= 0, [x0] 3 x̄, then one
simply needs to centre the system on x̄ as follows:

• Choose [z0] = [x0]− x̄, then 0 ∈ [z0]

• Consider the function g (z) = f (z + x̄)− f (x̄), then g (0) = 0

Then the system zk+1 = g (zk) and the initial box [z0] meet the require-
ments of Corollary 3.1.

The following proposition is almost identical to Corollary 3.1, but it
implies exponential – instead of asymptotic – stability.

Proposition 3.4. Consider a discrete-time system described by xk+1 = f (xk)
such that f (0) = 0. Denote by [x0] 3 0 the enclosure of the initial state x0,
and let Ψ be a stability contractor of rate α < 1 such that Ψ ([x0]) ⊂ α · [x0].
If for all k ≥ 0, fk ([x0]) ⊆ Ψk ([x0]), then the system is exponentially
stable in the neighbourhood [x0].

Proof. Take any point x0 ∈ [x0] and denote by [x′0] the smallest box
containing both x0 and 0. We have [x′0] ⊂ [x0]. Then, according to
Equation (3.32),[

x′0
]
⊂ [x0] =⇒ Ψ

([
x′0
])
⊂ Ψ ([x0]) ⊂ α [x0]

=⇒ ∃α0 ≤ α, Ψ
([

x′0
])
⊂ α0

[
x′0
]

=⇒ ∀k ≥ 1, Ψk ([x′0]) ⊂ αk
0
[
x′0
]
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Define
[
x′k+1

]
= Ψk ([x′0]) for all k ≥ 1. Then, according to Equa-

tion (3.35) and Lemma 2.1,

∀k ≥ 1,
[
x′k+1

]
⊂ αk ·

[
x′0
]
=⇒ ‖

[
x′k+1

]
‖ < αk

0 · ‖
[
x′0
]
‖

=⇒ ‖
[
x′k+1

]
‖ < ‖

[
x′0
]
‖ · ek ln(α0)

=⇒ ‖
[
x′k+1

]
‖ < ‖

[
x′0
]
‖ · e−kβ

where β = − ln (α0) > 0.

Since x0 is the furthest point from the origin inside [x′0] by construc-
tion, we have ‖ [x′0] ‖ ≤ ‖x0‖.

Moreover, define xk = fk (x0). We have xk ∈
[
x′k
]
, and in turn

‖x′k‖ ≤ ‖
[
x′k
]
‖. It follows that

∀k ≥ 1, ‖xk‖ < ‖x0‖ · e−kβ

Since this is true for all x0 ∈ [x0], this implies exponential stability
of the system around the origin, according to Definition 3.8. �

Now, we have shown that our method can prove stability of a
discrete system. However, one could legitimately ask whether our
method can prove stability for any system as long as the latter is stable.
Proposition 3.5 states that if the system is exponentially stable, this
automatically implies [fc] ([x0]) ∈ [x0], for any [x0] chosen carefully,
and thus that our method can always prove stability of a stable system.

Proposition 3.5. Consider a discrete-time system described by xk+1 = f (xk)
such that f (0) = 0, and assume that it is exponentially stable around 0.
Then there exists η > 0 and γ < 1 such that

∀ [x] ∈ Xη , ∃k > 0,
[
fk

c

]
([x]) ⊂ γ · [x] (3.39)

where Xη = {[x] 3 0, ‖ [x] ‖ ≤ η}.

Proof. Assume that the system described by f is exponentially stable
around the fixed point 0. Then, Definition 3.8 states that there exists
α > 0 and β > 0 such that

∃δ > 0, ‖x0‖ < δ =⇒ ‖xk‖ < α‖x0‖e−β·k

where x0 is a point in a neighbourhood δ of 0, and xk = fk (x0). Note
that for all k ≥ 0, αe−β·k ≤ α.

Define a box [x0] 3 0 such that ‖ [x0] ‖ < δ. Then,

∀x0 ∈ [x0] , ‖x0‖ < δ =⇒ ‖fk (x0) ‖ < α‖x0‖
=⇒

[
fk ([x0])

]
⊂ α [x0]
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where
[
fk ([x0])

]
is the minimal image of [x0] by fk.

Now take any box [y] 3 0 in [x0] and define η = ‖ [y] ‖. Then,
by choosing η sufficiently small, the pessimism of the centred form
becomes arbitrarily small and we can find γ such that α ≤ γ < 1 that
verifies[

fk
c

]
([y]) ⊂ γ [y]

Finally, let us define Xη = {[x] 3 0, ‖ [x] ‖ ≤ η}. We then have

∀ [x] ∈ Xη , ∃k > 0,
[
fk

c

]
([x]) ⊂ γ · [x]

�

3.4.2 Proving stability of discrete-time systems

Thanks to the stability contractor, one can prove stability of discrete-
time dynamical systems. We will now explain how to build a stability
contractor for a specific system. To achieve that, our stability contractor
must meet the requirements of both Definition 3.9 and Corollary 3.1.
In Section 2.3.4, we presented the centred form of an interval function,
which is an inclusion function, i. e. it encloses the image set of an
interval by a function. We will show in the following paragraphs that
we can build a stability contractor using the centred form. We will
also provide algorithms to compute the centred form of composition
of functions. We introduced the latter in [10], [11].

In the rest of this section, we assume that the functions f describing
the studied discrete-time systems are at least C1.

3.4.2.1 Discrete iterative centred form centred on the origin

Consider a discrete-time system described by xk+1 = f (xk) such that
f (0) = 0, and denote by [x0] the enclosure of its initial state. Then
the successive image sets fk ([x0]) are enclosed by the centred form[
fk

c
]
([x0]). We propose below an iterative algorithm to compute

[
fk

c
]
.

Theorem 3.3. Consider a function f : Rn → Rn such that f(0) = 0 and
denote by Jf its Jacobian matrix. Let [x0] 3 0 be a box of IRn. The centred
form

[
fk

c
]
([x0]) enclosing fk ([x0]) is given by the following sequence

[z0] = [x0]

[A0] = In

[zk+1] = [f] ([zk])

[Ak+1] = [Jf] ([zk]) · [Ak][
fk

c

]
([x0]) = [Ak] · [x0]

(3.40)
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Proof. Let us define [z0] = [x0] and [A0] = In.

For all x ∈ Rn, the Jacobian matrix of fk is given by

dfk

dx
(x) =

d(f ◦ fk−1)

dx
(x)

=
df
dx

(fk−1(x)) · dfk−1

dx
(x)

Define zk = fk(x) and Ak =
dfk

dx (x). Since for all x ∈ Rn, J(x) = df
dx (x),Equation (3.41) is

the discrete version
of the variational

equation of a
continuous-time

system.

we have

Ak = J (zk−1) ·Ak−1 (3.41)

Now, since f (0) = 0, it follows that fk (0) = 0 for all k. Therefore,
according to Definition 2.8 and Equation (3.41), it follows that[

fk
c

]
([x0]) = [Jfk ] ([x0]) · [x0]

=

[
dfk

dx

]
([x0]) · [x0]

= [Ak] · [x0] (3.42)

�

Remark 3.4. Theorem 3.3 proposes an algorithm capable of computing
enclosures for the successive states of a discrete system. Thanks to the
use of the centred form, this algorithm should yield good results in
terms of wrapping effect, as long as the initial box [x0] is small enough
(see Section 2.3.4 and Equation (2.33) in particular). However, this
algorithm is not as performing as a Lohner-like algorithm for discrete
systems in terms of sharpness of the enclosure. Actually, when k gets
too large, the size of

[
fk

c
]
([x0]) tends to diverge.

In its iterative form, the centred form is thus a tool allowing to
enclose the trajectory of a discrete system. We will now show that
under certain conditions, it becomes a stability contractor.

Theorem 3.4. Consider a function f : Rn → Rn such that f(0) = 0. If
there exists a box [x0] 3 0 and a real α < 1 such that [fc] ([x0]) ⊂ α · [x0],
then the operator Ψ defined by

Ψ : IRn → IRn

[x] 7→ [fc] ([x])
(3.43)

is a stability contractor inside [x0].

Proof. The goal here is to prove that the centred form possesses the
properties from Definition 3.9. Let f : Rn → Rn be a function such
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that f(0) = 0, and define a box [x0] 3 0 and a real α < 1 such that
[fc] ([x0]) ⊂ α · [x0].

The monotonicity (Equation (3.32)) of Ψ results from that of the
natural inclusion function of Jf.

The contractance (Equation (3.33)) results from the original assump-
tion that [fc] ([x0]) ⊂ α · [x0].

The equilibrium (Equation (3.34)) is straightforward: [fc] (0) =

[Jf] (0) · 0 = 0

We will demonstrate the convergence property (Equation (3.35)) by
induction. We want to prove that Note that [fc]

k ([x0])
is not the same
quantity than[

fk
c

]
([x0]). The first

one refers to the
composition of the
centred form of f,
while the second one
refers to the centred
form of fk.

[fc] ([x0]) ⊂ α · [x0] =⇒ ∀k ≥ 0, [fc]
k ([x0]) ⊂ αk · [x0] (3.44)

Equation (3.44) holds for k = 0: [x0] ⊂ α0 · [x0]. Let us define the
sequence

[uk+1] = [fc] ([uk])

and let us assume that Equation (3.44) holds for a k > 0, i. e.

[uk] ⊂ αk · [x0] (3.45)

We then want to prove that Equation (3.45) implies

[uk+1] ⊂ αk+1 · [x0] (3.46)

Then,

[uk+1] = [fc] ([uk])

= [Jf] ([uk]) · [uk]

⊂ [Jf]
(

αk · [u0]
)
·
(

αk · [u0]
)

since [Jf] is inclusion monotonic and according to Equation (3.45)

⊂ [Jf] ([u0]) ·
(

αk · [u0]
)

since αk · [x0] ⊂ [x0]

= αk · [Jf] ([x0]) · [x0]

= αk · [fc] ([x0]) according to Theorem 3.3

⊂ αk · α [x0] since [fc] ([x0]) ⊂ α · [x0]

[uk+1] ⊂ αk+1 · [x0]

This proves Equation (3.46), and therefore concludes the proof of the
convergence property and in turn of Theorem 3.4. �

Remark 3.5. Despite being possibly less sharp than a Lohner-like al-
gorithm, our iterative centred form algorithm has been designed to
be a stability contractor under certain conditions. Since it encloses the
states of its associated discrete system, it can prove stability of the
latter in a specific neighbourhood [x0].
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Corollary 3.2. Consider a function f : Rn → Rn such that f(0) = 0. If
there exists a box [x0] 3 0, a real α < 1 and an integer q ≥ 1 such that[
fq

c
]
([x0]) ⊂ α · [x0], then the operator Ψ as defined by Equation (3.47) is a

stability contractor inside [x0].

Ψ : IRn → IRn

[x] 7→
[
fq

c
]
([x])

(3.47)

Proof. This is a direct consequence of the definition of stability con-
tractor, considering fq instead of f. �

Remark 3.6. Sometimes, a system will require more than a single
iteration to converge towards its fixed point, and might temporarily
not be contained inside [x0], whence the usefulness of this corollary.
In other words, the latter allows proving stability of the system xk+q =

fq (xk). It will be illustrated in Example 3.7.

Proposition 3.6. Consider a function f : Rn → Rn such that f(0) = 0 and
a box [x0] 3 0 such that the centred form of f is a stability contractor of rate
α < 1 inside [x0]. Then the system described by f is asymptotically stable
around the origin.

Proof. Since [fc] is a stability contractor inside [x0], we have
[
fk

c
]
([x0]) ⊂

α · [x0]. Thus, since for all k ≥ 1, fk (x0) ⊂
[
fk

c
]
([x0]), this proposition

is a direct consequence of Corollary 3.1. �

To illustrate this method, we will only give one example, since
discrete systems related to robotics and centred on the origin are not
that common. More will come in the next section.

Example 3.7. Consider the system described by Equation (3.48), where
α < 1 and R (x, y, z) is a rotation matrix, parametrised by three Tait-
Bryan angles following the x-y-z convention. Note that this example
does not have any physical meaning.

xk+1 = α · f (xk) = α · R
(
xk0 + ax, xk1 + ay, xk2 + az

)
· xk (3.48)

Take a box [xk] ∈ R3 containing 0. Each iteration of the system rotates
the latter by an angle depending on the parameters ax, ay and az and
on the size of [xk]. Additionally, it shrinks the box [xk] by a factor
α. Therefore, this system is strongly non-linear, but remains centred
on the origin, since f (0) = 0. Intuitively, it is supposed to converge
towards 0, which can be observed (in blue) thanks to a Monte-Carlo
method in Figure 3.12. Note that instead of displaying each simulated
point independently, we computed the image set’s concave hull, as we
did in Section 2.4.4. In green, we drew the box [xk], calculated using
our algorithm. The red box represents [x0] and is displayed at each
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Figure 3.12: Proving stability of a centred discrete system

step to notice when
[
fk

c
]
([x0]) is contained in [x0]. We can observe

that
[
f4

c
]
([x0]) ⊂ [x0]. According to Proposition 3.6, the system is thus

asymptotically stable in the neighbourhood [x0].

3.4.2.2 Discrete iterative centred form

To prove stability of a larger class of discrete systems, i. e. the ones that
are not centred on the origin, we will need to adapt our algorithm
according to Remark 3.3.

Theorem 3.5. Consider a function f : Rn → Rn and a point x̄ ∈ Rn such
that f (x̄) = x̄. Let [x0] 3 x̄ be a box of Rn. Define the function g : Rn → Rn

as follows

g : Rn → Rn

u 7→ f (u + x̄)− x̄
(3.49)

and denote by Jg its Jacobian matrix. The centred form
[
fk

c
]
([x0]) ⊃ fk ([x0])

is given by the following sequence

[u0] = [x0]− x̄

[A0] = In

[uk+1] = [g] ([uk])

[Ak+1] =
[
Jg
]
([uk]) · [Ak][

fk
c

]
([x0]) = [Ak] · [u0] + x̄

(3.50)
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Proof. Consider a function f : Rn → Rn and a point x̄ ∈ Rn such that
f (x̄) = x̄. Following Remark 3.3, it follows that for all k ≥ 0

xk+1 = f (xk)

⇔ xk+1 − f (x̄) = f (xk − x̄ + x̄)− f (x̄) (3.51)

Let us define uk = xk − x̄. It follows from Equation (3.51) that

uk+1 = f (uk + x̄)− x̄ (3.52)

and let us define g (u) = f (u + x̄)− x̄ which yields

uk+1 = g (uk) (3.53)

Since g (0) = 0 and 0 ∈ [u0] = [x0]− x̄, the centred form
[
gk

c
]
([x0]) ⊃

gk ([x0]) is given by Theorem 3.3:[
gk

c

]
([x0]) = [Ak] · [u0] (3.54)

Then, for any k ≥ 0 we have

∀xk ∈ [xk] , f (xk) = xk+1

= uk+1 + x̄

= g (uk) + x̄

= gk+1 (u0) + x̄

∈ gk+1 ([u0]) + x̄

f (xk) ∈
[
gk+1

c

]
([u0]) + x̄ (3.55)

Furthermore, for all k ≥ 0 we have fk+1 ([x0]) ⊂ f ([xk]) (according to
Lemma 2.2), thus it follows that

fk+1 ([x0]) ⊂
[
gk+1

c

]
([u0]) + x̄ (3.56)

Finally, we define the centred form of fk as[
fk

c

]
([x0]) = [Ak] · [u0] + x̄ (3.57)

�

Remark 3.7. From now on, we will assume that the theorems and
propositions demonstrated in Section 3.4.2.1 are also valid for a fixed
point x̄ 6= 0. The demonstrations are very similar to the ones we
already gave earlier and do not present any major difficulty. Note
that the equilibrium and convergence equations of Definition 3.9 then
become

Ψ (x̄) = x̄ (equilibrium)

Ψ ([a]) ⊂ α · ([a]− x̄) + x̄ =⇒ ∀k ≥ 1, Ψk ([a]) ⊂ αk · ([a]− x̄) + x̄

(convergence)

for all [a] 3 x̄ in a given box [x0] ∈ IRn.
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Example 3.8. Recall the logistic map we introduced in Example 3.4. We
could observe that for some values of ρ, the system had a non-zero
fixed point. In this example, we will prove stability of the fixed point
x̄ = ρ−1

ρ .

To easily visualise the intervals [x0] and
[

f k
c
]
([x0]) in Figures 3.13a

and 3.13b, we displayed boxes representing ([x0] , [x0]) (in red) and([
f k
c
]
([x0]) ,

[
f k
c
]
([x0])

)
(in blue for k = 1 and green for k = 2).
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Figure 3.13: Proving stability of the logistic map

Let us take ρ = 2.1 and choose a box [x0] = [−0.2 + x̄, 0.2 + x̄]. Since
[ fc] ([x0]) ⊂ [x0], the system is asymptotically stable inside [x0]. Note
that [x0] need not be centred on x̄ for the algorithm to converge. Take
for example ρ = 2.4 and [x0] = [−0.05 + x̄, 0.02 + x̄]: the system is
asymptotically stable since

[
f 2
c
]
([x]0) ⊂ [x0].

Remark 3.8. Until now, we considered that the fixed point of the system
x̄ was perfectly known. However, this is not always the case: even
though it can be approached by a fixed point iteration method, there
is no guarantee that the result will be exact. Therefore, an interval
method must be used to enclose it. We give below an algorithm based
on the Newton contractor, presented in [50, Chapter 4]. The latter can
be used to find a sharp enclosure for a discrete-time system’s fixed
point if provided with an initial guess in the form of a box, and the
function describing the system.

Denote by x̃ an approximation of x̄ obtained thanks to a conventional
fixed-point iteration method and by f the function describing the
system. Let us define ε > 0, which we will use to inflate the enclosure
of x̄ in the following algorithm.

Now, assume that we have an enclosure [x̄] for x̄. Denote by [x0]
the initial box inside which we aim to prove stability of the system
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Algorithm 3 FixedPointEnclosure (in : x̃, out : [x̄])
1: [x̃]← x̃ + [−ε, ε]
2: [x̄]← ∅
3: while [x̄] = ∅ do
4: [x̄]← C∞

Newton ([x̃]) Contract the initial guess until reaching
a fixed point or the empty set

5: [x̃]← (1 + ε) [x̃]− ε [x̃] Inflate the initial guess to hopefully
contain x̄

6: end while
7: return [x̄]

described by f. It is then possible to compute [fc] ([x0]), using [x̄]
instead of x̄, which we denote by [fc] ([x0] , [x̄]). Then, assume that
[fc] ([x0] , [x̄]) ⊂ [x0]. It follows that

∀y ∈ [x̄] , [fc] ([x0] , y) ⊂ [x0]

=⇒ ∃y ∈ [x̄] , y = x̄, [fc] ([x0] , x̄) ⊂ [x0]

This implies, in turn, the asymptotic stability of the system around x̄.

Therefore, an enclosure of x̄ suffices to prove stability of a system
around that fixed point. However, the neighbourhood inside which
the centred form is proven to be a stability contractor might end up
being smaller than if x̄ were known.

3.4.2.3 Application : proving stability of a localisation algorithm

We will present a robotics use case for our method. When designing
the software embedded on a robot, engineers have to make sure that
it will actually behave as expected, and ideally find conditions that
guarantee its proper functioning. For example, consider a localisation
algorithm: its role is to provide the other programs running on the
robot with an estimation x̂ of the latter’s state x. It goes without saying
that the more precise and accurate the estimation, the better the robot’s
behaviour. Now, a state estimator processes discrete sensory inputs,This is true for most

sensors used in
robotics: IMU, GPS,

pressure sensor,
sonar...

to estimate a continuous state. Ideally, the latter should be a point
attractor, i. e. a stable fixed point, for the estimation. Since we focus on
discrete systems in this section, we will consider that the robot stays
still in this example.

Therefore, consider a robot which position is denoted by x = (x, y),
embedding a state estimator which estimation is denoted by x̂k, k
being a time index, and x̂0 the original state estimation. The robot
performs range measurements with two beacons placed at points
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a =
(
ax, ay

)
and b =

(
bx, by

)
to localise itself (see Figure 3.14). Let

y = (ya, yb) be the range measurements, defined by

y = h (x) =

(
(x− ax)

2 +
(
y− ay

)2

(x− bx)
2 +

(
y− by

)2

)
(3.58)

a

b

x

x̂0

√
ya

√
yb

x

y

x̂1

x̂2
x̂3

Figure 3.14: Range-only localisation − stability of the state estimation algo-
rithm

3.4.2.3.1 localisation based on newton’s method

To begin with, let us consider a state estimator based on the Newton-
Raphson method. The state estimation is improved iteratively by
successive measurements defined by the following equation

x̂k+1 = f (x̂k) = x̂k + J−1
h (x̂k) · (h (x)− h (x̂k)) (3.59)

where Jh denotes the Jacobian matrix of h.

The goal is to prove that this localisation method will make the state
estimation x̂k converge towards the actual state of the robot x.

It is straightforward that x is a fixed point of f. Therefore, by
choosing a box [x̂0] 3 x, our method should be able to prove sta-
bility of the system. Take for example a = (−5, 10), b = (5, 10), and
[x̂0] = ([2.75, 3.25] , [3.75, 4.25]). Using Theorem 3.5, we get after one it-
eration [fc] ([x̂0]) = ([2.8, 3.2] , [3.8, 4.15]) ⊂ [x̂0], which proves stability
of this localisation method inside [x̂0].

Now, this information is not extremely useful per se. However, by
scanning the whole state space, one could find the set of all stable
initial conditions, i. e. the basin of attraction of the system for a given
robot’s position x, inside which the localisation method will converge
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towards the actual robot’s position. Similarly, by taking uncertainties
in the robot’s position [x] into account, one can determine the system’s
stability region, i. e. the region of the parameter space (here the space
of the robot’s actual position) where the method is stable. This example
will be continued in Section 3.5.2.

3.4.2.3.2 discrete extended kalman filter : theory

Now, in industry, one of the most used methods to perform state
estimation is the Kalman filter, and its non-linear form called Extended
Kalman Filter (EKF). The goal of this example is to illustrate how our
method can be used to prove stability of an EKF, which will require
more work than the previous method. We assume that the reader isOtherwise, we refer

the reader to [48],
[121]

familiar with the basics of Kalman filtering.

In addition to the robot’s state estimation, the EKF estimates the
accuracy of the latter, in the form of a covariance matrix Γk. The latter
depends on the variance of each state variable, and their covariances.
Therefore, the actual state of the discrete EKF is composed of the
robot’s state estimation and of the estimated variances and covariances
forming Γk:

x̂k =
(

x̂k, ŷk, σxk , σyk , σxyk

)
(3.60)

Usually, a Kalman filter performs two main steps: the prediction
step, during which the state estimation evolves according to a dynam-
ical model of the robot; and a correction step, during which sensory
measurements are used to correct the prediction. Both the prediction
and correction steps are parametrised by a covariance matrix Γα and
Γβ to take into account the process (or model) and measurement noise
(or uncertainties). Figure 3.15 sums up the notations introduced so far.

x (t)
Robot model

Sensors

KalmanController

x̂k, Γk

uk

x (t)

Sensors

yk

Γα, Γβ

Figure 3.15: Block diagram of a Kalman filter based localisation & control
architecture

We assumed that the robot was not moving; therefore, solely the
correction step should be executed in our case. However, this would
make the covariance matrix converge towards a matrix close to the
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null matrix, which implies that the state’s estimation is almost 100%
certain, which is not the case. Therefore, we will consider that a process
noise impacts the model. The covariance matrix should then converge
towards a better-conditioned matrix. This choice is perfectly justified
and accepted from an engineering perspective: this way of tuning
the Kalman filter’s parameters is referred to as "adding a Brownian
motion".

This choice is also strategic: by shifting the fixed point of the covari-
ance matrix away from the null matrix, we can therefore propose an
initial enclosure for the state x̂0 that does not contain 0 for the terms
σxk , σyk and σxyk . Again, these terms being null would imply that the
state is 100% certain, and the box of initial position would therefore
not be contracted by our stability contractor.

Let us now propose our EKF for the localisation problem presented
earlier(

x̂k+1

ŷk+1

)
=

(
x̂k

ŷk

)
+ Kk · z̃k (corrected position)

Γk+1 = (I−Kk ·Hk) ·Gk (corrected covariance)

z̃k = yk − h (x̂k) (innovation)

Gk = Γk + Γα (predicted covariance)

Kk = Gk ·HT
k · S−1

k (Kalman gain)

Sk = Hk ·Gk ·HT
k + Γβ (innovation’s covariance)

Hk =
∂h
∂x

(x̂k) (observation matrix)

We recall below the form of Γk

Γk =

[
σ2

xk
σxyk

σxyk σ2
yk

]
(3.61)

Now, the equations given above can be transformed into a discrete
equation of the form x̂k+1 = f (x̂k), although we will not detail this
cumbersome process here and we highly recommand to execute it
with a computer program. Once this is achieved, it only remains for us
to choose an initial box x̂0, which must contain the discrete system’s
fixed point. The latter can be approximated using Remark 3.8.

3.4.2.3.3 discrete extended kalman filter : numerical applica-
tion

As a numerical application, take the following parameters:

x = 0 (3.62)



104 approach by stability analysis

[x̂0] =



[−ε1, ε1]

[−ε1, ε1]

[σ0 − ε2, σ0 + ε2]

[σ0 − ε2, σ0 + ε2]

[−ε2, ε2]


(3.63)

ε1 = 1× 10−3 (3.64)

ε2 = 5× 10−5 (3.65)

σ0 = 3.66× 10−3 (3.66)

Γα =

[
0.01 0

0 0.01

]
(3.67)

Γβ =

[
1 0

0 1

]
(3.68)

a = (−5, 5) (3.69)

b = (5, 5) (3.70)

Although the initial box is very small, which is necessary to avoid
wrapping effect, we prove that the EKF converges towards the system’s
actual fixed point. So does the estimated position towards the actual
one.

[fc] ([x̂0]) =



[
−3.5× 10−4, 3.6× 10−4][
−3.5× 10−4, 3.6× 10−4][

σ0 − 4.63× 10−5, σ0 + 4.68× 10−5][
σ0 − 4.73× 10−5, σ0 + 4.79× 10−5][
−1.48× 10−5, 1.49× 10−5]


⊂ [x̂0]

Again, this result is not very useful, but can be used to approximate
the system’s stability region or basin of attraction. This will be done
for the Newton method based estimator in Section 3.5.2.

3.4.3 Proving stability of continuous-time systems

We will now address continuous systems, and show how the method
presented earlier can also be used to analyse their stability.

3.4.3.1 Discretising the continuous-time system

Since the discrete centred form allows proving stability for a discrete-
time system, we will show that it can also be used to prove stability of
a continuous-time system. In particular, we will show that the stability
of a discretised system implies that of its continuous-time counterpart.
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Definition 3.10 (Discretised system). Consider a continuous-time sys-
tem described by ẋ = f (x), where f ∈ C1 (Rn), and denote by φ its
flow function. Define a time step δ > 0 and a sequence (tk)k≥0 such
that tk = kδ. We then define the discretised system associated to f as
follows

xk+1 = f̂ (xk) (3.71)

where for all k ≥ 0, xk = x (tk) and f̂ is defined by

f̂ : Rn → Rn

x 7→ φ (δ, x)
(3.72)

Theorem 3.6. Consider a continuous-time system described by ẋ = f (x),
where f ∈ C1 (Rn). Denote by f̂ its associated discretised system, and by δ

its time step. Assume that x̄ is an equilibrium point of f, and choose a box
[x0] = [x] (0) containing x̄. If the centred form

[
f̂c

]
is a stability contractor

of rate α < 1 inside [x0], then the continuous system described by f is
asymptotically stable in the neighbourhood [x0]

This theorem states that the stability of the discretised system im-
plies that of its continuous counterpart. Before proceeding with the
proof of this theorem, let us introduce the following lemmas and
theorem.

Lemma 3.1. Consider a continuous-time system described by ẋ = f (x),
where f ∈ C1 (Rn), and denote by Jf its Jacobian matrix. Define the associated
discretised system of time step δ as xk+1 = f̂ (xk). Then the space derivative
of f̂ at each discrete state xk corresponds to the solution of the variational
equation of the system integrated from tk to tk+1, choosing U (tk) = In

U̇ (t) = Jf (x (t)) ·U (t) (3.73)

Jf̂ (xk) = U (tk+1) (3.74)

Proof. Denote by φ the flow function of the system ẋ = f (x). From
Theorem 2.2, it follows that

∂φ

∂x
(tk+1, x0) ·U0 = U (tk+1)

Moreover, according to Definition 3.10, we have

f̂ (xk) = φ (δ, xk)

= φ (tk + δ, x0)

= φ (tk+1, x0)

Differentiating this with respect to x and choosing U0 = In yields

f̂ (xk) =
∂φ

∂x
(tk+1, x0)

= U (tk+1)

�
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Lemma 3.2. Consider a continuous-time system described by ẋ = f (x),
where f ∈ C1 (Rn), and assume that x̄ is an equilibrium state of f. Then it is
also a fixed point of the discretised system xk+1 = f̂ (xk).

Proof. Assume that x̄ is an equilibrium state of the system, then any
trajectory initialised at x̄ remains on x̄. It follows that ∀t ≥ 0, x (t) = x̄,
which is thus true for all tk, k ≥ 0. �

Definition 3.11, Lemma 3.3 and Theorem 3.7 are presented and
derived in [41, Chapter 17].

Definition 3.11 (Lipschitz). Let O be an open set of Rn. A function
f : O → Rn is Lipschitz on O if there exists a constant K > 0 such that

∀x, y ∈ O, ‖f (y)− f (x) ‖ ≤ K‖y− x‖ (3.75)

Lemma 3.3. Let the function f : O → Rn be C1. Then f is locally Lipschitz,
i. e. each point x ∈ O has a neighbourhood O′ such that f : O′ → Rn is
Lipschitz.

Theorem 3.7. Consider a Lipschitz function with a constant K over an open
O ⊂ Rn. Let xa (t) and xb (t) be solutions of ẋ = f (x) remaining in O and
defined on the time interval

[
t0, t f

]
. Then, for all t ∈

[
t0, t f

]
we have

‖xa (t)− xb (t) ‖ ≤ ‖xa (t0)− xb (t0) ‖eK(t−t0) (3.76)

Remark 3.9. This theorem states that two trajectories initialised close
together cannot move away from one another faster than exponentially.

To find a value for K, define u (t) = xa (t)− xb (t) for all t ∈
[
t0, t f

]
.

Then we have u̇ (t) = f (xa (t))− f (xb (t)). Now, let us define v as the
maximum velocity of the system along xa (t) and xb (t):

v = max
x∈{xa,xb}

(
max

t∈[t0,t f ]
(‖f (x (t)) ‖)

)

Then, we have

‖u̇ (t) ‖ = ‖ẋa (t)− ẋb (t) ‖
= ‖f (xa (t))− f (xb (t)) ‖
≤ ‖f (xa (t)) ‖+ ‖f (xb (t)) ‖
≤ 2v

It follows by integrating the last step that

‖u (t) ‖ ≤ ‖u (t0) ‖e2v(t−t0)

⇔ ‖xa (t)− xb (t) ‖ ≤ ‖xa (t0)− xb (t0) ‖e2v(t−t0)
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This result means that two solutions cannot move away from one
another faster than two times the system’s maximum velocity along
these solutions.

Proof of Theorem 3.6. Consider a continuous-time system ẋ = f (x),
such that f is C1 inside O ⊂ Rn. According to Definition 3.10, we can
define its discretised counterpart by choosing a time step δ, which
yields xk+1 = f̂ (xk). Lemma 3.1 defines its Jacobian matrix Jf̂ (xk) at
each time step.

Now, let us consider that x̄ is an equilibrium state for the continuous
system, and therefore for its associated discrete system (according
to Lemma 3.2). Then by applying Theorem 3.4, we are able to prove
stability of the latter, in the sense that if we are able to find [x0] 3 x̄
such that

[
f̂c

]
([x0]) ⊂ [x0], this prove stability of the discrete system

in the neighbourhood [x0]. In other words, the sequence S = ([xk])k≥0
converges towards x̄.

Therefore, we have proved stability of the discretised system, not
the continuous one yet. To do so, we need to prove that the trajectory
cannot diverge in between the time step. Now, choose a box [xk] in
S . According to Lemma 3.3, f is Lipschitz, with a constant K > 0,
inside O ⊂ Rn. We know that x̄ ∈ [xk] is a solution of the continuous
system remaining in O. Take any point y0 inside [xk], and assume
that its trajectory denoted by y (t) remains in O over the time interval
[tk, tk+1] (if this is not the case, one just needs to reduce the time step).
Then, according to Theorem 3.7, it follows that

∀t ∈ [tk, tk+1] , ‖y (t)− x̄‖ ≤ ‖y0 − x̄‖eK(t−tk)

≤ ‖y0 − x̄‖eKδ (3.77)

Note that eKδ is a constant valid for all k.

Now, let us choose y0 close enough to x̄, e. g. ‖y0 − x̄‖ = ‖ [xk]−
x̄‖e−Kδ. Then, there exists a time tN > tk and a box [xN ] such that
y0 ∈ [xN ]. Furthermore, Equation (3.77) becomes

∀t ∈ [tk, tk+1] , ‖y (t)− x̄‖ ≤ ‖y0 − x̄‖eKδ

≤ ‖ [xk]− x̄‖ (3.78)

In other words, for all [xk] of S, there exists a time step indexed by
N > k such that all trajectories initialised in [xN ] will remain inside
[xk]. This proves that past the time tN = Nδ, the system’s trajectory
cannot leave the box [xk] (see Figure 3.16).

Since the sequence S tends towards x̄, we have limk→∞ [xk] = x̄
and thus limt→∞ y (t) = x̄, which proves asymptotic stability of the
continuous system. �
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φ (t, x0)

tt0 tk tNtk+1

x̄

x̄ − x−k

x̄ − x+k

x0

xk xk+1 xN

Figure 3.16: Illustration of the proof of Theorem 3.6

3.4.3.2 Application : proving stability of a simple pendulum

Let us take the simple pendulum as an example of a continuous
system, described by Equation (2.41), with the damping coefficient
d = 0.5. In the next paragraphs, we will detail the method for proving
stability of a continuous-time system.

3.4.3.2.1 building the discretised system

As stated by Theorem 3.6, proving stability of a continuous system
comes down to proving stability of its discretised counterpart, de-
scribed by Equation (3.79), where δ is the discretisation step.

f̂ : R2 → R2

x 7→ φ (δ, x)
(3.79)

It is straightforward that 0 is an equilibrium point for both the
continuous-time and the discretised system. Therefore, to prove sta-
bility of the latter, according to Theorems 3.3 and 3.4, we need to
compute Jf̂. To do so, we will use Lemma 3.1, and use the discretised
variational equation of the system.

Thus, to be able to compute
[
f̂c

]
([x0]), [x0] being an initial box, we

will need to iteratively integrate the following pair of equations for a
time δ{

ẋ (t) = f (x (t))

U̇ (t) = Jf (x (t)) ·U (t)
(3.80)

starting from the initial conditions [x] (0) = [x0] and U (0) = I2. Note
that this pair of equations is composed of the system’s model and its
associated variational equation (see Paragraph 2.2.2.3.2).



3.4 proving stability of uncertain dynamical systems 109

3.4.3.2.2 implementing the problem in capd

The following piece of code implements Equation (3.80) in CAPD.
We chose [x0] = ([−0.1, 0.1] , [−0.1, 0.1]) as an initial condition, and
δ = 1 s as an integration step.

1 void f(Node, Node x[], int, Node f[], int, Node params[], int

) {

2 f[0] = x[1];

3 f[1] = -sin(x[0]) - 0.5 * x[1];

4 }

5

6 int main(int argc, char** argv) {

7 int dimX = 2, dimF = 2, dimP = 0;

8 double delta = 1; // δ = 1 s
9 capd::IMap vf(f, dimX, dimF, dimP);

10 capd::IOdeSolver solver(vf, 30);

11 capd::ITimeMap timeMap(solver);

12

13 capd::IVector x0 = {{-0.1, 0.1}, {-0.1, 0.1}}; // Initial

state of the pendulum

14 capd::IMatrix A = {{1, 0}, {0, 1}};

15 C1Rect2Set set(x0, 0); // we chose a doubleton set to

represent the solutions. Note the C1..., which allows

computing the first derivative of the solution’s trajectory

16

17 for (int k = 0; k < 3; ++k) { // here, 3 iterations are

enough to get stability

18 timeMap(set.getCurrentTime() + delta, set); // integrate

Equation (3.80) for a duration δ
19 A = ((capd::IMatrix) set) * A; // extract the solution of

the variational equation [Uk+1] and compute

[Ak+1] =
[
Jf̂
]
([xk]) · [Ak]

20 capd::IVector fck = A * x0; // compute
[
f̂c

]
([x0])

21 if (x0[0].contains(fck[0]) and x0[1].contains(fck[1])) {

22 std::cout << "The system is stable inside [x0] " << std

::endl;

23 break;

24 }

25 }

26 return EXIT_SUCCESS;

27 }

28

Program 3.2: Implementing a continuous system and its variational equation
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3.4.3.2.3 results

In Figure 3.17, we represented the three first steps of the algorithm
given above. One can notice that

[
f̂2

c

]
([x0]) ⊂ [x0], which proves

stability of the damped pendulum inside [x0].
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Figure 3.17: Results of the continuous-time pendulum integration proving
its stability

3.4.4 Proving stability of uncertain hybrid limit cycles

In Section 3.4.2.2, we provided a method for proving stability of a
discrete system inside a neighbourhood [x0]. Therefore, according to
Section 3.2.3, we can also prove stability of a hybrid limit cycle. Indeed,
if we can evaluate the Poincaré map of a system and its derivative in a
guaranteed way, we can apply the method described in Section 3.2.3.

In the following paragraphs, we will introduce a periodic hybrid
system, and we will prove stability of its limit cycle. We will make
use of CAPD to evaluate the various Poincaré maps involved in the
computations and their derivatives, and we will apply the method
presented in Section 3.2.3.

3.4.4.1 Presentation of the system

Consider an AUV cruising in a lake. Before launching the robot,
the user implemented virtual fences in the robot’s mission planning
software to prevent the latter from grounding on the shores (see
Figure 3.18). This mission planning program takes the form of a Finite
State Machine (FSM) which can be summed up as follows: the robot
heads East for a certain amount of time denoted by T, before turning
north until reaching the northern virtual fence. Then, it heads South-
West until reaching another fence, before heading East again and
starting over this cycle. Our goal is to prove that the latter is stable.
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NorthVirtual fences

Land

Lake

Robot’s trajectory

Figure 3.18: Schematic representation of the robot evolving inside the virtual
fences

3.4.4.2 Formalisation of the problem

The robot’s continuous state x ∈ R4 is composed of its position given
by x and y, its orientation θ, and a time variable τ as usual. The robot
is controlled by a FSM, represented in Figure 3.19, which state qi,
i ∈ {0, 1, 2} corresponds to the discrete state of the system: in q0, the
robot heads East, in q1 North and in q2 South-West. Let us define the
three transitions e0 = (q0, q1), e1 = (q1, q2) and e2 = (q2, q0). The three
guards of the system are defined by Equations (3.81) to (3.83): Ge0

corresponds to the limit time T = 5 after which the robots switches The constants used
in Equations (3.81)
to (3.83) are
arbitrary, as well as
the headings used in
the FSM. Some
combinations of
constants might not
lead to a periodic
trajectory though.

from East to North as a heading, Ge1 corresponds to the northern
virtual fence equation, and Ge2 to the western one. The vector fields
are given by Equation (3.84) and the reset functions by Equations (3.85)
to (3.87).

q = q0

θq0 = 0

τ = 0

Robot crosses
G(q1,q2)

Robot crosses
G(q2,q0)

Robot crosses
G(q0,q1)

q = q1

θq1 =
π

2

q = q2

θq2 = 4

Figure 3.19: FSM controlling the robot

Ge0 =
{

x ∈ R4
∣∣∣ τ − 5 = 0

}
(3.81)

Ge1 =
{

x ∈ R4
∣∣∣ x− y2 + 20 = 0

}
(3.82)

Ge2 =
{

x ∈ R4
∣∣∣ x + 2 = 0

}
(3.83)



112 approach by stability analysis

ẋ = fqi (x) =


cos (θ)

sin (θ)

sin
(
θqi − θ

)
1

 (3.84)

Re0 (x) = (x, y, θ, 0) (3.85)

Re1 (x) = x (3.86)

Re2 (x) = x (3.87)

3.4.4.3 Discretisation using Poincaré maps

According to the method presented in Section 3.2.3, we shall now
define the Poincaré maps of the system, associated to the guards Gei

(see Equations (3.88) to (3.90)).

Πq0 : R4 → Ge0

x 7→ φq0

(
τGe0

(x) , x
) (3.88)

Πq1 : R4 → Ge1

x 7→ φq1

(
τGe1

(x) , x
) (3.89)

Πq2 : R4 → Ge2

x 7→ φq2

(
τGe2

(x) , x
) (3.90)

Note that Πq0 simply comes down to integrating φq0 during 5 time
units (say, minutes).

Let us now define the hybrid Poincaré map Π:

Π : R4 → Ge2

x 7→ Πq2 ◦Πq1 ◦Πq0 (x)
(3.91)

and the associated discrete system

xk+1 = Π (xk) (3.92)

where x0 ∈ R4 is the initial state of the system.

3.4.4.4 Proving stability of the hybrid limit cycle

To compute Poincaré maps and their derivatives, we used the CAPD

library. In particular, given an initial enclosure [x0] containing a fixed
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point [x̄] of the system (possibly estimated using the procedure de-
scribed in Remark 3.8), we can compute an enclosure for[

Πq0

]
([x0]) = [xa] (3.93)[

Πq1

]
([xa]) = [xb] (3.94)[

Πq2

]
([xb]) = [x1] (3.95)

Therefore, we get

[Π] ([x0]) = [x1] (3.96)

Similarly, let us define the derivatives of the local Poincaré maps:[
∂Πq0

∂x

]
([x0]) = [Ma] (3.97)[

∂Πq1

∂x

]
([xa]) = [Mb] (3.98)[

∂Πq2

∂x

]
([xb]) = [Mc] (3.99)

which yields, according to the chain rule[
∂Π
∂x

]
([x0]) = [Mc] · [Mb] · [Ma] (3.100)

To apply Theorem 3.5, we simply need to compute [Π] ([x̄]), and
then we get the centred form of Π

[Πc] ([x0]) =

[
∂Π
∂x

]
([x0]) · ([x]− [x̄]) + [Π] ([x̄]) (3.101)

Finally, if we have
[

∂Π
∂x

]
([x0]) ⊂ [x0], then the Poincaré map is

stable inside [x0], which implies stability of the hybrid limit cycle when
initialised inside the latter. In other words, the trajectory described
by the robot in the lake will converge asymptotically towards a cycle.
Figure 3.20 has been obtained by taking

ε = 0.05

[x0] =

 [−2− ε,−2 + ε]

[2.3− ε, 2.3 + ε]

[−2.3− ε,−2.3 + ε]



Remark 3.10. Note that to implement this example, we did not need
the state variable τ, since its role is only to trigger the first guard of
the hybrid system, which amounts to integrating φq0 for a duration T,
as stated earlier.
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x + y2− 20 = 0

x + 2 = 0x

y

θ

φq2 (t, xb)

φq1 (t, xa)

φq0 (t, x0)
[x0]

[Πc] ([x0])
xa = Πq0 (x0)

xb = Πq1 (xa)

x0 ∈ [x0]

Figure 3.20: Proof of stability of the hybrid limit cycle

3.5 characterisation of stability domains

As stated earlier, our method can only deal with small intervals. How-
ever, in underwater robotics, the uncertainties can be quite large,
due to sensor precision, uncertain models, dead reckoning localisa-
tion. . . Therefore, our method might only be able to prove stability of a
system inside a tiny initial box. Fortunately, other algorithms based on
paving strategies can be used to approximate larger sets inside which
the system is stable. We will not extend too much on these algorithms,
since they are out of this thesis’s scope. We will simply explain how
they can be used jointly with our method, and for what applications.

3.5.1 Characterising basins of attraction

We introduced basins of attraction in Section 3.2.1.4. Consider a dy-
namical system with a stable fixed point x̄. Our algorithm can prove
stability of the system inside a box [x0] 3 x̄. Denote by Bx̄ the basin of
attraction of x̄. Then [x0] ⊂ Bx̄.

From there, choose any box [x] of Rn. If a guaranteed integration
method can prove that all the points initially in [x] end up in [x0]
after a certain amount of time, then this means that the system will
also converge towards x̄ if initialised in [x]. Therefore, by paving a
subset of Rn, one can find an inner approximation of Bx̄. Note that
a similar approach has been presented in [79], [80] to approximate
viability kernels (we refer the reader to these papers for more details).

However, paving a subset of Rn is computationally expensive, and
has exponential complexity in terms of dimensions. So special care
must be taken in the way the paving is done, the boxes stored in
memory. . .
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Example 3.9. To illustrate this application, we will resume the example
developed in Section 3.4.4 and find an inner approximation of the
system’s basin of attraction.

Since proving stability of the hybrid cycle comes down to proving
stability of its associated hybrid Poincaré map, the basin of attraction of
the latter, which is two-dimensional is a subset of the cycle’s one, which
is three-dimensional. We will thus concentrate on the basin of attrac-
tion of the hybrid Poincaré map, for visualisation purposes. We chose

0.0 0.5 1.0−0.5−1.0−1.5 1.5

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

y

θ

A

B

C
D

E

Figure 3.21: Basin of attraction (in green) of the hybrid Poincaré map

the plane x = −2 as the hybrid Poincaré map (this plane corresponds
to the guard Ge2). We chose the box [u] =

(
[−2,−2] , [−4, 4] ,

[−π
2 , π

2

])
as the subset of Rn we wish to characterise.

In Figure 3.21, we displayed all the initial conditions leading the sys-
tem to converge towards the box [x0], such as defined in Section 3.4.4.
Note that this figure is in the plane of the Poincaré section. To obtain
it, we bisected the box [u] into sub-boxes [y], and we computed their
images iteratively by the Poincaré map Π. If for a given k we had[

Πk
c

]
([y]) ⊂ [x0], then we plotted the box in green, otherwise in red.

Remark 3.11. To obtain Figure 3.21, we used a "brute force" method,
consisting in testing each box individually (about a million). How-
ever, it is possible to design a much more efficient algorithm using
our centred form method to find a basin of attraction, e. g. testing
one neighbourhood [x0] and then finding all the initial conditions
leading to [x0], and iteratively assembling them to obtain a larger
neighbourhood leading to stability.
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We plotted some remarkable trajectories initialised at the points
A to E in Figures 3.22 and 3.23, to understand the meaning of the
different areas than can be observed in Figure 3.21. Three different
colours help visualise when the change of discrete state occur: the
robot’s trajectory while in state q0 is displayed in red, q1 in green and
q2 in blue.Note that the

trajectories
represented in

Figure 3.22 are
examples where

multiple iterations of
the centred form are

necessary to prove
stability of the cycle
(see Corollary 3.2).
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(a) Trajectory initialised at x0 = B
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(b) Trajectory initialised at x0 = D

Figure 3.22: Examples of stable trajectories of a hybrid system
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(a) Trajectory initialised at x0 =
A: CAPD cannot compute the
Poincaré map, because the green
trajectory is initialised on its
Poincaré section (parabola).
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(b) Trajectory initialised at x0 = C: the
system diverges because the con-
troller is hesitating between turn-
ing left or right to follow its de-
sired heading.
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(c) Trajectory initialised at x0 = E: af-
ter leaving the first state q0, the sys-
tem will never cross the parabola.

Figure 3.23: Examples of unstable trajectories of a hybrid system

3.5.2 Determining stability regions

Another application of our method can be approximating the interior
of a stability region of a system.

Definition 3.12 (Stability region). Consider a discrete system of the
form xk+1 = f (xk, p) defined on an open subset O of Rn, where
p ∈ Rm is a vector of uncertain parameters of the system. The stability
region S ⊂ O is the set of parameters p that makes the system converge
asymptotically towards its fixed point x̄ (note that the latter may
depend on p)

S =

{
p ∈ Rm

∣∣∣∣ ∃ [x0] 3 x̄ ⊂ O, ∀x0 ∈ [x0] , lim
k→∞
‖xk − x̄‖ = 0

}
(3.102)

Finding a stability region is similar to approximating a basin of
attraction, and the same kind of algorithms can be used. The parameter
space must be paved, and for each [p] of the resulting paving P , one
must find a neighbourhood [x0] such that the system is stable. Usually,
width ([p]) must be small compared to width ([x0]) for the stability
algorithm to converge.

Example 3.10. To illustrate this application, we will resume Para-
graph 3.4.2.3.1, and find the system’s stability region. In this example,
we will take as a parameter the robot’s actual position, denoted by x.
The parameter space is therefore paved with boxes [x] = ([x] , [y]).

In Figure 3.24, we plotted in green the stability region of the system:
if the real robot is placed inside the green area in a box [x], then it
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is proven that there exists a neighbourhood [x0] ⊃ [x] such that the
system will converge towards its fixed point, being any x̄ ∈ [x].
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14

16

a b
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y

Figure 3.24: Stability region of the localisation system

Define wx = width ([x]) and wy = width ([y]). To compute this
stability region, we chose the following parameters

O = ([−7, 7] , [3, 17]) (3.103)

∀ [x] ∈ P , width ([x]) ≥ ε (3.104)

∀ [x] ∈ P , [x0] = 0.5

(
[−√wx,

√
wx][

−√wy,√wy
] ) (3.105)

ε = 0.03 (3.106)

Remark 3.12. Similarly to the previous example, we used a "brute-force"
method to compute the stability region since developing an optimal
algorithm was not this thesis’s goal.

3.6 conclusion

This paragraph concludes the presentation of the methods we devel-
oped to prove stability of discrete-time and continuous-time uncertain
systems. Using Poincaré maps, we have also shown that we were able
to prove stability of a cyclic hybrid system. Our approach is based on
the notions of stability contractor and centred form. It allows proving
asymptotic stability of a system inside a given neighbourhood con-
taining a fixed point (or an equilibrium state). The user chooses the
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initial neighbourhood: if it is too large, the method may fail to prove
stability, then the user simply needs to take a smaller neighbourhood.
Note that our method either proves stability or cannot conclude: in
particular, it cannot prove instability.

Contrary to the existing approaches allowing to prove stability of
uncertain systems, such as the ones based on eigenvalues verification
[102], the Jury criterion [49], or Lyapunov functions [26], ours allows
proving asymptotic stability inside a chosen neighbourhood. The other
methods, to the extent of our knowledge, only prove that there exists
a neighbourhood inside which the system is stable, without specifying
which one. Therefore, our method can be used to initialise algorithms
approximating basins of attractions [26], [96] (see Section 3.5.1), stabil-
ity regions (see Section 3.5.2) or backwards reachable sets [69].

Furthermore, interest of our method is its polynomial computa-
tional complexity. Once the Jacobian matrix of the system has been
computed (once and for all), it merely consists in two interval function
evaluations and two matrix multiplications. Therefore, handling high
dimensional systems is possible, which would not be the case using
an algorithm based on bisections, which has exponential complexity.

The main drawback of our approach is the obligation to deal with
small intervals only. Indeed, the centred form performs better than a
natural inclusion function only for small intervals. This explains why
our method may fail when the initial neighbourhood is chosen too
large.
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4.1 introduction

This chapter aims to present the second approach we developed to
prove feasibility of a docking mission, which is based on reachability
analysis. The reachable set of a dynamical system is the set of states
that the system can attain when starting at a given position [5], [9],
[21]. Consider a dynamical system initialised in [x0] with a flow func-
tion φ (t, x). The reachable set of the system initialised in [x0] over a
duration T, denoted by RT ([x0]) is defined by

RT ([x0]) = {x ∈ Rn | ∃t ∈ [0, T] , ∃x0 ∈ [x0] , x = φ (t, x0)} (4.1)

Reachable sets can then be used to prove that a system will avoid an
obstacle, i. e. a set of forbidden states, or prove that a system will reach
a certain area of space.

Now, the concept of proof requires the use of guaranteed methods,
based on set-membership approaches, for example [4], [36], [95]. As
we briefly explained in Section 2.6, approximating sets using boxes

121
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can yield inner or outer approximations. While outer approximations
of reachable sets can be obtained using guaranteed integration meth-
ods, inner approximations are much harder to find [38]. The outer
approximation of the reachable set R of a system is exactly what is
required to prove that the latter will avoid forbidden sets of states
O (e. g. obstacles): if RT ([x0]) ∩ O = ∅, the system will avoid them
when initialised in [x0] and while t ≤ T. The inner approximation of a
reachable set is not required to prove that a system will reach a specific
region of space T . If the enclosure of the state [x] (t) is contained in
T for a given t ∈ [0, T], then the system is also proven to reach that
specific region.

Therefore, we will be using guaranteed integration tools in this
chapter (see Section 2.4), and in particular Lohner’s algorithm (see
Section 2.4.5).

It only remains for us to find a tool able to represent the reachable
set of a system. In this thesis, we chose to use tubes, i. e. intervals of
trajectories, that are inherently suitable for the task of enclosing a set
of trajectories starting from an initial box [x0].

In Section 4.2, we introduce the basics of tube arithmetic and the
library Tubex [103]. In Section 4.3, we introduce the Lohner contractor,
which can contract a tube using a differential constraint and the
Lohner algorithm. Finally, in Sections 4.4 and 4.5, we illustrate this
new contractor on a few examples.

4.2 intervals and trajectories

4.2.1 Tube arithmetic

In the previous chapters, we introduced and used intervals to represent
uncertainties. We saw that they could be used to enclose the set of
solutions of an uncertain dynamical system: consider the following
IVP: {

ẋ (t) = f (x (t))

[x] (0) = [x0]
(4.2)

Then, using a guaranteed enclosure algorithm, one can find for any t
a box [x] (t) containing all the solutions of the IVP at that specific time.
This evaluation could be done periodically, to obtain a sequence of
boxes [xk] = [x] (k · dt), dt being the discretisation step. However, this
sequence does not contain information about the system at any other
time than k · dt. Therefore, there is a need for a tool able to enclose the
trajectories of a dynamical system over a certain period, and not only
enclose its state at different times.
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Remark 4.1. 1. In the previous chapters, we were calling trajectories
the solutions of an IVP. Note that in this chapter, not all trajecto-
ries are solutions of an IVP. Mathematically speaking, a trajectory
can be seen as a continuous function of time x : R→ Rn;

2. To refer to trajectories as defined above, we will use the notation
x (·). In particular, x (t) is a point belonging to x (·), i. e. the
evaluation at a time t of the function x : R→ Rn.

This leads us to the presentation of tubes, that were introduced in
[63], and later adapted to constraint programming in an underwater
robotics context [8], [67], [104].

Definition 4.1 (Tube). A tube [x] (·) : R → Rn, defined on the time
domain

[
t0, t f

]
, is an interval of trajectories [x− (·) , x+ (·)] such that

for all t ∈
[
t0, t f

]
, x− (t) ≤ x+ (t).

t

[x]

x+ (·)

x− (·)

x∗ (·)

t0 t f

Figure 4.1: Illustration of a one-dimensional tube

Usual operators can be defined over tubes: let [x] (·) and [y] (·)
be two tubes and choose an operator � ∈ {+,−, ·, /}. The resulting
binary operation between the two tubes is defined as follows

[x] (·) � [y] (·) = [{x (·) � y (·) ∈ Rn | x (·) ∈ [x] (·) , y (·) ∈ [y] (·)}]
(4.3)

Similarly, let f : Rn → Rn be a function. The smallest image by f of a
tube [x] (·) is given by

f ([x] (·)) = [{f (x (·)) | x (·) ∈ [x] (·)}] (4.4)

This short introduction to tube arithmetic will be sufficient for the
rest of this chapter. However, more operations can be performed using
them. We refer the reader to [105] for more details.
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4.2.2 Tube contraction

In Section 2.5, we gave a brief introduction to interval contractors,
which aim at contracting a box [x] according to a set of constraints
formalising a problem. This approach has been extended to tubes (see
[8], [104]).

Definition 4.2. Consider a constraint L, and a tube [x] (·). A contractor
for L over [x] (·) is an operator C : IRn → IRn such that

∀t, C ([x] (·)) (t) ⊆ [x] (t) (4.5)

(monotonicity)(
L (x (·))

x (·) ∈ [x] (·)

)
=⇒ x (·) ∈ C ([x] (·)) (4.6)

(completeness)

Equation (4.5) states that the contracted tube remains in the initial
tube, while Equation (4.6) ensures that no trajectory verifying the
constraint is removed from the initial tube.

Unlike intervals and boxes, tubes contain time information. There-
fore, two types of contractors can be defined. Static contractors are
based on static constraints, i. e. that contract the tube independently
of time (equivalent to interval contractors introduced in Section 2.5).
Temporal contractors impose time constraints, commonly differential
constraints from a differential equation modelling a dynamical system.

Example 4.1. In [104], the authors proposed the so-called C d
dt

contractor,
which contracts a pair of tubes [x] (·) and [v] (·), the former containing
the trajectories of a system, and the latter their derivatives.

The use case of this contractor is the following: consider a robot
evolving in its environment and recording its position x and its velocity
v. The latter can therefore be enclosed in two tubes [x] (·) and [v] (·)
to account for measurement errors. Both tubes can then be contracted
by considering the differential constraint linking them (ẋ = v). Using
a first-order Euler integration scheme over an arbitrary period dt, they
built the following contractor

[x] (t + dt) = [x] (t + dt) ∩ ([x] (t) + dt · [v] ([t, t + dt])) (4.7)

4.2.3 Implementation : the Tubex library

Now that we introduced the basics of tube arithmetic, we will focus
on their implementation in a computer program, and more precisely
in the Tubex library. The choice that has been made is to represent
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trajectories through a sequence of slices, as represented in Figure 4.2.
This slicing results from the sampling of the tube over time: consider
a tube [x] (·) = [x− (·) , x+ (·)] defined over a time interval

[
t0, t f

]
. Let

δ > 0 be the sampling period. Then, [x] (·) is outer approximated by a
sequence of slices denoted by [x] (k) such that

[x] (k) = [kδ, (k + 1) δ]×
[
x− (τk) , x+ (τk)

]
(4.8)

where τk ∈ ]kδ, (k + 1) δ[ and x− (t) and x+ (t) are step functions such
that

∀t ∈
[
t0, t f

]
, x− (t) ≤ x− (t) ≤ x+ (t) ≤ x+ (t) (4.9)

Note that when τk = kδ, the tube is evaluated using the slices
indexed k − 1 and k: [x] (τk) = [x] (k− 1) ∩ [x] (k). This quantity is
then called the input gate of slice k and the output gate of slice k− 1.

t

[x]

x+ (·)

x− (·)

x∗ (·)

t0 t f

x− (·)

x+ (·)

kδ (k + 1)δ

[x] (kδ) [x] (k)

Figure 4.2: Representation of a tube and its sliced counterpart

4.2.4 Summary of the notations

For the sake of clarity, we recall below the main notations used later
in this chapter:

• [x] (·) ∈ R× IRn is a tube, implicitly defined on a time interval[
t0, t f

]
;

• [x] (t) ⊂ Rn is a box, i. e. an evaluation of the tube at time
t ∈

[
t0, t f

]
, i. e. an enclosure for the state of the system at time t;

• [x] (k) ∈ R × IRn is the kth slice of the tube, defined over
[tk, tk+1] where for all k, tk = kδ ≤ t f , δ being the sampling
period of the tube;

• [x] (tk) ⊂ Rn is a box, and corresponds to the input gate of the
kth slice, and the output gate of the (k− 1)th slice.
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4.3 temporal contractors : differential constraints

This section will present the so-called Picard contractor, which is a tem-
poral contractor for the differential constraint ẋ = f (x). We will then
introduce this chapter’s main contribution, i. e. the Lohner contractor,
which is also a contractor for such a differential constraint. The Lohner
contractor’s main advantage is its smaller wrapping effect compared
to that of the Picard contractor when the initial tube [x] (·) is thin.

4.3.1 Picard contractor

This contractor has
been implemented in

Tubex, but is
nowhere to be found
in the literature. The
rest of this section is

therefore based on
what we understood

from its
implementation.

To the extent of our knowledge, the Picard contractor, implemented in
Tubex, is the only temporal contractor able to deal with a differential
constraint of the form ẋ = f (x). This contractor is loosely based on
Algorithm 1, used to compute global enclosures in Lohner’s algorithm.

Consider a tube [x] (·) defined on a time interval
[
t0, t f

]
, and a

slice [x] (k). Denote by tk = kδ the sampling times of the tube. Using
Algorithm 1 and taking as input for the algorithm the input gate
of [x] (k) denoted by [x] (tk), the contractor can compute a global
enclosure [x̃k] for [x] (·) over the time interval [tk, tk+1]. In other words,
we have

∀t ∈ [tk, tk+1] , [x] (t) ⊂ [x̃k] (4.10)

Therefore, since both the slice [x] (k) and the global enclosure [x̃k]
contain all the trajectories of the system leaving from the input gate
[x] (tk), so does their intersection, as illustrated in Figure 4.3.

t

[x] (·)

tk−1 tk tk+1 tk+2

[x] (k)

[x] (k − 1)

[x] (k + 1)

[x] (tk)

[x] (tk+1)

[x] (·)

(a) Initial tube

t

[x] (·)

tk−1 tk tk+1 tk+2

[x] (k)
[x̃k]

(b) Computation of the
global enclosure [x̃k]
using the input gate
[x] (tk)

t

[x] (·)

tk−1 tk tk+1 tk+2

[x̃k] ∩ [x] (k)

[x] (tk+1)[x] (tk)

(c) Result of the contrac-
tion of the kth slice of
the tube

Figure 4.3: Contracting one slice of a tube using the Picard contractor
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Proposition 4.1. Consider a dynamical system described by ẋ = f (x), and
a tube of trajectories [x] (·) defined over

[
t0, t f

]
. Discretise the latter with a

period δ and denote by tk = k · δ the resulting discretisation times. Then the
following operator is a contractor for [x] (·) over

[
t0, t f

]
∀t ∈ [tk, tk+1] , ∀k ≤ t f

δ
, CPicard ([x] (t)) = [x] (t) ∩ [x̃k] (4.11)

where

[x̃k] ⊃
[{

φ[x](tk) (t)
∣∣∣ t ∈ [tk, tk+1]

}]
(4.12)

is the global enclosure of the system’s trajectories over [tk, tk+1].

Proof. The monotonicity property (Equation (4.5)) comes from Equa-
tion (4.11)

∀t ∈ [tk, tk+1] , ∀k ≤ t f

δ
, CPicard ([x] (t)) = [x] (t) ∩ [x̃k]

⊆ [x] (t)

The completeness property (Equation (4.6)) comes from the Banach
fixed-point theorem: if Algorithm 1 returns, this means that for all
xk ∈ [x] (tk), there exists a trajectory defined over [tk, tk+1] contained
in [x̃k]. Therefore, all the trajectories starting from the input gate
[x] (tk) are contained in [x̃k], and no trajectory satisfying the differential
constraint is removed from the initial tube. �

This contractor has one major drawback: the global enclosure [x̃k]
encloses all the system’s states in the time interval [tk, tk+1]. Therefore,
the (k + 1)th slice’s input gate not only depends on the state at time
tk+1, but also on all the previous states used to compute the global
enclosure. This results in an over-approximation of the input gate
[x] (tk+1), and thus in increasing wrapping effect over time.

Example 4.2. Consider the one-dimensional system described by Equa-
tion (4.13).

ẋ = − sin (x) (4.13)

Let us take [x0] = [0.9, 1.1] as an initial state, thanks to which we can
initialise a tube [x] (·) as follows

[x] (t) =

[x0] if t = 0;

[−∞, ∞] otherwise.
(4.14)

In Figure 4.4, we plotted the tube CPicard ([x] (·)) over the time inter-
val [0, 10]. The tube itself is outer approximated by its slices of width
δ = 0.1, and a few trajectories initialised in [x0] are plotted in blue.
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Figure 4.4: One-dimensional tube contracted by CPicard

One can notice that the Picard contractor manages to contract the
first slices correctly, but gradually loses contraction power, which is
due to the wrapping effect introduced by this method. Therefore, this
contractor should only be used for short-term integration.

Remark 4.2. In this section, we only describe the forward step of
contraction, i. e. starting from the first slice and contracting the tube in
the direction of increasing time. However, once this forward step is
done, a backward step can be executed to back-propagate the possible
extra information through the tube. In this example, it would not
be useful, because no extra information is available (all the slices are
infinitely large). However, suppose we were contracting a tube that had
already been through a contraction step, e. g. by a static contractor. In
that case, this information could be propagated back and forth through
the tube via forward-backwards contractor composition. We refer the
reader to [50], [105] for more details about contractor composition
strategies.

4.3.2 Lohner contractor

To overcome the Picard contractor’s major drawback, highlighted in
the previous section, we decided to implement a temporal contractor
for a differential constraint of the form ẋ = f (x) based on Lohner’s
algorithm (see Algorithm 2). Let us recall the working principle of the
latter:

1. given an initial enclosure of the state [x0], the algorithm is capa-
ble of computing successive enclosures [xk], enclosing the state
of the system at time tk = kδ;

2. for all k ≥ 0, the enclosure [xk] is represented by a cuboid (see
Section 2.4.4.3): [xk] = x̂k + Bk · [rk]. Both [xk] and [rk] represent
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the uncertainties of the enclosures, respectively in the canonical
basis and in the one defined by the orthogonal matrix Bk;

3. to compute [xk+1] from [xk], the algorithm estimates the global
enclosure [x̃k], such that for all t ∈ [tk, tk+1] and for all xk ∈ [xk],
φ (t− tk, xk) ∈ [x̃k]. The latter is estimated using Algorithm 1.

Now, consider a tube [x] (·) enclosing the state of a system defined
by ẋ = f (x) over a time interval

[
t0, t f

]
. Assume that the tube is

represented in the computer’s memory by slices of width δ. Then,

1. [x] (t0) can be seen as the input gate of the slice [x] (0) and the
initial condition of the system;

2. define tk = kδ; then [x] (tk) can be interpreted as the input gate
of the kth slice, the output gate of the (k − 1)th slice, and the
enclosure of the state at time tk;

3. the slice [x] (k) can be interpreted as a slice of the tube, contain-
ing all the trajectories over the time interval [tk, tk+1], but also as
a global enclosure of the system over the same time interval.

We will now explain how the tube [x] (·) can be contracted according
to the differential constraint using Lohner’s algorithm. First, assume
that we initialised Lohner’s algorithm with the initial state [x0] =

[x] (t0), and assume that we reached the iteration k, i. e. the time tk = kδ.
Then,

1. we know from the initial tube that all the trajectories are con-
tained inside the slice [x] (k), and from Lohner’s algorithm that
the trajectories verifying the differential equation are contained
inside [x̃k];

2. we know from the initial tube that the system’s state at time
tk+1 is enclosed in the output gate [xk+1], and from Lohner’s
algorithm that the system evolving during a duration δ from [xk]
is contained inside [xk+1];

3. Finally, we know that [xk] = x̂k + Bk · [rk].

Algorithm 4 summarises the contractions performed on the tube
and on the boxes used inside Lohner’s algorithm (namely [xk] and
[rk]), and Figure 4.5 illustrates the working principle of the algorithm.

Proposition 4.2. Consider a dynamical system described by ẋ = f (x), and
a tube of trajectories [x] (·) defined over

[
t0, t f

]
. Then the operator CLohner is

a contractor for [x] (·) over
[
t0, t f

]
.
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Algorithm 4 CLohner (inout : [x] (·))
Initialisation:

2: [x0]← [x] (t0)
x̂0 ← mid ([x0])

4: [z0]← [x0]− x̂0

m0 ← mid ([z0]) = 0
6: [r0]← [z0]−m0 = [z0]

B0 = I
8: Main loop:

for k = 0 to t f
δ do

10: Lohner integration: see Algorithm 2
[Ak]← I + h [Jf] ([xk])

12: [x̃k]←GlobalEnclosure([xk]) see Algorithm 1*

[zk+1]←
δ2

2
[Jf] ([x̃k]) [f] ([x̃k])

14: mk+1 ← mid ([zk+1])
Bk+1 ← Qr (mid ([Ak]Bk)) **

16: [rk+1]←
(

B−1
k+1 [Ak]Bk

)
[rk] + B−1

k+1 ([zk+1]−mk+1)

x̂k+1 ← x̂k + δf (x̂k) + mk+1
18: [xk+1]← x̂k+1 + Bk+1 [rk+1]

Tube contraction:
20: [xk+1]← [xk+1] ∩ [x] (tk+1)

x̂k+1 ← mid ([xk+1])

22: [rk+1]← [rk+1] ∩
(

B−1
k+1 · ([xk+1]− x̂k+1)

)
[x] (t) =

[x] (t) ∩ [x̃k] if t ∈ [tk, tk+1[ ;

[x] (t) ∩ [xk+1] if t = tk+1.
24: end for

* for the sake of simplicity, we consider that h does not change because of
GlobalEnclosure

** Qr () returns the orthogonal part of the QR factorization

Proof. The consistency property comes from the 23
rd line of the algo-

rithm: for all t ∈
[
t0, t f

]
, we have

CLohner ([x] (·)) (t) = [x] (t) ∩

[x̃k] if t 6= tk;

[xk] if t = tk.

⊂ [x] (t)

The completeness property comes from the 20
th and 23

rd lines of the
algorithm:

• the state at time tk+1 is contained in [xk+1] according to Lohner’s
algorithm and in [x] (tk+1) according to the initial tube. Therefore
no solution verifying both the differential constraint and the
initial enclosure is removed;
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Figure 4.5: Illustration of the principle of CLohner

• note that the 22
nd line simply transposes the result of this first

contraction to the cuboid, which is a tighter enclosure for the
state at time tk+1; and that the 21

st line is there to keep [rk+1]
centred on the origin;

• the system’s trajectories over the time interval [tk, tk+1] are con-
tained in [x] (k), i. e. the kth slice of the tube, and in [x̃k]. There-
fore, no trajectory satisfying both the differential constraint and
the initial enclosure is removed.

�

Remark 4.3. Note that one of the main differences between the Pi-
card and Lohner contractors is that the former uses the input gate
[x] (tk) ∩ [x̃k−1] to compute the global enclosure [x̃k], while the latter
uses [x] (tk) ∩ [xk]. This combined with a sharper integration method
yields better results.

Example 4.3. In this example, we will resume Example 4.2 to compare
the results of both methods. Figure 4.6 has been obtained using CLohner
instead of CPicard.
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Figure 4.6: One-dimensional tube contracted by CLohner

The figure speaks for itself: the Lohner contractor manages to deal
with far longer time integration than the Picard contractor, and avoids
adding too much wrapping effect, allowing the tube to converge
towards 0.

This last example demonstrates that the Lohner contractor can be
much more contracting than the Picard one. However, it has one
major disadvantage: just like Lohner’s algorithm, it can only deal with
relatively small boxes, i. e. thin tubes. Otherwise, its contraction power
will be reduced to nothing.

Remark 4.4. We only described the forward step of the Lohner con-
tractor, but note that it is also possible to similarly implement the
backward step, by integrating backwards in time from the output gate
of the last slice of the tube.

4.4 tubes and reachability analysis

This section is intended to illustrate the use of the Lohner contractor
as presented earlier in a robotics context. In particular, it can be used
to study reachability of a system.

As stated earlier in Section 4.2.3, tubes, when implemented as slices,
consist in an outer approximation of the trajectories of a system, i. e. ofAs in the previous

chapter, by "system"
we mean a

mathematical model
for the robot, its

sensors, actuators
and embedded

algorithms.

its possible states over a time interval [0, T]. In other words, consider
the tube [x] (·) defined over [0, T], it follows that

RT ([x0]) ⊂ [x] (·) (4.15)

To illustrate this application, consider a tank robot modelled by
Equation (4.16) and initialised in the box [x0]. The robot follows the
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vector field defined by Equation (4.18) thanks to the controller given
by Equation (4.17). This vector field is repulsive in the surroundings
of an obstacle placed at xo and attracts the robot towards a point xt.

ẋ =


v · cos (θ)

v · sin (θ)

10 · sin (θd − θ)

1.5 · (vd − v)

 (4.16)

(
θd

vd

)
=

(
atan2

(
cy, cx

)
‖c‖

)
(4.17)

c =
(
cx, cy

)
= xt − x− xo − x

‖xo − x‖2 +


y− yo

‖xo − x‖2

−x + xo

‖xo − x‖2

 (4.18)

To obtain the reachability set of the robot, we initialise the tube of
trajectories as follows

[x] (t) =

[x0] if t = 0;

[−∞, ∞]×4 otherwise.
(4.19)

We arbitrarily set the time interval of the tube to [0, 2.1]. Then, we
contract this initial tube using CLohner. Ideally, we would like the robot
to reach a neighbourhood of its target defined by

[xt] = xt + ([−ε, ε] , [−ε, ε]) (4.20)

where ε = 0.1. Figure 4.7 is the result of this contraction.

y

x
543210

0

1

xt
xo

Figure 4.7: Reachability analysis of a robot driven by a potential field

From this figure, we can deduce that when the robot is initialised
in [x0], its controller enables it to reach the green box symbolising [xt]
while avoiding the obstacle, symbolised by the red disk.
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4.5 approximation of capture tubes

In this section, we will give another example of an application for the
Lohner contractor. This example is less related to the docking problem
than the previous one, but illustrates the Lohner contractor’s adequacy
to solve specific problems.

In [52], the authors present a method to compute capture tubes (also
called positive invariant tubes). These tubes are a way of formalising
positive invariant sets of dynamical systems [9].

Definition 4.3 (Capture tube). Consider a continuous-time system
with flow function φ. A tube [x] (·) is said to be a capture tube for the
system if

∀t > 0, x (t0) ∈ [x] (t0) =⇒ x (t0 + t) ∈ [x] (t0 + t) (4.21)

In other words, a tube [x] (·) is a capture tube if all the trajectories
entering it at a given time t0 remain inside it.

The method presented in [52] consists in choosing an arbitrary can-
didate capture tube for the system [c∗] (·), and then checking whether
some trajectories leave the latter using contractor programming and
guaranteed integration algorithms. This approach allows computing
an outer approximation [c+] (·) of the real capture tube [c] (·), as
illustrated in Figure 4.8.

t

x

x1(·)
x2(·)

x3(·)
x4(·)

[c∗] (·) [c] (·)[c+] (·)

Figure 4.8: Illustration of a capture tube, its inner and its outer approximation

The example given in [52] is the following:

1. Consider a simple pendulum, such as described by Equation (2.41)
with d = 0.15 as damping parameter;

2. Define the candidate capture tube [c∗] (·) by the function

g (t, x) = x2
1 + x2

2 − 1 (4.22)
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Figure 4.9: Approximation of [c+] (·) using the method described in [52]

This tube does not depend on time, and corresponds to a disk of
radius 1 m, i. e. for all t > 0, g (t, [c∗] (t)) ≤ 0.

3. Define the cross-out condition contractor, which allows finding
the boxes inside which the system leaves the disk aforemen-
tioned, i. e. the boxes on the border of the disk where the scalar
product between the vector field and the gradient of the border
is positive

Ccross-out ([x]) =
[{

x ∈ [x]
∣∣∣∣ g (t, x) = 0∧ f (x)T · ∂g

∂x
(t, x) > 0

}]
(4.23)

4. Using a paving algorithm, coupled to Ccross-out, find a subpaving
of boxes [x] (0) inside which the cross-out constraint is verified
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5. Using a guaranteed integration algorithm (in [52], the authors
use the DynIbex library [27]), integrate the box [x] (0) during an
arbitrary time T, and check whether the resulting box [x] (T) is
inside the disk

Cdisk ([x]) = [{x ∈ [x] | g (t, x) > 0}] (4.24)

6. If [x] (T) is in the disk, i. e. Cdisk ([x] (T)) = ∅, then this means
that if the system leaves the disk through the box [0], it will
re-enter the latter after a duration T, and the tube [x] (·) is a part
of the outer approximation [c+] (·).

7. Otherwise, use smaller boxes [x] (0) through bisections and con-
tractions by Ccross-out.

We reproduced the results obtained in [52] in Figure 4.9.

Below, we propose a method based on the Lohner contractor, which
allows approximating [c+] (·) with fewer contractions than the method
proposed in [52]. Our method also allows for higher-dimensional
problems, thanks to Lohner’s algorithms.

Algorithm 5 formalises our method and is illustrated in Figure 4.10.
Note that:

1. list corresponds to a list structure, from which one can pop the
first element using the function list.pop_ f ront (); and to which
elements can be appended using the function list.push_back ()

2. willReEnter is a boolean variable;

3. the function bisect () takes a box [x] as an input and returns a pair
of boxes [x1] & [x2] such that [x1]∪ [x2] = [x] and [x1]∩ [x2] = ∅;

4.
→
C Lohner and

←
C Lohner respectively correspond to the forward and

backward versions of the Lohner contractor;

[u0]

→
C Lohner ([u] (t))

→
C Lohner ([u] (·))

[u0] [u0]
Cdisk◦

→
C Lohner ([u] (·))

Cdisk◦
→
C Lohner ([u] (t))

[u0]
←
C Lohner ◦ Cdisk◦
→
C Lohner ([u] (·))
←
C Lohner ◦ Cdisk◦
→
C Lohner ([u] (t))

Figure 4.10: Working principle of Algorithm 5
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Algorithm 5 Approximating outer capture tubes using CLohner

Input: [x], [c−] (·), N ≥ 1
list = {[x]}

2: [c+] (·)← [c−] (·)
while list 6= ∅ do

4: [u0]← list.pop_ f ront ()
[u0]← Ccross-out ([u])

6: [u] (t) =

[u0] if t = 0;

R otherwise.
a

willReEnter ← false
8: for i = 0 to N do

[u1] (·)←
←
C Lohner ◦ Cdisk ◦

→
C Lohner ([u] (·)) b

10: if [u1] (·) = ∅ then
willReEnter ← true

12: ∀t ≥ 0, [c+] (t)← [c+] (t) ∪ [u] (t) c

end if
14: [u] (·)← [u1] (·)

end for
16: if willReEnter = false then

[u1] , [u2]← bisect ([u0])
18: list.push_back ([u1])

list.push_back ([u2])
20: end if

end while

a Initialise a tube [u] (·) with the box [u0]
b Propagates the initial box through time, then contract the tube with respect to the

interior of the disk, and propagates this new information backwards in time
c [u] (·) will re-enter the disk at some point in time and is thus part of

[
c+
]
(·)

In Figure 4.11, we represented the results obtained using our method.
It is noticeable that the latter allows for fewer bisections than the
approach presented in [52]. The main reason for that is that the Lohner
contractor composed with Cdisk allows contracting the entire tube, and
therefore performs sharper guaranteed integration without additional
bisections.

To sum up, our method allows finding an outer approximation of a
dynamical system’s capture tubes, i. e. positive invariant sets for the
latter, while performing fewer bisections than the method proposed
in [52]. The fact that [c+] (·) is larger in our case than in this paper
is not problematic: to improve accuracy, we could also bisect more.
However, the main problem is to find such an approximation, possibly
for higher-dimensional systems, and we believe that our method is
more suitable for this task.
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Figure 4.11: Approximation of [c+] (·) using CLohner

A possible improvement for our method could be to take cuboids
as initial boxes for the Lohner contractor, instead of boxes: doing so
would reduce the wrapping effect remaining from the contraction step
and therefore allow for thinner tubes. Another improvement in terms
of performances could consist in using the tubes that are known to be
re entrant to contract the ones that have not been contracted yet.

4.6 conclusion

This paragraph concludes the presentation of the reachability anal-
ysis approach to the docking problem. The latter is based on tubes
of trajectories, which allow outer approximating the set of trajecto-
ries, and thus of states, of an uncertain system. In turn, this outer
approximation allows verifying two important properties:

1. that the system does not enter a forbidden area in its state space,
symbolising an obstacle for example;

2. that the system can reach the desired area when initialised in a
specific zone.

We successfully illustrated these properties in a simple example of a
robot driven by a potential field.

Apart from the approach itself, the main contribution of this chapter
is the Lohner contractor, which allows contracting a tube according to
differential constraints. To the extent of our knowledge, this new con-
tractor allows for a better contraction of the initial tube than existing
contractors, if the latter is thin enough. This limitation is due to the
use of Lohner’s algorithm inside the contractor.
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Possible improvements for the Lohner contractor could be using the
CAPD library instead of our simple version of Lohner’s algorithm to
perform guaranteed integration, and in particular to use its automatic
differentiation tool and its doubletons and tripletons sets. Another
improvement that would prove extremely useful in a robotics context
is the ability to deal with differential inclusions of the form

ẋ = f (x) + u, u ∈ [u] (4.25)

This could be easily implemented using the CAPD library, which
proposes such a feature.
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5.1 context

The offshore wind industry’s fast development is pushing towards
the automation of maintenance operations via underwater robots. In
that context, companies started developing AUVs and autonomous
ROVs capable of achieving those missions, new cheaper, lighter and
more accurate sensors, and deploying new technologies allowing
for faster communication. In the robotics domain, navigation and
control algorithms have been adapted and improved to meet the
requirements inherent to underwater operations and to allow for tasks
to be performed more autonomously.

In this context, it appeared necessary to look for tools capable of
validating the engineering choices made to achieve these missions. It
would be inconceivable to deploy resident autonomous underwater
robots in an offshore wind farm without having proven beforehand
that the systems are safe to operate, i. e. displaying a behaviour vali-
dated by the executives of the project. Therefore, this thesis focus on
the docking part of these maintenance missions, occurring when a
robot needs to join its garage or assigned surface vessel. In particular,
we chose to work on a priori validation methods to ensure feasibility
of a docking mission.

141
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5.2 contributions of this thesis

This thesis explored two different approaches to prove feasibility of a
docking mission.

5.2.1 Stability approach to the docking problem

The first approach consists in formalising the system formed by the
robot, its embedded computer, sensors and actuators, and the docking
target as a stability problem. In other words, in a docking mission, the
robot is expected to converge towards its target. Therefore, proving
feasibility of the docking mission comes down to verifying stability of
the system. The latter can either be a discrete-time, continuous-time
or hybrid one, in addition to being uncertain and non-linear. Thus
various methods must be used to demonstrate their stability.

Since the existing approaches did not meet all our problems’ re-
quirements, we developed new methods to prove stability of uncertain,
non-linear, discrete-time, continuous-time and hybrid systems. These
new methods are based on the new notion of stability contractor
and the centred form of an interval function. While developing these
methods, we created additional tools to help us in our task, namely
algorithms to compute the centred form of a composition of interval
functions iteratively.

In short, our methods allow proving asymptotic stability of a system
in a chosen neighbourhood enclosing one of its fixed points. This is
their main advantage compared to the existing methods for stability
analysis, which cannot find such a neighbourhood but only prove its
existence. An important drawback of our methods, however, is that
they can only deal with small neighbourhoods. Fortunately, the latter
can, in turn, be used by algorithms based on paving strategies, e. g. to
approximate basins of attraction or stability regions.

In this thesis, we demonstrated how our methods could be used to
prove stability of:

1. a fixed point of a discrete-time system, using the centred form
as a stability contractor;

2. a periodic orbit of a discrete-time system, using the centred form
as a stability contractor;

3. an equilibrium state of a continuous-time system, by discretising
the system and using the centred form as a stability contractor;

4. a hybrid limit cycle of a hybrid system, by discretising the cycle
using Poincaré maps and then using the centred form as a
stability contractor.



5.2 contributions of this thesis 143

Proving stability of a limit cycle of a continuous-time system could be
achieved similarly than for a hybrid limit cycle.

We presented results 1 and 2 in the SNR workshop, and we submit-
ted result 4 to the LITES journal:

• A. Bourgois and L. Jaulin, “Interval centred form for proving
stability of non-linear discrete-time systems”, in SNR 2020: 6th
International Workshop on Symbolic-Numeric Methods for Reasoning
about CPS and IoT, Vienna, Austria, Aug. 2020. doi: 10.4204/
EPTCS.331

• A. Bourgois and L. Jaulin, “Proving the stability of a limit cycle
of a hybrid system”, LITES - Leibniz Transactions on Embedded
Systems, 2020, Submitted June 2020

5.2.2 Reachability approach to the docking problem

The second approach developed in this thesis is based on reachability
analysis. After modelling the robot and its equipment as a dynamical
system, the goal was to prove that the latter could reach a specific
docking area while avoiding obstacles. Since the system is uncertain
and non-linear, we used tubes of trajectories to obtain mathematical
proofs to reachability and non-collision.

Since we want a priori reachability proofs, our system, once mod-
elled, needs to be simulated over time in a guaranteed way. However,
the existing methods allowing to do so, namely differential constraints
based tube contractors, were not performing enough, since they were
not meant for long-time integration in the first place. Therefore, we
developed a new tube contractor for differential constraints, based on
Lohner’s algorithm.

We gave a proof of concept of this approach on a simple system
modelling a robot following a vector field. Since the Lohner contractor
is based on Lohner’s algorithm, in turn based on the centred form,
only thin tubes can be contracted.

We plan on submitting a paper summarising this approach in a
journal by the end of the year.

5.2.3 Comparison of the two approaches

We have not formally compared the performances of the two ap-
proaches presented earlier. The main goal of this thesis was indeed to
develop the tools mentioned above to answer the academic require-
ments of this initial problem of this thesis:

https://doi.org/10.4204/EPTCS.331
https://doi.org/10.4204/EPTCS.331
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• a priori proving stability of an uncertain dynamical system;

• Performing a priori reachability analysis.

Furthermore, the two methods being based on the same theoretical
tool, namely the centred form, the results should not be extremely
different if it comes to merely finding an initial condition such that
the system will dock onto its target.

However, both approaches can be compared in terms of feature:
the first one allows proving stability of a dynamical system, and this
property could be extended to problems utterly different than the
docking one; and the second one is based on a temporal contractor for
tubes, which can also be used in other contexts, such as underwater
localisation.

5.2.4 Other contributions

This thesis also aimed at introducing various existing tools related to
dynamical systems. Therefore, we introduced the CAPD library via a
few code examples all along this document, while giving an overview
of the related mathematical notions. We also gave an extensive in-
troduction to Lohner’s algorithm, which we believe could be used
in more robotics-related applications, despite its limitation to small
boxes.

5.3 prospects

The work started in this thesis could be continued in multiple ways.
First, some unpublished results, among which Lohner’s contractors
and its applications, and proving stability of continuous-time systems,
remain to be published. We also plan to release a clean version of
the software developed in this thesis to ease interactions between
CAPD, Tubex and Ibex, as well as the implementations of the different
algorithms presented in this thesis.

Secondly, we have seen that the centred form algorithm we pre-
sented in Chapter 3 could be used as a stability contractor. It can also
be seen as a guaranteed integration algorithm, although less perform-
ing than Lohner’s algorithm or the ones implemented in CAPD. An
approach allowing to obtain larger stability neighbourhoods for the
studied system could be to verify whether these algorithms can also
be used as stability contractors.

Thirdly, the Lohner contractor we presented in Chapter 4 could
be used differently than in this thesis. Indeed, while our approach
required a priori proofs, this contractor could be used during or after
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a mission to contract the tube of trajectories of the robot, in a context
of loop detection in the trajectories for example. To make sure the
uncertainties remain small, ensuring the contractor’s proper function-
ing, a composition with other contractors, e. g. static ones dealing with
measurement data, could be of help.

Additionally, even if the simple implementation of Lohner’s algo-
rithm we presented in Chapter 2 already enables better performances
of the Lohner contractor than its competitors, results could be im-
proved by using the CAPD library instead of our implementation. This
would allow us to enjoy the optimisations made inside this library in
the contractor (automatic differentiation, sharper representable sets,
automatic computation of integration step. . . ).

The reader might recall Remark 2.11, that pointed out that we could
only deal with differential inclusion having constant parameters in
this thesis. However, methods exist to integrate general differential
inclusion in a guaranteed manner, some of which are implemented in
CAPD. General differential inclusions (i. e. with non-constant parame-
ters) can be of use to model uncertain systems. It would be interesting
to improve the Lohner contractor to deal with general differential
inclusions. This would allow for broader use of the contractor.

Finally, this work mainly consists in theoretical tools at the moment.
We have not applied them yet to real-life systems. This is a longer-
term goal, as extra work would be required to formalise these real-life
systems and characterise their parameters.
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Titre : Amarrage collaboratif automatique et sécurisé d’un robot sur une plateforme
mobile

Mots-clés : docking sous-marin, stabilité des systèmes dynamiques, systèmes hybrides, pro-
grammation par contraintes, intégration garantie

Résumé : La multiplication des installations
offshore suscite un besoin de robots auto-
nomes fiables, capable d’effectuer des mis-
sions d’inspection et de maintenance tout en
minimisant les coûts opérationnels. Pour ré-
duire le risque d’accident pendant une mis-
sion, des outils mathématiques peuvent être
utilisés pour démontrer a priori son bon dé-
roulement. Dans cette thèse, des nouvelles
méthodes reposant sur une approche ensem-
bliste sont présentées à cet effet.

Premièrement, nous proposons une nou-
velle méthode pour analyser la stabilité d’un
système incertain discret, continue ou hybride.

Ensuite, nous présentons une approche s’ins-
pirant de l’analyse d’atteignabilité, pour la-
quelle nous avons développé un nouvel outil
de programmation par contraintes permettant
d’implémenter des contraintes différentielles.
Ces deux approches permettent de prédire le
comportement d’un robot avant même son dé-
ploiement.

Ces outils sont illustrés par des exemples
réalistes issus des domaines de la localisation
et du contrôle, appliqués au problème d’amar-
rage sous-marin. De plus, nous présentons
la librairie CAPD dans un contexte robotique
grâce à des exemples pratiques.

Title: Safe & collaborative autonomous underwater docking

Keywords: underwater docking, stability of dynamical systems, hybrid systems, constraint
programming, guaranteed integration

Abstract: The increasing number of off-
shore facilities triggers the need for reliable
autonomous robots to perform inspection and
maintenance missions, while minimising op-
erational expenses. In order to decrease
the likelihood of undesired events during a
mission, mathematical tools can be used to
prove a priori its feasibility. In the following,
new methods based on a set-membership ap-
proach are developed and presented in this re-
gard.

First, we propose a new method to analyse
stability of a discrete, continuous and hybrid
uncertain system. Alternatively, we present

an approach based on reachability analysis for
which we developed a novel constraint pro-
gramming tool to implement differential con-
straints. Both approaches allow predicting the
behaviour of a robot before its actual deploy-
ment.

These tools are illustrated with realistic ex-
amples falling in the field of localisation & con-
trol, and in particular applied to underwater
docking. Furthermore, the Computer-Assisted
Proofs in Dynamics (CAPD) library is intro-
duced in a robotics context via practical exam-
ples.
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