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Chapter 1. Introduction 

 
One of the fundamental challenges of today’s robotics is to obtain robust and efficient 
mechanism for modeling increasingly complex environments, using mobile robots for 
their exploration. This is known as the Simultaneous Localization and Mapping 
(SLAM) problem which consists of using the map that the robot is currently building to 
determine its own position.  This problem can be technical challenge because the 
robot position and the world features must be estimated simultaneously from noisy 
sensor data.  
 
Probabilistic solutions are the most popular for the SLAM problem, especially those 
based on the use of an Extended Kalman Filter to estimate the map. Despite all the 
research done in this field that has resulted in substantial progress in autonomous 
map-building, still significant barriers arise in the implementation of these algorithms.  
The first comes because normally SLAM algorithms implicitly assume a naive control 
where the robot is driven around the environment by hand while it records the sensor 
data resulting in a system that is not really autonomous and even the quality of the 
maps in some cases is poor when the sensor data is collected from a robot being 
controlled manually by a novice.  
 
Efficient exploration of unknown environments is a fundamental problem in mobile 
robotics which answer to the question of where to go next in order to build the map 
efficiently. Even though the exploration strategy can have a real impact on the quality 
of the resulting map, the area of exploration for SLAM or Integrated exploration is 
relatively new. This paradigm was first explicitly stated in [Feder et al. 1999] and can 
be seen as the problem where a mobile robot incrementally builds a map of this 
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environment and simultaneously uses this map to compute its absolute localization, 
and make local decisions on where to move next in order to minimize the error in the 
estimation of the mobile pose and the configuration locations. Planning actions for 
SLAM requires fast algorithms that can adapt to changes in the environment when 
new features or obstacles are detected. 
 
A second issue is regarding to the representation of objects in the map and to the 
information that such representation can provide in the SLAM process. B-Spline 
curves have been used recently in [Pedraza et al. 2007] as a form of representation 
of environments. In this work, these curves have shown great efficiency and 
versatility to describe complex environments where it is not possible to extract simple 
features such as lines and points. However, the use of this type of representation is 
too recent and therefore not fully exploited, especially talking of the kind of 
information that the B-Splines can provide to the SLAM process. 
 
Finally, limitations on the size of the environments due to calculations that must be 
performed and the inconsistencies that the linearizations of the problem produce in 
some methods make it necessary to find alternative ways of addressing the problem 
of SLAM. 
  

1.1 Motivation 
 
Robotics is the science that pursues the perception and manipulation of the physical 
world around us through programmable and controllable devices with computers. 
These devices are known as robots and depending on the objective can be found in 
a wide variety of forms.  
 
Perhaps the first real example of mobile robot was the turtle developed by Walter in 
1948 which was capable of moving exhibiting an apparently intelligent behavior at the 
moment of reacting against the presence of obstacles. Since then, the attempts of 
creating mobile robots provided with autonomy have been growing more and more to 
the point that today there are numerous commercial applications that assist humans 
in many tasks. 
 
A mobile robot, to be considered truly autonomous should be able to answer the 
following three questions that define the basic problem of its own navigation 
[Leonard et al. 1992]. Where am I?, Where am I going? How i get that destination?. 
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Many efforts have been made in the scientific community to answer these questions. 
The first question concerns the localization of the robot and to get an answer, the 
robot must use the information obtained through its sensors and the information 
available over the environment. The localization problem is a key problem in mobile 
robotics. Occasionally, this has been mentioned as “The most fundamental problem 
to provide to a mobile robot of autonomous capacities”. The answer to this question 
will be used as a starting point to obtain the solution of the other two questions 
because the current position will give a great number of possible target positions 
while the way to reach them will come in part conditioned by the starting position of 
the robot. 
 
In order to answer the third question (how to reach that destination?) many path 
planning algorithms have been proposed adapted to the own characteristics of the 
vehicles, the perception system and the type of task to be performed. Although all 
these factors have a commitment to develop a navigation system, the available 
information over the environment and how the robot is able to perceive and to reason 
it are without doubt the determining elements 
 
The second question, however, is a problem that remains open or whose solution is 
imposed by human interaction that defines the destination and the objective of the 
task to be performed by the robot. The autonomous choice of a destination has been 
typically left in the hands of algorithms designed for the exploration of environments. 
Although in recent years these kinds of algorithms have made a great progress, it is a 
problem that still remains open. 
 
Given this, it is clear that any movement system needs to have some kind of model of 
its environment to solve the basic problem of navigation; either to determine their 
own position, to define a target position, or to plan a path to follow. This objective has 
been pursued in recent decades where the first solutions tried to decouple the 
problem of map building and the problem of robot localization; however, rapidly was 
discovered that this would not be possible without simultaneously considering both 
aspects. This phenomenon is because during the exploration, the robot performs 
measurements of the environment that are later placed spatially considering its own 
position, at the same time, previously detected objects are used to determine its 
location. 
 
In [Smith et al. 1987] Smith et al provided the basis to solve the two problems 
simultaneously and that in these days is known as SLAM (Simultaneous Localization 
and Mapping). The SLAM problem responds to the autonomous capabilities of a 
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robot, it is possible for an autonomous vehicle to start at an unknown position,  in an 
unknown environment and then start building a map that will be simultaneously used 
to calculate the absolute position of the vehicle to allow the robot to navigate. 
 
Although many approaches have tried to deal with this problem, the huge 
dimensionality (temporal, spatial and statistical) of the SLAM problem makes that, 
mathematically, it does not exist a complete solution. Instead suboptimal solutions 
have been presented in the current literature being probabilistic techniques based on 
linear approximations of first order as the extended Kalman filter which has best deal 
with the problem; however, these solutions suffer from some statistic inconsistency 
that causes corrupt results or completely incorrect results in the long term. Because 
of that the solution to this problem is still in study. 
 
The representation of the physical world surrounding the robot in itself, represents 
also a problem. Here the available methods attempt to describe and model the 
environment as it is presented and try to get from it the information necessary for the 
representation.  While that some approaches try to extract geometric features and to 
represent their positions on a map, others try to discretize the space into cells and 
classified each one as occupied or empty. One last category known as scan-
matching has been presented in [Lu et al. 1997]. Here, the use of laser sensors to 
take accurate measurements of the environment is essential. The methods in this last 
category are able to represent the environment without relying on any assumption 
about the geometric characteristics. What these methods seek, is the way to align 
together two consecutive measurements so that the discrepancy obtained between 
them serves to correct the position of the robot. 
 
Although the representation methods mentioned have been widely developed, these 
are adapted only to simple primitives such as points or line segments and therefore in 
more complex environments they lose their validity. For this reason, a new form of 
representing complex environments has been presented by Pedraza et al. in 
[Pedraza et al. 2007] where B-Splines curves are taken as basis for the 
representation. With this, the new challenge that now faces the problem of SLAM is 
to consider new representations to model non-standard environments. 
 
As we have mentioned earlier in this section, navigation gives a real autonomy to the 
mobile robot. However, the classical methods of SLAM require human intervention to 
take the decision on where the robot has to go in order to continue the mapping. 
These navigation methods are known as methods of exploration and correspond to 
another area of research related to the prediction of the unexplored region. Thus, 
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exploration is the task of guiding a vehicle in an unknown environment where the 
mobile robot has to decide the next exploration target that offers the most important 
benefit of an unexplored region. Considering this, in recent years a new paradigm 
has emerged which considers the motion planning in the context of SLAM. This new 
paradigm is known as SPLAM (Simultaneous planning, localization and mapping) or 
Integrated Exploration and it requires a balanced evaluation of the obtained 
information, the quality of the localization and the cost of navigation.  
 
Since the problem of integrated exploration is a relatively new area, a lot of work 
remains to be done. 
 

1.2 OBJECTIVES 
 
Based on these motivations and needs, this section describes the general objective 
and the particular objectives of this thesis. 
 
The main objective of this thesis work is to develop an effective and robust SPLAM 
tool destined to the construction of maps of complex environments in an autonomous 
way. As we have mentioned, the strategies of SPLAM solve simultaneously the 
planning, localization and mapping problems. It is then necessary to develop several 
strategies that coexist harmoniously to achieve in a joint way the proposed objective. 
 
With this in mind, we will try to substantially improve some methods from the current 
boundaries of the theory and technique in the field of exploration, localization and 
mapping. Thus, from the general objective arise the following specific objectives: 
 

1. To establish the theoretical basis for the understanding of the problem of 
Integrated Exploration, specifying how a solution can be formulated. 

 
2. To propose an evolution of the SRT (Sensor-based Random Tree) exploration 

method, transforming the structure it uses into a more versatile one that could 
be used throughout the entire process of exploration. The proposed evolution 
transforms the exploration tree into an exploration graph that continues using 
the probabilistic efficiency that these kinds of methods have shown. Also, with 
the new structure it is possible to use more complex algorithms to determine 
the next best position to explore once the region where the robot is currently 
has been completely covered. 
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3. To study a new SLAM methodology based on unclamped B-Splines taking the 
representation of the environment presented by Pedraza et al. in [Pedraza et 
al. 2007],for which will be necessary to extend the area of application of 
existing techniques as follows: 

 
• The localization presented in our method is classified into the group of 

scan matching or topological methods. For this reason the data 
association in an efficient way is a key step. From the foregoing, an 
improvement is proposed for the current association data methods 
which exploit the information gain that represents the parametric 
description of arbitrary geometries. This way, once available a map of 
modeling in the form of parametric curves, it is possible to use the 
information contained in them as curves such as curvatures, length of 
the curve and curvature zero crossing with the objective of improving 
and strengthening the existing methodologies of data association. 

 
• Given the type of curves used in this project, there will be studied also 

the form in which the environment will be gradually extended with the 
new information that the robot will get of the unexplored zones 

 
4. To study an alternative for the construction of map of great dimensions so that 

the computational cost of the algorithm allow its utilization in real time. For this 
end it is considered the structure used by the proposed exploration method so 
that the information necessary for the localization process will be the local 
information that is found on the node on which the robot is currently 
navigating. Simultaneously, the information with corrected position will be used 
to extend the global map. 

 

1.3 Structure Of The Thesis 
 
The thesis work presented consists of 6 chapters and a bibliography. In this first 
chapter, we have tried to transmit to the reader the motivations that have led us to 
tackle this topic showing the current challenges in the research field from which are 
originated the objectives pursued in our work. 
 
Chapter 2 gives an overview of the current state of the art for the simultaneous 
planning, localization and mapping (SPLAM or integrated exploration) problem. Here, 
it is intended to familiarize the reader by introducing the main algorithms and 
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methods developed in the involved fields. In this way, we perform a study of the main 
SLAM strategies used until today showing the advantages and disadvantages of 
each one of them. Also we propose a study that shows the latest methods in the field 
of exploration environments and finally we present the work carried out in the 
relatively new field of integrated exploration. 
 
Chapter 3 introduces an approach to the problem of integrated exploration using 
some familiar tools in the field of exploration and in the field of SLAM, showing in this 
last one the version based on the classical extended Kalman filter (based on 
punctual landmarks) and also a new version presented in [Pedraza et al. 2007] 
which also uses the EKF but with new representation of the environment based on B-
Spline curves. The final objective of this chapter is to build a SPLAM strategy using 
known tools, which will serve as comparison for the approach developed in this 
project presented in Chapter 4. 
 
Chapter 4 is the central chapter of this thesis. It presents a new approach to the 
SPLAM problem where the objects are modeled using parametric curve as is 
proposed in [Pedraza et al. 2007]. Because of this representation, we have improved 
or developed the following methodology:  
 

• An evolution of the SRT exploration method, in which the main structure of 
exploration is transformed to a graph. Also, the choice of the next position to 
explore once the robot is in a fully explored zone is performed by using the 
introduced concept of border control and the graph search method A* in a bi-
directional way. 

 
• A topological location method that considers the new representation of the 

environment using the information about the curvature of the spline for the 
data association and position correction process. 
 

• A method for incremental construction of maps of complex environments using 
unclamped splines as modeling tools. 
 

At the same time, the proposed method uses only partial information contained in the 
nodes of the exploration graph for the process of SLAM. So the method can be used 
in environments of large dimensions. 
 
Chapter 5 contains the results that show and support the practical application of the 
methods presented as well as the necessary comparisons to show the validity of our 
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proposal comparing it with the methodologies presented in Chapter 3. Results 
include simulations carried out in built environments as well as experiments in real 
environments. 
 
Finally, Chapter 6 presents the main contributions of the thesis and the conclusions 
that can be extracted from them. In addition, an analysis of the proposal is performed 
considering possible improvements for future work and possible extensions of the 
project. 
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Chapter 2.State of the Art  
of Integrated Exploration 

 
 
 
 
In general, the task of acquiring models of unknown environments requires the 
solution of three subtasks, which are mapping, localization, and motion control. 
Mapping is the problem of integrating the information gathered with the robot’s 
sensors into a given representation. Localization is the problem of estimating the 
position of the robot. Finally, the motion control problem involves the question of how 
to steer a vehicle in order to efficiently guide it to a desired location or along a 
planned trajectory.  
 
The diagram in Figure 2.1 depicts also the overlapping areas of these three tasks.  
 

• Simultaneous localization and mapping (SLAM). It is a fundamental and 
complex problem in mobile robotics research. In this problem, a mobile robot 
explores and senses an unknown region; besides it constructs a map and 
localizes itself in the map.  
 

• Active localization. It seeks to guide the robot to locations within the map to 
improve the pose estimate.  
 

• Classic exploration. It does not take localization uncertainty into account and 
direct the exploration in order to minimize the distance travelled while 
maximizing the information gained. When the robots travel through unknown 
environments, the uncertainty over their position increases and the 
construction of the map becomes difficult. Consequently, the result can be a 
useless and inaccurate map.  
 

• Integrated Exploration. Represented in the center area of the diagram; it 
address mapping, localization, and motion control simultaneously. The 
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paradigm of integrated exploration was proposed in [Feder et al. 1999], here, 
the exploration approach calls for a balanced evaluation of alternative motion 
actions from the point of view of information gain, localization quality and 
navigation cost. 

 

 

 
 
 

Figure 2.1 The field of robotic exploration with highlighted regions of integration:  
(I) SLAM, (II) classic exploration, (III) active localization, (IV) integrated exploration 

 
 

2.1 SLAM 
 
In the world of robotics, we can find a wide range of robots designed for an extremely 
wide range of applications and for an equally wide range of circumstances; it is 
unthinkable that a robot can be built without a preconceived purpose. Some of these 
robots that we can find today have been conceived to be capable to exploring, from 
environments with regular shapes such as office buildings [Bosse et al. 2004], to 
difficult terrain as in the case of planetary exploration [Maimone  et al. 2004] and 
even in underwater environments [Williams et al. 2004]. These robots can operate 
alone [Leonard et al. 1991] or in teams even of hundreds of them [Howard et al. 
2006]. 
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One point that share most of the many implementations is that all the robots need a 
map. Most of these applications are location based, in one way or another. Tasks like 
terrain exploration, underwater inspection and many others need that the robots 
know their localization. Therefore a map is necessary to make it easy regardless of 
its representation or amount of information to be stored that vary from application to 
application. By providing the robot with a spatial context, a much more elaborate and 
intelligent behavior can developed. It means that maps allows to robot go beyond of 
a purely reactive behavior. 
 
It can be thought that a map can be given in advance to the robot; however, this can 
be done only in a small circle of applications. Consequently, in most applications the 
robot has to be equipped with sensors that allow him to observe the environment and 
make a map by himself. This challenge is addressed by the mappings algorithms; 
while the robot travels through an environment the information read by the sensors is 
translated into a map. In this way, and assuming a perfect knowledge of the location 
of the robot, the challenge of mapping consists in make the most accurate description 
of the physical reality based on sensor readings even with the noise associated to 
the measurement system. 
 
Taking this into account, the Simultaneous Localization and Mapping (SLAM) 
strategy, in a very simple definition, is about having a robot in response to question 
’Where am I?’. Nevertheless, this question about the robot’s position is almost never 
raised for its own benefit; on the contrary, the information over the map and the robot 
pose granted by SLAM is the key toward many intelligent behaviors. As an example, 
we can mention that this information is used by many navigation and path-planning 
algorithms as a prerequisite and it may contribute to a more elaborate behavior and 
motion planning. In general, the map and the robot pose information supply a natural 
context to relate observations, decisions and actions over time. So, only by the use of 
SLAM techniques we can successfully do an autonomously complete location-based 
task where the mobile robot can be placed on an unknown location into an unknown 
environment. Given that SLAM has not need of the a priori knowledge of the 
environment, Hugh Durrant-Whyte et al. [Durrant-Whyte et al 2006] asserts that the 
solution of the SLAM problem is the “holy grail” for the mobile robotics community 
where a robust method would make a robot truly autonomous. 
 
 Today, we can find on internet several SLAM algorithms for science research. 
Despite the great progress that has been made in the past decades, some existing 
SLAM methods are limited to specialized robot platforms, small environments and 
certain sensor technologies. For this and other issues, the SLAM problem still 
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remains unresolved. Given these matters, it is necessary to find robust SLAM 
solutions that can work for a large variety of robots without altering the model and 
also to build accurate large maps of environments. It has to be considered that the 
methods should run in real time and to work with the available memory, even for 
large maps. 
 
It can be considered that the primary task of SLAM is to choose one representation 
which can facilitate the subsequent algorithms; this is due to the intelligent behaviors 
that depend on him. There are a great number of these representations, each with 
their capabilities and limitations in terms of accuracy, performance and memory 
allocation. So, the election of one representation is a delicate and most be done 
considering a broad context that at least includes the algorithms that will actually 
make use of the map. 
 
2.1.1 Localization 
 
To perform the exploration of a given environment, the robot most travel through it. 
This means that some motions commands have to be sent to the robot’s motions 
actuators to get some movement from him and this gives rise to its own particular 
kind of problem often known as odometric errors. The odometric errors are a 
mismatch between the desired movement specified by the control commands and the 
movement achieved by the actuators. This difference may have its root in any of the 
following problems: inaccuracy in the actuator, slippery or uneven surfaces, or some 
other problems caused by the environment itself.  
 
Given the differences between the desired position and the position reached, many 
researchers have focused their attention on solving the autonomous localization 
problem in the past two decades. The result is a great variety of paradigms that seek 
to determine the position and orientation of a robot with respect to the objects in the 
environment. Once the robot’s pose is obtained by localization, this information is 
used as a reference frame for mapping to interpret and localize the sensor 
observations and build a map from these. At the same time, localization estimates 
the current pose of the robot comparing the current observations with the information 
contained in the map. Thus, localization and mapping are interdependent.  
 
2.1.1.1 Types of maps 
 
This section considers the four types of maps most commonly used in current 
localization systems: metric maps, feature maps, topological maps and hybrid Maps. 
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a)  Metric Maps 
 
The level of metric representation of the map contains a model in which the 
coordinates and properties of objects are represented numerically. So this model can 
be geometric or discretized (Figure 2.2). In the geometric model, the discrete 
elements that represent the environment are stored using their geometric 
parameterization. And in the discretized model the occupation of space is 
represented by a division of it. 
 
In the geometric model, the maps contain the positions and properties of a group of 
objects in the environment with certain geometrics characteristics: The robot, the 
walls, natural or artificial specific markers, etc. Depending in the sensorial capacity 
and feature extraction of the environment, more complex geometric objects could be 
distinguish and used. 
 
 

 

 
Figure 2.2 Geometric metric Maps. The left image [Zhang et al. 2000] show a map composed by 

line segments that represents the walls of the environment in the map obtained. On the right 
image [Zunino et al. 2001], the objects are represented as dots extracted from thin object and 

corners of the environment. 
 

 This representation is often used on structured environments where can be possible 
an extraction robust enough of the geometric features. Popularity lies in the 
representation anthropomorphic of the space, which makes it especially useful for 
displaying maps and to compare them with man-made maps. The compactness of its 
representation directly influences on the storage size map. However, these 
algorithms require more accurate sensors like laser scanners or more complete like 
vision systems. 
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Between the disadvantages of the geometric model, we find the inability to make a 
complete model of the environment. This means than only the geometric features will 
be stored and the rest of information will be discarded and won’t be considered in the 
map. This is, in order to get compactness and robustness, most of the sensorial 
information is discarded. For this reason, these kinds of maps are often useless for 
common tasks of navigation of robot mobiles like path planning because the planner 
would not consider all the possible obstacles that physically exist but that mapping 
was not able to assimilate as geometric features. In exploration tasks, the situation is 
not better. This because they don’t maintain the notion of which part of the 
environment has been already explored and which one not. 
 
In the discretized model, individual objects are not extracted from the sensorial 
system, but the information is treated without a segmentation process to construct a 
probability density function of the space occupancy. Like this function of density is 
impossible to maintain analytically, the space is divided into cells and it considers the 
probability of every single cell is occupied or free. Every cell makes the description of 
a small rectangular area in the environment, and indicates the probability that the 
area is occupied by a value in the range (0, 1). The localization here is made by 
registering observation data with the map using cross-correlation methods. 
 
This model is considered as a continuous representation of the space even if it is 
discretized, this because none analysis of the ownership of each cell to a single 
object is realized. Such maps are called occupancy grids (figure 2.3). These kinds of 
maps are perfect for the tasks of path planning and exploration due to the continuous 
and complete representation of the environment where none sensorial information 
has been discarded. 
 

                 
 

Figure 2.3 Occupancy grid map 
 
The most important benefit of the occupancy grid over other representations is that 
this model can be used directly by a good number of navigation, obstacle-avoidance 
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and learning algorithms. But in the other hand, one difficulty concerning occupancy 
grids SLAM is data association. Within the region of the vehicle pose uncertainty, the 
cross- correlation search is expensive if the search-space is large. Also, a maximum 
likelihood correlation search may fail by converging to the wrong mode if the cross 
correlation result is multi-modal within the search-space region. However this 
problem can be solved using the Monte Carlo localization procedure as in [Dellaert 
et al. 1999]. 
 
 For the Occupancy grid SLAM applications [Yamauchi et al. 1998], we observe that 
steps of localization and map update are interlaced by locating the map segment 
using the global map in the first place and then extending the map by updating the 
perceived occupancy of the global map grid cells. This method has shown robust 
results in dynamic indoor environments over a limited period of time. The reason why 
these maps only work on a limited period of time is because they don’t have an 
appropriate uncertainty model and so will tend to diverge in the long term. The 
uncertainty represented in occupancy grid is only at a local level (vehicle-centric), 
which is not enough for SLAM where an integrated representation of sensor and 
vehicle pose uncertainty and their correlations are essential for map convergence. 
That is not supported by the occupancy grid framework. By not defining criteria for 
convergence, the developing map is able to drift with each observation update and 
this divergence exhibits itself as a slow blurring of the map. 
 
The greatest drawbacks of using occupancy grids are: 
 

• They are not really well-suited for online SLAM, especially in large-scale 
environments; this because their space and time complexities grow 
exponentially with the grid resolution. 
 

•  Other issue is the map update; even when the maps are easily constructed, 
the problem lies on the fact that there is no trivial way to undo or alter past 
grid modifications; this is because of the inherent data aggregation in 
occupancy grid cells. For example, when the SLAM algorithm re-observes a 
feature and a large accumulated error is exposed, SLAM would want to 
correct this error and update the map accordingly, this implies that the 
current ray-casting should be undone and then redone based on the updated 
pose estimate. In practice the backwards editing of occupancy grids is 
considered not desirable during online usage. Therefore, pose estimates 
have to remain fixed once determined. This has led to the situation where 
approaches employing occupancy grids are often equipped with means to 
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accommodate for this inflexibility, like particle filters where multiple possible 
pose sequences are maintained concurrently [Schultz et al. 1999].  

 
Occupancy grids are also used after the main SLAM process as a post-processing 
step. Using them in this way, mapping in not really in SLAM, but they are used for the 
visual reporting of the maps or to make easy subsequent algorithms. In the first case, 
some representation of the environment used by the SLAM algorithm do not easily 
allow for visual rendering on screen or print. In the second case, we can find that 
there are SLAM approaches that use representations of the maps that won’t be 
suitable for subsequent use by other methods. Such is the case of learning or 
obstacle avoidance algorithms. 
 
b)  Feature Maps 
 
Feature maps represent specific objects of the environment by the global locations of 
parametric features (such as points, lines and lately curves) as shown in Figure 2.4. 
In this type of maps, localization is performed by extracting features from the 
information obtained by sensors and associating them to features already existing in 
the map. So, the vehicle pose is calculated using the differences between the 
predicted feature locations and the measured locations. In this way, localization 
targets are static and the observer is in motion. 
 

 
Figure 2.4 Feature map. The environment is defined by parameterized features (point locations 

in this example). These static landmarks are tracked using target tracking methods to 
determine the motion of the observer. Image taken from [Pedraza et al.  2007] 

 
Feature map SLAM [Smith et al. 1987] comprises the dual task of adding observed 
features to the map, using the vehicle pose as a reference, while using existing map 
features to estimate the vehicle pose. In this way, localization using a feature map is 
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a parameter estimation problem to determine the vehicle pose (x, y, φ) given the map 
feature information and a set of feature observations. Assuming the measurements 
are correctly associated to the appropriate map features, the vehicle pose can be 
tracked using standard estimation techniques (Been the EKF being the most 
common method applied to this problem). Here, the uncertainty of sensor 
measurements result is the uncertain estimates of both the vehicle pose and the map 
feature locations, and these uncertainties are dependent (or correlated). Correlated 
uncertainty has an important consequence for feature-based SLAM as it inextricably 
couples the individual features to each other and the vehicle to the map. Attempts to 
estimate the vehicle pose and map features independently have been shown to 
produce inconsistent uncertainty estimates [Leonard et al. 1991]. 
 
Data association is certainly the main weakness of feature map localization. To 
obtain a good localization we have to find a correct correspondence between a 
feature observation and its associated feature contained in the map. A wrong 
association results in an inconsistency where the vehicle location uncertainty 
decreases but the estimate error actually increases.  Significant false associations 
increase the pose estimate error and consequently degradation in the accuracy of 
the map. These inconsistencies tend to be self-propagating, causing divergence, i.e., 
the sensitivity of the SLAM algorithms to incorrect data association. 
 
Several feature map localization implementations are susceptible to data association 
failure because normally they rely on the association methods developed for target 
tracking, which treat each measurement in isolation. This approach is sensitive 
observer pose uncertainty and high feature density when the correlation between 
fixed marks is done in a wrong way. Robustness can be achieved using batch 
association: a group of observations is assigned as one and allows us to distinguish 
the association on the base of his probability of association combined utilizing the 
geometric character of the local region.  
 
Other problem of data association is the administration of the non-associated 
observations. These unassociated features can be:  
 

• New map features 
• Outlier measurements 
• Observations of dynamic objects 
 

 Identify the latter two is essential to avoid including items that should not be part of 
the map.   
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The most difficult data association complication comes when a cycle is detected. This 
is difficult because, not only is the vehicle location uncertain, but the new and old 
portions of the map are also uncertain in relation to each other.  
 
In summary, feature maps are a viable representation for long-term convergent 
SLAM in fairly small-scale environments where the computational time necessary for 
the map update and the data association are very efficient. Computation is tractable, 
and accumulated state uncertainty does not exceed conservative limits. 
 
c) Topological Maps 
 
Unlike other representations, Topological maps [Kuipers et al. 1991] show an 
important conceptual change in the representation of the environment. In Occupancy 
grids and in feature maps the location is defined as a set of coordinates in Cartesian 
space where they rely on metric measurements, instead, Topological maps represent 
the environment in terms of places and connecting paths as shown in Figure 2.5. The 
two types of map organizations mainly used in topological SLAM are: 
    

• Graph maps. This are designed to literally capture the navigability of the 
environment. Here, all the estimated poses along of the robot’s trajectory are 
turned into nodes that define particular locations in the environment (termed 
distinctive places) and links define procedural information for traveling 
between nodes ( i.e., links show the path that the robot has traversed between 
consecutive poses).  
 
The term topological consistency means that the graph does not indicate 
connectedness that is not actually in the environment and a consistent graph 
can be achieved by using a conservative method that only adds links every 
time that a robot traverses a path between two nodes [Howard  et al. 2006b].  
 

• Voronoi diagrams. In this case, the map is divided into a non-overlapping 
regions based on obstacle detection. In Voronoi diagrams, as in the graph 
maps, nodes and links are used to delineate the free space navigable. 
However they are positioned in a different way. The nodes are positioned at 
equidistant points, which are those points that are exactly at the same 
distance away from all near obstacles. For placing them, only obstacles for 
which there is not another node at a closer distance from the current one are 
considered. In this way, a link is a straight line that represents a safest path 
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between two connected nodes that is equally far away from the obstacles on 
both sides of him. Hence, like graphs, Voronoi diagrams lend themselves 
excellently for path planning purposes [Lisien et al. 2005]. 

 
As we can see the most important difference between these two representations is 
the form as links are treated. In graphs, links are added once the robot has traveled 
the path between two nodes, and in Voronoi diagrams links are estimated and their 
position is estimated according to the position of obstacles. Thus, graphs remain true 
to the actual traversed paths but Voronoi diagrams generalize beyond the actually 
traversed pathways as they infer the safest pathways based on the obstacle 
estimates. This characteristic makes this diagram be used especially in planar 
environments because the use in all three spatial dimensions can result in side-
effects on the performance and memory consumption of SLAM. 
 
These two types of map, as all topological representation seek to provide a compact 
description of the free space areas on the environment and their interconnectedness. 
Thus, navigation between two non-adjacent locations is determined by a sequence of 
transitions between intermediate place nodes. The concept works on the 
assumptions that distinctive places are locally distinguishable from the surrounding 
area and that the procedural information is sufficient to enable the robot to travel 
within recognizing distance of a specified place. 
 

 

 
 

Figure 2.5 Topological Maps. At the Left side we have a Graph map.  
To the Right Side a Voronoi diagram [Choset et al. 2001] 

 
The principal motivation behind the topological representations is their excellent 
support to path planning algorithms which is ideal for autonomous robots because 
they need to go from one place to another to complete their tasks. In the case of 
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exploration, we assume that at some point the robot will reach a dead-end of the 
environment and the exploration has to continue into another position. For this, the 
robot will have to return to a known position and start again from there. Here nodes 
and links in graphs and Voronoi diagrams tell any path planning algorithm precisely 
how to get around the explored areas safely. Given the nature of their construction, 
topological maps make this kind of tasks very easy. 
 
Another motivation on topological maps is that, while feature-based and occupancy 
grid maps grow exponentially with the size of the environment or the number of 
detected features, topological maps can represent huge environments in a very 
compact way because they only grow linearly in size as nodes and links are added to 
denote newly explored areas. 
 
In the other hand, the weakness over topological maps lies in ensuring reliable 
navigation between places, and subsequent place recognition, without the aid of 
some form of metric location measure. Regarding to navigation, for static structured 
environments, the use of purely qualitative trajectory information is enough to travel 
between nodes. However, for more complex and dynamic environments rely only on 
this information may result in failure to guide the robot to the right place. With respect 
to place recognition problems we can find two scenarios: 
 

• The first is when a place is not recognized (false negative) due to the 
alteration in the appearance of the place by circumstances such as as 
viewpoint variation, occlusion, structural change, dynamic objects or changed 
lighting conditions. Geometric and visual recognition are sensitive to this type 
of failure.  
 

• In the second, an alternate location is mistaken for a place (false positive) 
which is a symptom of inadequate place definition but also can be found in 
highly structured environments (such as rows of office cubicles) where another 
portion of the environment appears similar to the place definition (the place is 
not locally unique).  Most of geometric recognition methods offer simple 
descriptions where ambiguous associations may be created even by the 
presence of transient objects. Vision-based recognition is probably more 
immune to false positives because of the increased level of information 
defining the node [Devy et al. 1995, Sola et al. 2008].  
 

In all this cases the topological sequence is broken and the robot becomes lost. 
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Topological approaches to SLAM attempt to overcome the drawbacks of geometric 
methods. They operates by performing the exploration of the environment guided by 
a set of path following criteria, and recording place descriptions at appropriate 
locations. The maps for topological SLAM are constructed adding new places found 
and connecting them to the previous place according to the path following 
specifications required to reach it. This means that they are built as a linear sequence 
of places, which continues until a place is observed that matches a previously stored 
place description (assuming that the robot is not simply traversing old sections of the 
map). 
 

For geometric place recognition, these would be locations affecting certain 
patterns in the sensory data and, for vision-based recognition, they could be 
either regularly-spaced locations or locations where a given distinctiveness 
metric is maximized.  

 
As each new place is found, it is connected to the previous place according 

to the path following specifications required to reach it. In this way, the map is 
built as a linear sequence of places, which continues until a place is observed 
that matches a previously stored place description (presuming the robot is not 
simply traversing old sections of the map).  

 
This matching place description can be found in new places that have a 

similar appearance to others content already on the map or by re-observing old 
locations when the robot takes alternate routes.  

 
If the match can be identified unequivocally as the old place location, then 

a cycle is created, linking the topological sequence back upon itself to form a 
closed path. 

 
There are certain issues that remain important over topological SLAM like qualitative 
path following and sequential data association, but the most important concern is 
cycle detection. Topological SLAM removes the difficulties of uncertainty in the 
representation and nonlinearities by avoiding metric location measurement, but, 
instead, data association process receives the great responsibility to work robustly.  
 
For cycle detection, which is the key weakness in the topological map paradigm, data 
association can be vague when an observed place resemble to a previous place or 
may be a several places, and is not clear if it is one newly discovered location or one 
already stored. Using the methods of rehearsal [Kuipers et al. 1991] we can 
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distinguish correct associations. In this method the resulting sequence of places is 
traced until the number of candidate cycles is reduced to one or none (a new place). 
This method is appropriate if a place is unique in the world or a place sequence 
exists in the map. However, the reality is that in many environments such uniqueness 
cannot be ascertained. So, even if the observation of an expected place sequence 
serves to increase confidence of cycle detection, it is impossible to confirm this 
hypothesis. 
 
The solution to this problem is the use of metric information that will limit the cycle 
search-space. So, that place sequences need only be locally unique and therefore 
will make possible the estimation of pose uncertainty between places. 
 
d) Hybrid Maps 
 
As illustrated in the previous sections, each elementary approach towards 
representing a map has several positive and negative sides. The tree levels may and 
should be treated to find one solution to the problem of modeling the environment. 
Based on this, it should come as no surprise that many researchers have attempted 
to acquire better solutions where the strengths of multiple elementary map 
representations are combined in hybrid data structures. Hybrid approaches are 
categorized into ones that integrate multiple representations in a single layer and 
ones that use a data structure with multiple layers where usually a topological layer at 
the top is used to decompose the lower layer into small-scale feature or grid maps. 
  
Given that, their qualities are complementary. Topological and metric map 
representations are integrated in order to provide a versatile data structure that can 
serve the map information in multiple forms.  Metric maps, with an appropriate 
uncertainty representation, constrain data association and permit non-qualitative 
trajectory planning, while topological maps are great for navigation and path-planning 
purposes and are capable of mapping large environments breaking the world up into 
locally connected regions and avoid the problems of maintaining a global reference 
frame.  
 
Hybrid topological metric maps are basically topological frameworks where the place 
definitions and/or path definitions contain metric information. Importantly, this means 
that places are no longer restricted to discrete locations but can describe regions of 
arbitrary size and shape as local metric maps. ’Hierarchical Atlas’ presented by Lisien 
et al. [Lisien et al. 2005] is one example of hybrid approaches that use map 
decomposition. In this work, the global description of the environment is made using 
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a Voronoi diagram while every link in the diagram is stored in a local level in the so-
called “edge maps”. The “edge maps” are occupancy grids that stores the geometric 
properties of the environment as they are found when a particular edge is been 
traversed. As all information on an edge map is stored with respect to a local 
coordinate frame, the equidistant points and hence the links can be kept dynamic 
without compromising the validity of the information stored on the edge-maps. This 
yields two advantages: first, by using grid-maps on a small scale the limitations due 
to their static nature are avoided and second, grid-maps are only constructed to 
cover the extent of the actually explored area instead of having them grow on a 
global scale whenever the boundaries are explored. 
 
Finally, given all the characteristics of the maps used for the SLAM process, we 
present a recapitulative table showed in figure 2.6. 
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Figure 2.6 Recapitulative table of the properties of each type of map used in SLAM 

 
 
2.1.2 SLAM Methodologies 

 
2.1.2.1 Classic EKF-SLAM 
 
Historically the earliest and perhaps the most influential SLAM algorithm is based on 
the extended Kalman filter (EKF), which is an extension of the Kalman Filter where 
nonlinear equations are linearized. One of the first solutions using this approach was 
proposed by Smith et al. in 1987 [Smith et al. 1987] where the map construction was 
considered as an extension of the localization task. In this work both the robot and 
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the map construction should be estimated simultaneously using a single state vector 
representing all the system variables in which we are interested. In addition, as the 
sensors used during the estimation provide noisy measurements, the evolution of the 
state vector in time is considered as a stochastic process where the final state 
estimate and its uncertainty are obtained using an EKF.  
 
Based on this initial work numerous researchers have further developed Kalman 
SLAM. The result is that more sophisticated algorithms have appeared which deal 
with techniques for extracting and representing features, algorithms to fuse different 
types of sensors, methods to improve data association and techniques to reduce the 
computational cost and improve filter consistency. These improvements have made 
of the EKF one of the most popular SLAM approaches currently used. 
 
Maps created by EKF-SLAM generally are limited to the current robot pose and 
landmark position estimates which must be represented as a Gaussian distribution. 
Therefore, the map is transformed into a state vector X that contains all the relevant 
variables and that constitute the means of this Gaussian distribution. For the own 
nature of the EKF SLAM the entities that compose the map must be described using 
a set of parameters that fit easily into the state vector of the system. 
 
The EKF-SLAM can be considered as a three steps process: 
 

1. The Prediction Stage. It deals with vehicle motion based on incremental dead 
reckoning estimates where the resultant distribution after a movement of the 
robot is calculated based on the previous robot state kX  and the control inputs

1ku − . However, each time the robot moves, the position uncertainty grows and 
the correlation with map features decreases. 
 

2. The Update Stage. When a feature is re-observed an update stage must 
applied to reduce the uncertainty and improve the overall state estimate. As 
long as no landmark re-detections occur, the pose estimate will become less 
and less accurate due to the actuator uncertainty. As depicted in Figure 2.7, 
the accumulation of this error is reflected in the covariance matrix by 
increasing values for the robot pose, and through the pose-landmark 
correlations on all landmark location estimates. This continues until a 
landmark is re-detected.  
 
The re-detection of a landmark results in a significant drop in pose uncertainty, 
which then propagates towards increased certainty on all the landmark 
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locations. This jagged pattern of slow rises followed by sudden drops in map 
uncertainty is typical for Kalman SLAM. 

       
3. Add New Landmarks. This is done by adding information about the relation 

between the new landmarks and the old landmarks. The information about the 
current robot position must be used to place the new information. 

 

 
 

Figure 2.7 Rise and drop of map uncertainty with Kalman SLAM. Robot trajectory is  
shown in consecutive robotposition dotted line while the  estimates are indicated with 

 shaded ellipses and landmark position estimates with unshaded ellipses. The left picture show 
how the landmark uncertainty increases as robot pose uncertainty and to the right the robot 

pose drops after the re-observation of a previously stored landmark and through the 
information propagation this affects also all landmark estimates. Images take  

from [Thrun et al. 2005] 
 
Initially, the algorithm starts with the robot’s position and a covariance matrix that 
represents the pose uncertainty, i.e., none landmark has been added to the map. 
When a new landmark is detected the state vector and the covariance matrix are 
extended through an initialization process called state augmentation. The state-
vector typically has a length of (3 + 2N), where the three first entries describe the 
robot pose in a 2D environment (x,y,θ),  and only two entries for every landmark 
position (x, y), with N denoting the number of landmarks.  

 
The standard Kalman algorithm is summarized in compact form in figure 2.8.  
 

• Prediction (Lines 1 to 2). On line 1 the process equations describe the 
movement of the robot incorporating the control ku . Line 2 denotes the 

associated uncertainty kP− . Note that this update only affects the robot pose 

estimate. The equations stated in line 1 and 2 will leave all landmark position 
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estimates untouched. This is because in most applications the landmarks are 
either fixed or at least assumed to be static within the robot’s operating time. 
 

• Update (Lines 3 to 5). On line 3, the Kalman gain kK  is computed, which 

incorporates the measurement uncertainty (measure that is associated with 
the current observation kz ). The Kalman gain matrix propagates changes in 

pose certainty throughout the map estimate, as the information gain is folded 
back into the robot’s belief at lines 4 and 5. Note that the matrix H is just a 

convenience matrix that describes a mapping from the state-vector ˆ
kX  to an 

observation z .   

 
• Add new landmarks (Lines 6 to 9). On line 6, the state vector X  is update 

with the new landmark. Finally, it is also necessary to add the covariance for 
the new landmark to the system covariance matrix P  (lines 7 to 9). 
 

A more extensive description will be proposed in section 2.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 2.8 EKF algorithm.  Here, X̂  represents the system states, P  is the system covariance 
matrix, A is the Jacobian of the prediction model, u is the control entry, z  are the 

observations, Q  is the associated uncertainty, R  is the observation covariance, H is the 

Jacobian of the measurement model h , K is the Kalman gain, xJ is basically the Jacobian A
but without the rotation term and zJ is also the Jacobian of the prediction model but with 

respect to measurement model. 

Algorithm of Extended Kalman Filter ( 1
ˆ

kX − , 1kP − , uk, zk ) 

 

1. 1
ˆ ( , ,0)ˆ

k kk f uX X−
−←  

2. 1              T
k k k k kP A P A Q−

−← +                   //Prediction 

 

3. ( ) 1
    T T

k k k k k k kK P H H P H R
−− −← +  

4. -ˆ ˆ ˆ( - ( ,0))k k k k kX X K z h X−← +              // Correction 

5. ( )     k k k kP I K H P−= −                                          

 

6. ˆ ˆ T

N NX X x y ← +   

7. 1 1N N T T
x k x z zP J P J J RJ+ + ← +                  //Add new landmark 

8. 1rN rr T
xP P J+ ←  

9. ( )1 1 TN r rNP P+ +←  
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Unlike other SLAM approaches, the main characteristic that distinguishes EKF is that 
it estimates the full joint posterior over the map online. This means that the full 
uncertainty is maintained at all times during the online construction of the map. 
Moreover Kalman has proved to converge through the full posteriori; however this 
convergence is only assured as long as landmarks are observed infinitely often. So, 
when few landmarks are involved in the localization process it becomes harder and 
less accurate and therefore data association in turn becomes harder since larger 
pose uncertainties have to be overcome. A degrading data association performance 
negatively influences map accuracy again, and so this vicious circle of degradation 
continues.  In the other hand, maps are often limited in the number of landmarks they 
will maintain. This because the update step involves the whole covariance matrix and 
when too many landmarks need to be maintained, the online SLAM algorithm 
become slow. 
 
Another characteristic of Kalman filters is that it assume that all noises in the system 
are governed by Gaussian distributions; which in the context of SLAM is translated to 
assume Gaussian sensor noise, actuator noise and data association error. Even if 
sensor noise is often well approximated by a zero-mean Gaussian, the same 
assumption for odometry and data association uncertainty imposes a severe 
limitation of Kalman SLAM. This because odometry is typically governed by 
trigonometric functions and for data association uncertainty when a particular 
landmark is mistaken for another close, the resultant distribution of potential robot 
poses is obviously not best approximated by the bell-shaped Gaussian distribution. 
 
Despite its relative success, the classical SLAM solution based on the EKF algorithm 
suffers from the next limitations: 
 

1. Gaussian distribution assumed for the state of the system may not correspond 
to reality. In the best of cases linearizations made by the EKF will make 
estimates of the moments of this distribution degenerate over time producing 
optimistic values for the map covariance matrix, which may result in 
inconsistency [Julier et al. 2001]. 

 
2. It requires updating the full map covariance matrix after each measurement, 

giving a memory complexity of O(n2) and a time complexity of O(n2) per step, 
where n is the total number of features stored in the map [Paz et al. 2007]. So, 
the computational cost grows to the square with the number of objects 
contained in the map. This fact limits its application in real time. 
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Both problems become critical in large scenarios (scaling problem) since linearization 
errors get worse because the uncertainty in the robot position and surrounding 
features far from the map origin is larger and the memory and calculation 
requirements increase because the number of features grows. 
 
2.1.2.2 Particle Methods 
 
Particle filters are mathematical models that represent probability distribution as a set 
of discrete particles which occupy the state space. These particles can be thought of 
as a finite set of samples that has been obtained from the posterior distribution they 
represent. This way, valuable statistics of the original distribution can be easily 
estimated through the samples. The main objective of particle filtering is to track a 
variable of interest, typically with non-Gaussian and potentially multi-modal 
probability distribution functions. Multiple copies (particles) of the variable of interest 
are used, each one associated with a weight that signifies the quality of that specific 
particle. 
 
The main drawback of particle filters is that they scale exponentially with the 
dimension of the underlaying state space. This represents a problem in the context of 
SLAM since the space of map features and robot paths is usually huge.  
 
Given this, Montemerlo et al. in [Montemerlo et al. 2002] introduced the concept of 
FastSLAM to make particle filters amenable to the SLAM problem. The FastSLAM 
algorithm is a solution to stochastic SLAM that involves three important concepts: 
Rao-Blackwellization, conditional independence and resampling. 
 

• The Rao-Blackwellisation [Doucet et al. 2000] approach consists in 
partitioning the joint distribution of the state-space into a sampled part 
whereby the robot pose states are represented by particles and into an 
analytical part where the landmark states are estimated analytically by Kalman 
filters. The state partitioning is defined as follows. 

 

( )0: 0: 0: , | ,  v k k kp X m Z U  

( ) ( )0: 0: 0: 0: 0: 0:   | ,    |  ,  ,   v k k k v k k kp X Z U p m X Z U=       (2.1) 

( ) ( )0: 0: 0: 0: 0:   | ,   | ,  v k k k v k kp X Z U p m X Z=  
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Where 0:v kX  is vehicle pose history, m  the set of all landmarks, 0:kZ  

0:kU

is a 

sequence of measurements and  

 

is a sequence of control inputs. Here the 

joint posterior is factored into a vehicle pose part and a map part conditioned 
on the pose. 

• The conditional independence property basically says that features in SLAM 
get correlated due to the uncertainty in the robot position. If the trajectory of 
the robot were perfectly known we could estimate each feature independently 
(figure 2.9). The practical importance of the conditional independency between 
features is that, given a particle of the robot trajectory, we can estimate each 
of the features independently what makes the cost of the algorithm linear in 
the number of particles. 

 
 

 
 

Figure 2.9 Probabilistic dependencies between SLAM variables in a Bayesian  
Network. Given the trajectory Sk

of controls U
 of the robot (obtained through a sequence  

k), map features θk

measurements are denoted as Z
 are Conditionally Independent. The  

k

 from [Montemerlo et al. 2002]. 
 (range and bearing). Image taken 

 
• The resampling step allows the robot to concentrate particles in high 

probability regions of the distribution. It is useful when working with 
distributions that evolve in time (dynamic states). 

 
As a Bayesian Filter, the FastSLAM algorithm consists of the steps of prediction and 
update like the explained in the Classic EKF-SLAM. Each particle in the FastSLAM is 
of the form: 
 

[ ] [ ] [ ] [ ] [ ] [ ]
1, 1, , ,  ( ,  ,  ,   ,  ,  )      m m m m m m

k k k k N k N kX x P Pµ µ= … (2.2) 
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Where [ ]m  indicates the index of the particle, [ ]x m
k

 [ ]
,k

m
Nµis its path estimate, and  and 

[ ]
,kP m

N  are the mean and covariance of the Gaussian, representing the Nth landmark 

location that is attached to the mth

 
 particle. 

Prediction Step 
 
In this step, the probability distribution of the next position of the robot is obtained 
from previous distribution at time k-1 and new poses sampled using the most recent 
motion command ku as: 

 

( )[ ] [ ]
1    |  ,  m m

k k k kx p x x u−=                         (2.3) 
 
As we can see, this proposal distribution ignores completely the measurements kz  

and the pose [ ]m
kx  is predicted only using the motion control ku . In this case, when the 

observation is more accurate in relation to the vehicle’s motion noise, this becomes 
problematic. To rise above this problem, an improved version called FastSLAM2.0 
has appeared. Here the poses are sampled under consideration of the motion ku and 

the measurement kz . Formally, this is denoted by the following sampling distribution, 

which now takes the measurement into consideration: 
 

( )[ ] [ ]
1     |  , , ,  m m

k k k k k kx p x x u z n−=                (2.4) 

 
Where the variables 1  ,. . . ,   k kn n n= are data association variables, in which each kn

specifies the identity of the landmark observed at time k. 
 
Update Step 
 
When a new measurement kz  of a feature n is obtained, each particle of the 

trajectory is weighted according to the agreement between the expected 
measurement and the actual observation as: 
 

[ ] [ ] [ ] [ ]
, ,( | , ( ,  ))m m m m

k k k N k N kw N z x Pµ=                 (2.5) 

 

where factor [ ]m
kw  is called the importance weight of particle m.  
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 [ ]

 
target distributionmwk proposal distribution=  

                                                                                                                                                

( )
( ) ( )

[ ]

[ ] [ ]
1 1 -1 1

   | , ,  

  | , ,   | , ,

m
k k k k

m m
k k k k k k k k

p x z u n

p x z u n p x z u n− − −

=   (2.6)  

 
After this operation, the importance weight of all particles is normalized to sum up 
1.Once the weights have been obtained, the particles are resampled according to 
them, what adjust the particle population in response of the new information provided 
by the measurement. Finally, features of the survival particles are updated following 
the standard EKF update equations. For a complete derivation of the importance 
weight in FastSLAM2.0, see [Kim et al. 2008] and [Montemerlo et al. 2003]. 
 
More advanced and complex algorithm based in particle filters can be found in 
literature. For example in [Nieto et al. 2003], Nieto et al. made an extension of the 
basic FastSLAM to unknown landmark associations, which is important for 
generating occupancy grid or metric maps. In [Grisetti et al. 2007] the feature based 
map is replaced with an occupancy grid map obtaining very impressive results in 
large environments. 
 
2.1.2.3 Information Filter Methods (IF) 
 
The Information Filter (IF) is an equivalent definition of the Kalman Filters based on 
an alternative representation of the Gaussian distribution. While the KF solution for 
SLAM is based on the moment parametrization of the Gaussian distribution of the 
state, we can obtain an alternative representation of the distribution which is known 
as the information form or also called the canonical representation of the Gaussian 
distribution (because it stems from expanding the quadratic in the exponential of the 
Gaussian distribution). The result is that rather than parameterizing the normal 
distribution in terms of its mean and covariance as in ( ) ( ),  k k kp N X Pξ =  it is instead 

parametrized in terms of its information vector and information matrix, ( )1 ,k kN η− Λ . 

The process is done by: 
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Here the information matrix Λ  and information vector η  are defined as 1 k kP−Λ =  and 

1 k k kP Xη −=  respectively.  

 
Analogous to the EKF, when the state dynamics and measurements are non-linear, 
the equations of the IF have to be linearized obtaining an extended version of the IF 
known as the Extended Information Filter (EIF). The EKF and the EIF are considered 
as dual filters in the same sense that the canonical and moment parametrization of a 
Gaussian are reciprocal. But instead of maintaining the covariance matrix Pk

ˆ
kX

 and 

mean state estimate  like EKF does, the EIF maintains the inverse of the 

covariance, called the information or precision matrix Λk, and an information vector 
ηk

 
. This can be seen in figure 2.10. 

 Covariance Form Information Form 
 

Distribution p(x,y) 
ˆ

,ˆ
x x xy

yx yy

X P P
N

P PX

    
          

 
1 ,x x xy

y yx y
N

η
η

−
 Λ Λ   
     Λ Λ    

 

Marginalization 
( ) ( , )p x p x y d y= ∫  

ˆ ˆ
kX X=  

kP P=  

1
x xy y yη η η−= −Λ Λ  

1
x xy y yx

−Λ = Λ −Λ Λ Λ  

Conditioning 
( )x | ( , ) / ( )p y p x y p y=  

1ˆ ˆ ˆ( )c x xy y yX X P P y X−= + −  
1

c x xy y xyP P P P P−= −  

c x xy yη η= −Λ  

c xΛ = Λ  

Perfect Information ˆ [ , ] , 0T T TX x y P= =  ,c NaNη = Λ→∞  

Null Information ˆ ,X NaN P= →∞  0 , 0η = Λ =  

 
Figure 2.10 Duality between the Covariance and Information form of a Gaussian distribution 

 
 

  ( ) ( ) ,  k k kp N X Pξ =   

( ) ( )11 exp    
2

T
k k k k kX P Xα ξ ξ− − − − 

 
 

( )1 1 1
 

1 exp   2  
2

T T T
k k k k k k k k kP X P X P Xξ ξ ξ− − − = − − + 

 
1 11 exp    

2
T T

k k k k k kP X Pα ξ ξ ξ− − − + 
 

 

1 exp   
2

T T
k k k k kξ ξ η ξ = − Λ + 

 
 

( )1 ,K kNα η− Λ  
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Like in the EKF, the EIF has also the steps of prediction and update to track the 
posterior of the state. These steps are implemented as follow. Consider the 
information vector and the information matrix describing the state ξ in canonical form 
at time k as: 
 

-1 -1 -1 -1

-1 -1 -1 -1

-1 1;k k k k

k k k k

x x x m
k k

m m x m

η
η

η −

Λ Λ   
= Λ =   

Λ Λ      
        (2.7) 

 

In the prediction stage the control input uk

1
ˆ

kX −

 is applied to the last robot configuration 

 ( )-1
ˆ ˆ,  ,  | ,  k k k kp X X m z uto augment the state with the new robot position obtaining . 

 

1 1

1 1

1
1

1
1

ˆ ˆ( )
ˆ ˆ( )

k

k k

k k

k kx

T
x x k k

m m

Q X FX

F Q X FX

η

η η

η η
− −

− −

−
−

−
−

   −
  

= − −  
  

      

               (2.8) 

 

1 1 1

1 1 1

1 1

1 1
1

0

0
k k x

k k k

aug T T
k x x m

m x m

Q Q F
F Q F Q F

− − −

− − −

− −

− −
−

 −
 

Λ = − Λ + Λ 
 Λ Λ  

             (2.9) 

 

Where, -1
ˆ ˆ( , )k k kX f X u=  Q and F are the noise of the process and the jacobian for the 

process model respectively (these variables are also used in the EKF process). 
Notice that in the Information form, the new robot pose shares information with the 
previous pose but not with the map. After augmenting the state, when a new element 
is added, the information matrix starts to becoming sparse; the opposite occurs in the 
form of covariance, where the covariance matrix is full. 
 
Using the marginalization operation showed in figure 2.10, we marginalize out the 
previous robot position from Eq.(2.9) and the information matrix gets full again losing 
its sparsity: 
 

;k k k k

k k k k

xx x m
k k

m m x m

η
η

η

− − − −

− − − −

− −
Λ Λ   

   = Λ =
Λ Λ      

            (2.10) 

 
Finally with this operation, the prediction stage is finalized. 
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The prediction step in the standard formulation of the EIF is not easily calculated, 
since it contains matrix inversions and the number of landmarks grows, so does the 
difficulty of these inversions. In addition, the cost of the prediction step in Information 

Form is due to structure of the submatrix yxΛ  in the correction term 1
xy y yx

−Λ Λ Λ  (known 

as the Schur complement) during marginalization. Computing this product is 
quadratic in the number of nonzero elements within this submatrix, that in the current 

case corresponds to all state elements “linked” to the previous robot pose -1
ˆ

kX . The 

cost is then O(n2

 
). 

On the other hand, for information filter, the update step is less complicated and less 
expensive that in Covariance Form. The corresponding EIF update is given by: 
 

- -1
 -1      T

k k H R HΛ = Λ +                          (2.11) 
1

1
ˆ ˆ( ( ,0) )T

k k k k kH R z h X HXη η− − − −
−= + − +                 (2.12) 

 
Where H is the jacobian for the measurement equation, R is the noise on the 
measurements, z is the group of current observations and h are the predicted 
measurements. These equations show that the information matrix is additively 
updated by the outer product term HTR-1H. In general, this outer product modifies all 
elements of the predicted information matrix Λk. Also, the outer product HTR-1

 

H is 
zero almost everywhere except at the robot pose and observed features.  

In [Eustice et al. 2006] Eustice et al. give a theoretical insight to understand how the 
information matrix evolves in time. Here the matrix structure is considered as a 
Gaussian Markov Random Field [Bishop 2006] where its elements correspond to 
links in the graphical model. Taking the example of figure 2.11, at time k the state 
vector ξ is composed by the robot position and the features m1 and m2

1 2
ˆ[ , , ]T T T TX m mξ =

 which are 

completely linked ( ). At this point, the information matrix is full. After, 

at the same instant k, the robot observes a new feature m3

ˆ
kX

 that is only related to the 

current robot location and consequently is only linked to ; this new feature is added 

to the state (Fig 2.11 a). In figure 2.11 b, the robot moves at time k+1 and the state 

must be augmented with the new robot position 1
ˆ

kX +  which causes that the 

information matrix start to becoming sparse. As in the previous case, this new robot 

position 1
ˆ

kX +  is only linked to ˆ
kX . Finally in image 2.11 c, we marginalize out the 

previous robot position making all nodes in the graph that were directly linked to ˆ
kX  
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are fully connected between them. This last step, as we have already said causes 
that the information matrix become full. 

 

 
 

Figure 2.11 Evolution of the Information Filter Method 
 
A drawback of the EIF solution with respect to the EKF is that in order to calculate the 

jacobians F and H we need to recover the mean vector of the estimate ˆ
kX  from the 

information vector ηk at each step of the filter. Also, parts of the covariance matrix 
have to be recovered from the information matrix to perform the data association. 
The cost, in the best of the cases for partial recoveries, is O(n2)  (even more 
expensive for full recoveries which have a computational cost of O(n3

 
)). 

In order to reduce the computational cost of the EIF a control must be done over the 
form of fill in the information matrix due to the marginalization operation done in the 
prediction step and exploit the natural sparsity of the matrix Eq.(2.8, 2.9). Below we 
summarize the tree most important algorithms based on the EIF. 
 
a) SEIF 
 
Sparse Extended Information Fiter (SEIF) differ from the extended information filter 
described in the previous section. The number of links to the robot and to each 
feature in the map is bounded by a constant that is independent of the number of 
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features in the map. When this bound is over passed the links with smaller value are 
break until the bound is accomplished again. With this method the information matrix 
remains sparse avoiding the fill in due to the marginalization operation and reducing 
the computational cost. 
 
The motivation for maintaining a sparse information matrix is that in SLAM, the 
normalized information matrix is already almost sparse. This suggests that by 
enforcing sparseness, the induced approximation error is small. However, as it is 
shown in [Walter et al. 2007], an important consequence of the SEIF sparsification 
algorithm is that the resulting approximation significantly underestimates the 
uncertainty in the state leading to overconfident state estimates. 
 
b) ESEIF 
 
The Exactly Sparse Extended Information Filter (ESEIF) was presented by Walter 
et al. [Walter et al. 2007] as an alternative sparse information filter that achieves the 
computational benefits of a sparse parametrization while preserving consistency. In 
contrast to the approximated sparsification enforced in SEIF, the ESEIF imposes 
exact sparsity in the matrix. Instead of breaking links between the robot and features 
in the map the algorithm maintains sparsity by controlling the initial formation of the 
links. More specifically, the ESEIF manages the number of active landmarks by 
marginalizing out the vehicle pose, essentially “kidnapping” the robot. The algorithm 
subsequently relocalizes the vehicle within the map based upon new observations to 
a set of known landmarks. The set of features that were originally active have been 
made passive and the set of landmarks used for relocalization form the new active 
map. 
 
The key contribution of the ESEIF is that it avoids the need to approximate 
conditional independencies and thereby preserves the consistency of the Gaussian 
distribution. The ESEIF maintains map and pose estimates that are nearly identical to 
those of the EKF but exploits the sparse SLAM parametrization to track the 
distribution in near-constant time. The result is a computationally efficient algorithm 
that is consistent but less precise than the EKF since some of the information is 
disregarded when the robot is kidnapped. As in the SEIF, additional approximations 
are made to evaluate the jacobians or perform data association. 
 
c) ESDF 
 
The Exactly Sparse Delayed Filter (ESDF) was proposed by Eustice et al. [Eustice 
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et al. 2006] as an alternative formulation, this technique solves the SLAM problem 
through a constant-time filtering algorithm. This means that the ESDF computational 
cost does not grow up with the environment size. This can be achieved because the 
state vector does not store a map or features but just the historical of robot states 
corresponding to the vehicle locations where the observations were made. Therefore, 
ESDF is considered as the solution to the scalability problem for arbitrately large 
environments. The key idea of this algorithm is that the robot poses are not filtered 
out and observations are used to constraint relations between pairs of poses; this 
because the marginalization of robot poses that fills-in the information matrix destroys 
its sparsity. 
 
The type of representation used by the ESDF algorithm is view-based rather than a 
feature-based approach. In this kind, the estimation problem consists of tracking the 
current robot pose in conjunction with a collection of historical poses sampled from 
the robot’s trajectory; consequently, none explicit model of landmarks is necessary. 
The associated posterior is then defined over a collection of delayed states. 
 
To evaluate jacobians and perform data association, the ESEF as the SEIF have to 
make some approximations when portions of the mean state vector and covariance 
matrix are recovered from its information form.  
 
Finally, in the overall of methods based on the EIF we can say that they are able to 
reduce the computational cost O(n2

 

) of the classic EKF-SLAM; however, they don’t 
deal with the consistency problem. In fact, the EKF is usually more consistent and 
precise than the solutions obtained with the IF because of the approximations 
introduced. 

2.1.2.4 Submapping Techniques 
 
Techniques based on building submaps (figure 2.12) have been demonstrated to be 
well suited for mapping large environments as they reduce the computational cost 
and confront the complexity and consistency problems of the final estimation. The 
main idea of the submaps method is that if computational and consistency issues 
start becoming a problem when the map is large (figure 2.12a), it can be break into 
smaller sections with local coordinates that can be considered separately from each 
other (figure 2.12b). The relationships between geometrically adjacent submaps 
correct each submap’s position to acquire the global consistency (figure 2.12c). 
 
 



Chapter 2. State of the art of Integrated Exploration 

38 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2.12 Submapping Techniques 

 
Between the advantages in the use of this technique we can mention: 
 

• As each submap uses its own sequence of odometry reading uk and the 
information data zk

 

 it is not necessary to compute the correlations between the 
features in the current submaps and features in other local map. For this, the 
computational cost of local map building is constant O(1) and independent 
from the size of the global map. 

• The sensor-rate update is independent of the total map size because the 
landmarks that need to be updated at each time instant is limited only to those 
who are in the local submap coordinate frame, then the full update, and 
propagation of local estimates can be done in the background task at a much 
lower update rate while still permitting sensor-rate global localisation 
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• Usually, the robot pose and the uncertainties are small during a map 
construction because each submap is initialized with zero uncertainty. 
Therefore, the final global map after the after the union of the sub-maps has 
better consistency properties than the EKF.  

 
• Submap registration can use batch validation gating which improve 

association robustness. 
 

In literature, we can find several techniques based on independent submaps. The 
main difference between them is the form in how the submaps are joined to obtain 
the final global map. The first technique using absolute submaps1 was Decoupled 
Stochastic Mapping [Leonard et al. 2000]. As this technique uses absolute submaps 
which are not statistically independent some approximations are needed to get rid of 
the dependencies, introducing inconsistency in the map. With local submaps2

 

, these 
are initialized with zero uncertainty in the robot pose, given that the base reference 
when the local map is started is usually chosen to be the first robot pose (which is 
well-defined for the moment parametrization of the EKF). So, local maps are statically 
independent and thus, uncorrelated [Tardos et al. 2002] under the assumption of 
white noise and only if no information is shared between maps.  

Taking this into account, the Map Joining [Tardos et al. 2002], Constrained Local 
Submap Filter (CLSF) [Williams et al., 2002] and the Divide & Conquer [Paz et al. 
2008] methods build a sequence of statistically independent local submaps of limited 
size where each submap is built using the classical EKF. These three methods will 
be explained briefly below. 
 
a) Map Joinning and CLSF 
 
The Map Joining [Tardos et al. 2002] and the Constrained Local Submap Filter 
(CLSF) [Williams et al., 2002] are two equivalent techniques independently 
developed to produce efficient global maps by consistently combining local submaps 
with a cost total of O(n2

 

). The joining procedure is performed based on a three step 
procedure. 

• In the first step, the robot is at some approximately known location in a local 
submap from where a new one will be built in a normal SLAM fashion. The 

                                                           
1 Absolute submap. Submap expressed in global coordinates. 
2 Local submap. Submap expressed with respect to a local coordinate frame. 
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new submap is then stored when its system state vector contains too many 
features or the vehicle location is too uncertain. Once we have the two 
sequential submaps, they are simply accumulated in a single mean vector and 
covariance matrix T T T

1 2  [ ,  ] ξ ξ ξ= : 

 

1 1

2 2

0
;

0
X P

X P
X P
   

= =   
                     

(2.13) 

 
As both submaps are statistically independents, the covariance matrix P is 
blockdiagonal.  
 

• In the second step, the process of local map registration results in a global 
map update where the new submap X2 is transformed into the reference frame 
of the submap X1

 
 using the last robot position contained in it. 

1

1

2
( ) ; T

Wtotal total
R

X
X f X P J PJ

X X ⊕ ⊕

 
= = = ⊕       

(2.14) 

 
Been ⊕ the composition operation defined by Smith et al. in [Ref] and J⊕  is 

the jacobian of the function f which make the transformation of the elements 

of  submap X2 into the reference frame of the first submap X1

 
. 

• Finally the last step corresponds to the elimination of duplicate features. Here, 
features found in different submaps that correspond to the same environment 
feature are fused using a fusion mechanism to update the global map. In this 
way, a more precise map is achieved. 
 

The process is repeated joining the next sequential local submap to the recently 
calculated map until no more local submaps remain to be joined. At the end, the 
global map will be obtained. 
 
b) Divide & Conquer 
 
Divide and Conquer SLAM is based on the idea of Local Map Sequencing proposed 
in [Tardos et al. 2002] where the idea is to build a sequence of local independent 
maps of equal constant size while the robot traverses the environment instead of 
working on a single absolute map. The final absolute map is achieved by joining at 
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fixed intervals of time during the process. The main difference with the previous 
approach is that Divide & Conquer SLAM (D&C SLAM) [Paz et al. 2008] instead of 
joining each new local map to a global map sequentially, it carries out map joining in 
a hierarchical fashion. The basic process to join a pair of submaps is the same as the 
one described for Map Joining 
 
The algorithm D&C utilize a binary tree of local maps structure to sort the sequence 
of joining. The lower nodes of the hierarchy represent a sequence of m local maps of 
minimal size p and the upper level represents the final map of size n. The middles 
levels represent intermediate joins during the process. The structure is shown in 
figure 2.13. 
 

 
 

Figure 2.13 Hierarchy of maps that are created and joined in D&C SLAM.  
The red arrow represents the sequence in which maps are built and joined [Paz 2008]. 

 
In [Tardos et al. 2002] is shown that computational cost for local maps of fixed size 
could be reduced by a large constant factor, but is still O(n2

 

) in every map joining 
step. 

2.1.2.5 Graph based Methods 
 
The SLAM problem can be addressed in a very intuitive way using the so called 
graph-based formulation proposed for Lu et al. in [Lu et al. 1997]. This approach 
allows to solve the SLAM problem as a non linear optimization problem where given 
the sensor measurements is possible to find the robot trajectory and the map with 
greatest probability. 
 
The graph-based SLAM problem is solved by constructing a graph structure whose 
nodes represent landmarks or robot locations and in which an edge between two 
nodes represents a data-dependent spatial constraint. This constraint consists in a 
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probability distribution over the relative transformations between the two poses. 
These transformations are either odometry measurements uk between a consecutive 
pair of locations Xk−1, Xk or are determined by aligning the observations zk acquired 
between the two robot locations Xk−1, Xk and landmarks mi

 

, assuming that at time k 
the robot has sensed landmark i. 

For a more easy understanding of graph construction we will use the figure 2.14. At 
step time k=1 the robot measures the feature m1 and adds an edge between X1 and 
m1 in the graph. This edge can be represented in a matrix format adding a value 
between the element X1 and m1. This is made to correspond to a quadratic equation 
that defines the resulting constraint (Figure 2.14 a). After, if the robot moves to a new 
position X2, an edge between X1 and X2 is added representing the odometric 
readings u2 and as in the previous step a value representing this movement is added 
to the matrix between X1 and X2 

 

(Figure 2.14 b). The repetition of these two steps 
leads us to a graph of increasing size (Figure 2.14c).  

 
 

Figure 2.14 Graph constructions. On the left we observe the graph 
On the right the constraints are showed in a matrix form 

 

Once the graph is already constructed, the configuration of the robot poses that best 
satisfies the constraints can be found. Given this, we observe that the graph-based 
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SLAM can be seen as two separate problems. The first is the construction of the 
graph using the raw measurements, and the second is to determinate the most likely 
configuration of the poses given the edges of the graph. 
 
A large variety of proposals using this approach have emerged in the robotics 
community. These algorithms have been subsequently classified according to the 
particular meaning given to the nodes and edges in the graph as well as the 
mathematical tools involved during the estimation. Some of these algorithms are 
presented below. 
 
a) Hierarchy Algorithms 
 
The hierarchy algorithms allow the construction of metric maps of large environments 
in real time using different levels of construction. In figure 2.15, we can see a map 
constructed with a two level hierarchy algorithm. The lower (local) level is based on 
the building of an independent submap (as the ones described in the previous 
subsection) that captures the local environment and the current robot pose along with 
the uncertainties of each defined by its mean and covariance matrix. At the upper 
(global) level, the topology of the environment is represented by a graph of 
coordinate frames, with each node in the graph representing a local submap with its 
own local reference frame and each edge representing the transformation between 
adjacent submaps. 

 
Figure 2.15 Hierarchy Algorithms. Lower level is based on submaps with their own reference 
frame.Upper level corresponds to a graph whose edges represent the relative transformation 

between base references of submap pairs [Estrada et al. 2005]. 
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Among the methods that use hierarchy algorithms, we can mention the Constant-
Time SLAM (CTS) [Leonard et al. 2003], Atlas [Bosse et al. 2004], and the 
Hierarchical SLAM [Estrada et al., 2005].  
 
The Constant-Time SLAM framework [Leonard et al. 2003] uses multi overlapping 
local submaps with the frame referenced to one of the features in the submap. This 
technique maintains a single active map and computes a partial solution 
independently. The management of each map is limited by a radius r centered in 
position where the robot was at the time of the creation of a map. This region limits 
the robot location but not the feature locations. This means that every feature 
observed from a position in the submap will be added to it.  
 
The information about the robot’s position is used to know in which submap the 
vehicle is in. If the robot has traveled a distance bigger than (r+h), the vehicle is 
considered out of the submap and it must determine to which one (if the robot has 
traveled to any of the existing submaps) the vehicle has transitioned to. The 
parameter h is used to prevent excessive map switching. The basic Flowchart of the 
CST approach is shown in figure 2.16. 

 

Figure 2.16 Flowchart of the CST algorithm. Image takes from [Newman et al. 2003] 
 

When a vehicle transits from one map to another, the map location estimation is 
performed in order to improve the global estimation of the features locations in each 
local submap. The basic idea is to find the best global pose with the lowest global 
uncertainty of shared features contained in two neighbor submaps and shift the 
current submap to the correct position by using a minimization function over these 
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features. So, through the composition of transformation derived from the local maps, 
it is possible to achieve the consistency of the global Map Location.  
 
The ATLAS framework [Bosse et al. 2004] is a relative submap method using both, 
metric and topological approaches, which is aimed specifically at applying existing 
small-scale algorithms to the mapping of large-scale cyclic environments.  
 
This approach, as any other graph based technique, maintains an interconnected set 
of local coordinate frames which are represented by the nodes in the graph instead 
of a global coordinate frame. In each one of these local frames, the building of a map 
is carried out by capturing the local environment and the current robot location along 
with their uncertainties modeled with respect to its own frame. With this, the algorithm 
restricts the representation of errors to local regions, minimizing linearization 
problems, but also provides a way of providing global results by combining local 
maps. In the other hand, the edges of the graph correspond to the transformation 
between the frames they connect. The uncertainties of the edges are derived from 
the output of the SLAM algorithm running in a local region and are represented by a 
Gaussian random variable. 
 
In order to keep efficient, the CTS and Atlas frameworks does not impose loop 
closing constraints. This is, if more of one path between a pair of nodes exists in the 
graph, the relative position between the nodes will depend only on the path followed 
to calculate the composite transformation between them. This means that loop 
closing are not imposed and it is only used to decide the shortest path. 
 
The Hierarchical SLAM [Estrada et al., 2005] is a real-time accurate mapping for 
large loop environments that combines the use of local maps with a consistent 
representation of them. The main idea of this method as in the other two presented 
above is to maintain local submaps independently without share any information in 
order to maintain convergence and also maintain an adjacency graph for relative 
positions between these submaps. 
 
In this approach, the last robot position in a submap establishes the new local 
coordinate frame where the new submap will be built. Every submap generated is 
bounded by the number of features, uncertainty of the vehicle location, or not 
matchings found in the data association. Consequently the cost of this algorithm 
remains linear and bounded. 
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The main difference between Hierarchical SLAM and other similar approaches as 
Atlas and CTS is that loop consistency is imposed by constraining cycles in the graph 
to improve the accuracy in the absolute location of all local maps in the loop. To 
reduce linearization errors in big loops, a nonlinear optimization algorithm is 
implemented. This operation improves the accuracy in the absolute location of all 
local maps in the loop and has an O(n) cost in the number of submaps n involved. If a 
correction has to be made at a global level as result of a loop closing, this correction 
is not back propagated to the local level in order to maintain independence between 
the local maps. 
 
In all the algorithms presented in this subsection, if two features in two submaps 
correspond to the same object in the environment, the position on the submaps is 
respected in order to maintain the independency between submaps. This results in 
weak links between submaps, obtaining approximated solutions. 
 
b) Tree-based algorithms 
 
In this category, we will present two similar approaches that although they have been 
developed independently they are closely related, these techniques are called 
Treemaps [Frese 2006] and TJTF [Paskin et al. 2003]. Both of them divide the 
environment into parts the whole map and represent it as a tree data structure (figure 
2.17) that dynamically updates and factorizes the joint probability distribution of the 
system when new observations are obtained. Gaussians densities parameterized in 
canonical form are used for the probability distributions. 
 

 

Figure 2.17 Tree representation of the map. The size of the nodes is proportional 
to the number of features represented. Image taken from [Frese 2006] 

 
Treemap is a sophisticated but also complicated SLAM algorithm that creates a 
balanced binary tree to perform integration and marginalization, leading to an 
impressive algorithm that has the ability to deal with very large maps. Each node in 
the structure represents a specific region of the environment and stores marginal 
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distributions about the landmarks in it, usually seen simultaneously. The regions 
corresponding to nodes are defined as a set of landmarks being close to each other 
instead of be definite geometrically. At every moment the leaf that corresponds to the 
region of the current robot location is considered. This leaf is known as the actual 
leaf. While nodes in the tree represent marginal distributions of the joint probability, 
arcs are used to send “messages” between marginals with elements in common. 
Finally to integrate a measurement, all nodes from a single leaf up to the root need to 
be updated by passing Schur-complements along the arcs. 
 
The treemap algorithm can be geometrically sketched in a simple and intuitive way. 
Let assume that the robot is in a construction that is virtually divided in two parts A 
and B. Given these parts, now the question that has to be answered is:  if the robot is 
actually in part A, what is the information required about B? In most cases only few 
features of B are involved in observations while the robot is in A and only these are 
considered. Probabilistically speaking, the information needed about B is only the 
marginal distribution of features observed from both A and B conditioned on 
observations in B. 
 
The construction can be divided into a binary tree of regions by applying recursively 
the mentioned idea and passing probability distributions along the tree. Figure 2.18 
shows the Bayesian justification for this approach. The inputs to treemap during 
updates (black arrows),are observations zi
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 of feature positions and robot poses 

assigned to leaves of the tree modeled as distributions  of the state 
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Where u represents the features only involved below the node n and v the features 
involved above n.  
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The estimate (gray arrows) is computed recursively down the tree, each node n 

receives a distribution np ↑  from its parent, integrates ( ) it with the conditional C
np , 

and passes the result np  down. In the end, estimates Xn

C
np

 are available at the leaves. 

As we can see at the figure, the conditional is stored at n because it is not need 

above. On the contrary, the marginal has to pass to the parent n↑ to be processed 

there. Finally, it has to be noted that a feature comes from I
np   up and passed in M

np  

from the leaves to the least common ancestor of all these leaves. There, it is 
marginalized out and finally stored in C

np .  By sending messages (basically multiplying 

marginals and conditionals) through arcs between nodes, it can be demonstrated that 
we can consistently update every leaf marginal with observations taken in other 
leaves. 
 

 
 

Figure 2.18 Data flow of the probabilistic computations  
performed by treemap. Figure taken from [Frese 2006b]  

 
Given that the treemap uses a balanced tree structure, the computational cost to 
recover a part of the state (a leaf) is O(log n) and to recover the entire map the cost is 
O(n), been n the number of leaves.   
  
As the Treemap algorithm, we can find a very similar approach in the Thin Junction 
Tree filter. It creates also a tree structure but instead of forming a balanced binary 
tree, the properties of the tree created and the type of messages sent are based on 
the Junction Tree algorithm [Bishop 2006]. 
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In the tree structure of the Junction Tree, the nodes C represent clusters, the edges S 
of the tree represent separators between two connected nodes Ci, Cj

sφ

 and 
analogously to the nodes, they have a set of variables Vs corresponding to the 
intersection of Ci’s and Cj’s variables and also a separator potential  (Figure 2.19). 

In the SLAM case, the variables correspond to landmark and robot states and the 
potentials are a generalization of probability distributions that are used to factorize 
the joint probability distribution. In contrast to the basic static Junction Tree, the TJTF 
develops a group of methods for dynamically updating the junction tree to reflect 
filtering updates. Given that the junction tree grows under measurement and motion 
updates, the structure has to be periodically “thinned” to remain tractable via efficient 
maximum likelihood projections. 
 

 
 

Figure 2.19 Clusters and separators in a junction tree 
 
Initially the filter starts with a single cluster containing x. Once the robot moves, its 
position most be updated which consists of the prediction and odometry updates and 
then the state variable of the previous time slice is marginalize (figure 2.20).  The 
prediction update consists of adding a new node Xk+1 and connecting it to Xk. When 
the state X is marginalize, all the clusters in which it resides must be merged (figure 
2.21). In the worst cases, when X resides in all of the junction tree’s clusters, the 
belief state would collapse to one large cluster. To prevent this, the TJTF first 
contracts X until it resides in only one cluster and then performs the prediction and 
odometry updates and then marginalize. Variable contraction is used to reduce the 
diameter of the junction tree when the cluster Xk

 

 caused by marginalization is too 
large. 

 
 

Figure 2.20 Marginalization in a junction tree 
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Figure 2.21 Cluster merging. a) The shaded clusters and separators contains the state X 
b) to marginalize the state X of the junction tree, the clusters C1, C2, C3 and C4 are merged 

and the separators between them are eliminated [Paskin et al. 2003] 
 
When updating with a measurement of landmark l, the measurement potential ψ(x1,l) 
has to be multiplied into the only cluster. This is easily made if the cluster has not 
achieved its limit size by simply multiplying the observation potential ψ(x, l) into φC

 

 
and distributing evidence in the cluster C. On the other hand we can find two cases: 

• If the landmark l has been previously seen, then its potential has to be 
multiplied into the cluster C that contains it and that is the closest to another 
that contains X. In the worst case, the robot will reobserve a landmark whose 
state variable is very far from the robot's state variable X in the junction tree, 
and in consequence X will have to be added to every cluster to preserve the 
running intersection property. Finally, if the insertion of X in the clusters 
increased the diameter beyond some threshold, then we perform variable 
contractions until the junction tree is thin enough (figure 2.22). 

 

 
 

Figure 2.22 Variable contractions in Thin Junction Tree filter 
 

• If a landmark l has not been seen, a new node containing l and X must be 
attached to the cluster state from where it has been seen. 
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The Treemap and the TJTF algorithms achieve an extremely efficient operation with 
some weak approximations even if they are not very intuitive and complex to 
implement. One of the drawbacks of these algorithms is that as they are based on 
the information form, thus, well known data association algorithms based on 
covariances cannot be directly applied. Moreover, based in the tree structure that 
they use, is not trivial to obtain the corresponding covariance from. Finally is 
necessary to says that the consistency proprieties of these algorithms are really close 
to the EKF because they work in an absolute reference system and cannot be 
improved as when employing local map references. 
 
In this subsection we have made a very simple presentation of the treemaps and 
TJTF; because of this, we strongly recommend the interested reader to directly study 
the papers referenced in order to understand the exact process.   
 
c) Batch Techniques 
 
The methods presented in previous subsections are based on filtering algorithms. 
However, we can found in literature strategies that use batch techniques. The basic 
idea behind these algorithms is to find the maximum likelihood estimate (MLE) based 
on the entire history of robot motion and measurement data.  
   
GraphSLAM [Thrun et al. 2005] and the Smoothing and Mapping (SAM) [Dellaert et 
al. 2006] are batch strategies that use a graph structure whose nodes corresponds to 
robot poses and map features and the arcs store information about the motion and 
measurements constraints (Figure 2.23a). Both methods solve the MLE by optimizing 
a nonlinear log-likelihood function over a series of iterations, which provides 
robustness to linearization errors. After each linearization, the information matrix built 
by these methods becomes completely sparse since the robot trajectory is not 
marginalized out (Figure 2.23b). 

 

Figure 2.23 Graph structure used by the GraphSLAM and SAM methods with 
its Information matrix. It can be seen that the entire history of robot motion is estimated 
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The linearized system for each iteration k solved by these methods is: 

 
Λk μk = ηk                                       

 
 (2.15) 

with Λk as the sparse information matrix after the linearization, μk the mean vector 
that we want to calculate and  ηk the corresponding information vector. The whole 
system of nonlinear motion and measurement constrains is linearized around μk 
when it is obtained giving a new system of equations Λk+1 and ηk+1

 

 that has to be 
solved again. This cycle is repeated until the system converges. 

In GraphSLAM algorithm, an elimination algorithm is used in order to solve the linear 
system in Eq. (2.15) at each iteration. This marginalizes over the map the features 
and reduces the graph to one with only the pose history. Subsequently, the path 
posterior map is calculated over the pose history using standard inference 
techniques. GraphSLAM also computes a map and certain marginal posteriors over 
the map. 
 
Smoothing and Mapping (SAM) refers to the framework wherein the SLAM problem 
is solved using smoothing approaches.  The SAM algorithm relies on a QR and 
Cholesky factorization of information matrix in Eq.(2.15) paying attention to variable 
ordering. Then, the system is jointly solved for robot poses and map features via 
back-substitution. 
 
Although both algorithms take advantage of the sparsity of the linearized information 
matrix to speed up the calculations two drawbacks are encountered when using 
these methods. The first is that the system has to be solved every time that a new 
observation is introduced. The second drawback occurs when a region in the 
environment is revisited; this because the computational cost increases although the 
environment does not change due to the state vector still grows linearly since most of 
the state elements turn out to be robot poses.   
 
2.1.2.6 Set-membership methods 
 
The strategies in this category rely in the recently developed set membership 
estimation theory which uses a deterministic unknown-but-bounded description of 
noise and parametric uncertainty (interval models). These methods verify at any 
moment the consistency between observed and predicted behavior by using simple 
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sets to approximate the set of possible behaviors. When an inconsistency is detected 
a fault can be indicated, otherwise nothing can be stated.  
 
Di Marco et al. present in [Di Marco et al. 2001] a Set-membership SLAM approach 
under the hypothesis that the errors affecting all sensor measurements are unknown 
but bounded. Estimates of robot position and selected landmarks are derived in 
terms of feasible uncertainty sets which are defined as those regions where the robot 
and the landmarks are guaranteed to lie according to the available information. 
Based on recursive approximations of the uncertainty regions through simply shaped 
sets, this work exploit the specific structure of the nonlinear SLAM problem to get 
efficient solutions.  
 
In [Jaulin et al 2009], Jaulin et al. propose a off-line SLAM solution for a underwater 
vehicle using a set membership method based on interval analysis. Here, seamarks 
are detected by a human operator after the mission of the robot. The SLAM problem 
in this work is cast into a constraint satisfaction problem for which interval 
propagation algorithms are particularly powerful 
 
 In [Le Bars te al. 2010], Jaulin et al. presents an experiment using a set-
membership approach for SLAM  based on interval arithmetic initially developed for 
the Redermor submarine [Jaulin et al 2009] through an improved version of the 
Guaranteed Estimation of Sea Mines with Intervals. As in its previous work, 
seamarks are also detected by a human operator. 
 

2.2 Planning Exploration Strategies 
 
Classically, the exploration problem can be understood as follow: Given what you 
know about the world, where should you move in order to obtain as much new 
information as possible? Generally exploration techniques work using an occupation 
probability map and the frontier concept introduced by Yamauchi [Yamauchi  1997]. 
However, there are other approaches that use other forms for identifying the regions 
of interest for the exploration.  
 
Whatever the chosen strategy, a good exploration algorithm must have two 
properties: 
 

• Completeness that requires that the robot covers most of the environment. 
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• Effectiveness that requires that the robot achieves the completeness by 
minimal efforts, such as exploration time, exploration distance, etc. 

 
Focusing on the exploration planning, the techniques developed are classified into 
two types: deliberative and reactive explorations. 
 
2.2.1 Deliberative Exploration 
 
The methods classified into this group utilize the map information of the environment 
to take decisions about the frontiers that will be explored and use path planning 
techniques to lead the robot toward the chosen frontiers. The map can be a complete 
global map that is known before the start of exploration, or a partial map that is built 
on-line while the robot explores. In the last case, when the robot moves towards 
frontiers the known area will increase. The basic idea is to identify the covered area 
and then to chose appropriate frontier for the robot to move towards. 
 
Two main issues can be found in this category of exploration algorithms for a single 
robot system: 
 

• When at some point the robot must choose between several frontiers. What 
frontier should the robot choose such that the information gain is maximized? 
 

• How can the robot travel toward that frontier in a safe and efficient way? 
 
For the first problem the robot needs to estimate and compare the potential 
information gain of approaching each frontier and choose the best one. A basic case 
can be found in the work of Yamauchi [Yamauchi  1997] where the robot chooses 
always the nearest frontier. This because the estimation of the potential information 
gain is made by calculating the distance from the robot to the frontiers and the 
nearest frontier has the highest potential information gain. 
 
Another way to choose the best frontier in single-robot exploration is using the cost-
utility model.  One example of the use of this model is the work of Gonzalez-Baños 
and Latombe [Gonzalez et al. 2002] called NBV (Next-Best-View Algorithm). In this 
algorithm the map of the environment is built iteratively. Initially, the robot builds a 
local safe region with the information gathered by the sensors at the robot's initial 
position q0. At each iteration, the algorithm update the global map by joining the safe 
region built so far with the local safe region generated at the new position qk. This 
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new safe region is then used to choose the next sensing position qk+1

 

 based on the 
expected gain of information that will be sensed at this position, the need of 
alignment between the global safe region built so far and the new local safe region 
and finally by the cost of movement to reach the new position.  

In the cost-utility paradigm, the cost is the length of the path between the current 
robot’s position and the frontier, whereas utility can be understood in different ways:  
 
In [Simons et al. 2000] Simmons et al. consider the utility as the expected visible 
area behind the frontier. In this work every individual robot construct “bids,” which 
describe their estimates of the expected information gain and costs of traveling to 
various locations. A central executive receives the bids and assigns tasks in an 
attempt to maximize overall utility, while trying to minimize overlap in coverage by the 
robots. 
 
Stachniss et al. [Stachniss  et al. 2006] use semantic information to increase the 
utility of the candidate destinations situated in corridors. This is done by introducing a 
utility function U (t) given by 
 

U(tn | t1, . . . , tn−1) = Utn –Σ Pvis(tn, ti

 
)           (2.16) 

where Pvis(tn, ti) describes the probability that the frontier tn can be observed by a 
robot moving to ti

 
.  

In his work, Burgard et al. [Burgard et al. 2005] present an approach for the 
coordination of multiple robots, which simultaneously takes into account the cost of 
reaching a target point and its utility. Whenever a target point is assigned to a specific 
robot the utility of the unexplored area visible from this target position is reduced. In 
this way, different target locations are assigned to the individual robots and the 
exploration speeds up since the robots choose different frontiers that are far from 
each other. 
 
Others authors have developed some methods based on different representations of 
the environment. For example, Franchi et al. [Franchi et al. 2007] have based their 
work on the randomized incremental generation of a collection of data structures 
called Sensor-based Random Trees (SRT), each representing a roadmap of an 
explored area with an associated safe region. The SRT is incrementally built by using 
a randomized local planner which privileges the frontier of the Local Safe Region 
(LSR). In particular, each node of an SRT contains a configuration assumed by the 
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robot and the LSR perceived from that location, while an arc between two nodes 
represents a collision-free path between the two configurations. This method will be 
deepened in later sections. 
 
Others approaches like the method multi-robot developed by Wurm et al. [Wurm et 
al. 2008] take advantage of information about the structure of the environment 
instead of only considering frontiers between unknown and explored areas. This 
information is used for assigning optimally a different unexplored room to each robot 
using the Hungarian method [Kuhn 1995]. 
 
Once that robot has chosen a target frontier, this position has to be achieved in a 
safe way and using minimal moves at the same time. This can incur heavy 
computations since it is a Non-Polynomial (NP) hard problem. Probability-based 
algorithms can be applied to effectively plan the path between the robot and the 
frontier such as Probabilistic Road Map [Choset et al. 2004] and Rapid-exploring 
Random Trees [LaValle 1998].  
 
2.2.2 Reactive Exploration 
 
In contrast to deliberative exploration, reactive exploration algorithms are behavioral 
approaches and do not need a map information. Although this kind of exploration is 
in general challenging to strategically reason about long or short-term objectives, it is 
well suited to effectively respond to dynamic changes in real-time environments. The 
basic idea is to find the optimal move based on the current status of robots. For 
example, if a door is detected, the robot can move towards the door because it is a 
hint of an unknown area. 
 
The most representative approach for reactive exploration is the Artificial Potential 
Field [Khatib 1986]. The central idea of these methods is to create an artificial 
potential field that will attract the robot to a target. At the same time another behavior 
is defined in which each obstacle generate a repulsive field around it. If the robot 
approaches the obstacle, this repulsive force will act pushing it away from the 
obstacle. At the end, the two behaviors, seeking and avoiding, can be combined by 
combining the two potential fields, the robot, then, can follow the force induced by the 
new filed to reach the goal while avoiding the obstacle. The force of attraction is 
usually random and is given to trigger the movement of the robot i.e., the random 
exploration with obstacle avoidance. 
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In comparison to deliberative exploration, reactive exploration is simple because it 
does not need the complex process of map building. It can perform well in complex 
environments and with a large number of robots. However, the main drawback is the 
occurrence of local minima in the potential field, which may trap the robot and block 
the exploration process. In this sense, Julia et al. [Julia et al. 2008] proposed a 
technique that enables to detect and escape from these situations by analyzing the 
potential field generated by the combination of behavioral forces at the robot’s 
neighborhood. Once the local minimum is detected, a technique to force the robot to 
escape from this point is necessary. A solution can be to plan a path to a frontier cell 
[Lau 2003]. 
 
A more reactive but less efficient solution is using a wall-following strategy [Xiaoping 
et al. 1997]; this algorithm switches to a wall-following control mode when the robot 
falls into a local minimum and switches back to the potential field guided control 
mode when a certain condition is met. To make a control free of local minima 
Harmonic functions can be used. However, given that they need to evaluate a global 
potential field, the technique is computationally expensive. Garrido et al. [Garrido et 
al. 2008] use a similar technique based on the Voronoi Fast Marching method where 
the robot is directed to the most unexplored areas and where a collision avoidance 
algorithms is not necessary. 
 
The main disadvantage of the reactive exploration is that complete coverage of the 
environment cannot be guaranteed. This is because the robot cannot remember the 
covered area without using a map. 
 

2.3 Integrated Exploration 
 
As we have said in section 2.2, the generic SLAM problem consists of an 
autonomous system trying to build a map of an unknown environment while 
simultaneously localizing itself with respect to the map that is been built. This idea 
however, lack of movement control that guides the robot toward promising areas of 
the environment that have not yet been integrated into the map.  
 
Having this in mind, it is possible to add to the basic idea of SLAM a motion planner. 
This adds further to the complexity of the problem giving rise to the Integrated 
Exploration problem [Makarenko et al. 2002] often referred to as SPLAM 
(Simultaneous Planning Localization and Mapping). In fact, the planning problem on 
its own is computationally quite intractable under uncertainty. This has been a topic 
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of interest to multiple communities such as Artificial Intelligence, Control Theory, and 
Operations Research.  
 
In the integrated exploration approach, the movements of the robot are incrementally 
planned in order to maximize the information gain and also to increase the possibility 
of localization (which in long term is obviously related to the information gain).  
 
In general, SLAM algorithms are independent on the exploration algorithm or the 
motion policy. However, a fully autonomous robot requires to consider SLAM results 
in its navigation policy.  
 
In the context of the Integrated Exploration, early contributions can be traced back to 
the work of Feder et al. [Feder et al. 1999]. In their work an adaptive motion control 
technique in SLAM is reported, the robot creates a map and localizes itself 
simultaneously while making local decisions on where to move next in order to 
maximize the information obtained and to minimize the error in estimates of the 
vehicle pose and the landmark locations where the inverse of the estimation error 
covariance is used as an optimization objective. Bennett et al. use this principle in 
[Bennet et al. 2000] applied to the problem of underwater exploration. Here, the 
motion command is incorporated into a general behavior based architecture to 
minimize the vehicle pose and map error.  
 
Makarenko et al. introduce in [Bourgault et al. 2002] an integrated exploration 
method based on the EKF which models the map building and exploration task using 
an occupancy grid. The adaptive sensing strategy adopted in this work seeks to 
maximize the expected Shannon-Information gain on the occupancy grid map while 
simultaneously minimizing the uncertainty of vehicle location in the SLAM process. 
This approach made the assumption that the robot would observe all the landmarks 
any time for simplicity, which limited the approach to be applied in large 
environments. In [Makarenko et al. 2002] the same authors have weighted the costs 
of map exploration, robot position localization and navigation according to their 
corresponding utility functions under the trade-off of pose uncertainty and mapping. 
Here the integrated exploration technique is based on a frontier approach using 
distinguishable special landmarks in the environment. So their algorithm is not 
appropriate for irregular, unknown environments that cannot be landmarked. 
 
In [Stachniss et al. 2003], Stachniss et al. develop an integrated exploration strategy 
conducted by a frontier-based exploration and information gain through entropy 
minimization strategies. Their algorithm used a grid-based version of the FastSLAM 
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method where robots dynamically update the probability of coverage status of a 
region using a Bayesian model. Here, the uncertainty about the pose of the robot can 
be more accurately reasoned by using this representation and it is taken into account 
during the whole exploration process. This method proposes one of the few global 
exploration algorithms where the information available at all locations in the 
environment is explicitly computed.  
 
Newman et al. [Newmant et al. 2003] proposed an exploration approach in the 
context of Bosse’s ATLAS [Bosse et al. 2004]. Here the robot builds a graph-
structure to represent visited areas, and planned motion is motivated by the 
geometric, spatial, and stochastic characteristics of the current map. Each feature 
within the map is responsible for determining nearby unexplored areas. They 
assumed that the location of the features is uncertain and represented by a set of 
probability functions, which are used in conjunction with the robot path history to 
determine a robot trajectory suited for exploration. 
 
Sim shows in [Sim 2005] a path planning for SLAM with bearings-only sensors. In 
this work it is proposed to encourage coverage by adding a predefined number of 
uniformly distributed unvisited dummy features as vague priors in unexplored areas. 
The path planning policy is based on Voronoi graph with assumptions of perfect data 
association and unlimited sensor field of view to enhance the stability. The issues 
related to the initialization of landmarks, which is a key issue in bearing-only SLAM, is 
not considered in the proposed path planning technique. Yet, this strategy is not 
effective for systems with short planning horizons and limited sensing as the dummy 
features will not influence the robot’s decision if they are not visible within the 
planning horizon.  
 
In [Sim et al. 2005] Sim carried out the integrated exploration by discretizing the 
environment into a grid and assuming that the approximate locations of all the 
features are available at the beginning, thus replanning is not that critical. In this 
work, the author approximately expressed the state of the EKF as the estimated 
position of the robot and the trace of the covariance matrix, which reduces the 
computational cost significantly and makes global planning possible. However it is 
assumed that the robot is quasi-holonomic with unlimited sensing and robot motion 
constraints are not considered in the planning process.  
 
In [Sim 2005b], Sim presents an approach to information-driven exploration for 
SLAM which focuses in to overcome the stability issues. In this approach the robot is 
driven to a globally optimal position for maximizing information gain of the features. 
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The filter instability is solve by using a virtual minimum range sensor which blocks 
features that are too close to the robot and that could cause this instability. 
 
Davison et al. [Davison et al. 2002] proposed a SLAM framework solution using 
active vision for real-time. Assuming that the robot trajectory was given, they 
controlled the active head’s movement and sensing on a short term tactical basis, 
making a choice between a selection of currently visible features. The stereo head is 
controlled considering uncertainty-based measurement selection, automatic map- 
maintenance, and goal-directed steering. Persistent features re-detected after 
lengthy neglect could be re-matched, even if the area was passed through along a 
different trajectory or in a different direction.  
 
Vidal et al. [Vidal-Calleja et al. 2006] considered a single hand-held camera 
performing SLAM at video rate with generic 6 DOF. They optimized both the 
localization of the sensor and building of the feature map by computing the most 
appropriate control actions or movements. The actions belong to a discrete set and 
are chosen to maximize the mutual information gain between posterior states and 
measurements.  
 
Leung et al. [Leung et al. 2008] considered the trajectory planning problem for line-
feature based SLAM in structured indoor environments. In this work, the incremental 
smoothing and mapping iSAM [Kaess et al. 2007] is used to estimate the robot 
poses and line features whose results are used to efficiently map structured 
environments through a Model predictive Control with an attractor to optimize the 
information gain, aid exploration and to incorporate long term planning. 
 
Recently, Juliá et al. in [Julia et al. 2010] have presented a hybrid 
reactive/deliberative approach to the multi-robot integrated exploration problem. In 
this work, an auxiliary low resolution grid map to represent the free, occupied or 
unknown state of the space is used. The process consist of a centralized SLAM, 
which builds the maps and obtains the localization and two processes of exploration 
(one deliberative and one reactive) per each robot running concurrently.  
 
The reactive exploration is the combination of several basic behaviors that include 
common behaviours as “go to frontier avoid obstacles” or “go to gateway”. This layer 
operates only with cells within the expected safe zone which is a set of free or 
unknown cells that can be joined by a straight line without intersect any obstacles. 
Simultaneously, the deliberative exploration makes the decision between exploring 
the current expected safe zone, travelling to past poses using the active localization 
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state or travelling to a gateway cell which is a free cell within the expected safe zone 
next to a free cell not belonging to this zone.  
 
Furthermore, the model takes into account the degree of localization of the robots to 
return to previously explored areas when it is necessary to recover the certainty in 
the position of the robots.  
 
In [Julia et al. 2011] the same authors present an integrated exploration solution 
based on behavioral exploration to model a potential field and on a visual SLAM 
technique to build the map and to localize the robot. A strategy of detection and 
escape from local minima is used to avoid the problem of local minima in the 
potential field. As in their other work this method considers returning to previously 
explored areas when the localization uncertainty is high. 
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Chapter 3. EKF-SPLAM Algorithm 
 
 
 
 
In this chapter we are going to develop a SPLAM strategy using some well-known 
tools for each sub-element that forms it.  
 

• At first, for the exploration part we will use the algorithm of deliberative 
exploration SRT mentioned in the chapter 2. This tool will help the system to 
find the next position to explore and will allow us to have a real automatic 
system. 
 

• Next, for the SLAM algorithm, two EKF methods will be implemented. In first 
place a classic EKF that will consider only landmarks such as point fixes on 
the walls, spikes and corners. After an EKF more complex is considered called 
B-Spline EKF presented by Pedraza et al. [Pedraza et al. 2007]. Here the 
landmarks have the form of B-splines.   
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3.1 Planning exploration 
 

 

One of the main tasks for the problem of SPLAM is to travel across the environment 
in order to build a map in a really autonomous way. For this, a strategy of motion 
control for exploration most be considered.  

Following this thought, in this sub-section we have used one powerful tool known as 
Sensor-base Random Tree (SRT) presented by Oriolo et al in [Oriolo et al 2004
 

]. 

3.1.1 
 

The SRT method 

The SRT method is based on the random generation of robot configurations within a 
local safe area detected by the sensors. These configurations are stored in a data 
tree structure that represents the roadmap of the explored area and the associated 
security region (SR). Each node of the tree (T) consists of a robot's position and its 
associated local security region (LSR) that is constructed through the perception of 
the robot system. This LSR is an estimate of the free space surrounding the robot at 
a given configuration

 

. Two strategies of SRT have been presented by the authors 
and their difference lie in the form of the LSR and in the way of handle them.  

For the first approach, the LSR is a ball and has a conservative attitude appropriated 
to noise or low resolution sensor. This version is called SRT-Ball (figure 3.1a). The 
second strategy is called SRT-Star (figure 3.1b). Here the shape of the LSR reminds 
us a star. The SRT-Star involves a perception strategy that takes all the information 
reported by the sensors and exploits them in all directions. The star form of the LSR 
is formed by several “cones” with different radius. Here the k-th cone radius can be 
the range minimum between the closest obstacle and the robot or if any object is 
detected, the radius will be the maximum distance of the sensor. Thus for calculate 
the radius r of a random direction θrand

 

 we have to identify the corresponding cone of 
that particular direction. In the other hand, the conservative perception of the SRT-
ball ignores the information directional granted by most sensorial systems. 

A third strategy for the exploration SRT was proposed by Espinoza et al. in 
[Espinoza et al. 2007] called SRT-radial, in this paper the form of the proposed LSR 
in absence of obstacles is a circumference. Here, once generated the direction to 
explore θrand, the radius is the distance from the robot to the edge of the LSR in that 
particular direction. Of course, in obstacle presence, the form of the LSR will be 
deformed and the radius will be different in different directions (Figure 3.1c and d). 
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Figure 3.1 a) Safe local region S obtained with the strategy of SRT-Ball. b) Local security 
region S obtained by the SRT-Star perception system. Notice that the extension of S in 
some cones is reduced by the obstacle presence. c) and d) Different radius obtained in 
the safe local region S with the SRT-Radial perception’s strategy. [Espinoza et al. 2007]. 

 
The figure 3.2 shows how the SRT method works. At the beginning of each iteration, 
the algorithm gets the LSR associated with the current configuration of the robot, 
qcurr. Once the LSR is obtained, the function EXTEND_TREE is responsible for 
updating the tree, adding the robot position and its corresponding LSR to each node. 
At the same time, S will store the environment features and will be updated with new 
features extracted from the LSR that are not parts of the environment yet. This 
process is performed by the procedure UPDATE
 

. 

The next step is to process the local boundary F, i.e. to identify obstacles and free 
areas. Generally, F is a collection of discrete arcs. After obtaining these boundaries 
and if there are still free zones, the procedure RANDOM_DIR will generate random 
direction in order to choose one that meets the characteristics of a free arc, then, it 
will generate a qcurr configuration taking a step of α length in the direction θrand. The 
step size α is chosen as a fixed fraction of the radius of the LSR in that particular 
direction. Due to the shape of S, qcand will be free of collision. If no border arc is free, 
then the robot will return to the position of the parent of qcurr and the exploration cycle 
will start again
 

. 

Once the qcand configuration is obtained, the VALID_CONF procedure will ensure that 
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this new configuration is valid, i.e. that this new position is outside of the LSRs of the 
other nodes in the tree. If this new configuration is valid, it will be the new destination 
qdest that the robot should achieve. On the contrary, if after a maximum number of 
attempts it is not possible to find a qcand configuration, the parent´s node will be the 
new configuration qdest (i.e., the robot will return to the father of the current node’s 
configuration
 

). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 

Figure 3.2 SRT-based integrated exploration algorithm 
 
After the configuration qdest is obtained, the function MOVE_TO (Figure 3.3) allows 
the robot to move to this configuration. The process is performed by looking at the list 
of control inputs (list_U), an input ucontrol that allows the robot to approach qdest from 

 
INTEGRATED_EXPLORATION (qinit, kmax) 
 
 
1.   qact    ←     qinit; 
2.   for k=1 to Kmax 
3   .          S     ←   LSR(qact); 
4.             T     ←  EXTEND_TREE(qact,S,T); 
5.             Amb_BS   ←   UPDATE (S); 
6.             F   ←   FORNTIER(qact,S) ; 
7.             if  F≠0 
8.                  i  ←   0; 
9.                  VALID  ←   FALSE; 
10.                 While ((i<MAX_ITER) && (!VALID)) 
11.                                θrand  ←    RANDOM_DIR(F); 
12.                                qcand  ←    DISPLACE(qact, θrand); 
13.                                VALID  ←   VALID_CONF(qcand); 
14.                                 i++; 
15.                end 
16.                if (VALID ) 
17.                              qdest  ←  qcand; 
18.                else 
19.                              qdest  ←  qact.parent; 
20.                              if qdest=NULL 
21.                                        return [T,Amb_BS]; 
22.                              end 
23.                end 
24.           else 
25.                qdest  ←    qact.parent; 
26.                 if qdest=NULL 
27.                                 return [T,Amb_BS]; 
28.                 end 
29.           end 
30.           MOVE_TO(qdest, qact, Amb_BS ); 
31.           qact  ←   qdest; 
32. end 
33. return [T,Amb_BS]; 
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the position qcurr (BEST_U function). Once choosing the best input ucontrol

 

, this is 
applied to the robot. 

At this point, the odometric position, and the increase in X, Y and θ between the 
previous and the current odometric positions (ΔX, ΔY, Δθ) are obtained. The 
information reported by the robot will be essential to get the estimated position that 
will be used by the LOCALIZATION method to obtain the real position. The algorithm 
is repeated until the qcurr and qdest configurations are the same
 

. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.3 MOVE_TO method form the SRT-based integrated  
exploration algorithm 

 

3.2 EKF-SLAM Classic 
 
The exploration of unknown environments requires an additional functionality 
because the odometric information reported by the robot, in most cases is not 
accurate, resulting in inaccurate maps useless for future navigations. The proposed 
algorithm assumes that the robot's initial position is well located and, consequently, 
the first observation of the environment has a perfect location. Once the robot has 
moved from a position qlast to a position qcurr, the new position of the robot is obtained 
by adding to the last located position, the increments ΔX, ΔY and Δθ reported by the 
robot's odometric system. After this position is estimated, the robot will collect the 
information of the surrounding environment for the localization process
 

. 

3.2.1 Review on EKF 
 
As we have said in the small presentation of the EKF in chapter 2, the Kalman filter 
addresses the general problem of trying to estimate the state X Є Rn of a discrete-
time controlled process governed by a linear stochastic difference equation. But what 
happens if the process to be estimated and (or) the measurement relationship to the 

MOVE_TO (qact ,qdest, , Amb_BS) 
 
 
1.  while qact!= qdest 
3.              ucontrol ←    BEST_U(List_U,qact, qdest); 
4.             ROBOT  ←   ucontrol; 
5.             q̂  ←   ODOMETRY; 
6.              qact    ←    LOCALIZATION( q̂ , qact, Amb_BS); 
7. end 
8. return qact 
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process is non-linear? Some of the most interesting and successful applications of 
Kalman filtering have been such situations. A Kalman filter that linearizes about the 
current mean and covariance is referred to as an extended Kalman filter or EKF. 
 
Let us assume that our process has a state vector X Є Rn

 

, but that the process is now 
governed by the non-linear stochastic difference equation: 

( )1 1 1  ,  ,  k k k kX f X u w− − −=                    (3.1) 
 

With a measurement z Є Rn

 
 that is 

( )  ,  k k kz h X v=                           (3.2) 
 
Where the random variables wk and vk represent the process and measurement 
noise. In this case the non-linear function f  in (3.1) relates the state at the previous 
step k-1 to the state at the current time step k. It includes as parameters any driving 
function uk-1 and the zero-mean process noise wk. The non-linear function h in the 
measurement equation (3.2) relates the state Xk to the measurement zk

 
. 

In practice of course one does not know the individual values of the noise wk and uk

 

 
at each time step. However, one can approximate the state and measurement vector 
without them as: 

1 1
ˆ( , ,0)k k kX f X u− −=                            (3.3) 

and 
 

( ,0)k kz h X= 

                                (3.4) 

 

Where ˆ
kX − is some a posteriori estimate of the state (from a previous time step k-1). 

 
It is important to note that fundamental flaw of the EKF is that the distributions (or 
densities in the continuous cases) of the various random variables are no longer 
normal after undergoing their respective nonlinear transformations. The EKF is 
simply and ad hoc state estimator that only approximates the optimality of Bayes’ rule 
by linearization. 
 
To estimate a process with non-linear difference and measurement relationships, we 
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begin by writing new governing equations that linearize and estimate about (3.3) and 
(3.4). 
 

1 1 1
ˆ( )k k k k kX X A X X Ww− − −≈ + − +                      (3.5) 

 

 ˆ( )k k k k kz z H X X Vv−≈ + − +                          (3.6) 

 
Where 
 

• Xk and zk

• 

 are the actual state and measurement vectors.  

kX  and kz  are the approximate state and measurement vectors from (3.3) and 

(3.4). 

• ˆ
kX  is a posteriori estimate of the state at step k.  

• The random variables wk and vk

• A is the Jacobian matrix of partial derivatives of f with respect to X.  

 represent the process and measurement 
noise. 

• W is the Jacobian matrix of partial derivatives of f with respect to w.  
• H is the Jacobian matrix of partial derivatives of h with respect to X. 
• V is the Jacobian matrix of partial derivatives of h with respect to v. 

 
For simplicity, we do not use the time step subscript k with the Jacobians A,W, H and 
V , even though they are in fact different at each time step. 
 
Now we define a new notation for the prediction error: 

  

xk k ke X X≡ −                                (3.7) 

 
and the measurement residual, 
 

zk k ke z z≡ −                                   (3.8) 

 
In practice, one does not have access to Xk in (3.7), it is the actual state vector, i.e., 
the quantity one is trying to estimate. On the other hand, one does have access to zk 
in (3.8), it is the actual measurement that one is using to estimate Xk

  

. Using (3.7) and 
(3.8) we can write governing equations for an error process as: 
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1 1
ˆ( )xk k k ke A X X ε− −≈ − +                       (3.9) 

 
( )zk xk ke H e η≈ −                           (3.10) 

 
Where εk and ηk represent new independent random variables having zero mean and 
covariance matrices WQWT  and  VRVT

 

, Q and R are the process noise covariance and 
the measurement noise covariance respectively. 

We can note that the equations (3.9) and (3.10) are linear, this motivates us to use 
the actual measurement residual zke  in (3.8) and a second (hypothetical) Kalman filter 

to estimate the prediction error xke  given by (3.9). This estimate, call it  ˆke , could then 

be used along with (3.7) to obtain the a posteriori state candidate estimates for the 
original non-linear process as 

  
ˆ ˆk k kX X e= +                             (3.11) 

 
Random variables in (3.9) and (3.10) have approximately the following distributions:

( ) (0, [ ])T
xk xk xkp e N E e e  
 , ( )( ) ~ 0, 0, T

k kp N E WQ Wε    , ( )( ) ~ 0, 0, T
k kp N E VR Vη    . Given 

these approximations and letting the predicted value of êk be zero, the Kalman filter 
equation used to estimate êk

 
 is: 

 
ˆk k zke K e=                              (3.12) 

 
By substituting (3.12) back into (3.11) and making use of (3.8) we see that we do not 
actually need the second (hypothetical) Kalman filter: 

  
ˆ     (   )k k k zk k k k kX X K e X K z z= + = + − 

              (3.13) 

 
Equation (3.13) can now be used for the measurement update in the extended 

Kalman filter, with ˆ
kX and kz coming from (3.3) and (3.4), and Kk

 

 is the Kalman gain 

with the appropriate substitution for the measurement error covariance. 

The complete set of EKF equations is shown below. Note that we have substituted 
ˆ

k
X −   for kX  to remain consistent with the earlier “super minus” a priori notation, and 

the that we now attach the subscript k to the Jacobians A,W,H and V to reinforce the 
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notion that they are different at (and therefore must be recomputed) at each time 
step. 

  

1 1
ˆ ˆ( , ,0)k k kX f X u−

− −=                      (3.14) 

 

1 1    
k k

T T
k k k k kP A P A W Q W−

− −= +                 (3.15) 

 
As with the basic discrete Kalman filter, the time update equations (3.5, 3. 6) project 
the state and covariance estimates from the previous time step k-1 to the current time 
step k. Again f in (3.14) comes from (3.3), Ak and Wk are the process Jacobians at 
step k, and Qk

  
 is the process noise covariance at step k. 

( ) 1         T T T
k k k k k k k k kK P H H P H V R V− − −= +    (3.16) 

 
ˆ ˆ ˆ( ( ,0))k k kk kX X K z h X −−= + −             (3.17) 

 

( )   k k k kP I K H P−= −  

 

                (3.18) 

As with the basic discrete Kalman filter, the measurement update equations (3.16, 
3.17 and 3.18) correct the state and covariance estimates with the measurement zk. 
Again h in (3.17) comes from (3.4), Hk and V are the measurement Jacobians at step 
k, and Rk

 

 is the measurement noise covariance at step k. The subscript R changes 
with each measurement. The next figure offers a complete picture of the operation of 
the EKF. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.4 A complete picture of the operation of the extended Kalman filter 

Time Update ( Predict ) 
1. Project the state ahead 

1 1
ˆ ˆ( , ,0)k k kX f X u−

− −=  
2. Project the error covariance ahead 

1 1    
k k

T T
k k k k kP A P A W Q W−

− −= +  

Measurement Update ( Correct ) 
1. Compute the Kalman gain 

( ) 1         T T T
k k k k k k k k kK P H H P H V R V− − −= +

2. Update estimate with measurement zk 

ˆ ˆ ˆ( ( ,0))k k kk kX X K z h X −−= + −  
3. Update the error covariance 

( )   k k k kP I K H P−= −  

Initial estimates for 
1

ˆ
kX −

and Pk-1 
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The algorithm of Extended Kalma Filter is described in the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5. EKF algorithm 
 
The EKF algorithm is described in figure 3.5, It accepts as input the located position 

1
ˆ

kX −  and the covariance Pk-1 , the control uk and the measurement zk

ˆ
kX

. Its outputs are 

the estimations  and Pk

 

 at the instant k. This algorithm is implemented in two 

steps: 

1. The prediction step (Lines 1 and 2). Calculates the predicted belief ˆ
kX −  and 

kP− . This belief is obtained by incorporating the control uk before to incorporate 

the measurement zk.
 

  

2. The correction step (Lines 3 to 8). The re-observed landmarks are 
considered. Using the estimate of the current position it is possible to estimate 
where the landmark should be. There is usually some difference, this is called 
the innovation. So the innovation is basically the difference between the 
estimated robot position and the actual robot position, based on what the robot 
is able to see.  
 
The variable dk  

ˆ( ,0)kh X −

at the line 3 is called the measurement innovation (or 
residual). Like we have said, it corrects the discrepancy between the predicted 

measurement  and the actual mesurement zk. Line 4 calculates the 

Algorithm of Extended Kalman Filter ( 1
ˆ

kX − , Pk-1, uk, zk) 
 

1. 1
ˆ ˆ( , ,0)k k kX f X u−

−←  

2.  1    1     T T
k k k k k k kP A P A W Q W−

− + −←              //Prediction 

 

3. ˆ( ,0)k k kd z h X −← −  

4.     T T
k k k k k k kD H P H V R V−← +  

5. 1 T
k k k kK P H D− −=  

6. ˆ ˆ
k k k kX X K d−= +   

7. ( )    k k k kP I K H P−= −                         // Correction 

8. return ( ˆ
kX , Pk )  
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innovation (or residual) covariance Dk. Line 5 computes a variable Kk that is 
called Kalman gain. It specifies to what extent the innovation should be taken 
into account in the posterior state estimate. The new mean of the posterior 
belief is calculated in line 6, by adjusting it in proportion to the Kalman gain Kk 
and the innovation dk

 
.  

Finally, the new covariance of the posterior belief is determined in line 7. If the 

algorithm is implemented accurately, the initials values 0X̂ −  and P0

 

 may reflect 

accurately the distribution of the initial state, so, we have some properties: 

 

( ) ( )ˆ ˆ = 0k k k kE X X E X X −− − =                        (3.19) 

 

( ) 0kE d =                                 (3.20) 

 
 Equations (3.19) and (3.20) reflect that expected values (mean errors) of all 
estimates are zero. 
 
3.2.2 Application of EKF to robot localization 
 
So far we have talked about the EKF in a very general way. From this point, we will 
talk about the concrete implementation of an algorithm of localization based on the 
extended Kalman filter for SLAM. 
 
In this work we use a differential robot, so our equation of movement will have the 
following form: 

  

1 1

1 1

1 1

cos( )
sin( )
( )

k k k k k

k k k k k

k k k k

x x t v
y y t v

t

θ ω
θ ω

θ θ θ ω

− −

− −

− −

∆ ∗ ∗ +     
     = + ∆ ∗ ∗ +     
     ∆ ∗ +     







            (3.21) 

 
Where kv  and kω  denote the true translational and rotational velocity generated by 

the motion control ( , )T
k k ku v ω=  with added Gaussian noise. 

 

            
2
1

2
2

k k

k k

v v σ

σ

ε

ω ω ε

    
 = +          





                       (3.22) 



Chapter 3. EKF-SPLAM Algorithm 

73 
 

 
where  2

1σ
ε  and  2

2σ
ε  are independent Gaussian error variables with zero-mean and 

standard deviations σ1 and σ2 v respectively relative to the control velocities  and ω . 
Therefore, the motion model can be decomposed into a noise-free model with a 
random Gaussian noise.  
 



( )1 k

1 1

1 1

1 1

 X , u , 0 

cos( )
sin( ) (0, )
( )

k k

k k k k k

k k k k k k

k k k k

X f

x x t v
y y t v N Q

t

θ ω
θ ω

θ θ θ ω
−

− −

− −

− −

∆ ∗ ∗ +     
     = + ∆ ∗ ∗ + +     
     ∆ ∗ +     



    (3.23) 

  
This decomposition can be also applied to the perception model. Let j=cki be the 
identity of the ith feature observed at time t corresponds to the jth 

 
landmark in the map. 



( )

2 2
, ,

1
,   ,

 ,0 

(  )   (   )  
(0, )

tan ((  ) / (  ))
ki

k

ki j x k j y k
k

ki j y k j x k
Z

h X

r m x m y
N R

m y m xθ −

 − + −   = +   − −   


  (3.24) 

 
Where mj,x and mj,y denote the coordinates of the ith landmark detected by the robot 
(that is identical to jth

 
 landmark in the map). 

The algorithm of localization EKF used in our scheme SPLAM is showed in the 
algorithm 3.6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6  Localization EKF algorithm 
 
This algorithm is derived from the general EKF algorithm of figure 3.5. The inputs are: 

the posterior belief of the robot pose at time k-1 ( 1
ˆ

kX − ), the increases in x, y, θ ( q̂ ), 

LOCALIZATION_EKF( q̂ , 1
ˆ

kX − , LandM_Amb, 1kP − ) 
 

1. [ ˆ
kX − , kP− ]  ←    PREDICTION( q̂ , 1

ˆ
kX − , 1kP − ); 

2. D     ←    SENSOR_DATA( ˆ
kX − ); 

3. Ss    ←    LANDMARKS_EXTRACTION(D); 
4. [ LMasoc, LMnew ]   ←    DATA_ASSOCIATION(Ss, LandM_Amb); 

5 [ ˆ
kX  , kP  ]   ←  UPDATE (LMasoc, qest) 

6. return ˆ
kX  , kP  
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the landmarks stored in the environment, and the covariance P at time k-1. The 

output is a new estimate of the robot pose at time k represented by ˆ
kX and kP .   

 
The EKF for SLAM as the EKF used for navigation use the steps of prediction and 
update, however, the EKF for SLAM adds one extra function for the actualization of 
the map that is been building. 
 
a) PREDICTION 
 
The function PREDICTION, computes the necessary Jacobians for linearizing the 
motion model. 
 

1
k

1

( , )ˆ
ˆ
k k

k

XA f u
X

−

−

∂
=

∂
                                 (3.25) 

 

1
k

( , )ˆ
k k

k

XW f u
u
−∂

=
∂

                                 (3.26) 

  
Where Ak is the partial derivative of the function of movement with respect to the 
pose of the robot and Wk

 

 is the partial derivative of the function of movement with 
respect to the control.  

Next, the motion noise covariance must be determined as follow: 
 

2
1

2
2

0
0kQ
σ

σ
 

=  
 

                                 (3.27) 

 
Where σ1 and σ2

 

 are two variables relative to the control velocities. Now the 
estimation of the new position of the robot is calculated using: 

( )ˆ ˆ X ,  u ,  0 1 kkX f k
− = −                             (3.28) 

 

Where 1
ˆ

kX −  is the localizated position at time k-1, f is the model of our robot and uRkR 

are the control entries. We can add directly to the previous localized position the 
increases Δx, Δy and Δθ of the previous state of time k-1 to the state of time k reported 
by the robot: 
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1

1

1

k k

k k

k k

x x x
y y y
θ θ θ

−

−

−

∆     
     = + ∆     
     ∆     

                                (3.29) 

 
Finally the matrix of covariances is updated using the equation (3.15): 
 

 1      T T
k k k k k k kP A P A W Q W−

− +=  

 
b) SENSOR_DATA 
 
After the function of prediction, the function SENSOR_DATA will obtain the 
information of the surrounding environment to the robot caught by the sensors in this 
instant k. This information will be placed spatially in the current position estimated by 
the function of prediction. 
 
c) LANDMARKS_EXTRACTION 
 
Taking the gathered information for the function SENSOR_DATA, the function 
LANDMARKS_EXTRACTION will be in charge to look for characteristics of the 
environment that are easily re-observable.  
 
The EKF used in this section is conceived to work in feature maps formed by lines 
(Figure 3.7a), but before to try to find this type of features we have to find one other 
kind called break point (Figure 3.7b). This type indicate discontinuities in the scan 
process and usually occur due to the existence of objects or surfaces that hinder the 
detection of other elements more distant. The detection of these points allows 
classifying the measures in groups called “clusters”  
 

       

 
Figure 3.7 a) Environment. b) Break points found in the environment 
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Several strategies to find these clusters have been proposed in literature. In 
particular the clustering process used in this section is based on the classic criteria of 
Dietmayer [Dietmayer et al. 2001], whose operation can be explained in the figure 
3.8. Pa and Pb represent two consecutive points detected by the laser, while ra and rb 
are the distances of these points to the coordinates origin. Given the triangle OPaPb, 
where ra and rb are known and α is the angular resolution of the laser, we can apply 
the cosines theorem to calculate the distance between Pa and Pb

 
: 

2 2 2 cos( )ab a b a br r r r r α= + −               (3.30) 

 
The criteria used to form the clusters is that, if the distance between Pa and Pb is less 

 
than 

rab≤ C0 + C1 · min {ra − rb

 
}                  (3.31) 

Where 1 2(1 cos( ))C α= − , then Pb belongs to the same cluster than Pa. Otherwise, 

the points Pa and Pb belong to different clusters. The constant C0 represents a noise 
adjustment in the laser measures. The other constant, C1, takes a value not 
explained by Dietmayer, but, that can be explained using the figure 3.8, where it can 
be appreciated that min{ra, rb

 
} = ra, therefore: 

{ }1
1 cos( )min , 2(1 cos( )) 2

2a b a aC r r r r αα −
= − =     (3.32) 

 
On the other side, the variable named z in the figure 3.8 will take the value: 
 

1 cos( )sin( )
2 2a az r rα α−

= =                      (3.33) 

 
Finally, we get: 
  

2z = C1 · ra  

 
                               (3.34) 
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Figure 3.8 Dietmayer’s criteria 
 

With the raw data segmented in clusters the next step is to find features in each one 
of them. As we have already said, this EKF works on feature maps, so given this 
restriction the system looks essentially for 3 types of landmarks: 
 

1. SPIKES. They are identified finding cluster with less of tree laser measures. 
This type of Landmark is considered by the algorithm once that it has been 
seen a number I of times, since own mistakes of the measure system might 
be interpreted like landmarks. 
 

2. STRAIGHT LINES. To extract this type of landmarks we have used the work 
by Pavlidis et al. [Pavlidis et al. 1974] named “Split and Merge”. The 
algorithm has two parts. The first phase is recursive, and consists in dividing 
the available segments into smaller ones, while the second is used to merge 
segments that are almost 

 
colinear (Figure 3.9 and 3.10).  

 
 

Figure 3.9 Split and Merge Algorithm evolution [Tardos et al. 2002b] 
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Figure 3.10 Split and Merge Algorithm 
 

At the end of this algorithm and due to its nature, every processed cluster will 
give n sub-clusters of raw data laser measures corresponding to n 
noncolinear segments. The line contained in these sub-clusters is 
approximate using the method of least median square (LMS Least Median 
Square) proposed by Mount et al. in [Mount et al. 2007].The decision to use 
this method is based on a comparative study of different methods proposed 
in the literature (including RANSAC and its variants (MSAC and NAPSAC), 

 

and Least Squares approximation) where the LMS method proved to give 
more stable results obtaining in all tests conducted a slope almost equal. 

3. CORNERS. These landmarks will be obtained taking all the straight lines 
found in the environment and verifying which ones intersect. 

 
 
 

 
Split and Merge Algorithm 
 
 
1: function SPLIT(P) 
2:  Input: P   {p1, · · · , pn} 
3:  Put P in the list L. 
4:  R   ← line that fits the points of  P 
5:  pt    ← point with the biggest distance T to the line R 
6:  If T > Tmax then 
7:    P′  ← {p1, · · · , pt} 
8:   P′′ ← {pt, · · · , pn} 
9:   L    add       SPLIT(P′) 
10:   L    add      SPLIT(P′′) 
11:  End If 
12:  Return  L 
 
14: function MERGE(L) 
15:  Input: L  ← list of sets {Pi, · · · ,Pn} 
16:  For i  ← 1 to n − 1 do 
17:      If Pi y Pi+1 are colinear within an error margin then 
18:   Q ←  Pi  U  Pi+1 
19:   R ←  line that fits the points of Q 
20:   qt   point Є Q with the biggest distance T to the line R 
21:   If T ≤ Tmax then 
22:    L   eliminate     Pi y Pi+1 
23:    L    add        Q 
24:   End If 
25:      End If 
26:  End For 
27:  Return  L 
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d) DATA_ASSOCIATION 
 
A critical aspect of the localization algorithm is the data association. The objective of 
this function is to match observed features from different scans and to assign 
measurements from which they originate and reject fake measurements. This 
process is also known as re-observing landmarks. Given the three types of features 
used in this method, the SPIKE and CORNER kind are the easiest to associate. For 
them, we look for the closers features stored in the system of the same type where 
the Euclidean distance between them is less than a threshold Dmin

 
.  

In the other hand the Straight lines features most be translated into a fixed point, this 
is made by taking the robot predicted position and calculating his orthogonal point to 
the straight lines. This process is done for both lines, the one observed and the line 
associates stored in the system figure 3.11. 
 

 

 
Figure 3.11 Line feature as a point 

 
The measurement-to-feature association is performed using a gating approach in the 
innovation space incorporating both measurement uncertainty and robot uncertainty. 
So using the innovation matrix: 
 

rr ri
T T

ki ki ki k k kir ii

P P
S H H V R V

P P
 

= + 
 

            (3.35) 

 
Where 
 

ˆ( , )
ˆ

i k
ki

k

h X iH
X

∂
=

∂
                         (3.36) 
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And defining the innovation ( )ˆ –k i k i i kd z h X −= , we can establish a validation gate to 

determine a correct association in the form of: 
 

1     T
ki ki kid S d λ− ≤                           (3.37) 

 
Where λ is a constant chosen heuristically.  
 
The validation gate uses the fact that our EKF implementation gives a bound on the 
uncertainty of an observation of a landmark. Thus we can determine if an observed 
landmark is a landmark in the database by checking if the landmark lies within the 
area of uncertainty. 
 
e) UPDATE 
 
If a feature present in the state vector is re-observed the update step of the EKF is 
used to update the state of the map including the robot pose. The model of 
observation for the characteristic i has the form: 
 

( ) ( )

ki

2 2

j,x k j,y k
ki

j,y k 1

j,x k  

m  x   m   y  
r

(0, )m  y
tan  

m  x

ki kZ N R
θ −

 − + −    = = +   −      −    
                                                                       (3.38)          

( ) ( )ki k
ˆ X     0,Rh N= +             

 
2

2

0
0

r
kR

θ

σ
σ

 
=  
 

                               (3.39) 

 
The noise process N(0,Rk) is assumed to be white Gaussian with covariance Rk

 

. If the 
N features are observed the observation model becomes: 

1 1 1 0
; ;

0

k k k

k k k

kn kn kn

z h R
Z h R

z h R

     
    = = =     
         



    



              (3.40) 
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ˆ( )
ˆ

k
k

k

h XH
X

∂
=

∂
                                 (3.41) 

 
With this information, we calculate the covariance of the innovation Sk

 
 given for: 

       T T
k k k k k k kS H P H V R V−= +                       (3.42) 

 
Which depicts the uncertainty corresponding to the predicted measurement Zk. Again 
with this information we calculate Kalman's profit  Kk

 
 of the following way: 

1     T
k k k kK P H S− −=                            (3.43) 

 

Finally, the new pose estimate is obtained ˆ
kX −and the matrix of covariances kP− are 

updated as it follows: 
 

ˆ ˆ( ( , )ˆ 0)k k k k kX K Z h XX − −= + −                      (3.44) 

 

( )   –     k k k kP I K H P−=                         (3.45) 

 
3.2.3 Extension of the Map 
 
This section is completely bound to the UPDATE function on the SRT algorithm 
(figure 3.2 lines 5). Achieve the new position to explore qdest

 

, his new LSR will be 
used to do update the map on the EKF system state X.  

a) Add a new feature 
 
When a new feature Lnew = [r θ] is observed, the new feature state XN+1

 

 is 
incorporated in the system vector state. For CORNER and SPIKES we add just the 
range and bearing to the feature as: 

1

cos( )ˆ( , )
sin( )

rk rk
N k new

rk rk

x r
X m X L

y r
θ θ
θ θ+

+ + 
= =  + + 

         (3.46) 

  

1

ˆˆ k
k

N

XX
X +

 
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 
                            (3.47) 
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But for the STRAIGHT LINE case the new feature have the range and bearing of the 
star and final point Lnew = [rs θs rf θf

 

], so in this case the new feature has the following 
form: 

N 1

cos( )
sin( )ˆX ( , )
cos( )
sin( )

rk s rk s

rk s rk s
k new

rk f rk f

rk f rk f

x r
y r

m X L
x r
y r

θ θ
θ θ
θ θ
θ θ

+

+ + 
 + + = =
 + +
 + +  

           (3.48) 

 

Been the 3 first elements in ˆ
kX the position x,y and θ localized of the robot. 

 
Once the new landmark is added, it only remains to update the matrix of covariances 
for this new one landmark. Thus, in the first place we added the covariance for the 
new landmark. 
 

PN+1 N+1 = Jxr Pk
rr Jxr

T + Jz Rk Jz
T

 
                   (3.49) 

After the robot – landmark covariance for the new landmark is added. 
 

Prr N+1 = Pk
rr Jxr

T

 
                             (3.50) 

And finally we add the landmark – landmark covariance. 
 

PN+1 i = Jxr (Pk
ri )T

 
                             (3.51) 

Jxr and Jz are two jacobians of EKF that are used in SLAM. Jxr is the as the jacobian 
of the prediction of the feature and is basically the same as the jacobian of the 
prediction model except that there is not the rotation term. In the other hand, Jz

 

 is 
also the jacobian of the prediction model for the feature bus with respect to range 
and bearing. R is the Gaussian noise proportional to the measurement. 

b) Feature Extension 
 
When a new LSR is obtained on a new position qdest

 

 achieved, the associations of 
some lines are made only partially (Figure 3.12) 
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Figure 3.12 Line segment partially associated to be extended 
 
In this case, that line segment has to be extended with the new information. 
Therefore, to make this extension, in first place we have to extract the kth 

 

feature 
corresponding to the line to be extended as follow: 

1

, , ,
k

r

i i f f

N

X

X

X

x y x y

X

 
 
 
 

      
 
 
  

←




                       (3.52) 

 
Whit this information, we can easily calculate the elements m and b in the equation of 
the line. 

             
                                                      (3.53) 

 
 
And to do the extension (in the case of the figure 3.12 toward the extreme right) with 
the farthest xest and yext

 
 coordinates of this segment.  

ext exty mx b= +                            (3.54) 

 
Finally, the new line extended is added to the system vector in the same position 
from which was extracted. 
 

Observed lines  
without localization 

Stored Line 

Associated Lines 

 Robot in predicted 
position 

Segment  
to extend 

 

Observed Lines with 
localization 

Robot 
localized 

  Stored 
Line 

;f s
s s

f s

y y
m b y mx

x x
−

= = −
−
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                              (3.55)  
  
 
 

 

3.3 EKF-SLAM with B-Splines 
 
3.3.1 Foundations of B-Splines. 
 
a)  B-Splines Definition 
 
Let U be a set of m + 1 non-decreasing numbers, u0 ≤ u2 ≤ u3 ≤ … ≤ um. The ui’s are 
called knots, the set U the knot vector, and the half-open interval [ui, ui+1) the i-th 
knot span. Note that since some ui’s may be equal, some knot spans may not exist. If 
a knot ui appears k times (i.e., ui = ui+1 = . . . = ui+k-1, where k > 1, ui is a multiple knot 
of multiplicity k, written as ui(k). Otherwise, if ui

 

 appears only once, it is a simple knot. 
If the knot vector does not have any particular structure, the generated curve will not 
touch the first and last legs of the control polyline as shown in the figure 3.13a and 
we have an unclamped B-Spline.  

We may want to clamp the curve so that it is tangent to the first and the last legs at 
the first and last control points, respectively. To do so, the first knot and the last knot 
must be of multiplicity p+1, where p is the degree of the curve. This will generate the 
so-called clamped B-spline curves, figure 3.13b. By repeating some knots and control 
points, the generated curve can be a closed one. In this case, the start and the end 
of the generated curve join together forming a closed loop as shown in figure 3.13c.  
 

 
 

Figure 3.13 a) Unclamped B-Splines. b) Clamped B-Spline. c) Closed B-Spline 
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If the knots are equally spaced (i.e., ui+1 − ui is a constant for 0 ≤ i ≤ m−1), the knot 
vector or the knot sequence is said uniform; otherwise, it is non-uniform. The knots 
can be considered as division points that subdivide the interval [u0, um

 

] into knot 
spans.  

All B-spline basis functions are supposed to have their domain on [u0 , um]. To define 
B-spline basis functions, we need one more parameter, the degree of these basis 
functions, p. The i-th B-spline basis function of degree p, written as Ni,p

 

(u), is defined 
recursively as follows: 

1
,0

1,
( )

0,
i i

i

if u u u
N u

otherwise
+≤ ≤

= 


              (3.56) 

 
1

, , 1 1, 1
1 1

( ) ( ) ( )i pi
i p i p i p

i p i i p i

u uu uN u N u N u
u u u u

+ +
− + −

+ + + +

−−
= +

− −
       (3.57) 

 
The above equation is usually referred to as the Cox-de-Boor recursion formula [de 
Boor 1978]. Given n + 1 control points P0, P1,…, Pn and a knot vector U = u0, u1, … , 
um

 

, the B-spline curve of degree p defined by these control points and knot vector U 
is                                                                                       

,
0

( ) ( )
n

i p i
i

C u N u X
=

=∑                          (3.58) 

 
where Ni,p

 

(u)’s are B-spline functions of degree p. The form of a B-spline curve is very 
similar to that of a Bézier curve [Rogers 2001]. 

b) Spline Fitting 
 
The simplest method of fitting a set of data points with a B-splines curve is the global 
interpolation method [Ishida 1997]. Suppose we have n+1 data points D0,D1, … ,Dn 
and wish to fit them with a B-spline curve of degree p, where p ≤ n  is an input. We 
select a set of parameter values t0, t1, ... , tn

 

 (the number of parameters is equal to the 
number of data points).  

Suppose the desired interpolating B-spline curve of degree p is done in the equation 
(3.58). This B-spline has n+1 unknown control points, since parameter tk corresponds 
to data point Dk. Plugging tk into the equation (3.58) yields the following: 
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,
0

( ) ( ) 0
n

k k i p k i
i

D C t N t X for k m
=

= = ≤ ≤∑
     

      (3.59) 

 
Because there are n + 1 B-spline basis functions in the above equation and n + 1 
parameters, plugging these tk’s into the Ni,p(u)’s yields (n + 1)2 values. These values 
can be organized into a (n+1)×(n+1) matrix N in which the k-th row contains the 
values of N0,p(u),N1,p(u), … , and Ni,p(u) evaluated at tk

 
 as shown below: 

, 0 1, 0 2, 0 , 0

, 1 1, 1 2, 1 , 1

, 1, 2, ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

o p p p n p

o p p p n p

o p n p n p n n p m

N t N t N t N t
N t N t N t N t

N

N t N t N t N t

 
 
 =
 
 
  





  



    (3.60) 

 
This matrix N, is generally known as placement matrix and it has for each one of its 
rows, a maximum of p nonzero elements. In the same way, we can also collect 
vectors Dk and Xi

 
 as follows: 

[ ]0 1 mD D D D=                          (3.61) 

 

[ ]0 1 nX X X X=                          (3.62) 

 
With these representations, we can write the equation (3.59) in a most compact form: 
 

D= N X                                         (3.63)                          
 
Given that vector D contains the input data points and matrix N is obtained by 
evaluating B-spline functions at the given parameters, the only unknown is vector X.  
 
As we can see, the simpler form is a system of linear equations with unknown X, 
solving for X yields the control points and the desired B-spline interpolation curve 
becomes available. Therefore, the interpolation problem is solved. 
 
When the problem is over determined, it can be solved in an in a mean sense. This 
occurs in the most general case when 2 1 1p n m≤ ≤ + < + . To solve it, we can obtain a 

least squares solution making use of the pseudoinverse matrix of B: 
 

1T TX B B B D D
−

 = = Φ                         (3.64) 
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3.3.2 EKF with B-Splines  
 
a) Data management 
 
Before the obtained data can be used by the localization algorithm, they need to 
undergo several processes (Figure 3.14)

 
: 

• FIRST SEGMENTATION. An analysis of the relative position of consecutive 
data points. The objective is to detect points close enough to belong to the 
same obstacle. For this segmentation we have used the Dietmayer’criteria 

 
presented in section 3.2.2 c. 

• SECOND SEGMENTATION. The segments obtained in the first segmentation 
undergo another test to look for straight points whose angle is below a certain 
threshold. The objective of this segmentation is to detect corners and curves 
with high curvatures

 

. For this part we used the algorithm “split and merge” 
presented also in section 3.2.2 to divide every cluster found in the first 
segmentation into small straight lines segments. After, an analysis of the 
slopes corresponding to 2 consecutive segments is performed, if the 
difference between these two slopes is bigger than a certain θ threshold it 
means that a division most be done. This process is showed in figure 3.15. 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3.14 a) Line segments found by the “split and merge algorithm”.  
b) Analysis of slopes between adjacent segments. c) Segments obtained after processing. 

 a) 

)      θ1<θTHR 

 θ2>θTHR 

 θ3<θTHR 
 θ4>θTHR 

 θ5<θTHR 

b) 

c) 
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• FITTING. Each of the obstacles of the second segmentation is adjusted to the 
B-Spline grade 3 that form its control polygons

 
. 

The overview of the process performed over the raw data acquired by the sensor is 
showed in figure 3.15. 
 

  
 

Figure 3.15 Overview of treatment made to the raw data 
 
b) Association of B-Splines 
 
Once the data from the sensor are segmented, a process of data association is 
performed. The first association is crude, and the control points of each segment 
obtained in the segmentation process are compared with the control points in the 
map, using the following criteria:  
 
   
                                                                                                          (3.65) 
 
 
 

i = 1 … nm 

j = 1 … n0 
 

min(dist(Xm,i, Xo,j))≤dmin ,  
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Where Xm,i and X0,j are the control points of the splines, on the map and on the 
predicted position, respectively, nm and n0 are the number of control points of the 
splines on the map and on the predicted position, dist(Xm,i, Xo,j) represents the 
Euclidean distance between the control points, and finally dmin

 

 is the parameter that 
will regulate if  the points are or not related.  

If no spline in the map is close enough to a detected spline in order to be related, 
then this new object is added to the map, once the robot's position has been located. 
By contrast, if a spline is associated with a map’s feature, it is necessary to obtain a 
concordance between its points, as follows:  

 

 

 
Figure 3.16 Curves Concordance. (a) Rough association. (b) Association fine 

 
• One of the ends of the curve is considered point a. 

 
• The point nearest to point a in the spline on the map is considered point b. 

 
• If b is one of the endpoints of the spline on the map, then, the point nearest to 

b in the spline is calculated and named point c, if not, point a is associated with 
point b. 

 
• The process is repeated using the other end of the observed spline as a 

starting point (point d in the figure 3.16b). This point is associated with the 
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point e of the spline on the map. 
 

• Thanks to a property of the B-splines about the possibility of knowing the 
curves’ length, eb and dc segments can be adjusted to have the same length. 
If the difference of the lengths is greater than a threshold lmax

 

, the endpoints of 
the larger curve are eliminated to adjust its size.  

c)  Model of State 
 
As in the localization EKF showed before, the state of the system in any instant k is 
composed by the robot’s position (considered the only moving object in the 
environment) and all the map features represented as cubic B-Splines. Now when 
the splines are expressed as a linear combination of  basis functions B-splines, the 
state of each one of them can be represented by the position of their control points, 
this is possible if we use a fixed knot vector to generate a basis for all the map B-
Spline features. So, referring all positions and orientations to a global reference 
system {uw,vw} and considering that the robot is the first element in the map (F0), the 
following expressions describe the state of the system composed by the robot pose 
Xr , and the position of the control points of every feature in the map represented by 
the vector Xsi 

 
: 

XF0 = Xr = [xr, yr, θr]T

       
                            (3.66) 

XFi = Xsi = [xi,0, . . . , xi,ni , yi,0, . . . , yi,ni ]T

 
    where    i = 1, . . . ,N   (3.67) 

So, the state of the system can be written as follow: 
 

1, , ,
TT T T

r s snX X X X =                            (3.68) 

 
Been N the number of map features and ni

 

 is the number of control points for each 
one of them. As we can see, the number of control points in the map for each spline 
can be variable because they can be extended progressively when new areas of the 
environment are explored. 

The start point for the probabilistic formulation of the estimation problem, is the 
assumption of that the real state of the system in the instant k is unknown, but can be 
model with a Gaussian distribution who has all the information at that moment. 
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ˆ ˆ( , )k k kX N X P−
                               (3.69) 

 
where 
 

1
ˆ ˆ ˆ ˆ[ ]k kr ks ksNX X X X− − − −=                         (3.70) 

And 
 

1

1 1 1 1

1 2

rr rs rsN
k k k
s r s s s sN

k k k
k

sNs sNs sNsN
k k k

P P P
P P P

P

P P P

 
 
 =
 
 
  





   



              (3.71) 

 
d) Model of Observations. 
 
Like in the section 3.2.2, the use of the EKF for the SLAM problem requires a 
mathematical expression that allows us to predict the measurement that we expect to 
get from the robot’s sensor given the robot pose and the current knowledge of the 
environment at that instant.  
 
The model of observation for the case of B-Splines is reduced to find the intersection 
of the straight line that forms every laser beam with the splines contained in the map 
figure 3.17.  
 

 
 

Figure 3.17 Observation model (figure taken from [Pedraza et al. 2007]). The expected 
intersection of each laser beamacross the angular range of the sensor with the map spline is 

computed expressing the map spline (a) in the {up , vp} reference frame (b). 
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However, to calculate this intersection with a parametric curve in the form 

( ) ( ), ( )
T

x ys t s t s t =  
 

 

is not convenient for an explicit mathematical formulation. Given 

that disadvantage, we use a two steps process that is used iteratively. In first place 
we apply the property of Affine Invariance which says that when we want to apply an 
affine transformation to a B-spline curve we can apply the transformation to control 
points, which is quite easy, and once the transformed control points are obtained the 
transformed B-spline curve is the one defined by these new points. Therefore, we do 
not have to transform the curve. Next we use the Newton–Raphson method for 
calculating the roots of a function. 

To begin, we have to define an orthonormal reference frame {up , vp} centered in the 
robot reference frame {ur , vr

( ) (   ,   ,  ) i i rs x x x t

},  which is defined by the direction and orientation of the 
sensor beam (Figure 3.17 show one random sensor beam and its intersection with a 

spline curve). Next, we take as the position vector that crosses one 

curve referred in such system. In this way, the relation between the control points 
  [  , ]  T

i i ix x y=    [  ,   ]  T
i i ix x y=and is defined as: 

 
cos sin
sin cos

p pi i r

p pi i r

x x x
y y y

µ µ
µ µ

−    
=     − −    

                 (3.72)             

 
Where μp

 

 is the angle of the considered laser beam in the global reference system. It 
means that, given the orientation of the laser beam in the frame of the robot, τ, we 
have: 

p r   µ θ τ= +                                (3.73) 

                     
In this context, the measurement prediction ( )ˆ    ,   p i rz h x x=  is given by the value of 

( ) (   ,    ,  *)x i i rs x x x t , with t* as the value of the parameter t that makes 

( ) (   ,    ,  *)  0y i i rs y x x t = . Considering that just a small group of k control points 

affect the form of the curve for every value of the parameter t, only these points need 
to be rotated and transferred to the new reference system. 
 
As we can see at this point we don’t have an explicit observation model, but even 
with this absence it is possible to compute (in an approximate way) the derivatives 
with respect to the state of the robot and of the elements in the map. Once calculated 
the value t* who gives  ( *)  0ys t = and assuming small perturbations in the state 
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vector, the expected measurement in the proximity to this parameter location can be 
approximated by the following analytical expression: 
 

( )
( )

y i i r

y i i r

s  (y  x  ,  x   ,  t*) 
( , ) ( , ),

s ' (y  x  ,  x   ,  t*) i r x i i rh x x s x x x t
 

= ∗−  
 

     (3.74) 

 
To obtain this result it is assumed that with minor variations in the state of the 
system, the behavior of the spline near to the work point t* can be approximated 
linearly for the tangent to the curve in that point. Now the following clarifications 
should be made: 
 

• It has been pointed out explicitly the dependency functional between the 
measure expected and the state of the system in a given instant k. So, the 
expected measure comes given by the next relation 
 

( , )j Rz h x x=                                     (3.75) 

 
• The measure expected in front of smalls variations of the state comes given by 

the value of the coordinate x of the curve in the frame {up,vp

t⊕
} (figure 3.17) 

evaluated in the point where the coordinate y is annulled. Calling   to this 

new parameter that verifies ( ) 0ys t⊕ =  we can write: 

 
( , ) ( , )i r x ih x x s x t⊕=                       (3.76) 

  
• The position of the control points that defines the curve expressed in the frame 

bound to the position defined by the laser beam of the sensor, depends, on 
the positions of the control points in the global frame and also on the position 
and orientation of the robot (3.72). 

  
• Finally, the parameter that annuls the coordinate y in the curve on the frame 

{up,vp

 

}can be calculated doing only one iteration of Newton-Rapson near to the 
solution value for the work point t*: 

( ( , ), *)
*

'( ( , ), *)
y i i r

y i i r

s y x x t
t t

s y x x t
⊕ = −                         (3.77) 

 
All these results allows us to obtain the expression (3.74).  
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Deriving (4.17) with respect to the position points on the global frame that define the 
curve, we have the following: 
 

( ) ( )

( ) 2

'
* ' *

x x'( *)
x x ' *

y yi i
y y

x i i i i i
x

i i i y

s sy ys t s t
s x y yh s t
x s t

∂ ∂∂ ∂
−

∂ ∂ ∂ ∂ ∂ ∂∂
= +

∂ ∂ ∂   
   (3.78) 

 
Considering that the coordinate y is zero  ( )* 0ys t =  on the frame {uL,vL

 

}: 

( )
'( *)

x x ' * x
yx i x i

i i i y i i

ss x s t yh
x s t y

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂
                    (3.79) 

 
In figure 3.17 we can see that the slope of the spline in this same frame is been left 
expressed in function of the angles η and μ  
 

( )
'( *) 1
' * tan( )

s tx
s ty η µ

=
−

                          (3.80) 

 
So, we have: 
 

1
x x tan( ) x

yx i i

i i i i i

ss x yh
x yη µ

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ − ∂ ∂
               (3.81) 

       
Now, with the equation (3.58) we can see: 
 

, ( )yx
i p

i i

ss N t
x y

∂∂
= =

∂ ∂
                         (3.82) 

  
And from (3.72) we have: 
 

cos( )
x

i

i

x µ∂
=

∂
                             (3.83) 

sin( )
y

i

i

x µ∂
=

∂
                              (3.84) 
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sin( )
x

i

i

y µ∂
= −

∂
                           (3.85) 

cos( )
y

i

i

y µ∂
=

∂
                             (3.86) 

 
So, we can write: 
 

,
sin( *) cos

tan( )i p
i

h N t
x

µµ
η µ

 ∂
= + ∂ − 

                  (3.87) 

 
 

,
cos( *) sin

tan( )i p
i

h N t
y

µµ
η µ

 ∂
= + ∂ − 

                   (3.88) 

 
Those, as we have already said are the derivatives of the observation model with 
respect to the control point’s positions that define the spline in the map. 
 

In a similar way and using the property of splines who says ,
0

( ) 1
n

i p
i

N t
=

=∑  and the 

ecuations (3.58) and (3.72), we can calculate the partial derivatives of the measure 
with respect to the robot’s position. 

  

( )

( ) ,

'( *)
x ' * x

'( *)cos sin ( *)
' *

sincos
tan( )

yx i x i

r i r y i r

x
i p

y

ss x s t yh
x x s t y

s t N t
s t

µ µ

µµ
η µ

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂

 
= − − 
  

= − −
−

∑ ∑

∑
      

       (3.89) 

 

  
 

( )

( ) ,

'( *)
y y ' * y

'( *)sin cos ( *)
' *

cossin
tan( )

yx i x i

r i r y i r

x
i p

y

ss x s t yh
x s t y

s t N t
s t

µ µ

µµ
η µ

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂

 
= − − 
  

= − +
−

∑ ∑

∑
    

         (3.90)
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( )

, ,

'( *)
θ θ ' * θ

1( *) ( *)
tan( )

ˆ
tan( )

yx i x i

r i r y i r

i p i i p i

ss x s t yh
x s t y

N t y N t x

z
η µ

η µ

∂∂ ∂ ∂∂
= −
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= +
−

=
−

∑ ∑

∑ ∑
 
        (3.91)

 

 
These formulas will be used to make the efficient calculation of the relevant 
Jacobians in the following sections. 
 
3.3.3 Application of EKF with B-Splines to robot localization 
 
In this section, all the methods and equations obtained in section 3.3.2 will be 
combined in the frame of the EKF algorithm presented in figure 3.6 which will allow 
us to build incrementally the map of the environment where the features are 
described as cubic B-Splines. 
 
a) Prediction 
 
As in section 3.2.2 the prediction step gives the relative movement of the robot 
between the times k-1 and k (Figure 3.18a). So, knowing that we are working in a non 
dynamic environment (i.e. the robot is the only moving object), the a priori estimation 
at the time k of the state is given by (3.28) 
 

( )ˆ ˆ ,  ,  0 1kX f X uk k
− = −  

 
where f is the motion model of our differential robot. Also its covariance is calculated 
using (3.15). 
 

 1      T T
k k k k k k kP A P A W Q W−

− +=  

 
The Jacobian matrices are calculated exactly as in (3.25) and (3.26) 
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∂ 
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               (3.92) 

 

1

k

ˆ

0

0

( , )k k

k

f uX
u

W

−
 ∂
 ∂ 
 =
 
 
  



                       (3.91) 

                                                                                                                            
b) Update 
 
Once obtained the measure awaited for every one of the laser positions along of his 
angular range, the covariance matrix of the innovation of the measure comes given 
by  (3.42): 
 

k k k kS   H  P   H   V R VT T
k k k
−= +  

 
where Rk is the sensor covariance matrix and the Jacobian Hk  

 

has the following 
expresion:  

      0     0       0     0k
r si

h hH
X X

 ∂ ∂
=  ∂ ∂ 

                     (3.92) 

 

where the term 
r

h
X
∂
∂

  can be calculated making use of  (3.89),( 3.90) and (3.91), and 

the term 
r

h
X
∂
∂

  from (3.87) and (3.88). The gain matrix then is calculated as in (3.43): 

1     T
k k k kK P H S− −=  

 
Finally, the state estimation and its covariance are updated (Figure 3.18b), equations 
(3.44) and (3.45). 
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ˆ ˆ( ( , )ˆ 0)k k k k kX K Z h XX − −= + −  

 

( )   –     k k k kP I K H P−=  
 
 
Where the term ˆ( ,0)k kz h X −−  represents the innovation: 

 
ˆ( ,0)k k kv h Xz −= −                              (3.93) 

 

 
 

Figure 3.18 EKF. a) Configuration after the prediction of the EKF. 
b) Configuration after the update of the EKF. 

 
3.3.4 Extension of the map 
 
This is done also by the function UPDATE in the SRT algorithm (figure 3.2 lines 5). 
Here the stochastic map is incrementally built according to two mechanisms good 
differentiated: 
 

• Add new objects. With this mechanism, the objects detected by the robot’s 
sensors, that has not been associated with any of the objects in the map, are 
initialized inside the vector of state of the system, but besides of this extension 
also is necessary to extend the covariance matrix to include the new 
stochastic information. 
 

• Extend the objects in the map. When one object detected by the robot is 
associated partially with one or more objects in the map, is possible to extend 
this last ones with the new information acquired. 
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a) Adding new objects 
 
When a new observation is not associated to any of the curves in the map, these can 
be considered as new objects, and the splines that define their geometry must be 
added to the model. It means that the control point that forms the spline will be added 
to the vector of state of the system. Then, given the set of measures 

{ }  ,  , ,   iz z i p p q= = +  obtained for the laser angular positions in the robot 

reference frame corresponding to the new feature FN+1 

 

and the N static features 
already stored in the map, the state vector, the state vector is augmented as follow: 

( )
( )

a

1 sN  1 r

   g X,  Z  , 1,...,
 g  ,  z

a
r r
a
si si
a
sN

X X
X X X i N

X X+ +

 =
= ⇔ = =
 =

      (3.94) 

  
The state of the robot as the N features in the map won’t be modified by the fact of to 
add new elements to him. In the other hand the state of the new element is given by 
the position of the control point of the curve that represents it, calculated as a 
function of the state of robot Xr and of the vector of measures acquires z. So, in the 
equation (3.94) the function gsN + 1 (Xr

 

 , z) is the fitting function of the q+1 new data 
points obtained by the sensor, presented in section 3.3.1. In this way, we can obtain 
the control points of the new feature as a linear function of the data points and the 
robot pose: 
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Where Φ is the pseudoinverse of the placement matrix. 
  
Like for the classic EKF in equation (3.49), the new covariance matrix for the 
augmented state vector is 
 

       a a aT a aT
x k x z k zP J P J J R J= +                 (3.97) 
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Where R is as we have said, the covariance matrix of the laser measures, and with 

the Jacobians a
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With 
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         (3.100) 

 
This way, it is possible to obtain the state vector augmented of the system after the 
inclusion of the new object as function of the state of the system not augmented (but 
corrected after the update of the EKF) and of the measures obtained by the laser for 
this new object. 
 
b) Extend the objects in the map 
 
In the most frequent case, the observations obtained will be associated only partially 
with some feature in the map, we can see this phenomenon in the figure 3.19a where 
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the jth feature in the map xm,j is partially associated with the observation xo,0 and xm,j+1 

with x
 

o,1 

 

 
 

Figure 3.19 Extension of a spline with new data. a) Curve in the map with the m+1 measures 
corresponding to the new zone detected. The red squares represent the beginning and the end 

of the association between the map and the observed curve. The blue squares indicate the 
positions of the knots over the curve. b) Curve after his extension, we can see the need of 

extend the knot vector for the new information . 
 

This situation indicates that a new area unexplored of one object in the map is been 
detected by the sensor of the robot and accordingly this new set of m+1 data points 
unassociated must be integrated into the map. Figure 3.19a.  
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          (3.101) 
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The state vector resulting of the extension of the jth

 
 object will be obtained as follow:  

( )e
e

:

   g  ,  Z  ,
( , , )

e
r r
e
si si
e e
si sj r j q q m

X X
X X X X i j

X g X X Z +

 =
= ⇔ = ∀ ≠
 =

     (3.102) 

 
This means that only the curve in the map to be extended is modified while the rest 
remains unchanged.  
 
In function :( , , )e

sj r j q q mg X X Z +  in (3.102), rX is the position and orientation of the robot, 

jX  are the control points of the jth 
:q q mZ +feature in the map, and  are the sensor 

measures corresponding to the new surface detected. This function is calculated 
following a similar scheme to the one used in the data fitting section but considering 
the following:  
 

• Already exists a start decryption represented by the segment known. 
 

• That will be necessaries to modify the original knot vector extending the range 
of the independent parameter so that the new information can be added in the 
resultant curve. 

 
• That the new information will be added establishing a new parameterization 

for the new points congruent with the parameterization of the existing curve. 
 

At this point, with the new set of measured data points, and using the extension 
algorithm for B-Splines presented by Hu et al. [Hu et al. 2002] and the scheme 
showed before we can make the extension. 

 
So, given the clamped knot vector that defines a spline curve of order k with Xi

 

 
control points: 

0 1 1: k k n n n k

k k

ξ ξ ξ ξ ξ ξ− + +Ξ = = ≤ ≤ ≤ ≤ = =  

 

     (3.103) 

 
We will use the extension algorithm for B-Splines [Hu et al. 2002] to find another 
curve geometrically equivalent but defined  by a knot vector unclamped (3.3.1). For 
simplicity we will say “left unclamped” when the multiplicity of the first elements of the 
knot vector is reduced: 
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0 1 1:l k k n n n k

k

ξ ξ ξ ξ ξ ξ− + +Ξ ≤ ≤ ≤ ≤ ≤ ≤ = =  



     (3.104) 

 
and “right unclamped” when this is done in the k final elements of the knot vector: 
 

0 1 1:r k k n n n k

k

ξ ξ ξ ξ ξ ξ− + +Ξ = = ≤ ≤ ≤ ≤ ≤ ≤  



    (3.105) 

 
With Li and Ri

 

, i=0,…,n  as the new control points obtained from (3.104) and (3.105) 
respectively. 

 
So, the “right-unclamped” algorithm used in [Pedraza et al. 2009] for the particular 
case of cubic B-Splines that converts (3.103) into (3.105) and obtains the new Ri 

 
control points is: 
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In a similar way, for the “left-unclamped” we have: 
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Where 
 

1

1

j k i k
i

i k j i k

ξ ξδ
ξ ξ

− +

+ − − +

−
=

−
 and 1 j

j i
i j

i

δψ
δ
−

=            (3.109) 

 
With these equations and the methodology presented in section 3.3.1, now is easy to 
extend any feature in the map when new measures of unknown areas are 
discovered. However, some considerations most be done: 
 

• One parameterization most be established for achieve a consistency between 
the new data point and the spline over which the integration will be done. This 
information is obtained from the previous stage of data association. 
 

• The knot vector most be unclamped but also may be he has to be extended 
with extra knots for the new data points that will be added to the existing 
feature. Finally, the knot vector for the curve extended has to be a clamped 
knot vector. 

 
In this way, the system of equations (3.59) is written for the new data, extended using 
the equations (3.106), (3.107), (3.108) and (3.109) when necessary, and its least 
squares solution give a lineal relation in matrix form between the original control 

points jX  idand the new data  

  

as: 
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      (3.110) 

 
With  e

jX as the new control points of the extended spline. 

 
Notice that once chosen the knot vector unclamped for the spline, the eΦ matrix of 
extension can be considered constant. So, the new covariance matrix after extend 
the jth

 
 spline can be obtained using (3.97) as follow: 
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3.4 Conclusion 
 
In this chapter we have showed the development of some existing tools in order to 
combine them and to obtain an SPLAM algorithm. Although these techniques are 
appropriated and allow us to perform a full exploration over environments without a 
specified geometry (for the case of representation of environments using B-Splines), 
there are some problems found in them can affect the approach. These problems 
are: 
 

• For the method of deliberative exploration, we find that the stop criterion used 
in which once the robot has reached a position where it cannot explore more, 
it has to go back to parent nodes in the tree structure to search for new 
unexplored regions, ending when the root of the tree is revisited and no 
unexplored zone is found in this position. This means that no frontier control is 
perform and therefore once the method chooses a new frontier to explore in a 
position qk 

 

, the robot will travel to it without knowing if more areas in this 
position can be explored until the process of automatic backward movement of 
the method will bring it back to this position to verify. With the previous we 
infer that the robot will travel in unnecessary way looking for positions where it 
could continue exploring in zones that it has already visited. 

• Another problem with the method SRT is the tree structure that uses. This 
does not allows to perform an optimized navigation; i.e., if during the creation 
of a branch the robot close a loop with the root of the tree and the robot has to 
return to it, the method does not allow just travel from the last position to the 
root, instead it has to go all over the branch looking for new zones to explore 
over it.  
 

• With respect to the SLAM method based on the extended Kalman filter, the 
main problem is the computational cost that grows quadratically with the 
number of objects contained in the map. For this reason its application is 
limited to maps formed by only a few hundred of objects. 
 

• On the other hand, SLAM is a nonlinear problem so applying the EKF has the 
limitation of reducing the accuracy and consistency due to the effect that the 
linearizations have on estimates of the robot and hence over the map 
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Chapter 4. Topologic-SPLAM 
Algorithm 

 
 

In chapter 3 we have show an approach for the SPLAM problem using some well 
known tools both in the field of SLAM as in the field of exploration environments. 
Although these algorithms have shown good performance, some problems found in 
them can provide negative effect to the proposed solution. This reason has 
encouraged the development of new strategies and process that can improve the 
performance of our SPLAM strategy. Between them we can mention: 

 
• A Random Exploration Graph (REG). It is a modified version of the 

algorithm of exploration SRT. Here, we include a frontier control to carry a 
registry over the nodes that have not been fully explored. So, every time 
that the robot goes to new frontiers to explore, the frontiers in the 
neighbors nodes are updated in the registry and in the case that some 
node is reported as fully explored, it is removed from the registry. 
 
 Another modification of the SRT method is presented when two nodes 
without relationship (they are not father and son) are found with their 
regions of local security intersected, the structure of the method is then 
transformed to a graph adding a connection between these two nodes.  
 
The graph structure, next to the frontier control, will allow a more efficient 
exploration given that the robot knows exactly where to go to continue the 
exploration. It will be also able to navigate optimally between two nodes of 
the structure without having to pass through the root node when a change 
of branch is necessary. 
 

• A topologic SLAM Approach. We present also a new method of 
topologic SLAM based on B-Splines curves that exploits the structure used 
by the exploration method but also all the information contained in this 
kind of representation. 

  



Chapter 4. Topologic-SPLAM Algorithm 

108 
 

4.1 The Random exploration graph approach 
 
Franchi et al present in [Franchi et al. 2009] a modified version of their SRT 
algorithm in which the tree structure is transformed to an exploration graph when a 
path to travel between two nodes in a safe way is found. Although our approach 
performs a restructuration of the tree in a similar way, the process of exploration is 
completely different.  
 
Remembering the process performed by the method SRT, our approach is based 
also on the random choice of one of the free frontiers in the current node to continue 
the exploration. On the contrary, in [Franchi et al. 2009] the choice of the next 
position to explore is chosen using a probability proportional to the arc length of the 
frontier. The choice of random frontiers in our work was taken considering the 
property of completeness for the exploration methods, because no matter what 
frontier is chosen the method will have to return to explore the remaining free 
frontiers of the node as long as they exist. 
  
Another important aspect of the method is the way in which the nodes with free 
frontiers will be revisited once that the node where the robot is currently found 
doesn’t have any more free frontiers (the region has been fully explored). For this 
case, the method of Franchi et al. builds minimum spanning trees with all the nodes 
in the graph for each node adjacent to the current node without regard this last one. 
To the end, the tree of the node adjacent with the greatest weighted forward frontier 
length is chosen. This process may require too much computation time if the number 
of adjacent nodes and the number of nodes that form the environment built until that 
moment are too high. Finally, the tree structure generates a discontinuous path that 
forces the robot to go through the parent nodes if a change of branch is necessary 
ignoring again the new structure. 
 
Contrary to the method described above, the approach presented in this section fully 
exploits the use of graph structure to plan a path toward nodes that have not been 
fully explored once the robot is in a position where it can no longer continue with the 
exploration.  
 
For this planning can take place is necessary prior knowledge of these nodes. To this 
end a border control (Figure 4.1) will be performed as follows: if once chosen the 
random frontier of the current node qcurr on which the exploration will continue (as 
indicates the method SRT that is used as base) there are more unexplored frontiers 



Chapter 4. Topologic-SPLAM Algorithm 

109 
 

in it (Figure 4.1a), the qcurr

 

 node along with information on the number of remaining 
frontiers to explore and their arc length will be added to a list that will be used to plan 
a path to these nodes to continue the exploration (Figure 4.1b).  

With this list obtained, the planning will be done using the method of path planning A* 
in a bidirectional way planning the path from the current node towards the nodes in 
the list and in the other side from the nodes in the list toward the current node ending 
when a path between the current node and any of the nodes in the list is found. In 
this way and unlike to the method of Franchi et al. the planning won’t be perform 
using all the nodes in the graph and what is looked is the path towards the node with 
possibility of exploration with the shortest distance. 
 
 

 

 
Figure 4.1 Frontier control. a) Environment semi explored where the red arcs represent free 

frontiers and the green arc is the next frontier chosen at the qcurr

 

 position to be explored. 
Yellow region represent the global security region (GSR) at that time. b) List of nodes not fully 

explored 

4.1.1 Random exploration graph algorithm 
 
As we have already said, the method of exploration proposed is an extension of the 
SRT exploration method in its radial version [Espinoza et al. 2007] presented in 
section 3.1 where the main structure is transformed into an exploration graph if in any 
position qK the local safe region (LSR) of the current node intersects the LSR of some 
previous node that is not its parent node and provided that it is possible to find a 
collision-free path between the positions qk and qi 

 
of these nodes (figure 4.3).  

As in the SRT, in our method the graph represents the road map of the explored area 
and is gradually built   extending the structure towards borders selected randomly in 

a) b) 
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such way that the new configuration (and the path that leads to it) is contained in the 
local safe region. Each node of the graph consists of a free-collision configuration q 
that the robot has reached together along with the description of the local safe region 
S surrounding q perceived by the sensors. Moreover, an arc between two nodes 
represents a free-collision path. 
 
In figure 4.2, we show the algorithm that implements the exploration method 
proposed. The approach is based on a frontier control that will indicate what nodes 
can continue being explored once the robot arrive to a position where it is not 
possible to continue extending the structure. For this, we start a counter that will be 
used as identifier to indicate the sequential position in which each node has been 
built. Next, the list that will contain these identifiers is initialized as an empty list. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.2 REG algorithm 

 
INTEGRATED_REG_EXPLORATION (qinit, kmax) 

1.   Node_Ag = 0 
2.    qact = qinit 
3.    L_Nodes_Ex = Null 
4.    S←PERCEPTION(qact) 
5.    for k=1 to kmax 
6  S← INTERSECTION_ACT(G,S,qact,L_Nodes_Ex) 
7 F←FRONTIERS(S) 
8 if   F ≠ Null 
9 Node_Ag= Node_Ag+1 
10 (Frand,θrand)←FRONT_RAND(F) 
11 F←REMOVE(F , Frand) 
12 qdest←DISPLACE(qact , θrand ,α , r) 
13 MOVE_TO(qact , qdest) 
14 Sdest←  PERCEPTION(qdest ) 
15 Frand←VERIFICATION( Frand , Sdest) 
16 F←F∪  Frand 
17 if   F ≠ Null 
18  L_Nodes_Ex = L_Nodes_Ex∪  Node_Ag 
19 end 
20 G←ADD(G, Node_Ag , qact , S, F) 
21 qact = qdest 
22 S = Sdest 
23 else   
24 (P, Ind_Node)←FIND_PATH(qact, L_Nodes_Ex) 
25 for i = 1 to length(P) 
26  MOVE_TO( qact , P(i) ) 
27  qact←  P(i) 
28 end 
29 L_Nodes_Ex ←REMOVE(L_Nodes_Ex , Ind_Node) 
30 end 
31.  end 
32.  Return ( G ) 
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The initial node referred like the departure and return point is built adding the initial 
position qinit

 

 and performing a first reading of the environment around this position. 
Although it has been created, the node is still not added to the graph because this 
should not be taken into account when looking for possible connections with 
neighboring nodes. At this point and with the elements mentioned built, the loop that 
controls all the process starts.  

In every iteration k of the algorithm a process of verification is made over all the 
neighboring nodes of the qcurr

 
 position where two objectives are pursued.  

• The first objective is to verifier what sections of the free-frontier of 
these nodes are within the current LSR. If it is possible to find these free 
frontiers intersecting the current LSR the node to which it corresponds 
is updated removing the frontier or segment of border of it and of the 
current node; if with this action the node is pointed as fully explored, the 
list of nodes to be explored is also updated by removing the identifier of 
the node from it.  
 

• The second objective is to identify if between the intersected frontiers 
of the neighboring nodes with the current node is possible to find a safe 
path to travel between them. The criterion to ensure a collision-free path 
is that the straight line joining the two nodes must cross free frontiers in 
both nodes with a range of security to the left and right of the point over 
the frontiers where the straight line pass (Figure 4.3). If the looked path 
is found, an arc between these two nodes will be added to the structure.  

 

The Function INTERSECTION_ACT performs the mentioned verifications. This 
function takes as parameters the graph constructed so far, the qcurr

 

 position, the LSR 
of the current node and the node list with possibility of exploration. The outputs of the 
function are the graph, the current LSR and the update list of nodes with possibility of 
exploration. 

 
 
 



Chapter 4. Topologic-SPLAM Algorithm 

112 
 

 
 
Figure 4.3 Connection between nodes, the red, green and blue triangles represent positions of 
robot, in gray are shown the RSL of each node, the frontiers are shown in blue color and the 
intersections between the LSR are shown in yellow color. a) Connections (q1,q2) and (q2,q3) 

possible since there is a direct path between the positions (dotted green line) and a range of 
security (green double-headed arrow) both the left and the right side of the point where the 

path passes over the frontier (white dots). b) Connections (q1,q2) and (q2,q3) possible but not 
for (q1,q3) because although there is a direct path between the positions (dotted red line) the 
requirement for a safety range for the left and right (red double-headed arrow) of the point 

where the path passes over the frontier (white dots) is not achieved. c) Connections (q1,q2) , 
(q2,q3) y (q1,q3) possible. 

 
Once performed the verification and update (if necessary) of the structures, the 
function FRONTIERS will obtain the remaining free frontiers F of the LSR. If at least 
one free frontier is found, the function FRONT_RAND will randomly choose one of 
them and the middle point of the arc length of the chosen frontier will be the new 
random direction θrand to visit as long as the arc length of the chosen frontier does not 
exceed a certain threshold chosen proportional to the distance that the new LSR can 
cover. Otherwise it will be chosen the frontier segment proportional to the arc length 
that can be covered starting on the initial extreme of the frontier from which the 
middle point of this segment will be taken as the direction to explore θrand. This is 
done because we do not want to leave two frontiers to explore in opposite sides of 
the LSR if the current frontier segment to explore is too big.  
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Unlike the SRT method, our approach does not require a validation function to verify 
that the new chosen direction is not within the LSR of some other node because the 
frontier control performed removes frontiers contained in other nodes (function 
INTERSECTION_ACT) and also because  each node stores separately frontiers 
corresponding to obstacles and free frontiers. The random frontier chosen is then 
eliminated of the group of free frontiers found with the function FRONTIERS since by 
now is not longer considered free. 
 
Once that the random direction has been chosen, the function DISPLACEMENT will 
get the new position qdest to be visited giving one step of length α·r in the direction 
θrand

 

 where the constant r represents the radio of the LSR. The constant α<1 in turn 
ensures that is inside of the LSR and that can be achieved through a path contained 
in it; values close to 1 maximize the exploration but also increase the probability of a 
collision with objects that have not been detected yet, on the other hand values close 
to zero augment the margin of safety but it can result in a very slow exploration 
process. In our case we have chosen a 75% of the length of the radius to find the 
new position to explore.   

With the new target position qdest

 

 calculated, the function MOVE-TO will carry the 
robot from the current position to the new target position. The process is performed in 
the same way that in section 3.1 taking a list of control inputs (list_U) and choosing 
the one that best approximates the robot from the current position to the target 
position. The process will be repeated until the current position and the target 
position have a distance not greater than a threshold Ψ. In this function as in its 
counterpart of section 3.1 we will use the reported information about the increases in 
x,y and θ between the previous localized position and the current odometric position 
as well as the information of the LSR to estimate the real position of the robot  using 
the proposed topological localization method that will be presented in section 4.2. 

Once the robot has reached the target position, a new process of perception is 
perform to estimate the surrounding space Sdest of this new position. With this 
information, the function VERIFIES estimate what portion of the previous frontier Frand 

 

chosen by FRONT_RAND has been covered. In the case where the frontier has not 
been 100% covered, the function will return the remaining portion of frontier to 
explore and this will be joined to the frontiers group F of the previous node that must 
be explored.  
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The reason to obtain the new LSR as well as the frontier verification is performed at 
this point, is because the position qdest is never fully achieved but approximated to a 
certain threshold distance, then if calculations to verify if the frontier has been fully 
explored were performed immediately after having obtained the position qdest

 

 these 
would have a position error and therefore would be inaccurate (Figure 4.4).   

 

 
 

 
Figure 4.4 Explored frontier calculation based on the position of the robot qi and in the 

estimated target position qdest. The red dot represents the target position qdest, the green and 
blue triangle represents the position qi-1 and the position qi approximated to the position qdest 
respectively. The green circumference represents the frontier of the LSR on the position qi-1, 

the blue circumference in continuous line represents the frontier of the LSR on the position qi, 
the blue circumference in dotted line represents the estimated frontier of the LSR in the 
estimated position qdest. The gray shading zone represents the LSRs of the qi-1, qi and qdest 

positions. a) The frontier segment in red represents the portion of real frontier that has been 
explored since the robot only approaches the position qdest but cannot reach it exactly. b) The 

yellow line shows the estimated frontier segment explored from the target position qdest

 
. 

Obtained the information about the remaining free frontiers of the previous node the 
method classifies the node as a node with possibility of exploring whether there are 
still free frontiers, in this case the head of the node is added to the list of nodes to be 
explored. 
 
Finally the node is added to the structure of the graph and the curves in the map will 
be extended with the new information (as will be shown in section 4.) using the 

a) b) 
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function ADD and the loop begins again now using the information qdest and Sdest as 
qact

 
 and S.  

Typically when the space has been fully explored the algorithm will fail to find a 
frontier to explore. In this case, the exploration must continue in any of the nodes 
stored in the node list with possibility of exploration in case they exist, otherwise the 
method ends and the robot will return to the initial node. The search for the next node 
to explore is performed using the graph-search algorithm A* in a bidirectional way.  
 
The method A* evaluates the nodes by combining the cost to reach a node and the 
estimated cost of going to the goal node: 
 

f*(n) = g(n) + h(n)                            (4.1) 
 

Since g(n) gives the cost of the path from start node to node n, and h(n) is the 
estimated cost of cheapest path from n to the objective,  f*(n) represents the 
cheapest estimated cost of the solution through n.  
 
The bidirectional use of this algorithm implies to extend the path both from the initial 
position and from the wished position leading the search always towards the final 
position reached by the opposite side and ending when both paths are in the same 
node (Figure 4.5).  
 
This strategy is not used individually, it is used simultaneously with all the nodes 
contained in the list and stopped when a path is found; this procedure is performed 
by the function FIND-PATH. The reason to seek individual paths from the current 
position to all the nodes and not use simply an Euclidean distance to go to the 
nearest node that is the aim, is that due to dead rooms and other structures the 
distance to a node may seem small, however the path to reach it could be too 
extensive.  
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Figure 4.5 Evolution of the bidirectional A * algorithm. a) Environment explored where the 
green robot represent the initial position, the red asterisks represent nodes with possibility of 

exploration with its free frontiers in green, the orange robot represents the current position 
qcurr that has been fully explored, the shaded part represents the free space explored and the 
blue circumferences are the LSR frontiers of each node. b) Evolution of the A * algorithm in 

t=1; the paths are extended simultaneously from qcurr toward the last node in the path partially 
built that comes from the nodes that still have free frontiers and vice versa. b) The algorithm 

finishes when a path between qcurr

 

 and some node with free frontier is found (path contained in 
the yellow region). 

Obtained the trajectory P, the method MOVE_TO will lead the robot from the current 
node to the node where the exploration will be continued. Finally, the index of the 
chosen node from which the exploration will continue is eliminated of the list of nodes 
with possibility of exploration. With the new node to explore the method will continue 
making the same process described in the algorithm until no more frontiers remains 
to explore being in this moment when the robot returns to the initial node of the graph 
ending the exploration. 
 

4.2 Topologic SLAM with B-Splines 
 
Although the SLAM strategies based on the Kalman filter have shown good results, 
some problems are found such as the inevitable inconsistency and accuracy 
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reduction in the estimation of the system state due to the effect that linearizations 
produce on the estimates of the robot and the map.  
 
Another problem found in the implementations of the filter is the computational cost 
required by the method that by being squared with the number of items in the map its 
application is limited to maps that contain a limited number of them.  
 
Although many works have emerged to solve these problems, we have decided to 
develop a new topological strategy partially based on the use of subregions 
contained in each node of the exploration method (section 4.1) and in B-Spline 
curves for the modeling of the obstacles. The lack of a covariance matrix and the use 
of limited regions of the environment allow that the SLAM problem be easily attacked 
even for very large environments in real time. 
 
In this section we present the reasoning, concepts and algorithms needed that allow 
the map construction where the entities that form it will be modeled by B-spline 
curves. 
 
4.2.1 Data management  
 
Given that our method is based on the use of B-Splines to the representation of the 
environment, in this section we will explain how we perform the interpretation of data 
coming from the sensor to obtain the parametric splines that represents the physical 
world surrounding the robot as well as the data association process to establish 
correspondences between the detected splines and the splines contained in the map. 
 
a) Acquisition 
 

of the B-Splines 

When the robot gets a new set of measures of its environment through its perception 
system, the surrounding world is just a set of points 2

ip ∈ℜ  (considering in our case 

only a two-dimensional scenario) meaningless linked to each other only by the logic 
of the ordination provided by the scanning sensor (Figure 4.6). With these raw data, 
the first objective is to clearly identify to what object each one of the measurements 
belongs grouping them into subsets to finally get the B-spline curves that represent 
the portions of the detected objects as close as is possible. 
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Figure 4.6 Measurements obtained with a laser scanning  
 
As in section 3.3.2, the segmentation of the raw data will be performed using 
adaptive cluster method proposed by Dietmayer from which we will obtain 
measurements subgroups belonging to different objects. It is important to highlight at 
this point that unlike the method of Pedraza et al [Pedraza et al. 2009] recreated in 
Chapter 3, in our method the information obtained by the sensors is segmented just 
once to get groups of points belonging to the same object and not twice as is 
proposed by the authors in [Pedraza et al. 2009]. This because we have used 
methods from the area of digital images and artificial intelligence where high 
curvatures provide valuable information needed to perform a more efficient data 
association. 
 
Once obtained the subsets or clusters, the measurements corresponding to each one 
of the detected objects will be approximated using unclamped B-spline curves of 
degree 3 as we have mentioned in section 3.3.1. Recall that to fit measurement 
points with B-Splines helps to reduce the noise contained in them. The choice of 
using unclamped B-Splines is because the use of clamped B-Splines would force 
to the extreme of the curve to pass directly from the start and end points of the set of 
noisy points that form it, obtaining a less accurate representation of the object that we 
are trying to model and therefore more difficult to associate (Figure 3.13). 
 
Although the unclamped B-spline significantly reduce the noise in the measurements 
provoked by errors of the measurement system itself; one last smoothing of the curve 
must be performed using a Gaussian filter to guarantee that the process will not be 
affected by false information. For this, an evolved version σΓ  of the curve Γ  can be 

processed: 
 

{ ( , ), ( , )}x u y uσ σ σΓ =                           (4.2) 
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Where 
 

( , ) ( ) ( , ), ( , ) ( ) ( , )x u x u g u y u y u g uσ σ σ σ= ⊗ = ⊗    (4.3) 

 
Here, ⊗ represents the convolution operator and ( , )g u σ  denotes a Gaussian filter of 

widthσ . This last is chosen in such way that only eliminates the noise but not 
valuable information on the curve so the value will be very low. Since our project 
works normally with open curves, a certain number of points proportional to the 
double of the Full width at half maximum (FWHM) for a Gaussian are symmetrically 
compensated at both extremes of the curve when it is smoothed. 
 
Finally, in order that the localization process can run effectively, the invariability in the 
resolution of the curve must be assured. So, each discrete B-spline curve should be 
stored taking equidistant points on it with a distance ε between each point: 
 

( ( ) , ( 1) )p pd ist N u X N u X ε+ ≅∑ ∑         (4.4) 

 
Where ( )pN u X∑  is the recursive formula Cox-de-Boor to obtain a curve B-Spline 

presented in the section 3.3.1. Of the previous we obtain a parametric vector 
containing the B-spline, where the parameter u represents a point on the curve. 
 
In addition, a restriction over the length of the curve is applied because objects too 
small may not provide enough information and therefore it is not interesting to include 
them to the map. Also, although our method is designed to work in static 
environments, this restriction allows in some way to filter dynamic items (people par 
example) that will not be included in the map. 
 
Once the B-Splines have been obtained and chosen, we can search specific feature 
contained in the curves that will be of great importance in the localization process. 
Essentially, two types of features will be searched in the curves: 
 

• Curvature Zero crossings 
 

• Corners 
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The Corner type is very common and does not require explanation. On the other 
hand, the concept of Curvature zero crossings in a very general way refers to the 
point on the curve where it passes from concave to convex or vice versa.  
 
The process to obtain both features on the curve is based on the curvature scale 
space CSS [Mokhtarian 1995] which is used to recover invariant geometric features. 
 
b) B-Spline curvature 
 
The term "curvature" of a B-Spline curve is defined as the local measure which 
indicates how much a curve has moved away from a straight line. More formally, the 
curvature of a point Xu =[xu,yu] in the b-spline, is defined as the amount equal to the 
inverse of the radius of the osculator circle at the point (the circle that touches 
tangentially to the curve at the point Xu

ρ
) which means that while smaller is the radius 

 of this circle bigger will be the curvature at this point1/ ρ .  

 
The formula for computing the curvature can be expressed as: 
 

3
2 2 2

( , ) ( , ) ( , ) ( , )( , )
( ( , ) ( , ) )

x u y u x u y uk u
x u y u

σ σ σ σσ
σ σ

−
=

−

   

 

         (4.5) 

 
Where according to the properties of convolution, the derivatives of each element can 
be easily calculated since we know the exact forms of the first and second derived of 
the Gaussian kernel used ( , )g u σ  and ( , )g u σ . So:  

 

( , ) ( ( ) ( , )) ( ) ( , )x u x u g u x u g u
u

σ σ σ∂
= ⊗ = ⊗
∂

        (4.6) 

 
2

2( , ) ( ( ) ( , )) ( ) ( , )x u x u g u x u g u
u

σ σ σ∂
= ⊗ = ⊗
∂

       (4.7) 

 
( , ) ( ) ( , )y u y u g uσ σ= ⊗                    (4.8) 

 
( , ) ( ) ( , )y u y u g uσ σ= ⊗                    (4.9) 
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b) Curve features search 
 
With the list of curvatures k obtained from equation (4.2), the determination of the 
curvature zero crossings in the curve is carried out simply by looking in the list for 
points where a change of sign between two consecutive curvatures is found.  
 
On the other hand, the search for corners requires a processing of the curvature 
more complex since the detector is based on local and global properties of the 
curvature [He et al. 2008]. In order that this new process can be applied correctly, the 
curvature obtained must contain only positive values therefore only the absolute 
value of k will be considered. 
 
Initially all the local maxima of the curvature are seen as candidates to corner since is 
assumed that the true corners are included in this group. But given that within these 
local maxima could also be included curved segments that do not represent a true 
corner, two criteria have been established to eliminate these false corners from the 
list of candidates. The first of them refers to comparing the curvature of the 
candidates with a curvature adaptive threshold, and the second to evaluate the 
angles of the remaining candidate corners to eliminate those that provide trivial 
details. 
 
In the first criterion, although the curvature of a round corner is a local maximum, 
the difference between this and the curvature of its neighbors may not be significant; 
then, in order to use the curvature of the neighbors to eliminate rounded corners, the 
concept of region of support (ROS) is introduced which is defined as the curve 
segment bounded by the two minimum curvatures closest to the actual corner in 
opposite senses to it (Figure 4.7). 
 
 
 
 
 
 
 

 
 

Figure 4.7 Region of support (ROS) for the elimination of round curves 
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The ROS of every corner will serve to obtain the adaptive threshold on which we will 
perform the first discrimination of candidate corners which is calculated as follows: 
 

2

1

1( ) 1.5 ( )
1 2 1

u L

i u L
T u CxK x k i

L L

+

= −

= =
+ + ∑               (4.10) 

 
Where u is the candidate corner position on the curve, C is a coefficient (normally set 
at 1.5) , L1 + L2 is the size of the ROS (L1 and L2 is the length from the possible 
corner to closest the minimum local to the left and right respectively) and k is the 
curvature of the neighborhood. 
 
With the adaptive threshold set, the curvatures of the possible corners are compared. 
If the curvature of the candidate corners is greater than this threshold, they are then 
declared as true corners; otherwise, they are removed from the list of candidates. 
 
For the second criterion, an extended version of the ROS will be used, where this 
is now defined as the curve segment bounded by the two candidate corners to the 
left and right of the candidate corner that is currently being verified (Figure 4.8). For 
consistency, in open curves the initial and final extremes will be treated as corners for 
the determination of ROS. 
 
 
 
 
 
 
 
 

 
 

Figure 4.8 Region of support (ROS) for the elimination of false corners 
 

Once redefined our ROS, the angle of the candidate corner will be obtained using 
tangents on the arms of the ROS (Figure 4.9). The calculation of these tangents is 
done by fitting a circle (that best fits) on the points of the arm of the ROS. Since the fit 
of this circle has not to be truly optimal, a three-step method is detailed down to find 
this circle. 
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Figure 4.9 Definitions of angle of a corner. Figure taken from [He et al. 2008]. 

 

First three points are chosen on one arm of the ROS, being two of these the 

candidate corner that is being tested (C) and the neighboring corner to the left (E), 

the third point is the midpoint (M) of the curve segment bounded by the two previous 

points. If these points are collinear, the direction of this arm of the ROS is defined 

from C to E, else the center of the suppositional circle C0 

 

which has the same 

distance (radius of curvature of this ROS) of the three points is calculated using the 

following equation: 

2 2 2 2 2 2
1 1 2 3 2 2 3 1 3 3 1 2

0
1 2 3 2 3 1 2 3 1

( )( ) ( )( ) ( )( )
2 [ ( ) ( ) ( )]

x y y y x y y y x y y yx
x y y x y y x y y

+ − + + − + + −
=

⋅ − + − + −
   (4.11) 

 

 
2 2 2 2 2 2
1 1 2 3 2 2 3 1 3 3 1 2

0
1 2 3 2 3 1 2 3 1

( )( ) ( )( ) ( )( )
2 [ ( ) ( ) ( )]

x y x x x y x x x y x xy
y x x y x x y x x

+ − + + − + + −
=

⋅ − + − + −
    (4.12) 

 

Where ( )1 1  ,C x y= ,  ( )2 2  ,M x y=  and ( )3 3  ,E x y= . 

 

Then a line is drawn between C and C0 θ and the direction that form is stored in ; this 

can be easily calculated by a four-quadrant inverse tangent function. In a similar way, 

the direction from C to M will be stored inφ . With these data, we can now calculate 

the value of the tangent of C to this side of ROS using the following equation: 

 

1 (sin( ))
2

sign πγ θ φ θ= + − ⋅                         (4.13) 
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The same procedure is performed to determine the tangent of the other arm (C to F) 

of the ROS which will be denoted by 2γ . With the two tangents determined, we get 

the angle of the corner that they form as: 

 

| 1 2 | | 1 2 |
2 | 1 2 |

if
C

Otherwise
γ γ γ γ π

π γ γ
− − <

∠ =  − −
           (4.14) 

 

Finally, the corner C∠  will be taken as a true corner if the angle formed is smaller 

than a certain obtuse angle threshold maximum obtuseθ . Otherwise the corner will be 

set as invalid and is removed from the list of candidate corners. 

 

c) Association of B-Splines 
 
The data association process used for our topological SPLAM is not perform 
considering all the objects in the map built until the instant qk, instead we use only the 
portions of the environment contained in the LSR of the last node built in the REG 
exploration method shown in section 3.1. This can be seen is in figure 4.10, where 
the yellow area indicates the portion of the environment on which the association will 
be performed and the green lines indicate obstacles that have not been seen yet. In 
this image we show that at the instant k the LSR has two objects BRSL,1 and BRSL,2 that 
will serve as reference objects until the moment in which the robot reaches the 
position qdest and 

 
a new LSR is obtained.  

 
 
 

 

 

 

 

 
 

 
 

Figure 4.10 LSR of the robot at the instant k 

qk 

qdest 

BRSL,1 

BRSL,2 
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Figure 4.11 shows to the evolution of the robot until the instant k+s where three 
objects are BO,1, BO,2  and BO,3 detected (shown in red) in the range of vision of the 
sensor (circumference in dotted line). In this figure, we can see that the odometric 
position is just an a priori approximation of the true position of the robot obtained 
using the robot's motion model since errors and sensory noise will lead  the robot to a 
different real position that will not be the awaited one. For this reason, the objects 
BO,1, BO,2  and BO,3 

 

appear displaced and do not overlap exactly with the objects to 
which they belong. 

 
 

Figure 4.11 Robot in the odometric position qk+s  

detected within its detection range 
with three obstacles  

 
As in section 3.3.2, the B-Splines association will be performed initially considering 
only the points of the control polygon from which curves are obtained (Figure 4.12). 
In this step, the distances between the points of the control polygons of all the 
objects (those contained in the RSL on which we work and those observed in the 
position qk + s

 

 are obtained associating the observed curves with the reference curves 
using the following criteria: 

( )( ), , , min
0

1
min  ,  

1
m

RSL i O j

i n
dist X X d

i n
= …

≤  = …
            (4.15) 

 
Where XO,i  and XRSL,I  are the control points of the spline observed and the splines in 
the current LSR respectively, dist(XRSL,i, XO,i) represents the Euclidean distance 
between two points and  nm and nO are the number of control points of the splines in 
the LSR and of the observed splines respectively. 



Chapter 4. Topologic-SPLAM Algorithm 

126 
 

 
At the end of this first stage, the splines with a minimum number μmin of related 
control points will be associated and other ones for which no relationship has been 
established will be marked as new curves to be added to the map once the robot's 
position has been updated by the localization method and if the robot has reached 
the new target position qdest

 
 where it will continue the exploration.  

In figure 4.12 we can see how the curves (BRSL,1, BO,2) y (BRSL,2, BO,3) have been 
associated since they have 5 and 7 points related of their control polygons 
respectively obtained from the equation (4.15). On the other hand, we see that the 
object BO,1

 

 has not been associated with any element and therefore will be marked 
as a new element to be added once the previously mentioned requirements are 
fulfilled. 

 
 

Figure 4.12 Rough association performs with the control points of the curves 
 

If some curves have been associated at this point, the next step is to look for corners 
and Curvature Zero crossings contained in the related curves. If it has been possible 
to find some of the searched features, the elements found will be used to perform a 
precise association between each pair of curves (BRSL,i,BO,j

 

). The information about 
the type of feature and of the curvature will be used to avoid errors in this step of 
association (figure 4.13). If in some of the related curves any elements have been 
found (lines or too smooth curves), the fine association process will be executed in a 
similar way to that described in Section 3.3.2. 
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Figure 4.13 Association of curves zero crossing and corners between the RSL curves and 

curves observed. The green circles represent curves zero crossing while the diamonds 
represent corners 

 
Once related all the elements, a final process is performed in order to find the initial 
and final points of the related curves. For this, taking the curvature zero crossing or 
the corners most extremes as starting points contained in both curves will be taken a 
number of continuous points on the parametric curve toward the end of this, where 
the number of points to take will be the maximum number of elements that can be 
taken in the curve segment of smaller length of the two related from the characteristic 
point most extreme toward the ends of the curve.  
 
This can be seen in detail in Figure 4.14, where taking the curves related 
(BRSL,2,BO,3) we observe that the initial point represented by the blue circle was taken 
by choosing 6 elements of the parametric curve (shown in blue) from the curvature 
zero crossing represented by the green circle to the initial end of the curve since the 
length of the curve segment BO, 3 since the beginning of the curve to the curvature 
zero crossing has a larger length than the curve segment BRSL, 2

 

 from the beginning 
of the curve to the curvature zero crossing and therefore the elements of the curve 
segment with shorter length surely will be contained in the other of larger length.  

The same process is performed on the final end of the curve where 15 points of the 
parametric curve were taken from the corner represented by the green diamond 
given that the curve segment of shorter length from the corner to the end of the curve 
belonging to BRSL, 2

 
 contains only 15 points. 
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Figure 4.14 Example of how the start and end points of curve segments related are found 
 

Finally, when the association process is finished, the related curves will have an 
appearance similar to the figure 4.15. Although the correction in the position of the 
robot will be performed using the start and end points obtained, the curvature zero 
crossing and the corners are not wasted since on them will be carry out the 
verification to determine if the localization process has been performed correctly.  
 

 
 

Figure 4.15 Segments of curves related with the process described. The blue circles represent 
the extremes of the related curves and the green circles and diamonds represents the 

curvature zero crossings and the corners respectively. 

 
4.2.2 Topologic localization with B-Splines 
 
So far, we have spoken of the tool necessaries for the representation of the 
environment as well as the tools for the data association. In this section we present 
the topological localization method developed which forms part of our strategy 
SPLAM and whose algorithm is shown in Figure 4.16.  
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Figure 4.16 Topological localization algorithm 

 
Every time the robot moves from a position qk to a position qk+1

 

 the estimation of the 
robot's new position is obtained by adding to the last localized position the increase 
in x, y and θ obtained from the odometric information provided by the robot. As we 
know, this new estimate position will be only an approximation to the true position 
given that the noise in the sensors of the robot causes that the information provided 
is inaccurate and therefore the estimated position also will be. 

With the new estimated position, a new perception of the environment will be made 
where the information obtained will be placed spatially with regard to this position 
(function SENSOR_DATA). Then, the measurements obtained will be segmented 
with the function DATA_SEGMENTATION using the Dietmayer’s adaptive cluster 
criterion to obtain subgroups of measurements belonging to different objects as we 
have shown in section 3.3.2. 
 
The next step of the method is to find the relationship between the observed objects 
contained in the subgroups found and objects contained in the current RSL (section 
4.2.1c). This task will be performed by the function DATA_ASSOCIATION and will 
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be the vital center on which will be made the corrections on the estimated position to 
obtain the real position of the robot.  
 
Once the curve segments have been associated and their respective initial and final 
points have been obtained, this information will be used to correct the error in the 
estimated position in two stages (first angular and then in translation x, y) considering 
the following:  
 

ˆ

ˆ

ˆ

curr X

curr Y

curr

X X e

Y Y e

eθθ θ

= +

= +

= +

                           (4.16) 

 

With ( , , )curr curr currx y θ as the real actual position of the robot, ˆˆ ˆ( , , )x y θ  the estimated 

position and ( , , )X Ye e eθ  are the errors in x, y and θ. Thus, the angular correction is 

performed by taking the associated curve segments belonging to the LSR (that will 
serve as a reference) on which the start and end points of each one of them will be 
joined by line segments from which the function ANGULAR_COEFFICIENTS will get 

a vector refα that will contain the angular coefficient of each one of these (line 6) 
which is calculated as follows: 
 

, , , ,
,

, , , ,

sin( ) sin( )
arctan

cos( ) cos( )
i F i F i I i I

RSL i
i F i F i I i I

p p
p p

ϕ θ ϕ θ
α

ϕ θ ϕ θ
+ − +

=
+ − +

     (4.17) 

 
Where θ  is the angle of the robot at the instant when the current RSL was obtained, 
ϕ is the angle of the extreme point (initial and final) of the curve segment related to 

the frame of reference of the robot and p is the distance from the extreme point (initial 
and final) of the curve segment to the reference frame of the robot. At the same time, 
the function ANGULAR_COEFFICIENTS use the same process over the associated 
curve segments belonging to the last observation and clearly will give a different 
vector currα due to the presence of errors in the estimation (figure 4.11). The equation 
(4.17) is used in this case taking as reference the estimated position and to 

ˆ
curr eθθ θ= +  instead of  θ  so this equation depends only on eθ . 

 
Obtained the angular coefficients (Figure 4.17), the function ANGULAR_ERROR use 
the equation (4.18) to find the angular error that will be used to correct angular 
position. The idea is then to correct the estimated orientation in such a way that the 
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norm of the difference between the two vectors is minimized in a least-squares 
sense. 

_
* 2

1
arg min ( )

Obj R
ref curr

e i i
i

e Ci
θθ α α

=

= −∑               (4.18) 

 
The weight Ci

 

 in equation (4.18) depends on the reliability of the pair of features 
(lines and curves where have been found curvature zero crossing or corners will 
have more confidence than smooth curves). 

 
 

Figure 4.17 Acquisition of angular coefficients 
 

 
 

Figure 4.18 Angular correction performed 
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After the angular correction *eθ  has been obtained (figure 4.18), the corrections of 

translation xe  and ye must be processed. For this correction no special treatment is 

required, the function POSITION_COEFFICIENTS  just will take the coordinates of 
the initial and final points of each pair of related segments ( , )ref refX Y  and 

( , )curr currX Y with these last depending only on xe  and  ye  respectively. Therefore, the 

function POSITION_ERROR obtains the best estimates of these corrections of 
translation as: 
 

_
* 2

1
arg min ( )

x

Obj R
ref curr

x e i i
i

e Ci X X
=

= −∑                 (4.19) 

_
* 2

1
arg min ( )

y

Obj R
ref curr

y e i i
i

e Ci Y Y
=

= −∑                   (4.20) 

 
The errors obtained with equations (4.19) and (4.20) will be added to the estimated 
position to obtain the real position of the robot (Figure 4.19). 

 

Figure 4.19 Localization process finished 
 
Finally, a verification process is performed by the function VERIFY_LOCALIZATION. 
This process will ensure that the localization process has been successful by 
measuring the distance between the initial and final related curves and also between 
the corners and the curvature zero crossing (if exists). If these distances are less 
than a certain threshold Ψ, the localization process will be considered successful. On 
the other hand, if any of the measured distances is greater than the threshold, the 
localization process will be reported as fail and restarted but this time considering 
only individual curves instead of the whole set. If even considering individual curves 
the process fail, the position will be reported as unsafe and therefore unusable to 
extend the map.   
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Considering our localization process, we can consider the following question. Why 
use all the related elements and not just one of them?.  
 
The reason of this phenomenon is that although we could effectively use only one 
curve related to correct the position of the robot, the use of the full set allows to 
obtain redundant information which allows to increase the robustness of the 
correction procedure in presence of conflicting data (Figure 4.20c). This is, some 
times and due to possible associations errors, the use of a single curve would result 
in a incorrect localization that in absence of more data will not be able to be corrected 
(Figure 4.20b). 
 

 
 

 
 
 

Figure 4.20 Localization process with incorrect data association. a) Curves associates. b) 
Localization using only on curve that has been incorrectly associated. c) Compensation of the 

localization when more of one curve is used, even if one of them is incorrectly associated 

 
 
 

a) 

b) c) 
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4.2.3  Extension of the map 
 
As we know, the environment map is incrementally built each time that the robot 
reaches a predefined position with the intention of exploring a free frontier (Section 
4.1). The objects perceived as in section 3.3.4 can be classified after the association 
process required for the localization of this new position as: 
 

• New objects if they have not been associated with any object belonging to the 
previous RSL. 
 

• Partially associated objects whose information will be used to extend 
objects in the map 
 

a) Adding new objects to the map 
 
The first type does not present any problem, when a new observation is not 
associated with any of the splines in the map, these are considered as new elements 
and the spline that defines its geometry is added to the map. When we talk of add 
one spline, we refer to add the control points of the spline to the vector that 
represents the explored map. This is done as follows: 
 

1

2

n

O
O

Map
O
NO



= 




                                   (4.21) 

 
Where Map is the vector containing the information of the map constructed so far, Oj 

 

represents the curves of variable size and NO represents the new object that is being 
added which is a vector containing the control points that form the new curve. 

b) Extending objects in the map 
 
Regarding the second type, the process to follow is different to that presented in 
section 3.3.4. This because in our project we work with unclamped B-Splines which 
makes that the extension process is different. The technique used for the extension 
of objects will be explained with the image 4.21. 
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Figure 4.21 Extension of the spline of the map with new data. a) Initial situation before the 

location. b) Configuration of the curves after location. c) Search for the control points 
belonging to the association points of the curves. d) Elimination of the control points that 

describe the curve segment already in the map. e) Extended curve and their control points. 
 

Given two curves associated CA and CO (Figure 4.21a) whose geometric 
representation in the associated segments is, if not equal at least similar, the 
objective is to eliminate in some way the control points of the curve observed 
representing the overlapping area between the curves. For this, once the position of 
the curves has been corrected through the localization method (figure 4.21b), we look 
for the control points in the new curve belonging to the initial and final points of 
association of the curve segments associated (gray circles in Figure 4.21b) whose 
description is already in the map. With these points obtained (Figure 4.21c) the next 
step is to eliminate these two control points and the control points that are contained 
in this range to then connect the control points of the curve belonging to the map with 
the remaining control points of the new curve (figure 4.21d): 
 

t e nX X X= ∪                           (4.22) 

 

CA 

a) b) 

CO 

c) d) 

e) 
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Where Xt represents the control points of the extended curve, Xe represents the 
control points of the curve in the map and Xn

 

 represents the control points of the 
observed curve. At the end of the process the control points of the new extended 
curve (Figure 4.21e) will be added to the vector of the map in the same position 
where it was the original curve. 

4.3   Kidnapping 
 
The kidnapping is one of the hardest problems to solve in the SLAM field. To kidnap 
a robot means to take it in the course of its work and to move it quickly to any point in 
the environment, without telling it that it has been kidnapped. It is similar than 
knocking a human and moving him to a different place. This problem differs from the 
global localization problem in that the robot might firmly believe to be somewhere 
else at the time of the kidnapping. 
 
Even when the kidnapping problem is an event that rarely occurs, it may happen 
naturally due major landslides in the work area or even the robot itself. However, the 
kidnapping problem also arises as a form to check the robustness of the localization 
method and its ability to recover from catastrophic localization failures. 
 
 The approach proposed to solve the kdnapping problem is described in detail below.  
 

4.3.1 Collection and management of marks 
 
The most important process for any kidnapping method is the collection and 
processing of certain hallmarks that will help the system to relocate the robot once it 
has been kidnapped.  
 
a) Handling characteristics 
  
The exploration process allows us to find distinctive features (characteristics) of the 
environment and store them in a list. These features will undergo a treatment that will 
simplify their use in our approach.   
 
First, the distances of the characteristic features of the position qcurr are obtained and 
sorted in ascending order. At the same time, the longest non-recurring distance is 
selected and the other features are rotated in order to get a 0 degrees angle with it. 
Then, the angles between the characteristics are obtained. If the distances between 
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two different characteristics have the same length, they will be sorted according to 
the obtained angles. It is important to note that the rotation should be performed in a 
not repeated distance. This process is described in figures 4.22 and 4.23. 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 
 

Figure 4.22 Characteristic marks found 
 

 

 

 

 

 

 

 

 

 

Figure 4.23 Points rotated to get a 0 degrees angle for the slope d2 

 
b)  Generation of the code 
 
A code that provides support in the relocation time is generated, after the data of 
distances and angles are obtained. The code contains the number of marks included 
N, the ordered distances, Dn, and the ordered angles of each of the lines connecting 
the marks (denoted as An). Besides, the code keeps the marks position in the map 
built before the kidnapping  (Xi,Yi,  i = 1 ... n). 
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Figure 4.24 Code or signature generated with the process described 

 
4.3.2 Kidnapped robot 
 
An important part of the kidnapping is the knowledge of the exact moment when the 
robot has been moved from the original position to an unknown location. This thanks 
to an inherent characteristic the methodology of exploration presented in section 4.1, 
the local safe region (LSR).   
 
If at any time during the scanning and location processes, the robot can not 
associate any of the curves found in the LSR at the exploration time, with the curves 
obtained in its current position, qcurr

 

, this means that the robot has been kidnapped. 
At that time, the robot will enter in a kidnapping state, after which the system will try 
to find and relate some of the characteristics stored in memory with its new features.  

To maximize the information and minimize the exploration time, it is made an auxiliar 
structure that can store the environment built up to the moment and restart the 
construction of the new environment, considering the new position as (0,0,0). It 
means that no matter the last position of the robot in the previous map, after the 
kidnapping is identified, the system will reset its position at coordinates (0,0,0). As 
mentioned, the above map is not removed, this is stored with the intention of finding a 
known area, and to adjust the new map to this position and merge both maps to get 
only one.  
 
It should be mentioned that if any characteristic zone or with high information content 
is detected before the kidnapping, the robot will not be relocated on the map being 
created and therefore the kidnapping will not be resolved. In this case the previous 
map is removed and it will be considered that there is no kidnapping.  
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4.3.3 Recovery of the kidnapping 
 
Otherwise, if the robot is kidnapped and there are several codes of the areas already 
explored, the process continues as described above, building a new map, until a 
distinctive area, that allows the following procedure, is found:  
 
A code considering the described steps is created. The stored list is verified to look 
for codes with the same number of marks than the marks found. If the number 
matches, the elements corresponding to the distance and angles will be used to look 
for a coded that contains similar data, deferring at most in 0.01 m for the distances 
and in 0.01 radians for the angles (these heuristic values are set after a series of 
experiments).  
 
If at this moment, there is a candidate mark, the coordinates of the stored marks are 
obtained to analyze which marks corresponds to the newly found, using a cross-
reference as follows: The ordered distances lists that contains the marks that make 
up each distance (considering the stored and the new marks lists) are used to relate 
them in two possibly ways, as illustrated in the figure 4.25: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 Mark relation process 

 
Once the relationship matrix is obtained, it is sorted according to the first column of 
the nodes stored in the list. Once ordered, the elements in the first column are 
extracted to check which element appear N-1 times in columns 2 and 3, where N is 
the number of marks contained in the code. Finally, this element will be the mark 
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corresponding to the stored mark. This method is repeated for all the different 
elements of the first column (Figure 4.26). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Relationship found 

 
When the relationship process is finished, we know exactly which characteristic node 
of the observable area corresponds to the same node in the stored area. The above 
is illustrated in figure 4.27. 
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Figure 4.27 Associated points 

 
Once the zones and the nodes have been linked, the next step is to make a 
correction, first by finding the angle and then the displacement. This process will 
allow us to find a correlation between the stored and the explored areas. In other 
words, the rotation and the translation take place in the new constructed map, after 
the kidnapping, in order to merge it with the stored information.  
 
The correction is performed similarly than in the proposed location method. First, a 
complete graph with the marks is used, because the relationship between the nodes 
of the two graphs is known and there is no need to look for the lines that must be 
associated. The task now is to find the difference of angles between the lines, 
allowing angular correction with the same formula used in the localization process. 
 
After the angular correction eθ is made, the translation corrections ex and ey

 

 are 
processed, using again the full characteristics graph built before.  

Once the translation and angular corrections are made, they are applied to the 
structure built during the kidnapping. Finally, to ensure a good merging, a last global 
localization process is performed. Curves segments from the new environment 
whose partner are close enough to the stored curves in the map built before the 
kidnapping are selected if this association between the maps is correct. Then, the 
global localization process has been carried out successfully.  
 
Finally, in order to store only a structure that corresponds to the complete merged 
map. The nodes in the new environment with a distance less or equal to a certain 
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threshold with respect to the stored map nodes are discarded (as they are 
considered repeated). In the same way the nodes with a distance greater than this 
threshold, but within the LSR of some node, will be added as child nodes of the node 
that owns the LSR. The exploration will continue in the leaf nodes of the new 
structure. 
  

  4.4 Conclusion 
 
This chapter has shown the development of a series of tools that allow an efficient 
exploration of environments.  
 
First we have developed an extension of the basic exploration method SRT called 
REG which transforms the tree structure used into a graph, this allows to robot to 
traveler in a more efficient way since it can take shortcuts to go from one place to 
another. 
 
The REG exploration approach also use a simplified criterion to find the next position 
to explore which allows to stay into a specific region until this has been fully explores. 
The main advantage of this is that the robot will travel short distances until the 
nearest position that should be explored. In this way, we avoid that the robot travels 
long distances in which there will be no gain of information. At the same time, this 
strategy prevents the robot has to return to zones where it had already been. 
 
The topological-SLAM presented, show a new method of data association using B-
Splines. Here, all the information contained in the curve is used to perform a more 
accurate data association that as we know, represents a very important step for the 
robot localization since incorrect or inexact associations between the curves will 
cause divergences that might unleash in an erroneous map that will not be able to be 
used and therefore in an overall system failure. 
 
 With respect to the localization method, we have presented an approach based on 
unclamped B-Splies that use the structure built for the REG method. The main 
advantage of this is that e robot use just information local of a global frame to 
performs the localization. This limits the calculations only to the interpretation and 
association of objects contained in the current LSR of the current node. 
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Finally, we have presented a mapping method that performs in a very easy and 
intuitive way, the extension and addition of curves representing the objects in the 
environment to the map. 
 
 The results and comparisons with other methods will be presented in Chapter 5. 
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Chapter 5. Experimental Results 
 
 
 
 

In this section we have carried out numerous experiments with both real and 
simulated data in order to verify and validate the procedures and algorithms 
proposed in this thesis. The data obtained with simulation experiments have allowed 
to verify the accuracy and consistency properties of the algorithms by comparing 
them with existing procedures and algorithms. On the other hand, experiments with 
different data from real environments have allowed to verify the applicability and 
effectiveness of these techniques. 
 
Section 5.1 presents some experiments that help to validate the usefulness and 
efficiency of the method of exploration proposed showing the versatility that offers the 
transformation of the exploration tree into an exploration graph and the advantage of 
having a frontier control.  
 
Section 5.2 presents some experiments to help understand the technique of 
approximation of data acquired through a laser sensor showing the importance of 
order and type of restraint at the time of constructing the curves.  
 
Section 5.3 presents the results of the proposed solution for the problem of SPLAM 
which are compared with results obtained using SPLAM methods based on the 
extended Kalman filter showing the properties of the algorithm from the point of view 
of accuracy and consistency.  
 
To end with the proofs, section 5.4 show the maps constructed with data acquired in 
real environments. 
 
Finally, the chapter closes with some conclusions collected in Section 5.5. 
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5.1    Exploration Methods 
 
As we have mentioned repeatedly, the control of movements (known as exploration 
in this area) for the task of SPLAM, plays a very important role in the performance of 
the strategy and for the acquisition time of the map. Unlike the localization and 
mapping necessary in the SPLAM task, the efficiency of the exploration method can 
be analyzed and tested individually. Therefore, in this section are performed 
comparative tests between the SRT exploration method that is used as a base, and 
the proposed exploration method developed from it. 
 
The tests carried out to the methods were made using a simulated and real diferential 
robot Pioneer P3DX (Figure 5.1) equipped with a laser sensor Hokuyo URG-04lx 
(Figure 5.2) which has a detection range of 0.02 to 4 meters approximately with a 
typical deviation (σL

 

) of 1% of the measure, an angular resolution of 0.36 degrees 
and a scan angle of 240 degrees. Furthermore, the robot has a ring of 16 ultrasonic 
sensors of which 6 of them positioned in the rear are used to obtain information from 
the environment in the 120 ° where the laser sensor cannot see.  

 

 
 

Figure 5.1 Robot Pioneer P3DX 
 

 
 

Figure 5.2 Laser sensor Hokuyo URG-04lx 
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The

 

 environments used are part of the installations of the Laboratory of computer 
sciences, Robotics and Microelectronics of Montpellier (LIRMM) and they are shown 
in the images 5.3 and 5.4. 

 
Fig 5.3 LIRMM Office Environment 

 
Fig. 5.4 LIRMM Corridor Environment 

 
 
As we have mentioned, both the method of exploration of unknown environments 
SRT developed by Oriolo et al. [Oriolo et al 2004] And the REG method developed 
in this thesis, generate a data structure that determines the paths by which our robot 
can travel.  
 
For the case of SRT, the generated tree structure and the lack of border control to 
indicate what nodes have not been fully explored force the robot to travel 2 times the 
navigation structure generated (Figure 5.5 and 5.6) to complete the task; therefore, 
the time required and the length of the path to cover all the environment are 
completely dependent on the number of nodes that contain the structure. Also, the 
shape of the structure used in this method would result particularly inappropriate if it 
is conserved as a reference for future navigations; this because in some cases the 
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robot will be forced to retreat toward a parent node when the destination node is in 
another branch even if it can be access directly from the current position. 
 
 

 
 

Figure 5.5 Exploration tree obtained with the SRT method on the 
LIRMM office environment 

 
 

 
 

Figure 5.6 Exploration tree obtained with the SRT method on the 
LIRMM corridor environment 

 
On the contrary, the graph structure used by the REG method (Figure 5.7 and 5.8) as 
the integrated concept of frontier control allows an exploration much more versatile 
and efficient since the method knows exactly where to direct to the robot in order to 
continue the exploration, while the structure allows to find an efficient route to this 
new position thus allowing a shorter path and a lower time needed for the exploration 
of the environment. 

 
 



Chapter 5. Experimental Results 

148 
 

 
Figure 5.7 Exploration graph obtained with the REG method on the 

LIRMM office environment  

 
 

Figure 5.8 Exploration graph obtained with the REG method on the 
LIRMM corridor environment  

 
The above is verified in Figure 5.9, 5.10 and 5.11 where the data obtained with the 
two methods are confronted to verify the assumptions that we have made. 
 

 
 

Figure 5.9 Nodes needed to cover the LIRMM office and corridor environments 
  respectively on the basis of 10 tests 
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Figure 5.10 Path distance traveled to cover the LIRMM office and corridor environments 
  respectively on the basis of 10 tests 

 
 

 
 

 Figure 5.11 Time needed for the exploration of LIRMM office and corridor environments 
  respectively on the basis of 10 tests 

 
 

Finally, and based on the information presented in the previous graphs we can 
conclude the following: 
 

• It is noted that the nodes needed for the exploration (Figure 5.9) in most 
cases is lower in the REG method than in the SRT method, this because the 
REG method attempts to obtain in every border of each node as much 
information as is possible and so the robot is always directed to the point over 
the randomly chosen frontier where this goal can be reached. On the contrary, 
the SRT method works on the basis of finding a valid random direction (in a 
free frontier) regardless of the information gain. 
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The above deduction is valid to some extent, because in hall type 
environments with too narrow corridor will not be found a too marked 
difference between the two methods with respect to the number of nodes 
needed to complete the task. 

 
• Another element that must be considered is the length of the traveled route in 

the exploration of environments. In Figure 5.10 we can see that traveled 
distance in the REG method is in most cases less than the distance traveled 
by the SRT method. This is because the graph structure allows to use 
shortcuts when the robot has to move within the structure something that 
within the rigid structure of the tree is not allowed. 

 
      Another important aspect that affects the traveled route is the knowledge of the 

nodes that have not been fully explored; thanks to the introduced concept of 
frontier control, the REG method knows what nodes should be revisited once 
the node in which it currently is has been fully explored; this, unlike the 
methodology used in the SRT, prevents that the robot have to revisit 
unnecessary nodes without possibility of exploration. 

 
• Finally, in Figure 5.11 we see that in most cases the execution time for the 

exploration of environments is lower in the REG method than in the SRT 
method; phenomenon that is closely linked just as in the previous point to the 
versatility of the graph structure that allows the path planning using shortcuts 
and also to the fact that the robot knows exactly where to go without the need 
of revisit and examine nodes that cannot provide more information (frontier 
control). 

 

5.2    SLAM Method 
 
The SLAM strategy developed in this thesis as well as any other solution proposed in 
this field is validated using as criteria the computational performance, map quality 
and consistency of the algorithm. However, unlike methods whose environmental 
representation is based on specific geometries and where much of the information 
acquired by the sensor is wasted, our approach attempts to exploit the maximum 
amount of information possible provided by the sensor thus avoiding dangerous 
simplifications.  
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Therefore, in addition to the mentioned tests to validate our SLAM method, we also 
include a section dedicated to the treatment of information provided by the sensor 
and the impact that this management has on our method. 
 
5.2.1   Approximation of data points 
 
One of the main priorities of this thesis is to exploit the maximum amount of 
information possible provided by the laser sensor which will be used to obtain the 
representation of the environment using B-spline curves as was seen in Chapter 3 
and 4.  
 
To achieve this goal some basic elements in the acquisition and processing of 
information should be considered such as: 
 

• Angular resolution of the laser. While greater it is the resolution of the laser 
sensor greater will be the amount of information and therefore the details of 
the environment making it possible to identify more easily characteristic traits. 

 
• Degree of the curve. While more elevated it is the used degree smoother will 

be the curve. 
 

• Time-to-curve. The treatment time should be considered at every moment 
time since if it is too high the SPLAM method cannot be executed in real time

 
. 

In this way, in this sub section we will try to briefly study the mentioned parameters 
and the influence that they have on the quality of the curve and over the modeling 
time. For this, we will use data from a real environment with different laser sensor 
angular resolutions (called clusters) and from which we obtain B-spline curves of 
different degrees. 
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Figure 5.12 Segment acquired with a laser sensor resolution of 0.36° . a) Environmental data 
points obtained with the laser sensor. b) y c) Curve of degree 3 obtained from the laser data 

and its curvature respectively, obtained in a time t=0.038101. d) y e) Curve of degree 6 obtained 
from the laser data and its curvature respectively, obtained in a time t= 0.039121. f) y g) Curve 

of degree 9 obtained from the laser data and its curvature respectively, obtained in a time  
t= 0.04255 

 
 
 
 

a) 

b) c) 

d) e) 

f) g) 
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Figure 5.13 Segment acquired with a laser sensor resolution of 1.08° . a) Environmental data 
points obtained with the laser sensor. b) y c) Curve of degree 3 obtained from the laser data 

and its curvature respectively, obtained in a time t= 0.0361902. d) y e) Curve of degree 6 
obtained from the laser data and its curvature respectively, obtained in a time t= 0.038916. f) y 
g) Curve of degree 9 obtained from the laser data and its curvature respectively, obtained in a 

time t= 0.043407 

 

 

a) 

b) c) 

d) e) 

f) g) 
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Figure 5.14 Segment acquired with a laser sensor resolution of  1.8° . a) Environmental data 
points obtained with the laser sensor. b) y c) Curve of degree 3 obtained from the laser data 

and its curvature respectively, obtained in a time t= 0.026312. d) y e) Curve of degree 6 
obtained from the laser data and its curvature respectively, obtained in a time t= 0.031838. f) y 
g) Curve of degree 9 obtained from the laser data and its curvature respectively, obtained in a 

time t= 0.032502 
 
 
 
 

a) 

c) b) 

d) e) 

f) g) 
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Figures 5.12, 5.13 and 5.14 show the results of approximating a segment of 
environment using different cluster or resolutions over the laser that we use. The total 
length of the curve that we pretend to approximate is 11.6 meters.  
 
Figure 5.12a shows the result of obtaining the data points of the environment with a 
sensor angular resolution of 0.36 °. In this case we have obtained 620 points along 
the length of the object. Figure 5.12b shows the effect of approximating these 620 
points with a B-spline curve of degree 3. At its side, Figure 5.12c shows the 
calculated curvature belonging to the B-spline of degree 3. Similarly, the figures 
5.12d and 5.12e show the result approximate the data points with a B-spline curve of 
degree 6 and the calculated curvature associated with it. Finally, the figures 5.12f 
and 5.12g show the approximation of the sensor data with a B-Spline curve of degree 
9 and its associated curvature. 
 
The images 5.13 and 5.14 just as in the previous paragraph shows the data obtained 
with an angular resolution of 1.08 ° and 1.9 ° degrees from which we obtain 208 and 
124 data points respectively. In these, just as in the image 5.12, we show the effect 
of approximating curves using different degrees of curves which is reflected in the 
calculation of the curvature. 
 
As it can be appraised, the result is perfectly logical, as the object to represent 
compte with a smaller number of data, we obtain smoother curves and the degree of 
the curve affects them more. On the contrary, the curves with too much information 
require higher order B-Splines if we want to get smoother curves. This can be verified 
in the curvature graphs that are found to the right of each approximated curve. In 
them we can see that when the degree of the curve increases its curvature 
decreases; at the same time, we can observe in these graphs that having fewer data 
points becomes more difficult to determine the exact position of the point with greater 
curvature because the features are not as accentuated due to lack of information. 
 
Finally, based on data obtained we can conclude that it must be found a compromise 
between the resolution of the laser to obtain the greater amount of information 
available from the laser sensor and the degree of the curve to eliminate as much 
noise as possible on the measures without removing valuable information, given that 
a high degree will smooth the curve in such a way that useful information would be 
discarded. For this reason and because our method is based on using as much 
information as is possible for the analysis of the curves, we have decided for the 
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higher angular resolution that can provide our device from which we get an average 
of 700 readings and that allow us to exploit the potential of our the method. Thus, we 
will used cubic B-Splines (which are the most commonly used) to make the 
description of objects, since as we have seen, the effect of the degree of the curve 
over the smoothing only results evident when using a high degree  for the case of the 
higher resolution which can affect the time of analysis making the method not 
feasible for its use in real time. 
 
5.2.2 Accuracy of the algorithms  
 
As in section 5.2, we have experimented with simulated data environments (Figures 
5.3 and 5.4) in order to evaluate the accuracy and effectiveness of the algorithms. 
Although the shown environments pose no challenge to traditional geometric SLAM 
algorithms based on the use of segments as a descriptive entity of the environment, 
the use of B-Splines as a way of representation allows to take larger data segments 
without the need of perform a segmentation of the information into smaller pieces and 
even allows to represent straight line segments because these are a particular type 
of curve. From the above we find that the B-Splines modeled extend the capabilities 
to more general situations. 
 
Figures 5.15, 5.16, 5.17, 5.18, 5.19 and 5.20 show the results of SLAM experiments 
for the case of the classical extended Kalman filter, for the most recent strategy 
based on B-Splines and on Extended Kalman Filter and finally for the strategy that 
we have developed and which is also based on the use of B-splines for the 
representation of the environment. 
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The 6 figures above show in its left half, the actual path of the robot (blue continuous 
line), the odometric trajectory (green dotted line) and the trajectory obtained by the 
method of SPLAM (red dashed line). On the other hand, when there is real certainty 
about the actual path of the robot (as in the simulations) it is possible perform some 
checks to yield an idea of the quality of the algorithms from the point of view of its 
consistency. For this reason it has been possible to include in the right half of each 
figure the representation of the odometric error (blue line) in X, Y and Theta as well 
as localization errors (red dashed line). 
 
From these data and taking as reference the errors shown by the methods based on 
Kalman filter, we conclude that the method proposed in this thesis maintains similar 
levels of error and in some cases better than those shown by other methods (Figure 
5.21).  
 

 
 

 
 

Figure 5.21 Errors obtained with the SPLAM strategies 
 
The maps obtained with the three strategies are shown in the Figures 5.22 and 5.23; 
on them we can see the qualities of the maps obtained with the strategies but also 
the differences in the continuity of the line segments (Figure 5.22a and 5.23a) and 
curves (Figures 5.22b, 5.22c, 5.23b, 5.23c), where the first thing that stands out is 
that in the EKF- lines based strategy and in the EKF B-Splines based the segments 
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that form the corners ( extended areas in the images) are discontinuous segments 
while in our strategy (Figure 4.15c) the highlighted environmental portion consists of 
a single continuous curve.  
 
In the first case this is obvious because a corner represented by segments of lines 
always consist of two of them. In the second case, the methodology proposed by 
Pedraza et al. [Ref] forbids the use of too closed curves or corners, so in order to to 
represent them we must use several segments curve. In our case, the hypothesis 
used is that curves with highest curvatures are more easily associated and in 
consequence it will be more accurate will be the association of data and therefore the 
quality SPLAM method.  
 
For us, the used hypothesis is that while more form or curvature has the curve 
segments, more exact it could be the association of data and therefore the quality of 
the SPLAM method. 
 

 

 

 
Figure 5.22 LIRMM offices environment maps. a) office environment map obtained with the 

method of classical EKF. b) Map obtained by EKF approach with B-Splines. c) Map obtained 
with the strategy of  SPLAM proposed in this work. 
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Figure 5.23 LIRMM corridor environment map. a) Corridor environment map obtained with the 
method of classical EKF. b) Map obtained by EKF approach with B-Splines. c) Map obtained 

with the strategy of SPLAM proposed in this work. 
 

5.3  Kidnapping 
 

As we have said in chapter 4, the kidnapping is one of the hardest problems to solve 
in the SLAM field. Although under normal conditions is very unlikely to find this 
problem, in this section we will show the operation of the proposed solution which 
provide more robustness to our strategy SPLAM. 
 
Using the environment shown in Figure 5.3 we will validate the strategy of kidnapping 
proposed. Figure 5.24 shows the kidnapping of the robot from the position q11 in 
which it was operating to an unknown position. At this point, the robot was built an 
exploration graph with 11 nodes and it had collected 3 digital signatures from 
recognizable zones. 
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Figure 5.24 Kidnapped robot 
 

In this example, the robot easily recognizes that it has been kidnapped because the 
RSL of the region where it was does not match with the observations performed and 
therefore it goes into a kidnapping mode. 
 
Being aware of your current situation, the map created so far is stored and the robot 
reset its memory considering now that the position where it is placed is the initial 
position. This can be seen in Figure 5.25, where the position of kidnapping is now 
taken as the initial position and therefore the spatial change in the position of the 
environment due to the change of the reference frame (Red dashed lines map)
 

. 

 
 

Figure 5.25 New environment position after the kidnapping 
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In this point, the robot starts the construction of a secondary exploration graph. The 
process continues until the digital signature of a distinguishable area is recognized 
and identified (Figure 5.26). 
 

 
 

Figure 5.26 Areas with similar digital signature 
 
Once compared and identified the digital signature of the area, the robot adjusts its 
position and the position of all nodes in the auxiliary graph to the reference frame of 
the recognized area stored in the first exploration graph. 
 
With the corrected position and the position of the auxiliary graph updated, we merge 
the structures of the main graph and of the auxiliary graph so as to obtain a single 
structure with which we will continue (if after the merger still remain free frontiers)  the 
exploration (Figure 5.27). 
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Figure 5.27 Random exploration graphs merged 
 

Finally, as with the graph structure, the auxiliary map created after kidnapping (figure 
5.28) is updated with the new corrected position of the robot and merged with the 
partial map created before kidnapping (figure 5.29). With this last action we obtain a 
complete map of the environment after solving the kidnapping problem (Figure 5.30). 
 

 

Figure 5.28 Map constructed during kidnapping 

 

Figure 5.29 Map constructed before the kidnapping 
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Figure 5.30 Before and after kidnapping maps fused 
 

Figure 5.31, 5.32 and 5.33 show the errors obtained during the simulation. Here, we 
can clearly see the moment in which the kidnapping occurred as a big leap in the 
graphics error. Also, we observe that once the method recovers of the kidnapping, it 

 
maintains similar levels of error that in cases without kidnapping. 

 

Figure 5.31 Error in X during the kidnapping simulation 
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Figure 5.32 Error in Y during the kidnapping simulation 

 

Figure 5.33 Error in Theta during the kidnapping simulation 
 

5.4  Experiments with real data 
 
Finally in this section, we present experiments with real data in real environments to 
validate the results presented. In all the tests will be shown the maps obtained 
considering only the odometric information reported by the robot and maps obtained 
after applying the SPLAM method proposed in this thesis.  
 
Figure 5.34 shows the real office environment used for the tests and figure 5.35 show 
the map of this environment form which was obtained the simulated environment 
shown in Figure 5.3. This environment has been built using 58 B-splines curve 
segments of degree 3 which are used as modeling tool and which is defined by 1754 
data points; the time required for the exploration of this environment was 463 
seconds. Figure 5.35 shows the map obtained after the application of our SPLAM 
method while Figure 5.36 shows the map constructed using only the robot's 
odometric information. 
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Figure 5.34 Real office environment used for tests 

 

Figure 5.35 Real office environment acquired with the SPLAM proposed method 
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Figure 5.36 Real office environment acquired using only odometric information 

 

 

Figure 5.37 Difference of maps with and without the use of the SPLAM method  
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In the same way, figure 5.38 show the real corridor environment . The map obtained 
with our SPLAM approach is shown in figure 5.39 while the odometric map obtained 
using just odometric information is shown in figure 5.40. 

 

 

 

Figure 5.38 Real corridor environment used for tests 

 

Figure 5.39 Real corridor environment acquired with the SPLAM proposed method 
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Figure 5.40 Real corridor environment acquired using only odometric information 

 

 

 

Figure 5.41 Difference of maps with and without the use of the SPLAM method  
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Finally, a last example is presented using the real environment called “the extension” 
(Figure 5.42). An in the other two environments, the figure 5.43 presents the map 
obtained with our SPALM approach. In the other hand, figure 5.44 shows the map 
obtaines using only odometric information 
 

 

 

Figure 5.42 LIRMM’s extension corridor used for tests 

 

Figure 5.43 Real LIRMM’s extension corridor  
environment acquired with the SPLAM proposed method 
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Figure 5.44 Real LIRMM’s extension corridor environment  
acquired using only odometric information 

 
 

 
Figure 5.45 Difference of LIRMM’s extension corridor maps obtained 

with and without the use of the SPLAM method  
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5.5 Conclusions 
 
In this chapter we have shown and validated experimentally the properties of the 
algorithms presented in this thesis. 
 
Experiments with simulated data have allowed evaluating the properties of the 
estimation algorithm from the point of view of its consistency. The confrontations of 
our methodology with other algorithms developed by other researchers have 
revealed that the results obtained by our method remain within the error tolerance 
range accepted or obtained by other methodologies. It has also shown that the use of 
B-spline curves to represent the environment offers new possibilities to extract 
geometric information furthermore offer the possibility to represent complex 
environments which would be impossible to model geometric tools. 
 
Finally, experiments with real data provide important results that have allowed us to 
verify the applicability of the techniques developed in our thesis for the complex 
problem of SPLAM. 
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Chapter 6.  Conclusions and 
Future Work 

 

 

 
 
In previous chapters we have presented the construction of SPLAM tools 
implementing and developing methods in the fields of SLAM and of exploration of 
environments. With the tests and results obtained, in this chapter are summarized the 
main conclusions highlighting the contributions and contributions that have been 
made to the current state of the art of integrated Exploration or SPLAM. 
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6.1 Main contributions 
 
In this thesis we have presented a new methodology for the process of exploration of 
environments based on the construction of a graph of exploration where each node 
represents a robot position with its respective segments of environment explored. 
Although the use of such structures has already been used to solve this kind of 
problems, our solution fully exploits the functionality of the structure to make 
navigation on the portion of the known environment regardless of the purpose. Also, 
unlike other graph-based solutions, our solution preserves the random nature since 
this kind of solutions have proven greater effectiveness in the area of exploration 
environments where we cannot have a certainty of which will be the next best 
position to be explored. 
 
Also, we have developed a B-spline curves based SLAM strategy to represent 
environments. Although this is not the first job where it has been used this type of 
representation, we have used mathematical algorithms used in the area of pattern 
recognition (that until where our knowledge arrives had not been used before in the 
SLAM area) in order to obtain the greater amount of information contained in this 
representation and in this way to propose an innovative data association method to 
SLAM. 
 
In the same way, the methodology applied for the correction of the robot's position 
and to adjust the environment based on local information using the structure of the 
exploration method, represents an important contribution since in this way the 
method does not waste time and energy trying to associate data out of range. 
 
We have presented a method that gives solution to the problem of kidnapping, where 
even though it is a simple solution to the problem, it is an efficient solution when the 
robot works on environments with high content of distinguishable information (areas 
of high curvatures). 
 
Finally, despite the apparent difficulty that the symbiosis of the methods developed 
could present, we have achieved a harmonious cooperation which fuses the 
properties of the method of exploration of environments with the properties of the 
SLAM method based on B-Spline curves. 
 
As a general summary, we discuss briefly the results of each chapter pointing in each 
one of them the contributions presented. 
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• Chapter 2 gives an overview of current state of the art in the field of SPLAM 

which was taken as a reference and motivation for the development of this 
thesis. In it, we analyze the contributions made so far first in the field of 
SLAM,  then in the field of exploration of environments and finally of the 
strategies developed for the SPLAM problem where many of the solutions 
found (as would be expected) are a fusion of the two previous elements 

 
• Chapter 3 presents a SPLAM tool in which motion control is perform using the 

SRT random exploration tool and the SLAM task is performed using the 
extended Kalman filter in its classical version and also in the version 
presented by Pedraza et al in [Ref]. This chapter also collected fundamental 
aspects of B-spline curves which are used for the representation of 
environments. The theory found in this chapter provides an understanding of 
these curves as tools in the representation of maps and also of their use in the 
well-known EKF-SLAM tool. 

 
Although the individual usage of these tools is not innovative, to where our 
knowledge arrives, these never before had been combined to obtain a strategy 
of SPLAM based on the probabilistic control of movements and on the 
extended Kalman filter and even less based on splines for the representation 
of the environment. Despite this, the results obtained with the work made in 
this chapter only will be used to verify the effectiveness and to validate the 
algorithms presented in Chapter 4. 
 

• Chapter 4 describes the main contributions of this thesis which have been 
thought for the ultimate goal of obtaining an effective tool for the SPLAM 
problem in which the modeled of the environment is performed using B-spline 
curves. Thus the contributions of this chapter are listed below. 
 

1. We have developed an exploration strategy that creates graph type 
structure where each node in it represents a robot position with a 
portion of environment associated with it. In this method, the concept 
introduced of frontier control (which represents one of the main 
contributions for the method) allows to have complete control over the 
exploration avoiding to travel fully explored areas and and revisiting 
those who still have the possibility for exploration. Once more, this 
concept allows to reach the goal of completeness basic on all the 
exploration methods 
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On the other hand, the developed method fully exploits the graph 
structure generated allowing the use of all the connections contained in 
the structure when the robot needs to travel from a position to another. 
Finally, the criterion of choosing the node with possibility of exploration 
with the lower measured path from the current position allows the 
method to stay and explore nearby areas until they are fully explored 
without having to travel from one end to another of the map. 
 

2. We have proposed a data association method based on the analysis of 
the curvatures of the curves related. Here, we use the CSS digital 
imaging techniques, curvature zero crossing and corners extraction 
techniques used in the field of pattern recognition. This mechanism of 
association not only allows establishing a robust correspondence 
between the observations realised by robot and the objects contained in 
the current working node but also facilitates the parametric 
correspondence between each pair of representative elements 
associated. 
 

3. The correction in the position of the robot and the associated data is 
done topologically (scan matching) using the distinguishing elements 
mentioned in point 2 correcting the information first in angular sense 
and later in translation. Obviously, this type of location is novel given 
that the representation used in it has been recently presented. 

 
4. We present a simple and novel algorithm to lengthen the objects 

contained in the map. This is possible and is natural after considering 
the form in how the association of data is performed. 

 
5. Finally, the use of sub areas of environment contained in the nodes of 

the structure of the exploration method combined with the SLAM 
method, allows that the run time of the SPLAM tool remains within the 
acceptable limits to use our tool in real time. Thus, the construction of 
the environment can be done both online and offline since that with the 
information of the exploration graph we know what areas correspond to 
what part of the environment. 
 

• Finally, Chapter 5 presents the results that evaluate, demonstrate and validate 
the algorithms presented in previous chapters. 
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We start with a series of tests made to the SRT and REG exploration methods 
validating its effectiveness with respect to the path traveled, number of nodes 
needed to complete the exploration and time spent to complete the task. We 
continue with an analysis that relates the angular resolution of the laser with 
the degree of the spline and how these affect the curvature of the spline from 
which the information is obtained for the association and elongation of the 
environment 
 
We also show a series of simulation tests performed on the SLAM methods. 
On them we show the accuracy obtained with each one of the methods and 
with which we validated the SPLAM method that we have proposed since the 
error levels remain within the limits obtained with the EKF-based methods. 
 
At the end, we show the maps obtained with real data that allow to evaluate 
the practical applicability of the proposed methods. 

 

6.2 Future Work 
 
The algorithms and methodologies presented in this thesis represent (from our point 
of view) an interesting and complete form to deal qith

 

 the SPLAM problem as for 
environments with geometries defined as for environments with complex forms. 

Taking this into consideration, we are sure that this proposal opens the door to an 
endless of future applications and developments between which we can emphasize 
the following: 
 

• Improve the data segmentation mechanism in which a more sophisticated 
mechanism will determine more accurately the individual objects present in a 
sensor observation in a more robust way. 

 
• Explore the use of alternative representations for data fitting. In this section we 

have thought about the use of another type of parametric curves (NURBS 
[Fisher et al. 2004], X-Splines [Blanc et al. 1995], Beta-Splines [Joe et al. 
1990], or curves of variable resolution) as modeling tools with which we could 
obtain better results in the quality of fit, the automatic selection of the knot 
vector and the ability to represent singular points (such as corners) using a 
smaller amount of information to that needed with the use of B-Splines. 
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• Deepen in the methods recently introduced in the field of pattern recognition 

which could get more interesting and effective solutions for data association 
process using parametric curves. 

 
• To improve the recovery process of the exploration when a robot kidnapping 

has occurred not only exploiting unique features of the environment but also 
invariant relations between the segments that form the environment. Although 
the purpose of this point is not to go into details, we call invariant relations to 
the comparison of the key metrics that define each type of relationship 
between two found elements in the same area of the environment (Example: 
high-curvature curve associated with a segment of straight line, curve with 
high curvature associated with a point, two straight line segments, a point and 
a straight line, etc.). 
 

• Extend the presented approach to the multi-robot case in which, if used an 
appropriate distribution of the robot in the environment, the exploration time 
would be reduced dramatically depending on the number of robots that will 
operate in the environment. 
 

• Extend the obtained maps to the three-dimensional space using B-Splines 
surfaces which could be used by a large number of types of robots since so far 
the use of our maps is limited to the use of terrestrial robots. 
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