
ACADÉMIE DE MONTPELLIER
UNIVERSITÉ MONTPELLIER II

- SCIENCES ET TECHNIQUES DU LANGUEDOC –

THÈSE

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ MONTPELLIER II

Discipline : Génie Informatique, Automatique et Traitement du Signal
Formation Doctorale : Systèmes Automatiques et Microélectroniques

École Doctorale : Information, Structures et Systèmes

présentée et soutenue publiquement

par

Alfredo TORIZ PALACIOS

Titre :

Exploration intégrée probabiliste pour robots mobiles
évoluant en environnements complexes

JURY :

Mr. Michel DEVY Directeur de recherche CNRS au LAAS Rapporteur
Mr. Luc JAULIN Professeur, ENSIETA Brest Rapporteur
Mr. René ZAPATA Professeur, Université Montpellier II Directeur de Thèse
Mr. Abraham SANCHEZ Professeur, H. Université Autonome de Puebla Examinateur
Mr. Philippe FRAISSE Professeur, Université Montpellier II Examinateur
Mr. Lionel LAPIERRE Maître de conférences, Université Montpellier II Examinateur

http://univ-montp2.academia.edu/PhilippeFraisse�

Contents

List of figures v

1. Introduction…………………………………………………….. 1

1.1 Motivation……………………………………………………….. 2
1.2 Objectives……………………………………………………….. 5
1.3 Structure of the thesis………………………………………….... 6

2. State of the Art of Integrated Exploration…………....... 9

2.1 SLAM …………………………………………………………… 10

2.1.1 Localization……………………………………………….. 12

2.1.1.1 Types of maps……………….……………..…….. 12

a) Metric Maps…….…………….……….………. 13

b) Feature Maps………………..………………… 16

c) Topological Maps……………………………… 18

d) Hybrid Maps…………………………………… 22

2.1.2 SLAM Methodologies…………………………….………. 23

2.1.2.1 Classic EKF-SLAM……………………………….. 23

2.1.2.2 Particle Methods……………………………….…. 28

2.1.2.3 Information Filter Methods (IF) ……………………. 31

2.1.2.4 Submapping Techniques…………………………. 37

2.1.2.5 Graph based Methods……………………………. 41

2.1.2.6 Set-membership Methods………………………… 52

2.2 Planning Exploration Strategies………………………………… 53

2.2.1 Deliberative Exploration…………………………………… 54

2.2.2 Reactive Exploration………………………………………. 56

2.3 Integrated Exploration…………………………………………… 57

3. EKF-SPLAM Algorithm……………………………………… 62

3.1 Planning exploration……………………………………………... 63

3.1.1 The SRT method………………………………………….. 63

3.2 EKF-SLAM Classic………………………………………………. 66

3.2.1 Review on EKF………………………………………….… 66

3.2.2 Application of EKF to robot localization…………….……… 72

3.2.3 Extension of the Map……………………………………… 81

3.3 EKF-SLAM with B-Splines………………………………………. 84

3.3.1 Foundations of B-Splines…………………………………. 84

3.3.2 EKF with B-Splines………………………………………... 87

a) Data management……………………………….…….. 87

b) Association of B-Splines………………………………. 88

c) Model of State…………………………………………. 90

d) Model of Observations………………………………… 91

3.3.3 Application of EKF with B-Splines to robot localization…… 96

a) Prediction……………………………………………… 96

b) Update…………………………………………………. 97

3.3.4 Extension of the map……………………………………… 98

3.4 Conclusion………………………………………………………. 106

4. Topologic-SPLAM Algorithm……………………………… 107

4.1 The Random exploration graph approach….…………………….. 108

4.1.1 Random exploration graph algorithm………..…….……….. 109

4.2 Topologic SLAM with B-Splines………………………………….. 116

4.2.1 Data management…………………………………………. 117

a) Acquisition of the B-Splines…………………………….. 117

b) B-Spline curvature………………….………………….. 120

c) Curve features search………………………………….. 121

d) Association of B-Splines……………………………….. 124

4.2.2 Topologic localization with B-Splines……………………..... 128

4.2.3 Extension of the map………………………………………. 134

4.3 Kidnapping………………………………………………………. 136

4.3.1 Collection and management of marks……………………… 136

a) Handling characteristics……………………………….. 136

b) Generation of the code…………………………………. 137

4.3.2 Kidnapped robot…………………………………………… 138

4.3.3 Recovery of the kidnapping………………………………… 139

4.4 Conclusion………………………………………………………. 142

5. Experimental Results………………………………………… 144

5.1 Exploration Methods…………………………………………….. 145

5.2 SLAM Method……………………………………………………. 150

5.2.1 Approximation of data points………………………………. 151

5.2.2 Accuracy of the algorithms..……………………………….. 156

5.3 Kidnapping………………………………………………………. 165

5.4 Experiments with real data………………………………………. 170

5.5 Conclusions……………………………………………………… 177

6. Conclusions and Future Work…………………………….. 178

6.1 Main contributions………………………………………………….. 179

6.2 Future Work………………………………………………………… 182

Bibliography……………………………………………………….. 184

List of figures

2.1 The field of robotic exploration with highlighted regions of integration…… 10
2.2 Geometric metric maps………………………………………………………… 13
2.3 Occupancy grid map…..……………………………………………………….. 14
2.4 Feature map…………………………………………………………………….. 16
2.5 Topological Maps………………………………………………………………. 19
2.6 Recapitulative table of the properties of each type of map used in SLAM. 23
2.7 Rise and drop of map uncertainty with Kalman SLAM…………………….. 25
2.8 EKF algorithm…………………………………………………………………… 26
2.9 Probabilistic dependencies between SLAM variables in a Bayesian
 Network………………………………………………………………………….. 29
2.10 Duality between the Covariance and Information form of a Gaussian

distribution………………………………………………………………………. 32
2.11 Evolution of the Information Filter Method…………………………………… 35
2.12 Submapping Techniques……………………………………………………… 38
2.13 Hierarchy of maps that are created and joined in D&C SLAM……………. 41
2.14 Graph constructions……………………………………………………………. 42
2.15 Hierarchy Algorithms…………………………………………………………… 43
2.16 Flowchart of the CST algorithm………………………………………………. 44
2.17 Tree representation of the map………………………………………………. 46
2.18 Data flow of the probabilistic computations performed by treemap……… 48
2.19 Clusters and separators in a junction tree…………………………………... 49
2.21 Cluster merging……………………………………………………………….... 50
2.22 Variable contractions in Thin Junction Tree filter…………………………… 50
2.23 Graph structure used by the GraphSLAM and SAM methods with its
 Information matrix.……………………………………………………………… 51
3.1 SRT methods………………………………………………………………....... 64
3.2 SRT-based integrated exploration algorithm………………………………... 65
3.3 MOVE_TO method form the SRT-based integrated exploration algorithm 66
3.4 A complete picture of the operation of the extended Kalman filter……….. 70
3.5 EKF algorithm………………………………………………………………....... 71
3.6 Localization EKF algorithm………………………………...………………….. 73
3.7 Environment with break points………………………………...……………… 75
3.8 Dietmayer’s criteria…………………………………………………………….. 77
3.9 Split and Merge Algorithm evolution………………………………................ 77
3.10 Split and Merge Algorithm…………………………………………………….. 78

3.11 Line feature as a point…………………………………………………………. 79
3.12 Line segment partially associated to be extended…………………………. 83
3.13 Unclamped, Clamped and Closed B-Spline………………………………… 84
3.14 Line segments found by the “split and merge algorithm”………………….. 87
3.15 Overview of treatment made to the raw data……………………………….. 88
3.16 Curves Concordance………………………………………………………….. 89
3.17 Observation model……………………………………………………………... 91
3.18 EKF process using B-Splines…………………………………………………. 98
3.19 Extension of a spline with new data………………………………………….. 101
4.1 Frontier control……………………………………………………………......... 109
4.2 REG algorithm…………………………………………………………….......... 110
4.3 Connection between nodes…………………………………………………… 112
4.4 Explored frontier calculation based on the position of the robot………….. 114
4.5 Evolution of the bidirectional A * algorithm………………………………….. 116
4.6 Measurements obtained with a laser scanning…………………………….. 118
4.7 Region of support (ROS) for the elimination of round curves…………….. 121
4.8 Region of support (ROS) for the elimination of false corners…………….. 122
4.9 Definitions of angle of a corner……………………………………………….. 123
4.10 LSR of the robot at the instant k………………………………………………. 124
4.11 Robot in the odometric position qk+s

its detection range……………………………………………………………… 125
with three obstacles detected within

4.12 Rough association performs with the control points of the curves……….. 126
4.13 Association of curves zero crossing and corners between the RSL

curves and curves observed………………………………………………….. 127
4.14 Example of how the start and end points of curve segments related are

found…………………………………………………………………………….. 128
4.15 Segments of curves related with the process described…………………… 128
4.16 Topological localization algorithm…………………………………………….. 129
4.17 Acquisition of angular coefficients……………………………………………. 131
4.18 Angular correction performed ………………………………………………… 131
4.19 Localization process finished…………………………………………………. 132
4.20 Localization process with incorrect data association………………………. 133
4.21 Extension of the spline of the map with new data…………………………... 135
4.22 Characteristic marks found……………………………………………………. 137
4.23 Points rotated to get a 0 degrees angle for the slope d2………………….. 137
4.24 Code or signature generated………………………..………………………… 138
4.25 Mark relation process………………………..………………………………… 139
4.26 Relationship found………………………..……………………………………. 140
4.27 Associated points………………………..…………………………………….. 141

5.1 Robot Pioneer P3DX………………………..…………………………………. 145
5.2 Laser sensor Hokuyo URG-04lx………………………..…………………….. 145
5.3 LIRMM Office Environment………………………..………………………….. 146
5.4 LIRMM Corridor Environment………………………..……………………….. 146
5.5 Exploration tree obtained with the SRT method on the LIRMM office

environment…………………………………………………………………….. 147
5.6 Exploration tree obtained with the SRT method on the LIRMM corridor

environment…………………………………………………………………….. 147
5.7 Exploration graph obtained with the REG method on the LIRMM office

environment…………………………………………………………………….. 148
5.8 Exploration graph obtained with the REG method on the LIRMM corridor

environment…………………………………………………………………….. 148
5.9 Nodes needed to cover the office and corridor environments respectively
 on the basis of 10 tests………………………………………………………… 148
5.10 Path distance traveled to cover the office and corridor environments

respectively on the basis of 10 tests………………………………………… 149
5.11 Time needed for the exploration of office and corridor environments
 respectively on the basis of 10 tests…………………………………………. 149
5.12 Segment acquired with a laser sensor resolution of 0.36°………………… 152
5.13 Segment acquired with a laser sensor resolution of 1.08°………………… 153
5.14 Segment acquired with a laser sensor resolution of 1.8°………………….. 154
5.15 Accuracy and consistency experiment for the Classical EKF-SPLAM
 method on the office environment.…………………………………………… 157
5.16 Accuracy and consistency experiment for the B-Splines based EKF
 SPLAM method on the office environment………………………………….. 158
5.17 Accuracy and consistency experiment for the B-Spline based Topologic
 SPLAM method on the office environment………………………………….. 159
5.18 Accuracy and consistency experiment for the classical EKF-SPLAM
 method on the corridor environment…………………………………………. 160
5.19 Accuracy and consistency experiment for the B-Splines based EKF
 SPLAM method on the corridor environment……………………………….. 161
5.20 Accuracy and consistency experiment for the B-Spline based Topologic
 SPLAM method on the corridor environment……………………………….. 162
5.21 Errors obtained with the SPLAM strategies…………………………………. 163
5.22 LIRMM offices environment maps……………………………………………. 164
5.23 LIRMM corridor environment map……………………………………………. 165
5.24 Kidnapped robot………………………………………………………………… 166
5.25 New environment position after the kidnapping…………………………….. 166
5.26 Areas with similar digital signature……………………………………………. 167

5.27 Random exploration graphs merged…………………………………………. 168
5.28 Map constructed during kidnapping………………………………………….. 168
5.29 Map constructed before the kidnapping……………………………………... 168
5.30 Before and after kidnapping maps fused……………………………………. 169
5.31 Error in X during the kidnapping simulation…………………………………. 169
5.32 Error in Y during the kidnapping simulation…………………………………. 170
5.33 Error in Theta during the kidnapping simulation……………………………. 170
5.34 Real office environment used for tests………………………………………. 171
5.35 Real office environment acquired with the SPLAM proposed method…… 171
5.36 Real office environment acquired using only odometric information…….. 172
5.37 Difference of maps with and without the use of the SPLAM method…….. 172
5.38 Real corridor environment used for tests……………………………………. 173
5.39 Real corridor environment acquired with the SPLAM proposed method… 173
5.40 Real corridor environment acquired using only odometric information….. 174
5.41 Difference of maps with and without the use of the SPLAM method…….. 174
5.42 LIRMM’s extension corridor used for tests………………………………….. 175
5.43 Real LIRMM’s extension corridor environment acquired with the SPLAM

proposed method………………………………………………………………. 175
5.44 Real LIRMM’s extension corridor environment acquired using only
 odometric information………………………………………………………….. 176
5.45 Difference of LIRMM’s extension corridor maps obtained with and without
 the use of the SPLAM method……………………………………………….. 176

1

Chapter 1. Introduction

One of the fundamental challenges of today’s robotics is to obtain robust and efficient
mechanism for modeling increasingly complex environments, using mobile robots for
their exploration. This is known as the Simultaneous Localization and Mapping
(SLAM) problem which consists of using the map that the robot is currently building to
determine its own position. This problem can be technical challenge because the
robot position and the world features must be estimated simultaneously from noisy
sensor data.

Probabilistic solutions are the most popular for the SLAM problem, especially those
based on the use of an Extended Kalman Filter to estimate the map. Despite all the
research done in this field that has resulted in substantial progress in autonomous
map-building, still significant barriers arise in the implementation of these algorithms.
The first comes because normally SLAM algorithms implicitly assume a naive control
where the robot is driven around the environment by hand while it records the sensor
data resulting in a system that is not really autonomous and even the quality of the
maps in some cases is poor when the sensor data is collected from a robot being
controlled manually by a novice.

Efficient exploration of unknown environments is a fundamental problem in mobile
robotics which answer to the question of where to go next in order to build the map
efficiently. Even though the exploration strategy can have a real impact on the quality
of the resulting map, the area of exploration for SLAM or Integrated exploration is
relatively new. This paradigm was first explicitly stated in [Feder et al. 1999] and can
be seen as the problem where a mobile robot incrementally builds a map of this

Chapter 1. Introduction

2

environment and simultaneously uses this map to compute its absolute localization,
and make local decisions on where to move next in order to minimize the error in the
estimation of the mobile pose and the configuration locations. Planning actions for
SLAM requires fast algorithms that can adapt to changes in the environment when
new features or obstacles are detected.

A second issue is regarding to the representation of objects in the map and to the
information that such representation can provide in the SLAM process. B-Spline
curves have been used recently in [Pedraza et al. 2007] as a form of representation
of environments. In this work, these curves have shown great efficiency and
versatility to describe complex environments where it is not possible to extract simple
features such as lines and points. However, the use of this type of representation is
too recent and therefore not fully exploited, especially talking of the kind of
information that the B-Splines can provide to the SLAM process.

Finally, limitations on the size of the environments due to calculations that must be
performed and the inconsistencies that the linearizations of the problem produce in
some methods make it necessary to find alternative ways of addressing the problem
of SLAM.

1.1 Motivation

Robotics is the science that pursues the perception and manipulation of the physical
world around us through programmable and controllable devices with computers.
These devices are known as robots and depending on the objective can be found in
a wide variety of forms.

Perhaps the first real example of mobile robot was the turtle developed by Walter in
1948 which was capable of moving exhibiting an apparently intelligent behavior at the
moment of reacting against the presence of obstacles. Since then, the attempts of
creating mobile robots provided with autonomy have been growing more and more to
the point that today there are numerous commercial applications that assist humans
in many tasks.

A mobile robot, to be considered truly autonomous should be able to answer the
following three questions that define the basic problem of its own navigation
[Leonard et al. 1992]. Where am I?, Where am I going? How i get that destination?.

Chapter 1. Introduction

3

Many efforts have been made in the scientific community to answer these questions.
The first question concerns the localization of the robot and to get an answer, the
robot must use the information obtained through its sensors and the information
available over the environment. The localization problem is a key problem in mobile
robotics. Occasionally, this has been mentioned as “The most fundamental problem
to provide to a mobile robot of autonomous capacities”. The answer to this question
will be used as a starting point to obtain the solution of the other two questions
because the current position will give a great number of possible target positions
while the way to reach them will come in part conditioned by the starting position of
the robot.

In order to answer the third question (how to reach that destination?) many path
planning algorithms have been proposed adapted to the own characteristics of the
vehicles, the perception system and the type of task to be performed. Although all
these factors have a commitment to develop a navigation system, the available
information over the environment and how the robot is able to perceive and to reason
it are without doubt the determining elements

The second question, however, is a problem that remains open or whose solution is
imposed by human interaction that defines the destination and the objective of the
task to be performed by the robot. The autonomous choice of a destination has been
typically left in the hands of algorithms designed for the exploration of environments.
Although in recent years these kinds of algorithms have made a great progress, it is a
problem that still remains open.

Given this, it is clear that any movement system needs to have some kind of model of
its environment to solve the basic problem of navigation; either to determine their
own position, to define a target position, or to plan a path to follow. This objective has
been pursued in recent decades where the first solutions tried to decouple the
problem of map building and the problem of robot localization; however, rapidly was
discovered that this would not be possible without simultaneously considering both
aspects. This phenomenon is because during the exploration, the robot performs
measurements of the environment that are later placed spatially considering its own
position, at the same time, previously detected objects are used to determine its
location.

In [Smith et al. 1987] Smith et al provided the basis to solve the two problems
simultaneously and that in these days is known as SLAM (Simultaneous Localization
and Mapping). The SLAM problem responds to the autonomous capabilities of a

Chapter 1. Introduction

4

robot, it is possible for an autonomous vehicle to start at an unknown position, in an
unknown environment and then start building a map that will be simultaneously used
to calculate the absolute position of the vehicle to allow the robot to navigate.

Although many approaches have tried to deal with this problem, the huge
dimensionality (temporal, spatial and statistical) of the SLAM problem makes that,
mathematically, it does not exist a complete solution. Instead suboptimal solutions
have been presented in the current literature being probabilistic techniques based on
linear approximations of first order as the extended Kalman filter which has best deal
with the problem; however, these solutions suffer from some statistic inconsistency
that causes corrupt results or completely incorrect results in the long term. Because
of that the solution to this problem is still in study.

The representation of the physical world surrounding the robot in itself, represents
also a problem. Here the available methods attempt to describe and model the
environment as it is presented and try to get from it the information necessary for the
representation. While that some approaches try to extract geometric features and to
represent their positions on a map, others try to discretize the space into cells and
classified each one as occupied or empty. One last category known as scan-
matching has been presented in [Lu et al. 1997]. Here, the use of laser sensors to
take accurate measurements of the environment is essential. The methods in this last
category are able to represent the environment without relying on any assumption
about the geometric characteristics. What these methods seek, is the way to align
together two consecutive measurements so that the discrepancy obtained between
them serves to correct the position of the robot.

Although the representation methods mentioned have been widely developed, these
are adapted only to simple primitives such as points or line segments and therefore in
more complex environments they lose their validity. For this reason, a new form of
representing complex environments has been presented by Pedraza et al. in
[Pedraza et al. 2007] where B-Splines curves are taken as basis for the
representation. With this, the new challenge that now faces the problem of SLAM is
to consider new representations to model non-standard environments.

As we have mentioned earlier in this section, navigation gives a real autonomy to the
mobile robot. However, the classical methods of SLAM require human intervention to
take the decision on where the robot has to go in order to continue the mapping.
These navigation methods are known as methods of exploration and correspond to
another area of research related to the prediction of the unexplored region. Thus,

Chapter 1. Introduction

5

exploration is the task of guiding a vehicle in an unknown environment where the
mobile robot has to decide the next exploration target that offers the most important
benefit of an unexplored region. Considering this, in recent years a new paradigm
has emerged which considers the motion planning in the context of SLAM. This new
paradigm is known as SPLAM (Simultaneous planning, localization and mapping) or
Integrated Exploration and it requires a balanced evaluation of the obtained
information, the quality of the localization and the cost of navigation.

Since the problem of integrated exploration is a relatively new area, a lot of work
remains to be done.

1.2 OBJECTIVES

Based on these motivations and needs, this section describes the general objective
and the particular objectives of this thesis.

The main objective of this thesis work is to develop an effective and robust SPLAM
tool destined to the construction of maps of complex environments in an autonomous
way. As we have mentioned, the strategies of SPLAM solve simultaneously the
planning, localization and mapping problems. It is then necessary to develop several
strategies that coexist harmoniously to achieve in a joint way the proposed objective.

With this in mind, we will try to substantially improve some methods from the current
boundaries of the theory and technique in the field of exploration, localization and
mapping. Thus, from the general objective arise the following specific objectives:

1. To establish the theoretical basis for the understanding of the problem of
Integrated Exploration, specifying how a solution can be formulated.

2. To propose an evolution of the SRT (Sensor-based Random Tree) exploration

method, transforming the structure it uses into a more versatile one that could
be used throughout the entire process of exploration. The proposed evolution
transforms the exploration tree into an exploration graph that continues using
the probabilistic efficiency that these kinds of methods have shown. Also, with
the new structure it is possible to use more complex algorithms to determine
the next best position to explore once the region where the robot is currently
has been completely covered.

Chapter 1. Introduction

6

3. To study a new SLAM methodology based on unclamped B-Splines taking the
representation of the environment presented by Pedraza et al. in [Pedraza et
al. 2007],for which will be necessary to extend the area of application of
existing techniques as follows:

• The localization presented in our method is classified into the group of

scan matching or topological methods. For this reason the data
association in an efficient way is a key step. From the foregoing, an
improvement is proposed for the current association data methods
which exploit the information gain that represents the parametric
description of arbitrary geometries. This way, once available a map of
modeling in the form of parametric curves, it is possible to use the
information contained in them as curves such as curvatures, length of
the curve and curvature zero crossing with the objective of improving
and strengthening the existing methodologies of data association.

• Given the type of curves used in this project, there will be studied also

the form in which the environment will be gradually extended with the
new information that the robot will get of the unexplored zones

4. To study an alternative for the construction of map of great dimensions so that

the computational cost of the algorithm allow its utilization in real time. For this
end it is considered the structure used by the proposed exploration method so
that the information necessary for the localization process will be the local
information that is found on the node on which the robot is currently
navigating. Simultaneously, the information with corrected position will be used
to extend the global map.

1.3 Structure Of The Thesis

The thesis work presented consists of 6 chapters and a bibliography. In this first
chapter, we have tried to transmit to the reader the motivations that have led us to
tackle this topic showing the current challenges in the research field from which are
originated the objectives pursued in our work.

Chapter 2 gives an overview of the current state of the art for the simultaneous
planning, localization and mapping (SPLAM or integrated exploration) problem. Here,
it is intended to familiarize the reader by introducing the main algorithms and

Chapter 1. Introduction

7

methods developed in the involved fields. In this way, we perform a study of the main
SLAM strategies used until today showing the advantages and disadvantages of
each one of them. Also we propose a study that shows the latest methods in the field
of exploration environments and finally we present the work carried out in the
relatively new field of integrated exploration.

Chapter 3 introduces an approach to the problem of integrated exploration using
some familiar tools in the field of exploration and in the field of SLAM, showing in this
last one the version based on the classical extended Kalman filter (based on
punctual landmarks) and also a new version presented in [Pedraza et al. 2007]
which also uses the EKF but with new representation of the environment based on B-
Spline curves. The final objective of this chapter is to build a SPLAM strategy using
known tools, which will serve as comparison for the approach developed in this
project presented in Chapter 4.

Chapter 4 is the central chapter of this thesis. It presents a new approach to the
SPLAM problem where the objects are modeled using parametric curve as is
proposed in [Pedraza et al. 2007]. Because of this representation, we have improved
or developed the following methodology:

• An evolution of the SRT exploration method, in which the main structure of
exploration is transformed to a graph. Also, the choice of the next position to
explore once the robot is in a fully explored zone is performed by using the
introduced concept of border control and the graph search method A* in a bi-
directional way.

• A topological location method that considers the new representation of the

environment using the information about the curvature of the spline for the
data association and position correction process.

• A method for incremental construction of maps of complex environments using
unclamped splines as modeling tools.

At the same time, the proposed method uses only partial information contained in the
nodes of the exploration graph for the process of SLAM. So the method can be used
in environments of large dimensions.

Chapter 5 contains the results that show and support the practical application of the
methods presented as well as the necessary comparisons to show the validity of our

Chapter 1. Introduction

8

proposal comparing it with the methodologies presented in Chapter 3. Results
include simulations carried out in built environments as well as experiments in real
environments.

Finally, Chapter 6 presents the main contributions of the thesis and the conclusions
that can be extracted from them. In addition, an analysis of the proposal is performed
considering possible improvements for future work and possible extensions of the
project.

9

Chapter 2.State of the Art
of Integrated Exploration

In general, the task of acquiring models of unknown environments requires the
solution of three subtasks, which are mapping, localization, and motion control.
Mapping is the problem of integrating the information gathered with the robot’s
sensors into a given representation. Localization is the problem of estimating the
position of the robot. Finally, the motion control problem involves the question of how
to steer a vehicle in order to efficiently guide it to a desired location or along a
planned trajectory.

The diagram in Figure 2.1 depicts also the overlapping areas of these three tasks.

• Simultaneous localization and mapping (SLAM). It is a fundamental and
complex problem in mobile robotics research. In this problem, a mobile robot
explores and senses an unknown region; besides it constructs a map and
localizes itself in the map.

• Active localization. It seeks to guide the robot to locations within the map to
improve the pose estimate.

• Classic exploration. It does not take localization uncertainty into account and
direct the exploration in order to minimize the distance travelled while
maximizing the information gained. When the robots travel through unknown
environments, the uncertainty over their position increases and the
construction of the map becomes difficult. Consequently, the result can be a
useless and inaccurate map.

• Integrated Exploration. Represented in the center area of the diagram; it
address mapping, localization, and motion control simultaneously. The

Chapter 2. State of the art of Integrated Exploration

10

paradigm of integrated exploration was proposed in [Feder et al. 1999], here,
the exploration approach calls for a balanced evaluation of alternative motion
actions from the point of view of information gain, localization quality and
navigation cost.

Figure 2.1 The field of robotic exploration with highlighted regions of integration:
(I) SLAM, (II) classic exploration, (III) active localization, (IV) integrated exploration

2.1 SLAM

In the world of robotics, we can find a wide range of robots designed for an extremely
wide range of applications and for an equally wide range of circumstances; it is
unthinkable that a robot can be built without a preconceived purpose. Some of these
robots that we can find today have been conceived to be capable to exploring, from
environments with regular shapes such as office buildings [Bosse et al. 2004], to
difficult terrain as in the case of planetary exploration [Maimone et al. 2004] and
even in underwater environments [Williams et al. 2004]. These robots can operate
alone [Leonard et al. 1991] or in teams even of hundreds of them [Howard et al.
2006].

Chapter 2. State of the art of Integrated Exploration

11

One point that share most of the many implementations is that all the robots need a
map. Most of these applications are location based, in one way or another. Tasks like
terrain exploration, underwater inspection and many others need that the robots
know their localization. Therefore a map is necessary to make it easy regardless of
its representation or amount of information to be stored that vary from application to
application. By providing the robot with a spatial context, a much more elaborate and
intelligent behavior can developed. It means that maps allows to robot go beyond of
a purely reactive behavior.

It can be thought that a map can be given in advance to the robot; however, this can
be done only in a small circle of applications. Consequently, in most applications the
robot has to be equipped with sensors that allow him to observe the environment and
make a map by himself. This challenge is addressed by the mappings algorithms;
while the robot travels through an environment the information read by the sensors is
translated into a map. In this way, and assuming a perfect knowledge of the location
of the robot, the challenge of mapping consists in make the most accurate description
of the physical reality based on sensor readings even with the noise associated to
the measurement system.

Taking this into account, the Simultaneous Localization and Mapping (SLAM)
strategy, in a very simple definition, is about having a robot in response to question
’Where am I?’. Nevertheless, this question about the robot’s position is almost never
raised for its own benefit; on the contrary, the information over the map and the robot
pose granted by SLAM is the key toward many intelligent behaviors. As an example,
we can mention that this information is used by many navigation and path-planning
algorithms as a prerequisite and it may contribute to a more elaborate behavior and
motion planning. In general, the map and the robot pose information supply a natural
context to relate observations, decisions and actions over time. So, only by the use of
SLAM techniques we can successfully do an autonomously complete location-based
task where the mobile robot can be placed on an unknown location into an unknown
environment. Given that SLAM has not need of the a priori knowledge of the
environment, Hugh Durrant-Whyte et al. [Durrant-Whyte et al 2006] asserts that the
solution of the SLAM problem is the “holy grail” for the mobile robotics community
where a robust method would make a robot truly autonomous.

 Today, we can find on internet several SLAM algorithms for science research.
Despite the great progress that has been made in the past decades, some existing
SLAM methods are limited to specialized robot platforms, small environments and
certain sensor technologies. For this and other issues, the SLAM problem still

Chapter 2. State of the art of Integrated Exploration

12

remains unresolved. Given these matters, it is necessary to find robust SLAM
solutions that can work for a large variety of robots without altering the model and
also to build accurate large maps of environments. It has to be considered that the
methods should run in real time and to work with the available memory, even for
large maps.

It can be considered that the primary task of SLAM is to choose one representation
which can facilitate the subsequent algorithms; this is due to the intelligent behaviors
that depend on him. There are a great number of these representations, each with
their capabilities and limitations in terms of accuracy, performance and memory
allocation. So, the election of one representation is a delicate and most be done
considering a broad context that at least includes the algorithms that will actually
make use of the map.

2.1.1 Localization

To perform the exploration of a given environment, the robot most travel through it.
This means that some motions commands have to be sent to the robot’s motions
actuators to get some movement from him and this gives rise to its own particular
kind of problem often known as odometric errors. The odometric errors are a
mismatch between the desired movement specified by the control commands and the
movement achieved by the actuators. This difference may have its root in any of the
following problems: inaccuracy in the actuator, slippery or uneven surfaces, or some
other problems caused by the environment itself.

Given the differences between the desired position and the position reached, many
researchers have focused their attention on solving the autonomous localization
problem in the past two decades. The result is a great variety of paradigms that seek
to determine the position and orientation of a robot with respect to the objects in the
environment. Once the robot’s pose is obtained by localization, this information is
used as a reference frame for mapping to interpret and localize the sensor
observations and build a map from these. At the same time, localization estimates
the current pose of the robot comparing the current observations with the information
contained in the map. Thus, localization and mapping are interdependent.

2.1.1.1 Types of maps

This section considers the four types of maps most commonly used in current
localization systems: metric maps, feature maps, topological maps and hybrid Maps.

Chapter 2. State of the art of Integrated Exploration

13

a) Metric Maps

The level of metric representation of the map contains a model in which the
coordinates and properties of objects are represented numerically. So this model can
be geometric or discretized (Figure 2.2). In the geometric model, the discrete
elements that represent the environment are stored using their geometric
parameterization. And in the discretized model the occupation of space is
represented by a division of it.

In the geometric model, the maps contain the positions and properties of a group of
objects in the environment with certain geometrics characteristics: The robot, the
walls, natural or artificial specific markers, etc. Depending in the sensorial capacity
and feature extraction of the environment, more complex geometric objects could be
distinguish and used.

Figure 2.2 Geometric metric Maps. The left image [Zhang et al. 2000] show a map composed by

line segments that represents the walls of the environment in the map obtained. On the right
image [Zunino et al. 2001], the objects are represented as dots extracted from thin object and

corners of the environment.

 This representation is often used on structured environments where can be possible
an extraction robust enough of the geometric features. Popularity lies in the
representation anthropomorphic of the space, which makes it especially useful for
displaying maps and to compare them with man-made maps. The compactness of its
representation directly influences on the storage size map. However, these
algorithms require more accurate sensors like laser scanners or more complete like
vision systems.

Chapter 2. State of the art of Integrated Exploration

14

Between the disadvantages of the geometric model, we find the inability to make a
complete model of the environment. This means than only the geometric features will
be stored and the rest of information will be discarded and won’t be considered in the
map. This is, in order to get compactness and robustness, most of the sensorial
information is discarded. For this reason, these kinds of maps are often useless for
common tasks of navigation of robot mobiles like path planning because the planner
would not consider all the possible obstacles that physically exist but that mapping
was not able to assimilate as geometric features. In exploration tasks, the situation is
not better. This because they don’t maintain the notion of which part of the
environment has been already explored and which one not.

In the discretized model, individual objects are not extracted from the sensorial
system, but the information is treated without a segmentation process to construct a
probability density function of the space occupancy. Like this function of density is
impossible to maintain analytically, the space is divided into cells and it considers the
probability of every single cell is occupied or free. Every cell makes the description of
a small rectangular area in the environment, and indicates the probability that the
area is occupied by a value in the range (0, 1). The localization here is made by
registering observation data with the map using cross-correlation methods.

This model is considered as a continuous representation of the space even if it is
discretized, this because none analysis of the ownership of each cell to a single
object is realized. Such maps are called occupancy grids (figure 2.3). These kinds of
maps are perfect for the tasks of path planning and exploration due to the continuous
and complete representation of the environment where none sensorial information
has been discarded.

Figure 2.3 Occupancy grid map

The most important benefit of the occupancy grid over other representations is that
this model can be used directly by a good number of navigation, obstacle-avoidance

Chapter 2. State of the art of Integrated Exploration

15

and learning algorithms. But in the other hand, one difficulty concerning occupancy
grids SLAM is data association. Within the region of the vehicle pose uncertainty, the
cross- correlation search is expensive if the search-space is large. Also, a maximum
likelihood correlation search may fail by converging to the wrong mode if the cross
correlation result is multi-modal within the search-space region. However this
problem can be solved using the Monte Carlo localization procedure as in [Dellaert
et al. 1999].

 For the Occupancy grid SLAM applications [Yamauchi et al. 1998], we observe that
steps of localization and map update are interlaced by locating the map segment
using the global map in the first place and then extending the map by updating the
perceived occupancy of the global map grid cells. This method has shown robust
results in dynamic indoor environments over a limited period of time. The reason why
these maps only work on a limited period of time is because they don’t have an
appropriate uncertainty model and so will tend to diverge in the long term. The
uncertainty represented in occupancy grid is only at a local level (vehicle-centric),
which is not enough for SLAM where an integrated representation of sensor and
vehicle pose uncertainty and their correlations are essential for map convergence.
That is not supported by the occupancy grid framework. By not defining criteria for
convergence, the developing map is able to drift with each observation update and
this divergence exhibits itself as a slow blurring of the map.

The greatest drawbacks of using occupancy grids are:

• They are not really well-suited for online SLAM, especially in large-scale
environments; this because their space and time complexities grow
exponentially with the grid resolution.

• Other issue is the map update; even when the maps are easily constructed,
the problem lies on the fact that there is no trivial way to undo or alter past
grid modifications; this is because of the inherent data aggregation in
occupancy grid cells. For example, when the SLAM algorithm re-observes a
feature and a large accumulated error is exposed, SLAM would want to
correct this error and update the map accordingly, this implies that the
current ray-casting should be undone and then redone based on the updated
pose estimate. In practice the backwards editing of occupancy grids is
considered not desirable during online usage. Therefore, pose estimates
have to remain fixed once determined. This has led to the situation where
approaches employing occupancy grids are often equipped with means to

Chapter 2. State of the art of Integrated Exploration

16

accommodate for this inflexibility, like particle filters where multiple possible
pose sequences are maintained concurrently [Schultz et al. 1999].

Occupancy grids are also used after the main SLAM process as a post-processing
step. Using them in this way, mapping in not really in SLAM, but they are used for the
visual reporting of the maps or to make easy subsequent algorithms. In the first case,
some representation of the environment used by the SLAM algorithm do not easily
allow for visual rendering on screen or print. In the second case, we can find that
there are SLAM approaches that use representations of the maps that won’t be
suitable for subsequent use by other methods. Such is the case of learning or
obstacle avoidance algorithms.

b) Feature Maps

Feature maps represent specific objects of the environment by the global locations of
parametric features (such as points, lines and lately curves) as shown in Figure 2.4.
In this type of maps, localization is performed by extracting features from the
information obtained by sensors and associating them to features already existing in
the map. So, the vehicle pose is calculated using the differences between the
predicted feature locations and the measured locations. In this way, localization
targets are static and the observer is in motion.

Figure 2.4 Feature map. The environment is defined by parameterized features (point locations

in this example). These static landmarks are tracked using target tracking methods to
determine the motion of the observer. Image taken from [Pedraza et al. 2007]

Feature map SLAM [Smith et al. 1987] comprises the dual task of adding observed
features to the map, using the vehicle pose as a reference, while using existing map
features to estimate the vehicle pose. In this way, localization using a feature map is

Chapter 2. State of the art of Integrated Exploration

17

a parameter estimation problem to determine the vehicle pose (x, y, φ) given the map
feature information and a set of feature observations. Assuming the measurements
are correctly associated to the appropriate map features, the vehicle pose can be
tracked using standard estimation techniques (Been the EKF being the most
common method applied to this problem). Here, the uncertainty of sensor
measurements result is the uncertain estimates of both the vehicle pose and the map
feature locations, and these uncertainties are dependent (or correlated). Correlated
uncertainty has an important consequence for feature-based SLAM as it inextricably
couples the individual features to each other and the vehicle to the map. Attempts to
estimate the vehicle pose and map features independently have been shown to
produce inconsistent uncertainty estimates [Leonard et al. 1991].

Data association is certainly the main weakness of feature map localization. To
obtain a good localization we have to find a correct correspondence between a
feature observation and its associated feature contained in the map. A wrong
association results in an inconsistency where the vehicle location uncertainty
decreases but the estimate error actually increases. Significant false associations
increase the pose estimate error and consequently degradation in the accuracy of
the map. These inconsistencies tend to be self-propagating, causing divergence, i.e.,
the sensitivity of the SLAM algorithms to incorrect data association.

Several feature map localization implementations are susceptible to data association
failure because normally they rely on the association methods developed for target
tracking, which treat each measurement in isolation. This approach is sensitive
observer pose uncertainty and high feature density when the correlation between
fixed marks is done in a wrong way. Robustness can be achieved using batch
association: a group of observations is assigned as one and allows us to distinguish
the association on the base of his probability of association combined utilizing the
geometric character of the local region.

Other problem of data association is the administration of the non-associated
observations. These unassociated features can be:

• New map features
• Outlier measurements
• Observations of dynamic objects

 Identify the latter two is essential to avoid including items that should not be part of
the map.

Chapter 2. State of the art of Integrated Exploration

18

The most difficult data association complication comes when a cycle is detected. This
is difficult because, not only is the vehicle location uncertain, but the new and old
portions of the map are also uncertain in relation to each other.

In summary, feature maps are a viable representation for long-term convergent
SLAM in fairly small-scale environments where the computational time necessary for
the map update and the data association are very efficient. Computation is tractable,
and accumulated state uncertainty does not exceed conservative limits.

c) Topological Maps

Unlike other representations, Topological maps [Kuipers et al. 1991] show an
important conceptual change in the representation of the environment. In Occupancy
grids and in feature maps the location is defined as a set of coordinates in Cartesian
space where they rely on metric measurements, instead, Topological maps represent
the environment in terms of places and connecting paths as shown in Figure 2.5. The
two types of map organizations mainly used in topological SLAM are:

• Graph maps. This are designed to literally capture the navigability of the
environment. Here, all the estimated poses along of the robot’s trajectory are
turned into nodes that define particular locations in the environment (termed
distinctive places) and links define procedural information for traveling
between nodes (i.e., links show the path that the robot has traversed between
consecutive poses).

The term topological consistency means that the graph does not indicate
connectedness that is not actually in the environment and a consistent graph
can be achieved by using a conservative method that only adds links every
time that a robot traverses a path between two nodes [Howard et al. 2006b].

• Voronoi diagrams. In this case, the map is divided into a non-overlapping
regions based on obstacle detection. In Voronoi diagrams, as in the graph
maps, nodes and links are used to delineate the free space navigable.
However they are positioned in a different way. The nodes are positioned at
equidistant points, which are those points that are exactly at the same
distance away from all near obstacles. For placing them, only obstacles for
which there is not another node at a closer distance from the current one are
considered. In this way, a link is a straight line that represents a safest path

Chapter 2. State of the art of Integrated Exploration

19

between two connected nodes that is equally far away from the obstacles on
both sides of him. Hence, like graphs, Voronoi diagrams lend themselves
excellently for path planning purposes [Lisien et al. 2005].

As we can see the most important difference between these two representations is
the form as links are treated. In graphs, links are added once the robot has traveled
the path between two nodes, and in Voronoi diagrams links are estimated and their
position is estimated according to the position of obstacles. Thus, graphs remain true
to the actual traversed paths but Voronoi diagrams generalize beyond the actually
traversed pathways as they infer the safest pathways based on the obstacle
estimates. This characteristic makes this diagram be used especially in planar
environments because the use in all three spatial dimensions can result in side-
effects on the performance and memory consumption of SLAM.

These two types of map, as all topological representation seek to provide a compact
description of the free space areas on the environment and their interconnectedness.
Thus, navigation between two non-adjacent locations is determined by a sequence of
transitions between intermediate place nodes. The concept works on the
assumptions that distinctive places are locally distinguishable from the surrounding
area and that the procedural information is sufficient to enable the robot to travel
within recognizing distance of a specified place.

Figure 2.5 Topological Maps. At the Left side we have a Graph map.
To the Right Side a Voronoi diagram [Choset et al. 2001]

The principal motivation behind the topological representations is their excellent
support to path planning algorithms which is ideal for autonomous robots because
they need to go from one place to another to complete their tasks. In the case of

Chapter 2. State of the art of Integrated Exploration

20

exploration, we assume that at some point the robot will reach a dead-end of the
environment and the exploration has to continue into another position. For this, the
robot will have to return to a known position and start again from there. Here nodes
and links in graphs and Voronoi diagrams tell any path planning algorithm precisely
how to get around the explored areas safely. Given the nature of their construction,
topological maps make this kind of tasks very easy.

Another motivation on topological maps is that, while feature-based and occupancy
grid maps grow exponentially with the size of the environment or the number of
detected features, topological maps can represent huge environments in a very
compact way because they only grow linearly in size as nodes and links are added to
denote newly explored areas.

In the other hand, the weakness over topological maps lies in ensuring reliable
navigation between places, and subsequent place recognition, without the aid of
some form of metric location measure. Regarding to navigation, for static structured
environments, the use of purely qualitative trajectory information is enough to travel
between nodes. However, for more complex and dynamic environments rely only on
this information may result in failure to guide the robot to the right place. With respect
to place recognition problems we can find two scenarios:

• The first is when a place is not recognized (false negative) due to the
alteration in the appearance of the place by circumstances such as as
viewpoint variation, occlusion, structural change, dynamic objects or changed
lighting conditions. Geometric and visual recognition are sensitive to this type
of failure.

• In the second, an alternate location is mistaken for a place (false positive)
which is a symptom of inadequate place definition but also can be found in
highly structured environments (such as rows of office cubicles) where another
portion of the environment appears similar to the place definition (the place is
not locally unique). Most of geometric recognition methods offer simple
descriptions where ambiguous associations may be created even by the
presence of transient objects. Vision-based recognition is probably more
immune to false positives because of the increased level of information
defining the node [Devy et al. 1995, Sola et al. 2008].

In all this cases the topological sequence is broken and the robot becomes lost.

Chapter 2. State of the art of Integrated Exploration

21

Topological approaches to SLAM attempt to overcome the drawbacks of geometric
methods. They operates by performing the exploration of the environment guided by
a set of path following criteria, and recording place descriptions at appropriate
locations. The maps for topological SLAM are constructed adding new places found
and connecting them to the previous place according to the path following
specifications required to reach it. This means that they are built as a linear sequence
of places, which continues until a place is observed that matches a previously stored
place description (assuming that the robot is not simply traversing old sections of the
map).

For geometric place recognition, these would be locations affecting certain
patterns in the sensory data and, for vision-based recognition, they could be
either regularly-spaced locations or locations where a given distinctiveness
metric is maximized.

As each new place is found, it is connected to the previous place according

to the path following specifications required to reach it. In this way, the map is
built as a linear sequence of places, which continues until a place is observed
that matches a previously stored place description (presuming the robot is not
simply traversing old sections of the map).

This matching place description can be found in new places that have a

similar appearance to others content already on the map or by re-observing old
locations when the robot takes alternate routes.

If the match can be identified unequivocally as the old place location, then

a cycle is created, linking the topological sequence back upon itself to form a
closed path.

There are certain issues that remain important over topological SLAM like qualitative
path following and sequential data association, but the most important concern is
cycle detection. Topological SLAM removes the difficulties of uncertainty in the
representation and nonlinearities by avoiding metric location measurement, but,
instead, data association process receives the great responsibility to work robustly.

For cycle detection, which is the key weakness in the topological map paradigm, data
association can be vague when an observed place resemble to a previous place or
may be a several places, and is not clear if it is one newly discovered location or one
already stored. Using the methods of rehearsal [Kuipers et al. 1991] we can

Chapter 2. State of the art of Integrated Exploration

22

distinguish correct associations. In this method the resulting sequence of places is
traced until the number of candidate cycles is reduced to one or none (a new place).
This method is appropriate if a place is unique in the world or a place sequence
exists in the map. However, the reality is that in many environments such uniqueness
cannot be ascertained. So, even if the observation of an expected place sequence
serves to increase confidence of cycle detection, it is impossible to confirm this
hypothesis.

The solution to this problem is the use of metric information that will limit the cycle
search-space. So, that place sequences need only be locally unique and therefore
will make possible the estimation of pose uncertainty between places.

d) Hybrid Maps

As illustrated in the previous sections, each elementary approach towards
representing a map has several positive and negative sides. The tree levels may and
should be treated to find one solution to the problem of modeling the environment.
Based on this, it should come as no surprise that many researchers have attempted
to acquire better solutions where the strengths of multiple elementary map
representations are combined in hybrid data structures. Hybrid approaches are
categorized into ones that integrate multiple representations in a single layer and
ones that use a data structure with multiple layers where usually a topological layer at
the top is used to decompose the lower layer into small-scale feature or grid maps.

Given that, their qualities are complementary. Topological and metric map
representations are integrated in order to provide a versatile data structure that can
serve the map information in multiple forms. Metric maps, with an appropriate
uncertainty representation, constrain data association and permit non-qualitative
trajectory planning, while topological maps are great for navigation and path-planning
purposes and are capable of mapping large environments breaking the world up into
locally connected regions and avoid the problems of maintaining a global reference
frame.

Hybrid topological metric maps are basically topological frameworks where the place
definitions and/or path definitions contain metric information. Importantly, this means
that places are no longer restricted to discrete locations but can describe regions of
arbitrary size and shape as local metric maps. ’Hierarchical Atlas’ presented by Lisien
et al. [Lisien et al. 2005] is one example of hybrid approaches that use map
decomposition. In this work, the global description of the environment is made using

Chapter 2. State of the art of Integrated Exploration

23

a Voronoi diagram while every link in the diagram is stored in a local level in the so-
called “edge maps”. The “edge maps” are occupancy grids that stores the geometric
properties of the environment as they are found when a particular edge is been
traversed. As all information on an edge map is stored with respect to a local
coordinate frame, the equidistant points and hence the links can be kept dynamic
without compromising the validity of the information stored on the edge-maps. This
yields two advantages: first, by using grid-maps on a small scale the limitations due
to their static nature are avoided and second, grid-maps are only constructed to
cover the extent of the actually explored area instead of having them grow on a
global scale whenever the boundaries are explored.

Finally, given all the characteristics of the maps used for the SLAM process, we
present a recapitulative table showed in figure 2.6.

 Complex Objects

Representation
Compactness Complete

model of the
environment

Suited for
path
planning

Suited for
exploration

Suited
for SLAM

Main
Weakness

Metric
Geometric
Maps

Inability to
make a

complete
model of the
environment

Metric
Discretized
Maps

Not suitable
for online
use

Feature
Maps

Data
association

Topological
Maps

Cycle
Detection

Hybrid Maps

Figure 2.6 Recapitulative table of the properties of each type of map used in SLAM

2.1.2 SLAM Methodologies

2.1.2.1 Classic EKF-SLAM

Historically the earliest and perhaps the most influential SLAM algorithm is based on
the extended Kalman filter (EKF), which is an extension of the Kalman Filter where
nonlinear equations are linearized. One of the first solutions using this approach was
proposed by Smith et al. in 1987 [Smith et al. 1987] where the map construction was
considered as an extension of the localization task. In this work both the robot and

Chapter 2. State of the art of Integrated Exploration

24

the map construction should be estimated simultaneously using a single state vector
representing all the system variables in which we are interested. In addition, as the
sensors used during the estimation provide noisy measurements, the evolution of the
state vector in time is considered as a stochastic process where the final state
estimate and its uncertainty are obtained using an EKF.

Based on this initial work numerous researchers have further developed Kalman
SLAM. The result is that more sophisticated algorithms have appeared which deal
with techniques for extracting and representing features, algorithms to fuse different
types of sensors, methods to improve data association and techniques to reduce the
computational cost and improve filter consistency. These improvements have made
of the EKF one of the most popular SLAM approaches currently used.

Maps created by EKF-SLAM generally are limited to the current robot pose and
landmark position estimates which must be represented as a Gaussian distribution.
Therefore, the map is transformed into a state vector X that contains all the relevant
variables and that constitute the means of this Gaussian distribution. For the own
nature of the EKF SLAM the entities that compose the map must be described using
a set of parameters that fit easily into the state vector of the system.

The EKF-SLAM can be considered as a three steps process:

1. The Prediction Stage. It deals with vehicle motion based on incremental dead
reckoning estimates where the resultant distribution after a movement of the
robot is calculated based on the previous robot state kX and the control inputs

1ku − . However, each time the robot moves, the position uncertainty grows and
the correlation with map features decreases.

2. The Update Stage. When a feature is re-observed an update stage must
applied to reduce the uncertainty and improve the overall state estimate. As
long as no landmark re-detections occur, the pose estimate will become less
and less accurate due to the actuator uncertainty. As depicted in Figure 2.7,
the accumulation of this error is reflected in the covariance matrix by
increasing values for the robot pose, and through the pose-landmark
correlations on all landmark location estimates. This continues until a
landmark is re-detected.

The re-detection of a landmark results in a significant drop in pose uncertainty,
which then propagates towards increased certainty on all the landmark

Chapter 2. State of the art of Integrated Exploration

25

locations. This jagged pattern of slow rises followed by sudden drops in map
uncertainty is typical for Kalman SLAM.

3. Add New Landmarks. This is done by adding information about the relation

between the new landmarks and the old landmarks. The information about the
current robot position must be used to place the new information.

Figure 2.7 Rise and drop of map uncertainty with Kalman SLAM. Robot trajectory is
shown in consecutive robotposition dotted line while the estimates are indicated with

 shaded ellipses and landmark position estimates with unshaded ellipses. The left picture show
how the landmark uncertainty increases as robot pose uncertainty and to the right the robot

pose drops after the re-observation of a previously stored landmark and through the
information propagation this affects also all landmark estimates. Images take

from [Thrun et al. 2005]

Initially, the algorithm starts with the robot’s position and a covariance matrix that
represents the pose uncertainty, i.e., none landmark has been added to the map.
When a new landmark is detected the state vector and the covariance matrix are
extended through an initialization process called state augmentation. The state-
vector typically has a length of (3 + 2N), where the three first entries describe the
robot pose in a 2D environment (x,y,θ), and only two entries for every landmark
position (x, y), with N denoting the number of landmarks.

The standard Kalman algorithm is summarized in compact form in figure 2.8.

• Prediction (Lines 1 to 2). On line 1 the process equations describe the
movement of the robot incorporating the control ku . Line 2 denotes the

associated uncertainty kP− . Note that this update only affects the robot pose

estimate. The equations stated in line 1 and 2 will leave all landmark position

Chapter 2. State of the art of Integrated Exploration

26

estimates untouched. This is because in most applications the landmarks are
either fixed or at least assumed to be static within the robot’s operating time.

• Update (Lines 3 to 5). On line 3, the Kalman gain kK is computed, which

incorporates the measurement uncertainty (measure that is associated with
the current observation kz). The Kalman gain matrix propagates changes in

pose certainty throughout the map estimate, as the information gain is folded
back into the robot’s belief at lines 4 and 5. Note that the matrix H is just a

convenience matrix that describes a mapping from the state-vector ˆ
kX to an

observation z .

• Add new landmarks (Lines 6 to 9). On line 6, the state vector X is update

with the new landmark. Finally, it is also necessary to add the covariance for
the new landmark to the system covariance matrix P (lines 7 to 9).

A more extensive description will be proposed in section 2.

Figure 2.8 EKF algorithm. Here, X̂ represents the system states, P is the system covariance
matrix, A is the Jacobian of the prediction model, u is the control entry, z are the

observations, Q is the associated uncertainty, R is the observation covariance, H is the

Jacobian of the measurement model h , K is the Kalman gain, xJ is basically the Jacobian A
but without the rotation term and zJ is also the Jacobian of the prediction model but with

respect to measurement model.

Algorithm of Extended Kalman Filter (1
ˆ

kX − , 1kP − , uk, zk)

1. 1
ˆ (, ,0)ˆ

k kk f uX X−
−←

2. 1 T
k k k k kP A P A Q−

−← + //Prediction

3. () 1
 T T

k k k k k k kK P H H P H R
−− −← +

4. -ˆ ˆ ˆ(- (,0))k k k k kX X K z h X−← + // Correction

5. () k k k kP I K H P−= −

6. ˆ ˆ T

N NX X x y ← + 

7. 1 1N N T T
x k x z zP J P J J RJ+ + ← + //Add new landmark

8. 1rN rr T
xP P J+ ←

9. ()1 1 TN r rNP P+ +←

Chapter 2. State of the art of Integrated Exploration

27

Unlike other SLAM approaches, the main characteristic that distinguishes EKF is that
it estimates the full joint posterior over the map online. This means that the full
uncertainty is maintained at all times during the online construction of the map.
Moreover Kalman has proved to converge through the full posteriori; however this
convergence is only assured as long as landmarks are observed infinitely often. So,
when few landmarks are involved in the localization process it becomes harder and
less accurate and therefore data association in turn becomes harder since larger
pose uncertainties have to be overcome. A degrading data association performance
negatively influences map accuracy again, and so this vicious circle of degradation
continues. In the other hand, maps are often limited in the number of landmarks they
will maintain. This because the update step involves the whole covariance matrix and
when too many landmarks need to be maintained, the online SLAM algorithm
become slow.

Another characteristic of Kalman filters is that it assume that all noises in the system
are governed by Gaussian distributions; which in the context of SLAM is translated to
assume Gaussian sensor noise, actuator noise and data association error. Even if
sensor noise is often well approximated by a zero-mean Gaussian, the same
assumption for odometry and data association uncertainty imposes a severe
limitation of Kalman SLAM. This because odometry is typically governed by
trigonometric functions and for data association uncertainty when a particular
landmark is mistaken for another close, the resultant distribution of potential robot
poses is obviously not best approximated by the bell-shaped Gaussian distribution.

Despite its relative success, the classical SLAM solution based on the EKF algorithm
suffers from the next limitations:

1. Gaussian distribution assumed for the state of the system may not correspond
to reality. In the best of cases linearizations made by the EKF will make
estimates of the moments of this distribution degenerate over time producing
optimistic values for the map covariance matrix, which may result in
inconsistency [Julier et al. 2001].

2. It requires updating the full map covariance matrix after each measurement,

giving a memory complexity of O(n2) and a time complexity of O(n2) per step,
where n is the total number of features stored in the map [Paz et al. 2007]. So,
the computational cost grows to the square with the number of objects
contained in the map. This fact limits its application in real time.

Chapter 2. State of the art of Integrated Exploration

28

Both problems become critical in large scenarios (scaling problem) since linearization
errors get worse because the uncertainty in the robot position and surrounding
features far from the map origin is larger and the memory and calculation
requirements increase because the number of features grows.

2.1.2.2 Particle Methods

Particle filters are mathematical models that represent probability distribution as a set
of discrete particles which occupy the state space. These particles can be thought of
as a finite set of samples that has been obtained from the posterior distribution they
represent. This way, valuable statistics of the original distribution can be easily
estimated through the samples. The main objective of particle filtering is to track a
variable of interest, typically with non-Gaussian and potentially multi-modal
probability distribution functions. Multiple copies (particles) of the variable of interest
are used, each one associated with a weight that signifies the quality of that specific
particle.

The main drawback of particle filters is that they scale exponentially with the
dimension of the underlaying state space. This represents a problem in the context of
SLAM since the space of map features and robot paths is usually huge.

Given this, Montemerlo et al. in [Montemerlo et al. 2002] introduced the concept of
FastSLAM to make particle filters amenable to the SLAM problem. The FastSLAM
algorithm is a solution to stochastic SLAM that involves three important concepts:
Rao-Blackwellization, conditional independence and resampling.

• The Rao-Blackwellisation [Doucet et al. 2000] approach consists in
partitioning the joint distribution of the state-space into a sampled part
whereby the robot pose states are represented by particles and into an
analytical part where the landmark states are estimated analytically by Kalman
filters. The state partitioning is defined as follows.

()0: 0: 0: , | , v k k kp X m Z U

() ()0: 0: 0: 0: 0: 0: | , | , , v k k k v k k kp X Z U p m X Z U= (2.1)

() ()0: 0: 0: 0: 0: | , | , v k k k v k kp X Z U p m X Z=

Chapter 2. State of the art of Integrated Exploration

29

Where 0:v kX is vehicle pose history, m the set of all landmarks, 0:kZ

0:kU

is a

sequence of measurements and

is a sequence of control inputs. Here the

joint posterior is factored into a vehicle pose part and a map part conditioned
on the pose.

• The conditional independence property basically says that features in SLAM
get correlated due to the uncertainty in the robot position. If the trajectory of
the robot were perfectly known we could estimate each feature independently
(figure 2.9). The practical importance of the conditional independency between
features is that, given a particle of the robot trajectory, we can estimate each
of the features independently what makes the cost of the algorithm linear in
the number of particles.

Figure 2.9 Probabilistic dependencies between SLAM variables in a Bayesian
Network. Given the trajectory Sk

of controls U
 of the robot (obtained through a sequence

k), map features θk

measurements are denoted as Z
 are Conditionally Independent. The

k

 from [Montemerlo et al. 2002].
 (range and bearing). Image taken

• The resampling step allows the robot to concentrate particles in high

probability regions of the distribution. It is useful when working with
distributions that evolve in time (dynamic states).

As a Bayesian Filter, the FastSLAM algorithm consists of the steps of prediction and
update like the explained in the Classic EKF-SLAM. Each particle in the FastSLAM is
of the form:

[] [] [] [] [] []
1, 1, , , (, , , , ,) m m m m m m

k k k k N k N kX x P Pµ µ= … (2.2)

Chapter 2. State of the art of Integrated Exploration

30

Where []m indicates the index of the particle, []x m
k

 []
,k

m
Nµis its path estimate, and and

[]
,kP m

N are the mean and covariance of the Gaussian, representing the Nth landmark

location that is attached to the mth

 particle.

Prediction Step

In this step, the probability distribution of the next position of the robot is obtained
from previous distribution at time k-1 and new poses sampled using the most recent
motion command ku as:

()[] []
1 | , m m

k k k kx p x x u−= (2.3)

As we can see, this proposal distribution ignores completely the measurements kz

and the pose []m
kx is predicted only using the motion control ku . In this case, when the

observation is more accurate in relation to the vehicle’s motion noise, this becomes
problematic. To rise above this problem, an improved version called FastSLAM2.0
has appeared. Here the poses are sampled under consideration of the motion ku and

the measurement kz . Formally, this is denoted by the following sampling distribution,

which now takes the measurement into consideration:

()[] []
1 | , , , m m

k k k k k kx p x x u z n−= (2.4)

Where the variables 1 ,. . . , k kn n n= are data association variables, in which each kn

specifies the identity of the landmark observed at time k.

Update Step

When a new measurement kz of a feature n is obtained, each particle of the

trajectory is weighted according to the agreement between the expected
measurement and the actual observation as:

[] [] [] []
, ,(| , (,))m m m m

k k k N k N kw N z x Pµ= (2.5)

where factor []m
kw is called the importance weight of particle m.

Chapter 2. State of the art of Integrated Exploration

31

 []

target distributionmwk proposal distribution=

()
() ()

[]

[] []
1 1 -1 1

 | , ,

 | , , | , ,

m
k k k k

m m
k k k k k k k k

p x z u n

p x z u n p x z u n− − −

= (2.6)

After this operation, the importance weight of all particles is normalized to sum up
1.Once the weights have been obtained, the particles are resampled according to
them, what adjust the particle population in response of the new information provided
by the measurement. Finally, features of the survival particles are updated following
the standard EKF update equations. For a complete derivation of the importance
weight in FastSLAM2.0, see [Kim et al. 2008] and [Montemerlo et al. 2003].

More advanced and complex algorithm based in particle filters can be found in
literature. For example in [Nieto et al. 2003], Nieto et al. made an extension of the
basic FastSLAM to unknown landmark associations, which is important for
generating occupancy grid or metric maps. In [Grisetti et al. 2007] the feature based
map is replaced with an occupancy grid map obtaining very impressive results in
large environments.

2.1.2.3 Information Filter Methods (IF)

The Information Filter (IF) is an equivalent definition of the Kalman Filters based on
an alternative representation of the Gaussian distribution. While the KF solution for
SLAM is based on the moment parametrization of the Gaussian distribution of the
state, we can obtain an alternative representation of the distribution which is known
as the information form or also called the canonical representation of the Gaussian
distribution (because it stems from expanding the quadratic in the exponential of the
Gaussian distribution). The result is that rather than parameterizing the normal
distribution in terms of its mean and covariance as in () (), k k kp N X Pξ = it is instead

parametrized in terms of its information vector and information matrix, ()1 ,k kN η− Λ .

The process is done by:

Chapter 2. State of the art of Integrated Exploration

32

Here the information matrix Λ and information vector η are defined as 1 k kP−Λ = and

1 k k kP Xη −= respectively.

Analogous to the EKF, when the state dynamics and measurements are non-linear,
the equations of the IF have to be linearized obtaining an extended version of the IF
known as the Extended Information Filter (EIF). The EKF and the EIF are considered
as dual filters in the same sense that the canonical and moment parametrization of a
Gaussian are reciprocal. But instead of maintaining the covariance matrix Pk

ˆ
kX

 and

mean state estimate like EKF does, the EIF maintains the inverse of the

covariance, called the information or precision matrix Λk, and an information vector
ηk

. This can be seen in figure 2.10.

 Covariance Form Information Form

Distribution p(x,y)
ˆ

,ˆ
x x xy

yx yy

X P P
N

P PX

    
          

1 ,x x xy

y yx y
N

η
η

−
 Λ Λ   
     Λ Λ    

Marginalization
() (,)p x p x y d y= ∫

ˆ ˆ
kX X=

kP P=

1
x xy y yη η η−= −Λ Λ

1
x xy y yx

−Λ = Λ −Λ Λ Λ

Conditioning
()x | (,) / ()p y p x y p y=

1ˆ ˆ ˆ()c x xy y yX X P P y X−= + −
1

c x xy y xyP P P P P−= −

c x xy yη η= −Λ

c xΛ = Λ

Perfect Information ˆ [,] , 0T T TX x y P= = ,c NaNη = Λ→∞

Null Information ˆ ,X NaN P= →∞ 0 , 0η = Λ =

Figure 2.10 Duality between the Covariance and Information form of a Gaussian distribution

 () () , k k kp N X Pξ =

() ()11 exp
2

T
k k k k kX P Xα ξ ξ− − − − 

 

()1 1 1

1 exp 2
2

T T T
k k k k k k k k kP X P X P Xξ ξ ξ− − − = − − + 

 
1 11 exp

2
T T

k k k k k kP X Pα ξ ξ ξ− − − + 
 

1 exp
2

T T
k k k k kξ ξ η ξ = − Λ + 

 

()1 ,K kNα η− Λ

Chapter 2. State of the art of Integrated Exploration

33

Like in the EKF, the EIF has also the steps of prediction and update to track the
posterior of the state. These steps are implemented as follow. Consider the
information vector and the information matrix describing the state ξ in canonical form
at time k as:

-1 -1 -1 -1

-1 -1 -1 -1

-1 1;k k k k

k k k k

x x x m
k k

m m x m

η
η

η −

Λ Λ   
= Λ =   

Λ Λ      
 (2.7)

In the prediction stage the control input uk

1
ˆ

kX −

 is applied to the last robot configuration

 ()-1
ˆ ˆ, , | , k k k kp X X m z uto augment the state with the new robot position obtaining .

1 1

1 1

1
1

1
1

ˆ ˆ()
ˆ ˆ()

k

k k

k k

k kx

T
x x k k

m m

Q X FX

F Q X FX

η

η η

η η
− −

− −

−
−

−
−

   −
  

= − −  
  

      

 (2.8)

1 1 1

1 1 1

1 1

1 1
1

0

0
k k x

k k k

aug T T
k x x m

m x m

Q Q F
F Q F Q F

− − −

− − −

− −

− −
−

 −
 

Λ = − Λ + Λ 
 Λ Λ  

 (2.9)

Where, -1
ˆ ˆ(,)k k kX f X u= Q and F are the noise of the process and the jacobian for the

process model respectively (these variables are also used in the EKF process).
Notice that in the Information form, the new robot pose shares information with the
previous pose but not with the map. After augmenting the state, when a new element
is added, the information matrix starts to becoming sparse; the opposite occurs in the
form of covariance, where the covariance matrix is full.

Using the marginalization operation showed in figure 2.10, we marginalize out the
previous robot position from Eq.(2.9) and the information matrix gets full again losing
its sparsity:

;k k k k

k k k k

xx x m
k k

m m x m

η
η

η

− − − −

− − − −

− −
Λ Λ   

   = Λ =
Λ Λ      

 (2.10)

Finally with this operation, the prediction stage is finalized.

Chapter 2. State of the art of Integrated Exploration

34

The prediction step in the standard formulation of the EIF is not easily calculated,
since it contains matrix inversions and the number of landmarks grows, so does the
difficulty of these inversions. In addition, the cost of the prediction step in Information

Form is due to structure of the submatrix yxΛ in the correction term 1
xy y yx

−Λ Λ Λ (known

as the Schur complement) during marginalization. Computing this product is
quadratic in the number of nonzero elements within this submatrix, that in the current

case corresponds to all state elements “linked” to the previous robot pose -1
ˆ

kX . The

cost is then O(n2

).

On the other hand, for information filter, the update step is less complicated and less
expensive that in Covariance Form. The corresponding EIF update is given by:

- -1
 -1 T

k k H R HΛ = Λ + (2.11)
1

1
ˆ ˆ((,0))T

k k k k kH R z h X HXη η− − − −
−= + − + (2.12)

Where H is the jacobian for the measurement equation, R is the noise on the
measurements, z is the group of current observations and h are the predicted
measurements. These equations show that the information matrix is additively
updated by the outer product term HTR-1H. In general, this outer product modifies all
elements of the predicted information matrix Λk. Also, the outer product HTR-1

H is
zero almost everywhere except at the robot pose and observed features.

In [Eustice et al. 2006] Eustice et al. give a theoretical insight to understand how the
information matrix evolves in time. Here the matrix structure is considered as a
Gaussian Markov Random Field [Bishop 2006] where its elements correspond to
links in the graphical model. Taking the example of figure 2.11, at time k the state
vector ξ is composed by the robot position and the features m1 and m2

1 2
ˆ[, ,]T T T TX m mξ =

 which are

completely linked (). At this point, the information matrix is full. After,

at the same instant k, the robot observes a new feature m3

ˆ
kX

 that is only related to the

current robot location and consequently is only linked to ; this new feature is added

to the state (Fig 2.11 a). In figure 2.11 b, the robot moves at time k+1 and the state

must be augmented with the new robot position 1
ˆ

kX + which causes that the

information matrix start to becoming sparse. As in the previous case, this new robot

position 1
ˆ

kX + is only linked to ˆ
kX . Finally in image 2.11 c, we marginalize out the

previous robot position making all nodes in the graph that were directly linked to ˆ
kX

Chapter 2. State of the art of Integrated Exploration

35

are fully connected between them. This last step, as we have already said causes
that the information matrix become full.

Figure 2.11 Evolution of the Information Filter Method

A drawback of the EIF solution with respect to the EKF is that in order to calculate the

jacobians F and H we need to recover the mean vector of the estimate ˆ
kX from the

information vector ηk at each step of the filter. Also, parts of the covariance matrix
have to be recovered from the information matrix to perform the data association.
The cost, in the best of the cases for partial recoveries, is O(n2) (even more
expensive for full recoveries which have a computational cost of O(n3

)).

In order to reduce the computational cost of the EIF a control must be done over the
form of fill in the information matrix due to the marginalization operation done in the
prediction step and exploit the natural sparsity of the matrix Eq.(2.8, 2.9). Below we
summarize the tree most important algorithms based on the EIF.

a) SEIF

Sparse Extended Information Fiter (SEIF) differ from the extended information filter
described in the previous section. The number of links to the robot and to each
feature in the map is bounded by a constant that is independent of the number of

Chapter 2. State of the art of Integrated Exploration

36

features in the map. When this bound is over passed the links with smaller value are
break until the bound is accomplished again. With this method the information matrix
remains sparse avoiding the fill in due to the marginalization operation and reducing
the computational cost.

The motivation for maintaining a sparse information matrix is that in SLAM, the
normalized information matrix is already almost sparse. This suggests that by
enforcing sparseness, the induced approximation error is small. However, as it is
shown in [Walter et al. 2007], an important consequence of the SEIF sparsification
algorithm is that the resulting approximation significantly underestimates the
uncertainty in the state leading to overconfident state estimates.

b) ESEIF

The Exactly Sparse Extended Information Filter (ESEIF) was presented by Walter
et al. [Walter et al. 2007] as an alternative sparse information filter that achieves the
computational benefits of a sparse parametrization while preserving consistency. In
contrast to the approximated sparsification enforced in SEIF, the ESEIF imposes
exact sparsity in the matrix. Instead of breaking links between the robot and features
in the map the algorithm maintains sparsity by controlling the initial formation of the
links. More specifically, the ESEIF manages the number of active landmarks by
marginalizing out the vehicle pose, essentially “kidnapping” the robot. The algorithm
subsequently relocalizes the vehicle within the map based upon new observations to
a set of known landmarks. The set of features that were originally active have been
made passive and the set of landmarks used for relocalization form the new active
map.

The key contribution of the ESEIF is that it avoids the need to approximate
conditional independencies and thereby preserves the consistency of the Gaussian
distribution. The ESEIF maintains map and pose estimates that are nearly identical to
those of the EKF but exploits the sparse SLAM parametrization to track the
distribution in near-constant time. The result is a computationally efficient algorithm
that is consistent but less precise than the EKF since some of the information is
disregarded when the robot is kidnapped. As in the SEIF, additional approximations
are made to evaluate the jacobians or perform data association.

c) ESDF

The Exactly Sparse Delayed Filter (ESDF) was proposed by Eustice et al. [Eustice

Chapter 2. State of the art of Integrated Exploration

37

et al. 2006] as an alternative formulation, this technique solves the SLAM problem
through a constant-time filtering algorithm. This means that the ESDF computational
cost does not grow up with the environment size. This can be achieved because the
state vector does not store a map or features but just the historical of robot states
corresponding to the vehicle locations where the observations were made. Therefore,
ESDF is considered as the solution to the scalability problem for arbitrately large
environments. The key idea of this algorithm is that the robot poses are not filtered
out and observations are used to constraint relations between pairs of poses; this
because the marginalization of robot poses that fills-in the information matrix destroys
its sparsity.

The type of representation used by the ESDF algorithm is view-based rather than a
feature-based approach. In this kind, the estimation problem consists of tracking the
current robot pose in conjunction with a collection of historical poses sampled from
the robot’s trajectory; consequently, none explicit model of landmarks is necessary.
The associated posterior is then defined over a collection of delayed states.

To evaluate jacobians and perform data association, the ESEF as the SEIF have to
make some approximations when portions of the mean state vector and covariance
matrix are recovered from its information form.

Finally, in the overall of methods based on the EIF we can say that they are able to
reduce the computational cost O(n2

) of the classic EKF-SLAM; however, they don’t
deal with the consistency problem. In fact, the EKF is usually more consistent and
precise than the solutions obtained with the IF because of the approximations
introduced.

2.1.2.4 Submapping Techniques

Techniques based on building submaps (figure 2.12) have been demonstrated to be
well suited for mapping large environments as they reduce the computational cost
and confront the complexity and consistency problems of the final estimation. The
main idea of the submaps method is that if computational and consistency issues
start becoming a problem when the map is large (figure 2.12a), it can be break into
smaller sections with local coordinates that can be considered separately from each
other (figure 2.12b). The relationships between geometrically adjacent submaps
correct each submap’s position to acquire the global consistency (figure 2.12c).

Chapter 2. State of the art of Integrated Exploration

38

Figure 2.12 Submapping Techniques

Between the advantages in the use of this technique we can mention:

• As each submap uses its own sequence of odometry reading uk and the
information data zk

 it is not necessary to compute the correlations between the
features in the current submaps and features in other local map. For this, the
computational cost of local map building is constant O(1) and independent
from the size of the global map.

• The sensor-rate update is independent of the total map size because the
landmarks that need to be updated at each time instant is limited only to those
who are in the local submap coordinate frame, then the full update, and
propagation of local estimates can be done in the background task at a much
lower update rate while still permitting sensor-rate global localisation

 m

 m

 m

 m

 m

 m

 m

 m

 m

 m

 m

 m

 m

 a) Global Map b) Local Map

c) Optimal global
estimate

Chapter 2. State of the art of Integrated Exploration

39

• Usually, the robot pose and the uncertainties are small during a map
construction because each submap is initialized with zero uncertainty.
Therefore, the final global map after the after the union of the sub-maps has
better consistency properties than the EKF.

• Submap registration can use batch validation gating which improve

association robustness.

In literature, we can find several techniques based on independent submaps. The
main difference between them is the form in how the submaps are joined to obtain
the final global map. The first technique using absolute submaps1 was Decoupled
Stochastic Mapping [Leonard et al. 2000]. As this technique uses absolute submaps
which are not statistically independent some approximations are needed to get rid of
the dependencies, introducing inconsistency in the map. With local submaps2

, these
are initialized with zero uncertainty in the robot pose, given that the base reference
when the local map is started is usually chosen to be the first robot pose (which is
well-defined for the moment parametrization of the EKF). So, local maps are statically
independent and thus, uncorrelated [Tardos et al. 2002] under the assumption of
white noise and only if no information is shared between maps.

Taking this into account, the Map Joining [Tardos et al. 2002], Constrained Local
Submap Filter (CLSF) [Williams et al., 2002] and the Divide & Conquer [Paz et al.
2008] methods build a sequence of statistically independent local submaps of limited
size where each submap is built using the classical EKF. These three methods will
be explained briefly below.

a) Map Joinning and CLSF

The Map Joining [Tardos et al. 2002] and the Constrained Local Submap Filter
(CLSF) [Williams et al., 2002] are two equivalent techniques independently
developed to produce efficient global maps by consistently combining local submaps
with a cost total of O(n2

). The joining procedure is performed based on a three step
procedure.

• In the first step, the robot is at some approximately known location in a local
submap from where a new one will be built in a normal SLAM fashion. The

1 Absolute submap. Submap expressed in global coordinates.
2 Local submap. Submap expressed with respect to a local coordinate frame.

Chapter 2. State of the art of Integrated Exploration

40

new submap is then stored when its system state vector contains too many
features or the vehicle location is too uncertain. Once we have the two
sequential submaps, they are simply accumulated in a single mean vector and
covariance matrix T T T

1 2 [,] ξ ξ ξ= :

1 1

2 2

0
;

0
X P

X P
X P
   

= =   
   

(2.13)

As both submaps are statistically independents, the covariance matrix P is
blockdiagonal.

• In the second step, the process of local map registration results in a global
map update where the new submap X2 is transformed into the reference frame
of the submap X1

 using the last robot position contained in it.

1

1

2
() ; T

Wtotal total
R

X
X f X P J PJ

X X ⊕ ⊕

 
= = = ⊕ 

(2.14)

Been ⊕ the composition operation defined by Smith et al. in [Ref] and J⊕ is

the jacobian of the function f which make the transformation of the elements

of submap X2 into the reference frame of the first submap X1

.

• Finally the last step corresponds to the elimination of duplicate features. Here,
features found in different submaps that correspond to the same environment
feature are fused using a fusion mechanism to update the global map. In this
way, a more precise map is achieved.

The process is repeated joining the next sequential local submap to the recently
calculated map until no more local submaps remain to be joined. At the end, the
global map will be obtained.

b) Divide & Conquer

Divide and Conquer SLAM is based on the idea of Local Map Sequencing proposed
in [Tardos et al. 2002] where the idea is to build a sequence of local independent
maps of equal constant size while the robot traverses the environment instead of
working on a single absolute map. The final absolute map is achieved by joining at

Chapter 2. State of the art of Integrated Exploration

41

fixed intervals of time during the process. The main difference with the previous
approach is that Divide & Conquer SLAM (D&C SLAM) [Paz et al. 2008] instead of
joining each new local map to a global map sequentially, it carries out map joining in
a hierarchical fashion. The basic process to join a pair of submaps is the same as the
one described for Map Joining

The algorithm D&C utilize a binary tree of local maps structure to sort the sequence
of joining. The lower nodes of the hierarchy represent a sequence of m local maps of
minimal size p and the upper level represents the final map of size n. The middles
levels represent intermediate joins during the process. The structure is shown in
figure 2.13.

Figure 2.13 Hierarchy of maps that are created and joined in D&C SLAM.
The red arrow represents the sequence in which maps are built and joined [Paz 2008].

In [Tardos et al. 2002] is shown that computational cost for local maps of fixed size
could be reduced by a large constant factor, but is still O(n2

) in every map joining
step.

2.1.2.5 Graph based Methods

The SLAM problem can be addressed in a very intuitive way using the so called
graph-based formulation proposed for Lu et al. in [Lu et al. 1997]. This approach
allows to solve the SLAM problem as a non linear optimization problem where given
the sensor measurements is possible to find the robot trajectory and the map with
greatest probability.

The graph-based SLAM problem is solved by constructing a graph structure whose
nodes represent landmarks or robot locations and in which an edge between two
nodes represents a data-dependent spatial constraint. This constraint consists in a

Chapter 2. State of the art of Integrated Exploration

42

probability distribution over the relative transformations between the two poses.
These transformations are either odometry measurements uk between a consecutive
pair of locations Xk−1, Xk or are determined by aligning the observations zk acquired
between the two robot locations Xk−1, Xk and landmarks mi

, assuming that at time k
the robot has sensed landmark i.

For a more easy understanding of graph construction we will use the figure 2.14. At
step time k=1 the robot measures the feature m1 and adds an edge between X1 and
m1 in the graph. This edge can be represented in a matrix format adding a value
between the element X1 and m1. This is made to correspond to a quadratic equation
that defines the resulting constraint (Figure 2.14 a). After, if the robot moves to a new
position X2, an edge between X1 and X2 is added representing the odometric
readings u2 and as in the previous step a value representing this movement is added
to the matrix between X1 and X2

(Figure 2.14 b). The repetition of these two steps
leads us to a graph of increasing size (Figure 2.14c).

Figure 2.14 Graph constructions. On the left we observe the graph
On the right the constraints are showed in a matrix form

Once the graph is already constructed, the configuration of the robot poses that best
satisfies the constraints can be found. Given this, we observe that the graph-based

Chapter 2. State of the art of Integrated Exploration

43

SLAM can be seen as two separate problems. The first is the construction of the
graph using the raw measurements, and the second is to determinate the most likely
configuration of the poses given the edges of the graph.

A large variety of proposals using this approach have emerged in the robotics
community. These algorithms have been subsequently classified according to the
particular meaning given to the nodes and edges in the graph as well as the
mathematical tools involved during the estimation. Some of these algorithms are
presented below.

a) Hierarchy Algorithms

The hierarchy algorithms allow the construction of metric maps of large environments
in real time using different levels of construction. In figure 2.15, we can see a map
constructed with a two level hierarchy algorithm. The lower (local) level is based on
the building of an independent submap (as the ones described in the previous
subsection) that captures the local environment and the current robot pose along with
the uncertainties of each defined by its mean and covariance matrix. At the upper
(global) level, the topology of the environment is represented by a graph of
coordinate frames, with each node in the graph representing a local submap with its
own local reference frame and each edge representing the transformation between
adjacent submaps.

Figure 2.15 Hierarchy Algorithms. Lower level is based on submaps with their own reference
frame.Upper level corresponds to a graph whose edges represent the relative transformation

between base references of submap pairs [Estrada et al. 2005].

Chapter 2. State of the art of Integrated Exploration

44

Among the methods that use hierarchy algorithms, we can mention the Constant-
Time SLAM (CTS) [Leonard et al. 2003], Atlas [Bosse et al. 2004], and the
Hierarchical SLAM [Estrada et al., 2005].

The Constant-Time SLAM framework [Leonard et al. 2003] uses multi overlapping
local submaps with the frame referenced to one of the features in the submap. This
technique maintains a single active map and computes a partial solution
independently. The management of each map is limited by a radius r centered in
position where the robot was at the time of the creation of a map. This region limits
the robot location but not the feature locations. This means that every feature
observed from a position in the submap will be added to it.

The information about the robot’s position is used to know in which submap the
vehicle is in. If the robot has traveled a distance bigger than (r+h), the vehicle is
considered out of the submap and it must determine to which one (if the robot has
traveled to any of the existing submaps) the vehicle has transitioned to. The
parameter h is used to prevent excessive map switching. The basic Flowchart of the
CST approach is shown in figure 2.16.

Figure 2.16 Flowchart of the CST algorithm. Image takes from [Newman et al. 2003]

When a vehicle transits from one map to another, the map location estimation is
performed in order to improve the global estimation of the features locations in each
local submap. The basic idea is to find the best global pose with the lowest global
uncertainty of shared features contained in two neighbor submaps and shift the
current submap to the correct position by using a minimization function over these

Chapter 2. State of the art of Integrated Exploration

45

features. So, through the composition of transformation derived from the local maps,
it is possible to achieve the consistency of the global Map Location.

The ATLAS framework [Bosse et al. 2004] is a relative submap method using both,
metric and topological approaches, which is aimed specifically at applying existing
small-scale algorithms to the mapping of large-scale cyclic environments.

This approach, as any other graph based technique, maintains an interconnected set
of local coordinate frames which are represented by the nodes in the graph instead
of a global coordinate frame. In each one of these local frames, the building of a map
is carried out by capturing the local environment and the current robot location along
with their uncertainties modeled with respect to its own frame. With this, the algorithm
restricts the representation of errors to local regions, minimizing linearization
problems, but also provides a way of providing global results by combining local
maps. In the other hand, the edges of the graph correspond to the transformation
between the frames they connect. The uncertainties of the edges are derived from
the output of the SLAM algorithm running in a local region and are represented by a
Gaussian random variable.

In order to keep efficient, the CTS and Atlas frameworks does not impose loop
closing constraints. This is, if more of one path between a pair of nodes exists in the
graph, the relative position between the nodes will depend only on the path followed
to calculate the composite transformation between them. This means that loop
closing are not imposed and it is only used to decide the shortest path.

The Hierarchical SLAM [Estrada et al., 2005] is a real-time accurate mapping for
large loop environments that combines the use of local maps with a consistent
representation of them. The main idea of this method as in the other two presented
above is to maintain local submaps independently without share any information in
order to maintain convergence and also maintain an adjacency graph for relative
positions between these submaps.

In this approach, the last robot position in a submap establishes the new local
coordinate frame where the new submap will be built. Every submap generated is
bounded by the number of features, uncertainty of the vehicle location, or not
matchings found in the data association. Consequently the cost of this algorithm
remains linear and bounded.

Chapter 2. State of the art of Integrated Exploration

46

The main difference between Hierarchical SLAM and other similar approaches as
Atlas and CTS is that loop consistency is imposed by constraining cycles in the graph
to improve the accuracy in the absolute location of all local maps in the loop. To
reduce linearization errors in big loops, a nonlinear optimization algorithm is
implemented. This operation improves the accuracy in the absolute location of all
local maps in the loop and has an O(n) cost in the number of submaps n involved. If a
correction has to be made at a global level as result of a loop closing, this correction
is not back propagated to the local level in order to maintain independence between
the local maps.

In all the algorithms presented in this subsection, if two features in two submaps
correspond to the same object in the environment, the position on the submaps is
respected in order to maintain the independency between submaps. This results in
weak links between submaps, obtaining approximated solutions.

b) Tree-based algorithms

In this category, we will present two similar approaches that although they have been
developed independently they are closely related, these techniques are called
Treemaps [Frese 2006] and TJTF [Paskin et al. 2003]. Both of them divide the
environment into parts the whole map and represent it as a tree data structure (figure
2.17) that dynamically updates and factorizes the joint probability distribution of the
system when new observations are obtained. Gaussians densities parameterized in
canonical form are used for the probability distributions.

Figure 2.17 Tree representation of the map. The size of the nodes is proportional
to the number of features represented. Image taken from [Frese 2006]

Treemap is a sophisticated but also complicated SLAM algorithm that creates a
balanced binary tree to perform integration and marginalization, leading to an
impressive algorithm that has the ability to deal with very large maps. Each node in
the structure represents a specific region of the environment and stores marginal

Chapter 2. State of the art of Integrated Exploration

47

distributions about the landmarks in it, usually seen simultaneously. The regions
corresponding to nodes are defined as a set of landmarks being close to each other
instead of be definite geometrically. At every moment the leaf that corresponds to the
region of the current robot location is considered. This leaf is known as the actual
leaf. While nodes in the tree represent marginal distributions of the joint probability,
arcs are used to send “messages” between marginals with elements in common.
Finally to integrate a measurement, all nodes from a single leaf up to the root need to
be updated by passing Schur-complements along the arcs.

The treemap algorithm can be geometrically sketched in a simple and intuitive way.
Let assume that the robot is in a construction that is virtually divided in two parts A
and B. Given these parts, now the question that has to be answered is: if the robot is
actually in part A, what is the information required about B? In most cases only few
features of B are involved in observations while the robot is in A and only these are
considered. Probabilistically speaking, the information needed about B is only the
marginal distribution of features observed from both A and B conditioned on
observations in B.

The construction can be divided into a binary tree of regions by applying recursively
the mentioned idea and passing probability distributions along the tree. Figure 2.18
shows the Bayesian justification for this approach. The inputs to treemap during
updates (black arrows),are observations zi

()I
n n np p X z↓ ↓=

 of feature positions and robot poses

assigned to leaves of the tree modeled as distributions of the state

vector X (n range over all leaves). After, the marginalization (⊗) of features

uninvolved is done; the result ()M
n n np p X z↑↓ ↓= is passed to the parent node which

integrates () the distributions M
np


and M
np


 resulting in ()M M
n n n np p p X z↑↓∨ ↓=
 



.

Then the features involved are marginalized out (⊗) by factorizing M M
n np p
 

 into the

marginal M
np and the corresponding conditional C

np stored at n:

() () () (),

()

(,)

M M M C
n nn n

M
n n n

C
n n n

u
p y p y p v p y y

v

p p X Z

p p X x z
↑↓ ↓

↑↓

 
⋅ = ⋅ =  

 
=

=

 



Where u represents the features only involved below the node n and v the features
involved above n.

Chapter 2. State of the art of Integrated Exploration

48

The estimate (gray arrows) is computed recursively down the tree, each node n

receives a distribution np ↑ from its parent, integrates () it with the conditional C
np ,

and passes the result np down. In the end, estimates Xn

C
np

 are available at the leaves.

As we can see at the figure, the conditional is stored at n because it is not need

above. On the contrary, the marginal has to pass to the parent n↑ to be processed

there. Finally, it has to be noted that a feature comes from I
np up and passed in M

np

from the leaves to the least common ancestor of all these leaves. There, it is
marginalized out and finally stored in C

np . By sending messages (basically multiplying

marginals and conditionals) through arcs between nodes, it can be demonstrated that
we can consistently update every leaf marginal with observations taken in other
leaves.

Figure 2.18 Data flow of the probabilistic computations
performed by treemap. Figure taken from [Frese 2006b]

Given that the treemap uses a balanced tree structure, the computational cost to
recover a part of the state (a leaf) is O(log n) and to recover the entire map the cost is
O(n), been n the number of leaves.

As the Treemap algorithm, we can find a very similar approach in the Thin Junction
Tree filter. It creates also a tree structure but instead of forming a balanced binary
tree, the properties of the tree created and the type of messages sent are based on
the Junction Tree algorithm [Bishop 2006].

Chapter 2. State of the art of Integrated Exploration

49

In the tree structure of the Junction Tree, the nodes C represent clusters, the edges S
of the tree represent separators between two connected nodes Ci, Cj

sφ

 and
analogously to the nodes, they have a set of variables Vs corresponding to the
intersection of Ci’s and Cj’s variables and also a separator potential (Figure 2.19).

In the SLAM case, the variables correspond to landmark and robot states and the
potentials are a generalization of probability distributions that are used to factorize
the joint probability distribution. In contrast to the basic static Junction Tree, the TJTF
develops a group of methods for dynamically updating the junction tree to reflect
filtering updates. Given that the junction tree grows under measurement and motion
updates, the structure has to be periodically “thinned” to remain tractable via efficient
maximum likelihood projections.

Figure 2.19 Clusters and separators in a junction tree

Initially the filter starts with a single cluster containing x. Once the robot moves, its
position most be updated which consists of the prediction and odometry updates and
then the state variable of the previous time slice is marginalize (figure 2.20). The
prediction update consists of adding a new node Xk+1 and connecting it to Xk. When
the state X is marginalize, all the clusters in which it resides must be merged (figure
2.21). In the worst cases, when X resides in all of the junction tree’s clusters, the
belief state would collapse to one large cluster. To prevent this, the TJTF first
contracts X until it resides in only one cluster and then performs the prediction and
odometry updates and then marginalize. Variable contraction is used to reduce the
diameter of the junction tree when the cluster Xk

 caused by marginalization is too
large.

Figure 2.20 Marginalization in a junction tree

Chapter 2. State of the art of Integrated Exploration

50

Figure 2.21 Cluster merging. a) The shaded clusters and separators contains the state X
b) to marginalize the state X of the junction tree, the clusters C1, C2, C3 and C4 are merged

and the separators between them are eliminated [Paskin et al. 2003]

When updating with a measurement of landmark l, the measurement potential ψ(x1,l)
has to be multiplied into the only cluster. This is easily made if the cluster has not
achieved its limit size by simply multiplying the observation potential ψ(x, l) into φC

and distributing evidence in the cluster C. On the other hand we can find two cases:

• If the landmark l has been previously seen, then its potential has to be
multiplied into the cluster C that contains it and that is the closest to another
that contains X. In the worst case, the robot will reobserve a landmark whose
state variable is very far from the robot's state variable X in the junction tree,
and in consequence X will have to be added to every cluster to preserve the
running intersection property. Finally, if the insertion of X in the clusters
increased the diameter beyond some threshold, then we perform variable
contractions until the junction tree is thin enough (figure 2.22).

Figure 2.22 Variable contractions in Thin Junction Tree filter

• If a landmark l has not been seen, a new node containing l and X must be
attached to the cluster state from where it has been seen.

Chapter 2. State of the art of Integrated Exploration

51

The Treemap and the TJTF algorithms achieve an extremely efficient operation with
some weak approximations even if they are not very intuitive and complex to
implement. One of the drawbacks of these algorithms is that as they are based on
the information form, thus, well known data association algorithms based on
covariances cannot be directly applied. Moreover, based in the tree structure that
they use, is not trivial to obtain the corresponding covariance from. Finally is
necessary to says that the consistency proprieties of these algorithms are really close
to the EKF because they work in an absolute reference system and cannot be
improved as when employing local map references.

In this subsection we have made a very simple presentation of the treemaps and
TJTF; because of this, we strongly recommend the interested reader to directly study
the papers referenced in order to understand the exact process.

c) Batch Techniques

The methods presented in previous subsections are based on filtering algorithms.
However, we can found in literature strategies that use batch techniques. The basic
idea behind these algorithms is to find the maximum likelihood estimate (MLE) based
on the entire history of robot motion and measurement data.

GraphSLAM [Thrun et al. 2005] and the Smoothing and Mapping (SAM) [Dellaert et
al. 2006] are batch strategies that use a graph structure whose nodes corresponds to
robot poses and map features and the arcs store information about the motion and
measurements constraints (Figure 2.23a). Both methods solve the MLE by optimizing
a nonlinear log-likelihood function over a series of iterations, which provides
robustness to linearization errors. After each linearization, the information matrix built
by these methods becomes completely sparse since the robot trajectory is not
marginalized out (Figure 2.23b).

Figure 2.23 Graph structure used by the GraphSLAM and SAM methods with
its Information matrix. It can be seen that the entire history of robot motion is estimated

Chapter 2. State of the art of Integrated Exploration

52

The linearized system for each iteration k solved by these methods is:

Λk μk = ηk

 (2.15)

with Λk as the sparse information matrix after the linearization, μk the mean vector
that we want to calculate and ηk the corresponding information vector. The whole
system of nonlinear motion and measurement constrains is linearized around μk
when it is obtained giving a new system of equations Λk+1 and ηk+1

 that has to be
solved again. This cycle is repeated until the system converges.

In GraphSLAM algorithm, an elimination algorithm is used in order to solve the linear
system in Eq. (2.15) at each iteration. This marginalizes over the map the features
and reduces the graph to one with only the pose history. Subsequently, the path
posterior map is calculated over the pose history using standard inference
techniques. GraphSLAM also computes a map and certain marginal posteriors over
the map.

Smoothing and Mapping (SAM) refers to the framework wherein the SLAM problem
is solved using smoothing approaches. The SAM algorithm relies on a QR and
Cholesky factorization of information matrix in Eq.(2.15) paying attention to variable
ordering. Then, the system is jointly solved for robot poses and map features via
back-substitution.

Although both algorithms take advantage of the sparsity of the linearized information
matrix to speed up the calculations two drawbacks are encountered when using
these methods. The first is that the system has to be solved every time that a new
observation is introduced. The second drawback occurs when a region in the
environment is revisited; this because the computational cost increases although the
environment does not change due to the state vector still grows linearly since most of
the state elements turn out to be robot poses.

2.1.2.6 Set-membership methods

The strategies in this category rely in the recently developed set membership
estimation theory which uses a deterministic unknown-but-bounded description of
noise and parametric uncertainty (interval models). These methods verify at any
moment the consistency between observed and predicted behavior by using simple

Chapter 2. State of the art of Integrated Exploration

53

sets to approximate the set of possible behaviors. When an inconsistency is detected
a fault can be indicated, otherwise nothing can be stated.

Di Marco et al. present in [Di Marco et al. 2001] a Set-membership SLAM approach
under the hypothesis that the errors affecting all sensor measurements are unknown
but bounded. Estimates of robot position and selected landmarks are derived in
terms of feasible uncertainty sets which are defined as those regions where the robot
and the landmarks are guaranteed to lie according to the available information.
Based on recursive approximations of the uncertainty regions through simply shaped
sets, this work exploit the specific structure of the nonlinear SLAM problem to get
efficient solutions.

In [Jaulin et al 2009], Jaulin et al. propose a off-line SLAM solution for a underwater
vehicle using a set membership method based on interval analysis. Here, seamarks
are detected by a human operator after the mission of the robot. The SLAM problem
in this work is cast into a constraint satisfaction problem for which interval
propagation algorithms are particularly powerful

 In [Le Bars te al. 2010], Jaulin et al. presents an experiment using a set-
membership approach for SLAM based on interval arithmetic initially developed for
the Redermor submarine [Jaulin et al 2009] through an improved version of the
Guaranteed Estimation of Sea Mines with Intervals. As in its previous work,
seamarks are also detected by a human operator.

2.2 Planning Exploration Strategies

Classically, the exploration problem can be understood as follow: Given what you
know about the world, where should you move in order to obtain as much new
information as possible? Generally exploration techniques work using an occupation
probability map and the frontier concept introduced by Yamauchi [Yamauchi 1997].
However, there are other approaches that use other forms for identifying the regions
of interest for the exploration.

Whatever the chosen strategy, a good exploration algorithm must have two
properties:

• Completeness that requires that the robot covers most of the environment.

Chapter 2. State of the art of Integrated Exploration

54

• Effectiveness that requires that the robot achieves the completeness by
minimal efforts, such as exploration time, exploration distance, etc.

Focusing on the exploration planning, the techniques developed are classified into
two types: deliberative and reactive explorations.

2.2.1 Deliberative Exploration

The methods classified into this group utilize the map information of the environment
to take decisions about the frontiers that will be explored and use path planning
techniques to lead the robot toward the chosen frontiers. The map can be a complete
global map that is known before the start of exploration, or a partial map that is built
on-line while the robot explores. In the last case, when the robot moves towards
frontiers the known area will increase. The basic idea is to identify the covered area
and then to chose appropriate frontier for the robot to move towards.

Two main issues can be found in this category of exploration algorithms for a single
robot system:

• When at some point the robot must choose between several frontiers. What
frontier should the robot choose such that the information gain is maximized?

• How can the robot travel toward that frontier in a safe and efficient way?

For the first problem the robot needs to estimate and compare the potential
information gain of approaching each frontier and choose the best one. A basic case
can be found in the work of Yamauchi [Yamauchi 1997] where the robot chooses
always the nearest frontier. This because the estimation of the potential information
gain is made by calculating the distance from the robot to the frontiers and the
nearest frontier has the highest potential information gain.

Another way to choose the best frontier in single-robot exploration is using the cost-
utility model. One example of the use of this model is the work of Gonzalez-Baños
and Latombe [Gonzalez et al. 2002] called NBV (Next-Best-View Algorithm). In this
algorithm the map of the environment is built iteratively. Initially, the robot builds a
local safe region with the information gathered by the sensors at the robot's initial
position q0. At each iteration, the algorithm update the global map by joining the safe
region built so far with the local safe region generated at the new position qk. This

Chapter 2. State of the art of Integrated Exploration

55

new safe region is then used to choose the next sensing position qk+1

 based on the
expected gain of information that will be sensed at this position, the need of
alignment between the global safe region built so far and the new local safe region
and finally by the cost of movement to reach the new position.

In the cost-utility paradigm, the cost is the length of the path between the current
robot’s position and the frontier, whereas utility can be understood in different ways:

In [Simons et al. 2000] Simmons et al. consider the utility as the expected visible
area behind the frontier. In this work every individual robot construct “bids,” which
describe their estimates of the expected information gain and costs of traveling to
various locations. A central executive receives the bids and assigns tasks in an
attempt to maximize overall utility, while trying to minimize overlap in coverage by the
robots.

Stachniss et al. [Stachniss et al. 2006] use semantic information to increase the
utility of the candidate destinations situated in corridors. This is done by introducing a
utility function U (t) given by

U(tn | t1, . . . , tn−1) = Utn –Σ Pvis(tn, ti

) (2.16)

where Pvis(tn, ti) describes the probability that the frontier tn can be observed by a
robot moving to ti

.

In his work, Burgard et al. [Burgard et al. 2005] present an approach for the
coordination of multiple robots, which simultaneously takes into account the cost of
reaching a target point and its utility. Whenever a target point is assigned to a specific
robot the utility of the unexplored area visible from this target position is reduced. In
this way, different target locations are assigned to the individual robots and the
exploration speeds up since the robots choose different frontiers that are far from
each other.

Others authors have developed some methods based on different representations of
the environment. For example, Franchi et al. [Franchi et al. 2007] have based their
work on the randomized incremental generation of a collection of data structures
called Sensor-based Random Trees (SRT), each representing a roadmap of an
explored area with an associated safe region. The SRT is incrementally built by using
a randomized local planner which privileges the frontier of the Local Safe Region
(LSR). In particular, each node of an SRT contains a configuration assumed by the

Chapter 2. State of the art of Integrated Exploration

56

robot and the LSR perceived from that location, while an arc between two nodes
represents a collision-free path between the two configurations. This method will be
deepened in later sections.

Others approaches like the method multi-robot developed by Wurm et al. [Wurm et
al. 2008] take advantage of information about the structure of the environment
instead of only considering frontiers between unknown and explored areas. This
information is used for assigning optimally a different unexplored room to each robot
using the Hungarian method [Kuhn 1995].

Once that robot has chosen a target frontier, this position has to be achieved in a
safe way and using minimal moves at the same time. This can incur heavy
computations since it is a Non-Polynomial (NP) hard problem. Probability-based
algorithms can be applied to effectively plan the path between the robot and the
frontier such as Probabilistic Road Map [Choset et al. 2004] and Rapid-exploring
Random Trees [LaValle 1998].

2.2.2 Reactive Exploration

In contrast to deliberative exploration, reactive exploration algorithms are behavioral
approaches and do not need a map information. Although this kind of exploration is
in general challenging to strategically reason about long or short-term objectives, it is
well suited to effectively respond to dynamic changes in real-time environments. The
basic idea is to find the optimal move based on the current status of robots. For
example, if a door is detected, the robot can move towards the door because it is a
hint of an unknown area.

The most representative approach for reactive exploration is the Artificial Potential
Field [Khatib 1986]. The central idea of these methods is to create an artificial
potential field that will attract the robot to a target. At the same time another behavior
is defined in which each obstacle generate a repulsive field around it. If the robot
approaches the obstacle, this repulsive force will act pushing it away from the
obstacle. At the end, the two behaviors, seeking and avoiding, can be combined by
combining the two potential fields, the robot, then, can follow the force induced by the
new filed to reach the goal while avoiding the obstacle. The force of attraction is
usually random and is given to trigger the movement of the robot i.e., the random
exploration with obstacle avoidance.

Chapter 2. State of the art of Integrated Exploration

57

In comparison to deliberative exploration, reactive exploration is simple because it
does not need the complex process of map building. It can perform well in complex
environments and with a large number of robots. However, the main drawback is the
occurrence of local minima in the potential field, which may trap the robot and block
the exploration process. In this sense, Julia et al. [Julia et al. 2008] proposed a
technique that enables to detect and escape from these situations by analyzing the
potential field generated by the combination of behavioral forces at the robot’s
neighborhood. Once the local minimum is detected, a technique to force the robot to
escape from this point is necessary. A solution can be to plan a path to a frontier cell
[Lau 2003].

A more reactive but less efficient solution is using a wall-following strategy [Xiaoping
et al. 1997]; this algorithm switches to a wall-following control mode when the robot
falls into a local minimum and switches back to the potential field guided control
mode when a certain condition is met. To make a control free of local minima
Harmonic functions can be used. However, given that they need to evaluate a global
potential field, the technique is computationally expensive. Garrido et al. [Garrido et
al. 2008] use a similar technique based on the Voronoi Fast Marching method where
the robot is directed to the most unexplored areas and where a collision avoidance
algorithms is not necessary.

The main disadvantage of the reactive exploration is that complete coverage of the
environment cannot be guaranteed. This is because the robot cannot remember the
covered area without using a map.

2.3 Integrated Exploration

As we have said in section 2.2, the generic SLAM problem consists of an
autonomous system trying to build a map of an unknown environment while
simultaneously localizing itself with respect to the map that is been built. This idea
however, lack of movement control that guides the robot toward promising areas of
the environment that have not yet been integrated into the map.

Having this in mind, it is possible to add to the basic idea of SLAM a motion planner.
This adds further to the complexity of the problem giving rise to the Integrated
Exploration problem [Makarenko et al. 2002] often referred to as SPLAM
(Simultaneous Planning Localization and Mapping). In fact, the planning problem on
its own is computationally quite intractable under uncertainty. This has been a topic

Chapter 2. State of the art of Integrated Exploration

58

of interest to multiple communities such as Artificial Intelligence, Control Theory, and
Operations Research.

In the integrated exploration approach, the movements of the robot are incrementally
planned in order to maximize the information gain and also to increase the possibility
of localization (which in long term is obviously related to the information gain).

In general, SLAM algorithms are independent on the exploration algorithm or the
motion policy. However, a fully autonomous robot requires to consider SLAM results
in its navigation policy.

In the context of the Integrated Exploration, early contributions can be traced back to
the work of Feder et al. [Feder et al. 1999]. In their work an adaptive motion control
technique in SLAM is reported, the robot creates a map and localizes itself
simultaneously while making local decisions on where to move next in order to
maximize the information obtained and to minimize the error in estimates of the
vehicle pose and the landmark locations where the inverse of the estimation error
covariance is used as an optimization objective. Bennett et al. use this principle in
[Bennet et al. 2000] applied to the problem of underwater exploration. Here, the
motion command is incorporated into a general behavior based architecture to
minimize the vehicle pose and map error.

Makarenko et al. introduce in [Bourgault et al. 2002] an integrated exploration
method based on the EKF which models the map building and exploration task using
an occupancy grid. The adaptive sensing strategy adopted in this work seeks to
maximize the expected Shannon-Information gain on the occupancy grid map while
simultaneously minimizing the uncertainty of vehicle location in the SLAM process.
This approach made the assumption that the robot would observe all the landmarks
any time for simplicity, which limited the approach to be applied in large
environments. In [Makarenko et al. 2002] the same authors have weighted the costs
of map exploration, robot position localization and navigation according to their
corresponding utility functions under the trade-off of pose uncertainty and mapping.
Here the integrated exploration technique is based on a frontier approach using
distinguishable special landmarks in the environment. So their algorithm is not
appropriate for irregular, unknown environments that cannot be landmarked.

In [Stachniss et al. 2003], Stachniss et al. develop an integrated exploration strategy
conducted by a frontier-based exploration and information gain through entropy
minimization strategies. Their algorithm used a grid-based version of the FastSLAM

Chapter 2. State of the art of Integrated Exploration

59

method where robots dynamically update the probability of coverage status of a
region using a Bayesian model. Here, the uncertainty about the pose of the robot can
be more accurately reasoned by using this representation and it is taken into account
during the whole exploration process. This method proposes one of the few global
exploration algorithms where the information available at all locations in the
environment is explicitly computed.

Newman et al. [Newmant et al. 2003] proposed an exploration approach in the
context of Bosse’s ATLAS [Bosse et al. 2004]. Here the robot builds a graph-
structure to represent visited areas, and planned motion is motivated by the
geometric, spatial, and stochastic characteristics of the current map. Each feature
within the map is responsible for determining nearby unexplored areas. They
assumed that the location of the features is uncertain and represented by a set of
probability functions, which are used in conjunction with the robot path history to
determine a robot trajectory suited for exploration.

Sim shows in [Sim 2005] a path planning for SLAM with bearings-only sensors. In
this work it is proposed to encourage coverage by adding a predefined number of
uniformly distributed unvisited dummy features as vague priors in unexplored areas.
The path planning policy is based on Voronoi graph with assumptions of perfect data
association and unlimited sensor field of view to enhance the stability. The issues
related to the initialization of landmarks, which is a key issue in bearing-only SLAM, is
not considered in the proposed path planning technique. Yet, this strategy is not
effective for systems with short planning horizons and limited sensing as the dummy
features will not influence the robot’s decision if they are not visible within the
planning horizon.

In [Sim et al. 2005] Sim carried out the integrated exploration by discretizing the
environment into a grid and assuming that the approximate locations of all the
features are available at the beginning, thus replanning is not that critical. In this
work, the author approximately expressed the state of the EKF as the estimated
position of the robot and the trace of the covariance matrix, which reduces the
computational cost significantly and makes global planning possible. However it is
assumed that the robot is quasi-holonomic with unlimited sensing and robot motion
constraints are not considered in the planning process.

In [Sim 2005b], Sim presents an approach to information-driven exploration for
SLAM which focuses in to overcome the stability issues. In this approach the robot is
driven to a globally optimal position for maximizing information gain of the features.

Chapter 2. State of the art of Integrated Exploration

60

The filter instability is solve by using a virtual minimum range sensor which blocks
features that are too close to the robot and that could cause this instability.

Davison et al. [Davison et al. 2002] proposed a SLAM framework solution using
active vision for real-time. Assuming that the robot trajectory was given, they
controlled the active head’s movement and sensing on a short term tactical basis,
making a choice between a selection of currently visible features. The stereo head is
controlled considering uncertainty-based measurement selection, automatic map-
maintenance, and goal-directed steering. Persistent features re-detected after
lengthy neglect could be re-matched, even if the area was passed through along a
different trajectory or in a different direction.

Vidal et al. [Vidal-Calleja et al. 2006] considered a single hand-held camera
performing SLAM at video rate with generic 6 DOF. They optimized both the
localization of the sensor and building of the feature map by computing the most
appropriate control actions or movements. The actions belong to a discrete set and
are chosen to maximize the mutual information gain between posterior states and
measurements.

Leung et al. [Leung et al. 2008] considered the trajectory planning problem for line-
feature based SLAM in structured indoor environments. In this work, the incremental
smoothing and mapping iSAM [Kaess et al. 2007] is used to estimate the robot
poses and line features whose results are used to efficiently map structured
environments through a Model predictive Control with an attractor to optimize the
information gain, aid exploration and to incorporate long term planning.

Recently, Juliá et al. in [Julia et al. 2010] have presented a hybrid
reactive/deliberative approach to the multi-robot integrated exploration problem. In
this work, an auxiliary low resolution grid map to represent the free, occupied or
unknown state of the space is used. The process consist of a centralized SLAM,
which builds the maps and obtains the localization and two processes of exploration
(one deliberative and one reactive) per each robot running concurrently.

The reactive exploration is the combination of several basic behaviors that include
common behaviours as “go to frontier avoid obstacles” or “go to gateway”. This layer
operates only with cells within the expected safe zone which is a set of free or
unknown cells that can be joined by a straight line without intersect any obstacles.
Simultaneously, the deliberative exploration makes the decision between exploring
the current expected safe zone, travelling to past poses using the active localization

Chapter 2. State of the art of Integrated Exploration

61

state or travelling to a gateway cell which is a free cell within the expected safe zone
next to a free cell not belonging to this zone.

Furthermore, the model takes into account the degree of localization of the robots to
return to previously explored areas when it is necessary to recover the certainty in
the position of the robots.

In [Julia et al. 2011] the same authors present an integrated exploration solution
based on behavioral exploration to model a potential field and on a visual SLAM
technique to build the map and to localize the robot. A strategy of detection and
escape from local minima is used to avoid the problem of local minima in the
potential field. As in their other work this method considers returning to previously
explored areas when the localization uncertainty is high.

62

Chapter 3. EKF-SPLAM Algorithm

In this chapter we are going to develop a SPLAM strategy using some well-known
tools for each sub-element that forms it.

• At first, for the exploration part we will use the algorithm of deliberative
exploration SRT mentioned in the chapter 2. This tool will help the system to
find the next position to explore and will allow us to have a real automatic
system.

• Next, for the SLAM algorithm, two EKF methods will be implemented. In first
place a classic EKF that will consider only landmarks such as point fixes on
the walls, spikes and corners. After an EKF more complex is considered called
B-Spline EKF presented by Pedraza et al. [Pedraza et al. 2007]. Here the
landmarks have the form of B-splines.

Chapter 3. EKF-SPLAM Algorithm

63

3.1 Planning exploration

One of the main tasks for the problem of SPLAM is to travel across the environment
in order to build a map in a really autonomous way. For this, a strategy of motion
control for exploration most be considered.

Following this thought, in this sub-section we have used one powerful tool known as
Sensor-base Random Tree (SRT) presented by Oriolo et al in [Oriolo et al 2004

].

3.1.1

The SRT method

The SRT method is based on the random generation of robot configurations within a
local safe area detected by the sensors. These configurations are stored in a data
tree structure that represents the roadmap of the explored area and the associated
security region (SR). Each node of the tree (T) consists of a robot's position and its
associated local security region (LSR) that is constructed through the perception of
the robot system. This LSR is an estimate of the free space surrounding the robot at
a given configuration

. Two strategies of SRT have been presented by the authors
and their difference lie in the form of the LSR and in the way of handle them.

For the first approach, the LSR is a ball and has a conservative attitude appropriated
to noise or low resolution sensor. This version is called SRT-Ball (figure 3.1a). The
second strategy is called SRT-Star (figure 3.1b). Here the shape of the LSR reminds
us a star. The SRT-Star involves a perception strategy that takes all the information
reported by the sensors and exploits them in all directions. The star form of the LSR
is formed by several “cones” with different radius. Here the k-th cone radius can be
the range minimum between the closest obstacle and the robot or if any object is
detected, the radius will be the maximum distance of the sensor. Thus for calculate
the radius r of a random direction θrand

 we have to identify the corresponding cone of
that particular direction. In the other hand, the conservative perception of the SRT-
ball ignores the information directional granted by most sensorial systems.

A third strategy for the exploration SRT was proposed by Espinoza et al. in
[Espinoza et al. 2007] called SRT-radial, in this paper the form of the proposed LSR
in absence of obstacles is a circumference. Here, once generated the direction to
explore θrand, the radius is the distance from the robot to the edge of the LSR in that
particular direction. Of course, in obstacle presence, the form of the LSR will be
deformed and the radius will be different in different directions (Figure 3.1c and d).

Chapter 3. EKF-SPLAM Algorithm

64

Figure 3.1 a) Safe local region S obtained with the strategy of SRT-Ball. b) Local security
region S obtained by the SRT-Star perception system. Notice that the extension of S in
some cones is reduced by the obstacle presence. c) and d) Different radius obtained in
the safe local region S with the SRT-Radial perception’s strategy. [Espinoza et al. 2007].

The figure 3.2 shows how the SRT method works. At the beginning of each iteration,
the algorithm gets the LSR associated with the current configuration of the robot,
qcurr. Once the LSR is obtained, the function EXTEND_TREE is responsible for
updating the tree, adding the robot position and its corresponding LSR to each node.
At the same time, S will store the environment features and will be updated with new
features extracted from the LSR that are not parts of the environment yet. This
process is performed by the procedure UPDATE

.

The next step is to process the local boundary F, i.e. to identify obstacles and free
areas. Generally, F is a collection of discrete arcs. After obtaining these boundaries
and if there are still free zones, the procedure RANDOM_DIR will generate random
direction in order to choose one that meets the characteristics of a free arc, then, it
will generate a qcurr configuration taking a step of α length in the direction θrand. The
step size α is chosen as a fixed fraction of the radius of the LSR in that particular
direction. Due to the shape of S, qcand will be free of collision. If no border arc is free,
then the robot will return to the position of the parent of qcurr and the exploration cycle
will start again

.

Once the qcand configuration is obtained, the VALID_CONF procedure will ensure that

Chapter 3. EKF-SPLAM Algorithm

65

this new configuration is valid, i.e. that this new position is outside of the LSRs of the
other nodes in the tree. If this new configuration is valid, it will be the new destination
qdest that the robot should achieve. On the contrary, if after a maximum number of
attempts it is not possible to find a qcand configuration, the parent´s node will be the
new configuration qdest (i.e., the robot will return to the father of the current node’s
configuration

).

Figure 3.2 SRT-based integrated exploration algorithm

After the configuration qdest is obtained, the function MOVE_TO (Figure 3.3) allows
the robot to move to this configuration. The process is performed by looking at the list
of control inputs (list_U), an input ucontrol that allows the robot to approach qdest from

INTEGRATED_EXPLORATION (qinit, kmax)

1. qact ← qinit;
2. for k=1 to Kmax
3 . S ← LSR(qact);
4. T ← EXTEND_TREE(qact,S,T);
5. Amb_BS ← UPDATE (S);
6. F ← FORNTIER(qact,S) ;
7. if F≠0
8. i ← 0;
9. VALID ← FALSE;
10. While ((i<MAX_ITER) && (!VALID))
11. θrand ← RANDOM_DIR(F);
12. qcand ← DISPLACE(qact, θrand);
13. VALID ← VALID_CONF(qcand);
14. i++;
15. end
16. if (VALID)
17. qdest ← qcand;
18. else
19. qdest ← qact.parent;
20. if qdest=NULL
21. return [T,Amb_BS];
22. end
23. end
24. else
25. qdest ← qact.parent;
26. if qdest=NULL
27. return [T,Amb_BS];
28. end
29. end
30. MOVE_TO(qdest, qact, Amb_BS);
31. qact ← qdest;
32. end
33. return [T,Amb_BS];

Chapter 3. EKF-SPLAM Algorithm

66

the position qcurr (BEST_U function). Once choosing the best input ucontrol

, this is
applied to the robot.

At this point, the odometric position, and the increase in X, Y and θ between the
previous and the current odometric positions (ΔX, ΔY, Δθ) are obtained. The
information reported by the robot will be essential to get the estimated position that
will be used by the LOCALIZATION method to obtain the real position. The algorithm
is repeated until the qcurr and qdest configurations are the same

.

Figure 3.3 MOVE_TO method form the SRT-based integrated
exploration algorithm

3.2 EKF-SLAM Classic

The exploration of unknown environments requires an additional functionality
because the odometric information reported by the robot, in most cases is not
accurate, resulting in inaccurate maps useless for future navigations. The proposed
algorithm assumes that the robot's initial position is well located and, consequently,
the first observation of the environment has a perfect location. Once the robot has
moved from a position qlast to a position qcurr, the new position of the robot is obtained
by adding to the last located position, the increments ΔX, ΔY and Δθ reported by the
robot's odometric system. After this position is estimated, the robot will collect the
information of the surrounding environment for the localization process

.

3.2.1 Review on EKF

As we have said in the small presentation of the EKF in chapter 2, the Kalman filter
addresses the general problem of trying to estimate the state X Є Rn of a discrete-
time controlled process governed by a linear stochastic difference equation. But what
happens if the process to be estimated and (or) the measurement relationship to the

MOVE_TO (qact ,qdest, , Amb_BS)

1. while qact!= qdest
3. ucontrol ← BEST_U(List_U,qact, qdest);
4. ROBOT ← ucontrol;
5. q̂ ← ODOMETRY;
6. qact ← LOCALIZATION(q̂ , qact, Amb_BS);
7. end
8. return qact

Chapter 3. EKF-SPLAM Algorithm

67

process is non-linear? Some of the most interesting and successful applications of
Kalman filtering have been such situations. A Kalman filter that linearizes about the
current mean and covariance is referred to as an extended Kalman filter or EKF.

Let us assume that our process has a state vector X Є Rn

, but that the process is now
governed by the non-linear stochastic difference equation:

()1 1 1 , , k k k kX f X u w− − −= (3.1)

With a measurement z Є Rn

 that is

() , k k kz h X v= (3.2)

Where the random variables wk and vk represent the process and measurement
noise. In this case the non-linear function f in (3.1) relates the state at the previous
step k-1 to the state at the current time step k. It includes as parameters any driving
function uk-1 and the zero-mean process noise wk. The non-linear function h in the
measurement equation (3.2) relates the state Xk to the measurement zk

.

In practice of course one does not know the individual values of the noise wk and uk

at each time step. However, one can approximate the state and measurement vector
without them as:

1 1
ˆ(, ,0)k k kX f X u− −= (3.3)

and

(,0)k kz h X= 

 (3.4)

Where ˆ
kX − is some a posteriori estimate of the state (from a previous time step k-1).

It is important to note that fundamental flaw of the EKF is that the distributions (or
densities in the continuous cases) of the various random variables are no longer
normal after undergoing their respective nonlinear transformations. The EKF is
simply and ad hoc state estimator that only approximates the optimality of Bayes’ rule
by linearization.

To estimate a process with non-linear difference and measurement relationships, we

Chapter 3. EKF-SPLAM Algorithm

68

begin by writing new governing equations that linearize and estimate about (3.3) and
(3.4).

1 1 1
ˆ()k k k k kX X A X X Ww− − −≈ + − + (3.5)

 ˆ()k k k k kz z H X X Vv−≈ + − + (3.6)

Where

• Xk and zk

•

 are the actual state and measurement vectors.

kX and kz are the approximate state and measurement vectors from (3.3) and

(3.4).

• ˆ
kX is a posteriori estimate of the state at step k.

• The random variables wk and vk

• A is the Jacobian matrix of partial derivatives of f with respect to X.

 represent the process and measurement
noise.

• W is the Jacobian matrix of partial derivatives of f with respect to w.
• H is the Jacobian matrix of partial derivatives of h with respect to X.
• V is the Jacobian matrix of partial derivatives of h with respect to v.

For simplicity, we do not use the time step subscript k with the Jacobians A,W, H and
V , even though they are in fact different at each time step.

Now we define a new notation for the prediction error:

xk k ke X X≡ −  (3.7)

and the measurement residual,

zk k ke z z≡ −  (3.8)

In practice, one does not have access to Xk in (3.7), it is the actual state vector, i.e.,
the quantity one is trying to estimate. On the other hand, one does have access to zk
in (3.8), it is the actual measurement that one is using to estimate Xk

. Using (3.7) and
(3.8) we can write governing equations for an error process as:

Chapter 3. EKF-SPLAM Algorithm

69

1 1
ˆ()xk k k ke A X X ε− −≈ − + (3.9)

()zk xk ke H e η≈ −  (3.10)

Where εk and ηk represent new independent random variables having zero mean and
covariance matrices WQWT and VRVT

, Q and R are the process noise covariance and
the measurement noise covariance respectively.

We can note that the equations (3.9) and (3.10) are linear, this motivates us to use
the actual measurement residual zke in (3.8) and a second (hypothetical) Kalman filter

to estimate the prediction error xke given by (3.9). This estimate, call it ˆke , could then

be used along with (3.7) to obtain the a posteriori state candidate estimates for the
original non-linear process as

ˆ ˆk k kX X e= + (3.11)

Random variables in (3.9) and (3.10) have approximately the following distributions:

() (0, [])T
xk xk xkp e N E e e  
 , ()() ~ 0, 0, T

k kp N E WQ Wε    , ()() ~ 0, 0, T
k kp N E VR Vη    . Given

these approximations and letting the predicted value of êk be zero, the Kalman filter
equation used to estimate êk

 is:

ˆk k zke K e=  (3.12)

By substituting (3.12) back into (3.11) and making use of (3.8) we see that we do not
actually need the second (hypothetical) Kalman filter:

ˆ ()k k k zk k k k kX X K e X K z z= + = + − 

  (3.13)

Equation (3.13) can now be used for the measurement update in the extended

Kalman filter, with ˆ
kX and kz coming from (3.3) and (3.4), and Kk

 is the Kalman gain

with the appropriate substitution for the measurement error covariance.

The complete set of EKF equations is shown below. Note that we have substituted
ˆ

k
X − for kX to remain consistent with the earlier “super minus” a priori notation, and

the that we now attach the subscript k to the Jacobians A,W,H and V to reinforce the

Chapter 3. EKF-SPLAM Algorithm

70

notion that they are different at (and therefore must be recomputed) at each time
step.

1 1
ˆ ˆ(, ,0)k k kX f X u−

− −= (3.14)

1 1
k k

T T
k k k k kP A P A W Q W−

− −= + (3.15)

As with the basic discrete Kalman filter, the time update equations (3.5, 3. 6) project
the state and covariance estimates from the previous time step k-1 to the current time
step k. Again f in (3.14) comes from (3.3), Ak and Wk are the process Jacobians at
step k, and Qk

 is the process noise covariance at step k.

() 1 T T T
k k k k k k k k kK P H H P H V R V− − −= + (3.16)

ˆ ˆ ˆ((,0))k k kk kX X K z h X −−= + − (3.17)

() k k k kP I K H P−= −

 (3.18)

As with the basic discrete Kalman filter, the measurement update equations (3.16,
3.17 and 3.18) correct the state and covariance estimates with the measurement zk.
Again h in (3.17) comes from (3.4), Hk and V are the measurement Jacobians at step
k, and Rk

 is the measurement noise covariance at step k. The subscript R changes
with each measurement. The next figure offers a complete picture of the operation of
the EKF.

Figure 3.4 A complete picture of the operation of the extended Kalman filter

Time Update (Predict)
1. Project the state ahead

1 1
ˆ ˆ(, ,0)k k kX f X u−

− −=
2. Project the error covariance ahead

1 1
k k

T T
k k k k kP A P A W Q W−

− −= +

Measurement Update (Correct)
1. Compute the Kalman gain

() 1 T T T
k k k k k k k k kK P H H P H V R V− − −= +

2. Update estimate with measurement zk

ˆ ˆ ˆ((,0))k k kk kX X K z h X −−= + −
3. Update the error covariance

() k k k kP I K H P−= −

Initial estimates for
1

ˆ
kX −

and Pk-1

Chapter 3. EKF-SPLAM Algorithm

71

The algorithm of Extended Kalma Filter is described in the following figure:

Figure 3.5. EKF algorithm

The EKF algorithm is described in figure 3.5, It accepts as input the located position

1
ˆ

kX − and the covariance Pk-1 , the control uk and the measurement zk

ˆ
kX

. Its outputs are

the estimations and Pk

 at the instant k. This algorithm is implemented in two

steps:

1. The prediction step (Lines 1 and 2). Calculates the predicted belief ˆ
kX − and

kP− . This belief is obtained by incorporating the control uk before to incorporate

the measurement zk.

2. The correction step (Lines 3 to 8). The re-observed landmarks are
considered. Using the estimate of the current position it is possible to estimate
where the landmark should be. There is usually some difference, this is called
the innovation. So the innovation is basically the difference between the
estimated robot position and the actual robot position, based on what the robot
is able to see.

The variable dk

ˆ(,0)kh X −

at the line 3 is called the measurement innovation (or
residual). Like we have said, it corrects the discrepancy between the predicted

measurement and the actual mesurement zk. Line 4 calculates the

Algorithm of Extended Kalman Filter (1
ˆ

kX − , Pk-1, uk, zk)

1. 1
ˆ ˆ(, ,0)k k kX f X u−

−←

2. 1 1 T T
k k k k k k kP A P A W Q W−

− + −← //Prediction

3. ˆ(,0)k k kd z h X −← −

4. T T
k k k k k k kD H P H V R V−← +

5. 1 T
k k k kK P H D− −=

6. ˆ ˆ
k k k kX X K d−= +

7. () k k k kP I K H P−= − // Correction

8. return (ˆ
kX , Pk)

Chapter 3. EKF-SPLAM Algorithm

72

innovation (or residual) covariance Dk. Line 5 computes a variable Kk that is
called Kalman gain. It specifies to what extent the innovation should be taken
into account in the posterior state estimate. The new mean of the posterior
belief is calculated in line 6, by adjusting it in proportion to the Kalman gain Kk
and the innovation dk

.

Finally, the new covariance of the posterior belief is determined in line 7. If the

algorithm is implemented accurately, the initials values 0X̂ − and P0

 may reflect

accurately the distribution of the initial state, so, we have some properties:

() ()ˆ ˆ = 0k k k kE X X E X X −− − = (3.19)

() 0kE d = (3.20)

 Equations (3.19) and (3.20) reflect that expected values (mean errors) of all
estimates are zero.

3.2.2 Application of EKF to robot localization

So far we have talked about the EKF in a very general way. From this point, we will
talk about the concrete implementation of an algorithm of localization based on the
extended Kalman filter for SLAM.

In this work we use a differential robot, so our equation of movement will have the
following form:

1 1

1 1

1 1

cos()
sin()
()

k k k k k

k k k k k

k k k k

x x t v
y y t v

t

θ ω
θ ω

θ θ θ ω

− −

− −

− −

∆ ∗ ∗ +     
     = + ∆ ∗ ∗ +     
     ∆ ∗ +     







 (3.21)

Where kv and kω denote the true translational and rotational velocity generated by

the motion control (,)T
k k ku v ω= with added Gaussian noise.

2
1

2
2

k k

k k

v v σ

σ

ε

ω ω ε

    
 = +          





 (3.22)

Chapter 3. EKF-SPLAM Algorithm

73

where 2

1σ
ε and 2

2σ
ε are independent Gaussian error variables with zero-mean and

standard deviations σ1 and σ2 v respectively relative to the control velocities and ω .
Therefore, the motion model can be decomposed into a noise-free model with a
random Gaussian noise.



()1 k

1 1

1 1

1 1

 X , u , 0

cos()
sin() (0,)
()

k k

k k k k k

k k k k k k

k k k k

X f

x x t v
y y t v N Q

t

θ ω
θ ω

θ θ θ ω
−

− −

− −

− −

∆ ∗ ∗ +     
     = + ∆ ∗ ∗ + +     
     ∆ ∗ +     



 (3.23)

This decomposition can be also applied to the perception model. Let j=cki be the
identity of the ith feature observed at time t corresponds to the jth

landmark in the map.



()

2 2
, ,

1
, ,

 ,0

() ()
(0,)

tan (() / ())
ki

k

ki j x k j y k
k

ki j y k j x k
Z

h X

r m x m y
N R

m y m xθ −

 − + −   = +   − −   


 (3.24)

Where mj,x and mj,y denote the coordinates of the ith landmark detected by the robot
(that is identical to jth

 landmark in the map).

The algorithm of localization EKF used in our scheme SPLAM is showed in the
algorithm 3.6.

Figure 3.6 Localization EKF algorithm

This algorithm is derived from the general EKF algorithm of figure 3.5. The inputs are:

the posterior belief of the robot pose at time k-1 (1
ˆ

kX −), the increases in x, y, θ (q̂),

LOCALIZATION_EKF(q̂ , 1
ˆ

kX − , LandM_Amb, 1kP −)

1. [ˆ
kX − , kP−] ← PREDICTION(q̂ , 1

ˆ
kX − , 1kP −);

2. D ← SENSOR_DATA(ˆ
kX −);

3. Ss ← LANDMARKS_EXTRACTION(D);
4. [LMasoc, LMnew] ← DATA_ASSOCIATION(Ss, LandM_Amb);

5 [ˆ
kX , kP] ← UPDATE (LMasoc, qest)

6. return ˆ
kX , kP

Chapter 3. EKF-SPLAM Algorithm

74

the landmarks stored in the environment, and the covariance P at time k-1. The

output is a new estimate of the robot pose at time k represented by ˆ
kX and kP .

The EKF for SLAM as the EKF used for navigation use the steps of prediction and
update, however, the EKF for SLAM adds one extra function for the actualization of
the map that is been building.

a) PREDICTION

The function PREDICTION, computes the necessary Jacobians for linearizing the
motion model.

1
k

1

(,)ˆ
ˆ
k k

k

XA f u
X

−

−

∂
=

∂
 (3.25)

1
k

(,)ˆ
k k

k

XW f u
u
−∂

=
∂

 (3.26)

Where Ak is the partial derivative of the function of movement with respect to the
pose of the robot and Wk

 is the partial derivative of the function of movement with
respect to the control.

Next, the motion noise covariance must be determined as follow:

2
1

2
2

0
0kQ
σ

σ
 

=  
 

 (3.27)

Where σ1 and σ2

 are two variables relative to the control velocities. Now the
estimation of the new position of the robot is calculated using:

()ˆ ˆ X , u , 0 1 kkX f k
− = − (3.28)

Where 1
ˆ

kX − is the localizated position at time k-1, f is the model of our robot and uRkR

are the control entries. We can add directly to the previous localized position the
increases Δx, Δy and Δθ of the previous state of time k-1 to the state of time k reported
by the robot:

Chapter 3. EKF-SPLAM Algorithm

75

1

1

1

k k

k k

k k

x x x
y y y
θ θ θ

−

−

−

∆     
     = + ∆     
     ∆     

 (3.29)

Finally the matrix of covariances is updated using the equation (3.15):

 1 T T
k k k k k k kP A P A W Q W−

− +=

b) SENSOR_DATA

After the function of prediction, the function SENSOR_DATA will obtain the
information of the surrounding environment to the robot caught by the sensors in this
instant k. This information will be placed spatially in the current position estimated by
the function of prediction.

c) LANDMARKS_EXTRACTION

Taking the gathered information for the function SENSOR_DATA, the function
LANDMARKS_EXTRACTION will be in charge to look for characteristics of the
environment that are easily re-observable.

The EKF used in this section is conceived to work in feature maps formed by lines
(Figure 3.7a), but before to try to find this type of features we have to find one other
kind called break point (Figure 3.7b). This type indicate discontinuities in the scan
process and usually occur due to the existence of objects or surfaces that hinder the
detection of other elements more distant. The detection of these points allows
classifying the measures in groups called “clusters”

Figure 3.7 a) Environment. b) Break points found in the environment

Chapter 3. EKF-SPLAM Algorithm

76

Several strategies to find these clusters have been proposed in literature. In
particular the clustering process used in this section is based on the classic criteria of
Dietmayer [Dietmayer et al. 2001], whose operation can be explained in the figure
3.8. Pa and Pb represent two consecutive points detected by the laser, while ra and rb
are the distances of these points to the coordinates origin. Given the triangle OPaPb,
where ra and rb are known and α is the angular resolution of the laser, we can apply
the cosines theorem to calculate the distance between Pa and Pb

:

2 2 2 cos()ab a b a br r r r r α= + − (3.30)

The criteria used to form the clusters is that, if the distance between Pa and Pb is less

than

rab≤ C0 + C1 · min {ra − rb

} (3.31)

Where 1 2(1 cos())C α= − , then Pb belongs to the same cluster than Pa. Otherwise,

the points Pa and Pb belong to different clusters. The constant C0 represents a noise
adjustment in the laser measures. The other constant, C1, takes a value not
explained by Dietmayer, but, that can be explained using the figure 3.8, where it can
be appreciated that min{ra, rb

} = ra, therefore:

{ }1
1 cos()min , 2(1 cos()) 2

2a b a aC r r r r αα −
= − = (3.32)

On the other side, the variable named z in the figure 3.8 will take the value:

1 cos()sin()
2 2a az r rα α−

= = (3.33)

Finally, we get:

2z = C1 · ra

 (3.34)

Chapter 3. EKF-SPLAM Algorithm

77

Figure 3.8 Dietmayer’s criteria

With the raw data segmented in clusters the next step is to find features in each one
of them. As we have already said, this EKF works on feature maps, so given this
restriction the system looks essentially for 3 types of landmarks:

1. SPIKES. They are identified finding cluster with less of tree laser measures.
This type of Landmark is considered by the algorithm once that it has been
seen a number I of times, since own mistakes of the measure system might
be interpreted like landmarks.

2. STRAIGHT LINES. To extract this type of landmarks we have used the work
by Pavlidis et al. [Pavlidis et al. 1974] named “Split and Merge”. The
algorithm has two parts. The first phase is recursive, and consists in dividing
the available segments into smaller ones, while the second is used to merge
segments that are almost

colinear (Figure 3.9 and 3.10).

Figure 3.9 Split and Merge Algorithm evolution [Tardos et al. 2002b]

Chapter 3. EKF-SPLAM Algorithm

78

Figure 3.10 Split and Merge Algorithm

At the end of this algorithm and due to its nature, every processed cluster will
give n sub-clusters of raw data laser measures corresponding to n
noncolinear segments. The line contained in these sub-clusters is
approximate using the method of least median square (LMS Least Median
Square) proposed by Mount et al. in [Mount et al. 2007].The decision to use
this method is based on a comparative study of different methods proposed
in the literature (including RANSAC and its variants (MSAC and NAPSAC),

and Least Squares approximation) where the LMS method proved to give
more stable results obtaining in all tests conducted a slope almost equal.

3. CORNERS. These landmarks will be obtained taking all the straight lines
found in the environment and verifying which ones intersect.

Split and Merge Algorithm

1: function SPLIT(P)
2: Input: P {p1, · · · , pn}
3: Put P in the list L.
4: R ← line that fits the points of P
5: pt ← point with the biggest distance T to the line R
6: If T > Tmax then
7: P′ ← {p1, · · · , pt}
8: P′′ ← {pt, · · · , pn}
9: L add SPLIT(P′)
10: L add SPLIT(P′′)
11: End If
12: Return L

14: function MERGE(L)
15: Input: L ← list of sets {Pi, · · · ,Pn}
16: For i ← 1 to n − 1 do
17: If Pi y Pi+1 are colinear within an error margin then
18: Q ← Pi U Pi+1
19: R ← line that fits the points of Q
20: qt point Є Q with the biggest distance T to the line R
21: If T ≤ Tmax then
22: L eliminate Pi y Pi+1
23: L add Q
24: End If
25: End If
26: End For
27: Return L

Chapter 3. EKF-SPLAM Algorithm

79

d) DATA_ASSOCIATION

A critical aspect of the localization algorithm is the data association. The objective of
this function is to match observed features from different scans and to assign
measurements from which they originate and reject fake measurements. This
process is also known as re-observing landmarks. Given the three types of features
used in this method, the SPIKE and CORNER kind are the easiest to associate. For
them, we look for the closers features stored in the system of the same type where
the Euclidean distance between them is less than a threshold Dmin

.

In the other hand the Straight lines features most be translated into a fixed point, this
is made by taking the robot predicted position and calculating his orthogonal point to
the straight lines. This process is done for both lines, the one observed and the line
associates stored in the system figure 3.11.

Figure 3.11 Line feature as a point

The measurement-to-feature association is performed using a gating approach in the
innovation space incorporating both measurement uncertainty and robot uncertainty.
So using the innovation matrix:

rr ri
T T

ki ki ki k k kir ii

P P
S H H V R V

P P
 

= + 
 

 (3.35)

Where

ˆ(,)
ˆ

i k
ki

k

h X iH
X

∂
=

∂
 (3.36)

Chapter 3. EKF-SPLAM Algorithm

80

And defining the innovation ()ˆ –k i k i i kd z h X −= , we can establish a validation gate to

determine a correct association in the form of:

1 T
ki ki kid S d λ− ≤ (3.37)

Where λ is a constant chosen heuristically.

The validation gate uses the fact that our EKF implementation gives a bound on the
uncertainty of an observation of a landmark. Thus we can determine if an observed
landmark is a landmark in the database by checking if the landmark lies within the
area of uncertainty.

e) UPDATE

If a feature present in the state vector is re-observed the update step of the EKF is
used to update the state of the map including the robot pose. The model of
observation for the characteristic i has the form:

() ()

ki

2 2

j,x k j,y k
ki

j,y k 1

j,x k

m x m y
r

(0,)m y
tan

m x

ki kZ N R
θ −

 − + −    = = +   −      −  
 (3.38)

() ()ki k
ˆ X 0,Rh N= +

2

2

0
0

r
kR

θ

σ
σ

 
=  
 

 (3.39)

The noise process N(0,Rk) is assumed to be white Gaussian with covariance Rk

. If the
N features are observed the observation model becomes:

1 1 1 0
; ;

0

k k k

k k k

kn kn kn

z h R
Z h R

z h R

     
    = = =     
         



    



 (3.40)

Chapter 3. EKF-SPLAM Algorithm

81

ˆ()
ˆ

k
k

k

h XH
X

∂
=

∂
 (3.41)

With this information, we calculate the covariance of the innovation Sk

 given for:

 T T
k k k k k k kS H P H V R V−= + (3.42)

Which depicts the uncertainty corresponding to the predicted measurement Zk. Again
with this information we calculate Kalman's profit Kk

 of the following way:

1 T
k k k kK P H S− −= (3.43)

Finally, the new pose estimate is obtained ˆ
kX −and the matrix of covariances kP− are

updated as it follows:

ˆ ˆ((,)ˆ 0)k k k k kX K Z h XX − −= + − (3.44)

() – k k k kP I K H P−= (3.45)

3.2.3 Extension of the Map

This section is completely bound to the UPDATE function on the SRT algorithm
(figure 3.2 lines 5). Achieve the new position to explore qdest

, his new LSR will be
used to do update the map on the EKF system state X.

a) Add a new feature

When a new feature Lnew = [r θ] is observed, the new feature state XN+1

 is
incorporated in the system vector state. For CORNER and SPIKES we add just the
range and bearing to the feature as:

1

cos()ˆ(,)
sin()

rk rk
N k new

rk rk

x r
X m X L

y r
θ θ
θ θ+

+ + 
= =  + + 

 (3.46)

1

ˆˆ k
k

N

XX
X +

 
←  

 
 (3.47)

Chapter 3. EKF-SPLAM Algorithm

82

But for the STRAIGHT LINE case the new feature have the range and bearing of the
star and final point Lnew = [rs θs rf θf

], so in this case the new feature has the following
form:

N 1

cos()
sin()ˆX (,)
cos()
sin()

rk s rk s

rk s rk s
k new

rk f rk f

rk f rk f

x r
y r

m X L
x r
y r

θ θ
θ θ
θ θ
θ θ

+

+ + 
 + + = =
 + +
 + +  

 (3.48)

Been the 3 first elements in ˆ
kX the position x,y and θ localized of the robot.

Once the new landmark is added, it only remains to update the matrix of covariances
for this new one landmark. Thus, in the first place we added the covariance for the
new landmark.

PN+1 N+1 = Jxr Pk
rr Jxr

T + Jz Rk Jz
T

 (3.49)

After the robot – landmark covariance for the new landmark is added.

Prr N+1 = Pk
rr Jxr

T

 (3.50)

And finally we add the landmark – landmark covariance.

PN+1 i = Jxr (Pk
ri)T

 (3.51)

Jxr and Jz are two jacobians of EKF that are used in SLAM. Jxr is the as the jacobian
of the prediction of the feature and is basically the same as the jacobian of the
prediction model except that there is not the rotation term. In the other hand, Jz

 is
also the jacobian of the prediction model for the feature bus with respect to range
and bearing. R is the Gaussian noise proportional to the measurement.

b) Feature Extension

When a new LSR is obtained on a new position qdest

 achieved, the associations of
some lines are made only partially (Figure 3.12)

Chapter 3. EKF-SPLAM Algorithm

83

Figure 3.12 Line segment partially associated to be extended

In this case, that line segment has to be extended with the new information.
Therefore, to make this extension, in first place we have to extract the kth

feature
corresponding to the line to be extended as follow:

1

, , ,
k

r

i i f f

N

X

X

X

x y x y

X

 
 
 
 

      
 
 
  

←




 (3.52)

Whit this information, we can easily calculate the elements m and b in the equation of
the line.

 (3.53)

And to do the extension (in the case of the figure 3.12 toward the extreme right) with
the farthest xest and yext

 coordinates of this segment.

ext exty mx b= + (3.54)

Finally, the new line extended is added to the system vector in the same position
from which was extracted.

Observed lines
without localization

Stored Line

Associated Lines

 Robot in predicted
position

Segment
to extend

Observed Lines with
localization

Robot
localized

 Stored
Line

;f s
s s

f s

y y
m b y mx

x x
−

= = −
−

Chapter 3. EKF-SPLAM Algorithm

84

 (3.55)

3.3 EKF-SLAM with B-Splines

3.3.1 Foundations of B-Splines.

a) B-Splines Definition

Let U be a set of m + 1 non-decreasing numbers, u0 ≤ u2 ≤ u3 ≤ … ≤ um. The ui’s are
called knots, the set U the knot vector, and the half-open interval [ui, ui+1) the i-th
knot span. Note that since some ui’s may be equal, some knot spans may not exist. If
a knot ui appears k times (i.e., ui = ui+1 = . . . = ui+k-1, where k > 1, ui is a multiple knot
of multiplicity k, written as ui(k). Otherwise, if ui

 appears only once, it is a simple knot.
If the knot vector does not have any particular structure, the generated curve will not
touch the first and last legs of the control polyline as shown in the figure 3.13a and
we have an unclamped B-Spline.

We may want to clamp the curve so that it is tangent to the first and the last legs at
the first and last control points, respectively. To do so, the first knot and the last knot
must be of multiplicity p+1, where p is the degree of the curve. This will generate the
so-called clamped B-spline curves, figure 3.13b. By repeating some knots and control
points, the generated curve can be a closed one. In this case, the start and the end
of the generated curve join together forming a closed loop as shown in figure 3.13c.

Figure 3.13 a) Unclamped B-Splines. b) Clamped B-Spline. c) Closed B-Spline

[]
1

, , ,
k

r

i i ext ext

N

X
X

x y x y
X

X

 
 
 
 

→  
 
 
 
  





Chapter 3. EKF-SPLAM Algorithm

85

If the knots are equally spaced (i.e., ui+1 − ui is a constant for 0 ≤ i ≤ m−1), the knot
vector or the knot sequence is said uniform; otherwise, it is non-uniform. The knots
can be considered as division points that subdivide the interval [u0, um

] into knot
spans.

All B-spline basis functions are supposed to have their domain on [u0 , um]. To define
B-spline basis functions, we need one more parameter, the degree of these basis
functions, p. The i-th B-spline basis function of degree p, written as Ni,p

(u), is defined
recursively as follows:

1
,0

1,
()

0,
i i

i

if u u u
N u

otherwise
+≤ ≤

= 


 (3.56)

1

, , 1 1, 1
1 1

() () ()i pi
i p i p i p

i p i i p i

u uu uN u N u N u
u u u u

+ +
− + −

+ + + +

−−
= +

− −
 (3.57)

The above equation is usually referred to as the Cox-de-Boor recursion formula [de
Boor 1978]. Given n + 1 control points P0, P1,…, Pn and a knot vector U = u0, u1, … ,
um

, the B-spline curve of degree p defined by these control points and knot vector U
is

,
0

() ()
n

i p i
i

C u N u X
=

=∑ (3.58)

where Ni,p

(u)’s are B-spline functions of degree p. The form of a B-spline curve is very
similar to that of a Bézier curve [Rogers 2001].

b) Spline Fitting

The simplest method of fitting a set of data points with a B-splines curve is the global
interpolation method [Ishida 1997]. Suppose we have n+1 data points D0,D1, … ,Dn
and wish to fit them with a B-spline curve of degree p, where p ≤ n is an input. We
select a set of parameter values t0, t1, ... , tn

 (the number of parameters is equal to the
number of data points).

Suppose the desired interpolating B-spline curve of degree p is done in the equation
(3.58). This B-spline has n+1 unknown control points, since parameter tk corresponds
to data point Dk. Plugging tk into the equation (3.58) yields the following:

Chapter 3. EKF-SPLAM Algorithm

86

,
0

() () 0
n

k k i p k i
i

D C t N t X for k m
=

= = ≤ ≤∑

 (3.59)

Because there are n + 1 B-spline basis functions in the above equation and n + 1
parameters, plugging these tk’s into the Ni,p(u)’s yields (n + 1)2 values. These values
can be organized into a (n+1)×(n+1) matrix N in which the k-th row contains the
values of N0,p(u),N1,p(u), … , and Ni,p(u) evaluated at tk

 as shown below:

, 0 1, 0 2, 0 , 0

, 1 1, 1 2, 1 , 1

, 1, 2, ,

() () () ()
() () () ()

() () () ()

o p p p n p

o p p p n p

o p n p n p n n p m

N t N t N t N t
N t N t N t N t

N

N t N t N t N t

 
 
 =
 
 
  





  



 (3.60)

This matrix N, is generally known as placement matrix and it has for each one of its
rows, a maximum of p nonzero elements. In the same way, we can also collect
vectors Dk and Xi

 as follows:

[]0 1 mD D D D=  (3.61)

[]0 1 nX X X X=  (3.62)

With these representations, we can write the equation (3.59) in a most compact form:

D= N X (3.63)

Given that vector D contains the input data points and matrix N is obtained by
evaluating B-spline functions at the given parameters, the only unknown is vector X.

As we can see, the simpler form is a system of linear equations with unknown X,
solving for X yields the control points and the desired B-spline interpolation curve
becomes available. Therefore, the interpolation problem is solved.

When the problem is over determined, it can be solved in an in a mean sense. This
occurs in the most general case when 2 1 1p n m≤ ≤ + < + . To solve it, we can obtain a

least squares solution making use of the pseudoinverse matrix of B:

1T TX B B B D D
−

 = = Φ  (3.64)

Chapter 3. EKF-SPLAM Algorithm

87

3.3.2 EKF with B-Splines

a) Data management

Before the obtained data can be used by the localization algorithm, they need to
undergo several processes (Figure 3.14)

:

• FIRST SEGMENTATION. An analysis of the relative position of consecutive
data points. The objective is to detect points close enough to belong to the
same obstacle. For this segmentation we have used the Dietmayer’criteria

presented in section 3.2.2 c.

• SECOND SEGMENTATION. The segments obtained in the first segmentation
undergo another test to look for straight points whose angle is below a certain
threshold. The objective of this segmentation is to detect corners and curves
with high curvatures

. For this part we used the algorithm “split and merge”
presented also in section 3.2.2 to divide every cluster found in the first
segmentation into small straight lines segments. After, an analysis of the
slopes corresponding to 2 consecutive segments is performed, if the
difference between these two slopes is bigger than a certain θ threshold it
means that a division most be done. This process is showed in figure 3.15.

Figure 3.14 a) Line segments found by the “split and merge algorithm”.
b) Analysis of slopes between adjacent segments. c) Segments obtained after processing.

 a)

) θ1<θTHR

 θ2>θTHR

 θ3<θTHR
 θ4>θTHR

 θ5<θTHR

b)

c)

Chapter 3. EKF-SPLAM Algorithm

88

• FITTING. Each of the obstacles of the second segmentation is adjusted to the
B-Spline grade 3 that form its control polygons

.

The overview of the process performed over the raw data acquired by the sensor is
showed in figure 3.15.

Figure 3.15 Overview of treatment made to the raw data

b) Association of B-Splines

Once the data from the sensor are segmented, a process of data association is
performed. The first association is crude, and the control points of each segment
obtained in the segmentation process are compared with the control points in the
map, using the following criteria:

 (3.65)

i = 1 … nm

j = 1 … n0

min(dist(Xm,i, Xo,j))≤dmin ,

Chapter 3. EKF-SPLAM Algorithm

89

Where Xm,i and X0,j are the control points of the splines, on the map and on the
predicted position, respectively, nm and n0 are the number of control points of the
splines on the map and on the predicted position, dist(Xm,i, Xo,j) represents the
Euclidean distance between the control points, and finally dmin

 is the parameter that
will regulate if the points are or not related.

If no spline in the map is close enough to a detected spline in order to be related,
then this new object is added to the map, once the robot's position has been located.
By contrast, if a spline is associated with a map’s feature, it is necessary to obtain a
concordance between its points, as follows:

Figure 3.16 Curves Concordance. (a) Rough association. (b) Association fine

• One of the ends of the curve is considered point a.

• The point nearest to point a in the spline on the map is considered point b.

• If b is one of the endpoints of the spline on the map, then, the point nearest to

b in the spline is calculated and named point c, if not, point a is associated with
point b.

• The process is repeated using the other end of the observed spline as a

starting point (point d in the figure 3.16b). This point is associated with the

Chapter 3. EKF-SPLAM Algorithm

90

point e of the spline on the map.

• Thanks to a property of the B-splines about the possibility of knowing the
curves’ length, eb and dc segments can be adjusted to have the same length.
If the difference of the lengths is greater than a threshold lmax

, the endpoints of
the larger curve are eliminated to adjust its size.

c) Model of State

As in the localization EKF showed before, the state of the system in any instant k is
composed by the robot’s position (considered the only moving object in the
environment) and all the map features represented as cubic B-Splines. Now when
the splines are expressed as a linear combination of basis functions B-splines, the
state of each one of them can be represented by the position of their control points,
this is possible if we use a fixed knot vector to generate a basis for all the map B-
Spline features. So, referring all positions and orientations to a global reference
system {uw,vw} and considering that the robot is the first element in the map (F0), the
following expressions describe the state of the system composed by the robot pose
Xr , and the position of the control points of every feature in the map represented by
the vector Xsi

:

XF0 = Xr = [xr, yr, θr]T

 (3.66)

XFi = Xsi = [xi,0, . . . , xi,ni , yi,0, . . . , yi,ni]T

 where i = 1, . . . ,N (3.67)

So, the state of the system can be written as follow:

1, , ,
TT T T

r s snX X X X =   (3.68)

Been N the number of map features and ni

 is the number of control points for each
one of them. As we can see, the number of control points in the map for each spline
can be variable because they can be extended progressively when new areas of the
environment are explored.

The start point for the probabilistic formulation of the estimation problem, is the
assumption of that the real state of the system in the instant k is unknown, but can be
model with a Gaussian distribution who has all the information at that moment.

Chapter 3. EKF-SPLAM Algorithm

91

ˆ ˆ(,)k k kX N X P−
 (3.69)

where

1
ˆ ˆ ˆ ˆ[]k kr ks ksNX X X X− − − −=  (3.70)

And

1

1 1 1 1

1 2

rr rs rsN
k k k
s r s s s sN

k k k
k

sNs sNs sNsN
k k k

P P P
P P P

P

P P P

 
 
 =
 
 
  





   



 (3.71)

d) Model of Observations.

Like in the section 3.2.2, the use of the EKF for the SLAM problem requires a
mathematical expression that allows us to predict the measurement that we expect to
get from the robot’s sensor given the robot pose and the current knowledge of the
environment at that instant.

The model of observation for the case of B-Splines is reduced to find the intersection
of the straight line that forms every laser beam with the splines contained in the map
figure 3.17.

Figure 3.17 Observation model (figure taken from [Pedraza et al. 2007]). The expected
intersection of each laser beamacross the angular range of the sensor with the map spline is

computed expressing the map spline (a) in the {up , vp} reference frame (b).

Chapter 3. EKF-SPLAM Algorithm

92

However, to calculate this intersection with a parametric curve in the form

() (), ()
T

x ys t s t s t =  

is not convenient for an explicit mathematical formulation. Given

that disadvantage, we use a two steps process that is used iteratively. In first place
we apply the property of Affine Invariance which says that when we want to apply an
affine transformation to a B-spline curve we can apply the transformation to control
points, which is quite easy, and once the transformed control points are obtained the
transformed B-spline curve is the one defined by these new points. Therefore, we do
not have to transform the curve. Next we use the Newton–Raphson method for
calculating the roots of a function.

To begin, we have to define an orthonormal reference frame {up , vp} centered in the
robot reference frame {ur , vr

() (, ,) i i rs x x x t

}, which is defined by the direction and orientation of the
sensor beam (Figure 3.17 show one random sensor beam and its intersection with a

spline curve). Next, we take as the position vector that crosses one

curve referred in such system. In this way, the relation between the control points
 [,] T

i i ix x y= [,] T
i i ix x y=and is defined as:

cos sin
sin cos

p pi i r

p pi i r

x x x
y y y

µ µ
µ µ

−    
=     − −    

 (3.72)

Where μp

 is the angle of the considered laser beam in the global reference system. It
means that, given the orientation of the laser beam in the frame of the robot, τ, we
have:

p r µ θ τ= + (3.73)

In this context, the measurement prediction ()ˆ , p i rz h x x= is given by the value of

() (, , *)x i i rs x x x t , with t* as the value of the parameter t that makes

() (, , *) 0y i i rs y x x t = . Considering that just a small group of k control points

affect the form of the curve for every value of the parameter t, only these points need
to be rotated and transferred to the new reference system.

As we can see at this point we don’t have an explicit observation model, but even
with this absence it is possible to compute (in an approximate way) the derivatives
with respect to the state of the robot and of the elements in the map. Once calculated
the value t* who gives (*) 0ys t = and assuming small perturbations in the state

Chapter 3. EKF-SPLAM Algorithm

93

vector, the expected measurement in the proximity to this parameter location can be
approximated by the following analytical expression:

()
()

y i i r

y i i r

s (y x , x , t*)
(,) (,),

s ' (y x , x , t*) i r x i i rh x x s x x x t
 

= ∗−  
 

 (3.74)

To obtain this result it is assumed that with minor variations in the state of the
system, the behavior of the spline near to the work point t* can be approximated
linearly for the tangent to the curve in that point. Now the following clarifications
should be made:

• It has been pointed out explicitly the dependency functional between the
measure expected and the state of the system in a given instant k. So, the
expected measure comes given by the next relation

(,)j Rz h x x= (3.75)

• The measure expected in front of smalls variations of the state comes given by

the value of the coordinate x of the curve in the frame {up,vp

t⊕
} (figure 3.17)

evaluated in the point where the coordinate y is annulled. Calling to this

new parameter that verifies () 0ys t⊕ = we can write:

(,) (,)i r x ih x x s x t⊕= (3.76)

• The position of the control points that defines the curve expressed in the frame

bound to the position defined by the laser beam of the sensor, depends, on
the positions of the control points in the global frame and also on the position
and orientation of the robot (3.72).

• Finally, the parameter that annuls the coordinate y in the curve on the frame

{up,vp

}can be calculated doing only one iteration of Newton-Rapson near to the
solution value for the work point t*:

((,), *)
*

'((,), *)
y i i r

y i i r

s y x x t
t t

s y x x t
⊕ = − (3.77)

All these results allows us to obtain the expression (3.74).

Chapter 3. EKF-SPLAM Algorithm

94

Deriving (4.17) with respect to the position points on the global frame that define the
curve, we have the following:

() ()

() 2

'
* ' *

x x'(*)
x x ' *

y yi i
y y

x i i i i i
x

i i i y

s sy ys t s t
s x y yh s t
x s t

∂ ∂∂ ∂
−

∂ ∂ ∂ ∂ ∂ ∂∂
= +

∂ ∂ ∂   
 (3.78)

Considering that the coordinate y is zero ()* 0ys t = on the frame {uL,vL

}:

()
'(*)

x x ' * x
yx i x i

i i i y i i

ss x s t yh
x s t y

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂
 (3.79)

In figure 3.17 we can see that the slope of the spline in this same frame is been left
expressed in function of the angles η and μ

()
'(*) 1
' * tan()

s tx
s ty η µ

=
−

 (3.80)

So, we have:

1
x x tan() x

yx i i

i i i i i

ss x yh
x yη µ

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ − ∂ ∂
 (3.81)

Now, with the equation (3.58) we can see:

, ()yx
i p

i i

ss N t
x y

∂∂
= =

∂ ∂
 (3.82)

And from (3.72) we have:

cos()
x

i

i

x µ∂
=

∂
 (3.83)

sin()
y

i

i

x µ∂
=

∂
 (3.84)

Chapter 3. EKF-SPLAM Algorithm

95

sin()
x

i

i

y µ∂
= −

∂
 (3.85)

cos()
y

i

i

y µ∂
=

∂
 (3.86)

So, we can write:

,
sin(*) cos

tan()i p
i

h N t
x

µµ
η µ

 ∂
= + ∂ − 

 (3.87)

,
cos(*) sin

tan()i p
i

h N t
y

µµ
η µ

 ∂
= + ∂ − 

 (3.88)

Those, as we have already said are the derivatives of the observation model with
respect to the control point’s positions that define the spline in the map.

In a similar way and using the property of splines who says ,
0

() 1
n

i p
i

N t
=

=∑ and the

ecuations (3.58) and (3.72), we can calculate the partial derivatives of the measure
with respect to the robot’s position.

()

() ,

'(*)
x ' * x

'(*)cos sin (*)
' *

sincos
tan()

yx i x i

r i r y i r

x
i p

y

ss x s t yh
x x s t y

s t N t
s t

µ µ

µµ
η µ

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂

 
= − − 
  

= − −
−

∑ ∑

∑

 (3.89)

()

() ,

'(*)
y y ' * y

'(*)sin cos (*)
' *

cossin
tan()

yx i x i

r i r y i r

x
i p

y

ss x s t yh
x s t y

s t N t
s t

µ µ

µµ
η µ

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂

 
= − − 
  

= − +
−

∑ ∑

∑

 (3.90)

Chapter 3. EKF-SPLAM Algorithm

96

()

, ,

'(*)
θ θ ' * θ

1(*) (*)
tan()

ˆ
tan()

yx i x i

r i r y i r

i p i i p i

ss x s t yh
x s t y

N t y N t x

z
η µ

η µ

∂∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂

= +
−

=
−

∑ ∑

∑ ∑

 (3.91)

These formulas will be used to make the efficient calculation of the relevant
Jacobians in the following sections.

3.3.3 Application of EKF with B-Splines to robot localization

In this section, all the methods and equations obtained in section 3.3.2 will be
combined in the frame of the EKF algorithm presented in figure 3.6 which will allow
us to build incrementally the map of the environment where the features are
described as cubic B-Splines.

a) Prediction

As in section 3.2.2 the prediction step gives the relative movement of the robot
between the times k-1 and k (Figure 3.18a). So, knowing that we are working in a non
dynamic environment (i.e. the robot is the only moving object), the a priori estimation
at the time k of the state is given by (3.28)

()ˆ ˆ , , 0 1kX f X uk k
− = −

where f is the motion model of our differential robot. Also its covariance is calculated
using (3.15).

 1 T T
k k k k k k kP A P A W Q W−

− +=

The Jacobian matrices are calculated exactly as in (3.25) and (3.26)

Chapter 3. EKF-SPLAM Algorithm

97

1

1

k 1

ˆ
0 0ˆ

0 0

0

,

0

()

n

nN

k k

k

X
X

A I

I

f u−

−

 ∂
 

∂ 
 =
 
 
 
 





   



 (3.92)

1

k

ˆ

0

0

(,)k k

k

f uX
u

W

−
 ∂
 ∂ 
 =
 
 
  



 (3.91)

b) Update

Once obtained the measure awaited for every one of the laser positions along of his
angular range, the covariance matrix of the innovation of the measure comes given
by (3.42):

k k k kS H P H V R VT T
k k k
−= +

where Rk is the sensor covariance matrix and the Jacobian Hk

has the following
expresion:

 0 0 0 0k
r si

h hH
X X

 ∂ ∂
=  ∂ ∂ 

  (3.92)

where the term
r

h
X
∂
∂

 can be calculated making use of (3.89),(3.90) and (3.91), and

the term
r

h
X
∂
∂

 from (3.87) and (3.88). The gain matrix then is calculated as in (3.43):

1 T
k k k kK P H S− −=

Finally, the state estimation and its covariance are updated (Figure 3.18b), equations
(3.44) and (3.45).

Chapter 3. EKF-SPLAM Algorithm

98

ˆ ˆ((,)ˆ 0)k k k k kX K Z h XX − −= + −

() – k k k kP I K H P−=

Where the term ˆ(,0)k kz h X −− represents the innovation:

ˆ(,0)k k kv h Xz −= − (3.93)

Figure 3.18 EKF. a) Configuration after the prediction of the EKF.
b) Configuration after the update of the EKF.

3.3.4 Extension of the map

This is done also by the function UPDATE in the SRT algorithm (figure 3.2 lines 5).
Here the stochastic map is incrementally built according to two mechanisms good
differentiated:

• Add new objects. With this mechanism, the objects detected by the robot’s
sensors, that has not been associated with any of the objects in the map, are
initialized inside the vector of state of the system, but besides of this extension
also is necessary to extend the covariance matrix to include the new
stochastic information.

• Extend the objects in the map. When one object detected by the robot is
associated partially with one or more objects in the map, is possible to extend
this last ones with the new information acquired.

Chapter 3. EKF-SPLAM Algorithm

99

a) Adding new objects

When a new observation is not associated to any of the curves in the map, these can
be considered as new objects, and the splines that define their geometry must be
added to the model. It means that the control point that forms the spline will be added
to the vector of state of the system. Then, given the set of measures

{ } , , , iz z i p p q= = + obtained for the laser angular positions in the robot

reference frame corresponding to the new feature FN+1

and the N static features
already stored in the map, the state vector, the state vector is augmented as follow:

()
()

a

1 sN 1 r

 g X, Z , 1,...,
 g , z

a
r r
a
si si
a
sN

X X
X X X i N

X X+ +

 =
= ⇔ = =
 =

 (3.94)

The state of the robot as the N features in the map won’t be modified by the fact of to
add new elements to him. In the other hand the state of the new element is given by
the position of the control point of the curve that represents it, calculated as a
function of the state of robot Xr and of the vector of measures acquires z. So, in the
equation (3.94) the function gsN + 1 (Xr

 , z) is the fitting function of the q+1 new data
points obtained by the sensor, presented in section 3.3.1. In this way, we can obtain
the control points of the new feature as a linear function of the data points and the
robot pose:

1,0

1,

cos()

cos()

N r p r p

N nN r p r p q

x x z

x x z

θ τ

θ τ

+

+ +

   + +
   = Φ   
   + +   

  (3.95)

1,0

1,

sin()

sin()

N r p r p

N nN r p r p q

y y z

y y z

θ τ

θ τ

+

+ +

   + +
   = Φ   
   + +   

  (3.96)

Where Φ is the pseudoinverse of the placement matrix.

Like for the classic EKF in equation (3.49), the new covariance matrix for the
augmented state vector is

 a a aT a aT
x k x z k zP J P J J R J= + (3.97)

Chapter 3. EKF-SPLAM Algorithm

100

Where R is as we have said, the covariance matrix of the laser measures, and with

the Jacobians a
x

r

gJ
X
∂

=
∂

 and a
z

gJ
Z
∂

=
∂

 as:

1

1 1

0 0
0 0 0

,
0 0 0

0 0

r

n

a a
x z

nN

sN sN

r

I Ir
I

J J
I

g g
X Z

+ +

   
   
   
   

= =   
   
   ∂ ∂
   ∂ ∂  





   







 (3.98)

With

p p

p+q p+q1

p p

p+q p+q

1 0 z sin

1 0 z sin

0 1 z cos

0 1 z cos

sN

r

g
X

µ

µ

µ

µ

+

  −
  Φ  
  −∂   =

∂   
  Φ   
    

  

  

 (3.99)

p

p+q1

p

p+q

cos 0

0 cos

sin 0

0 sin

sNg
Z

µ

µ

µ

µ

+

  
  Φ  
  ∂   =

∂   
  Φ   
    



  





  



 (3.100)

This way, it is possible to obtain the state vector augmented of the system after the
inclusion of the new object as function of the state of the system not augmented (but
corrected after the update of the EKF) and of the measures obtained by the laser for
this new object.

b) Extend the objects in the map

In the most frequent case, the observations obtained will be associated only partially
with some feature in the map, we can see this phenomenon in the figure 3.19a where

Chapter 3. EKF-SPLAM Algorithm

101

the jth feature in the map xm,j is partially associated with the observation xo,0 and xm,j+1

with x

o,1

Figure 3.19 Extension of a spline with new data. a) Curve in the map with the m+1 measures
corresponding to the new zone detected. The red squares represent the beginning and the end

of the association between the map and the observed curve. The blue squares indicate the
positions of the knots over the curve. b) Curve after his extension, we can see the need of

extend the knot vector for the new information .

This situation indicates that a new area unexplored of one object in the map is been
detected by the sensor of the robot and accordingly this new set of m+1 data points
unassociated must be integrated into the map. Figure 3.19a.

cos
, ,...,

sin

x
r i ii

i y
r i ii

x zd
d i q q m

y zd
µ
µ

+   
= = = +   +  

 (3.101)

Chapter 3. EKF-SPLAM Algorithm

102

The state vector resulting of the extension of the jth

 object will be obtained as follow:

()e
e

:

 g , Z ,
(, ,)

e
r r
e
si si
e e
si sj r j q q m

X X
X X X X i j

X g X X Z +

 =
= ⇔ = ∀ ≠
 =

 (3.102)

This means that only the curve in the map to be extended is modified while the rest
remains unchanged.

In function :(, ,)e

sj r j q q mg X X Z + in (3.102), rX is the position and orientation of the robot,

jX are the control points of the jth
:q q mZ +feature in the map, and are the sensor

measures corresponding to the new surface detected. This function is calculated
following a similar scheme to the one used in the data fitting section but considering
the following:

• Already exists a start decryption represented by the segment known.

• That will be necessaries to modify the original knot vector extending the range
of the independent parameter so that the new information can be added in the
resultant curve.

• That the new information will be added establishing a new parameterization

for the new points congruent with the parameterization of the existing curve.

At this point, with the new set of measured data points, and using the extension
algorithm for B-Splines presented by Hu et al. [Hu et al. 2002] and the scheme
showed before we can make the extension.

So, given the clamped knot vector that defines a spline curve of order k with Xi

control points:

0 1 1: k k n n n k

k k

ξ ξ ξ ξ ξ ξ− + +Ξ = = ≤ ≤ ≤ ≤ = =  

 

 (3.103)

We will use the extension algorithm for B-Splines [Hu et al. 2002] to find another
curve geometrically equivalent but defined by a knot vector unclamped (3.3.1). For
simplicity we will say “left unclamped” when the multiplicity of the first elements of the
knot vector is reduced:

Chapter 3. EKF-SPLAM Algorithm

103

0 1 1:l k k n n n k

k

ξ ξ ξ ξ ξ ξ− + +Ξ ≤ ≤ ≤ ≤ ≤ ≤ = =  



 (3.104)

and “right unclamped” when this is done in the k final elements of the knot vector:

0 1 1:r k k n n n k

k

ξ ξ ξ ξ ξ ξ− + +Ξ = = ≤ ≤ ≤ ≤ ≤ ≤  



 (3.105)

With Li and Ri

, i=0,…,n as the new control points obtained from (3.104) and (3.105)
respectively.

So, the “right-unclamped” algorithm used in [Pedraza et al. 2009] for the particular
case of cubic B-Splines that converts (3.103) into (3.105) and obtains the new Ri

control points is:

2
1 1 2 12

1

2 1
2 2

1 2 12 2 1 2
1

, 0,..., 2
1

1

i i

n n n n
n

n n
n n n n n n

n n n n

R X i n

R X X

R X X X

γ

γ γ γ γ

− − − −
−

− − −
−




= = − 
= −Γ + 

 Γ Γ = Γ Γ − + + 
  

 (3.106)

Where

1

1

j n i
i

i j i

ξ ξγ
ξ ξ

+

+ +

−
=

−
 and 1 j

j i
i j

i

γ
γ
−

Γ = (3.107)

In a similar way, for the “left-unclamped” we have:

2
1 1 2 12

1

2 1
2 2 0 0

0 0 1 2 1 02 2 1 2
1 0 0 0

, 2,...,
1

1

i iL X i n

L X X

L X X X

ψ
δ

ψ ψψ ψ
δ δ δ δ




= = 
= − + 

  = − + + 
  

 (3.108)

Chapter 3. EKF-SPLAM Algorithm

104

Where

1

1

j k i k
i

i k j i k

ξ ξδ
ξ ξ

− +

+ − − +

−
=

−
 and 1 j

j i
i j

i

δψ
δ
−

= (3.109)

With these equations and the methodology presented in section 3.3.1, now is easy to
extend any feature in the map when new measures of unknown areas are
discovered. However, some considerations most be done:

• One parameterization most be established for achieve a consistency between
the new data point and the spline over which the integration will be done. This
information is obtained from the previous stage of data association.

• The knot vector most be unclamped but also may be he has to be extended
with extra knots for the new data points that will be added to the existing
feature. Finally, the knot vector for the curve extended has to be a clamped
knot vector.

In this way, the system of equations (3.59) is written for the new data, extended using
the equations (3.106), (3.107), (3.108) and (3.109) when necessary, and its least
squares solution give a lineal relation in matrix form between the original control

points jX idand the new data

as:

,0 ,0

,0 ,0
, ,

, ,

j j

j j

x y
q q

e e
j jx y

q m q me e

j je e
j n P j n P

j n j n

d d

x y
d d
x y

x y

x y

+ +

+ +

   
   
      
      

= Φ = Φ      
      
      
   
      

 

 

 

 (3.110)

With e

jX as the new control points of the extended spline.

Notice that once chosen the knot vector unclamped for the spline, the eΦ matrix of
extension can be considered constant. So, the new covariance matrix after extend
the jth

 spline can be obtained using (3.97) as follow:

Chapter 3. EKF-SPLAM Algorithm

105

 e e eT e eT
x k x z k zP J P J J R J= +

Where the jacobians involved
e

e
x

r

gJ
X
∂

=
∂ and

e
e
z

gJ
z

∂=
∂ have the following form:

1

0 0 0 0
0 0 0 0

,

00 0

r

n

e ea a e
sj sjx z sj

r sj

nN

I
I

g gJ J g
X X Z

I

   
   
   
   
   ∂ ∂= = ∂   
   ∂ ∂ ∂   
   
     

 

 

     



   



     

  

 (3.111)

Been

 (3.112)

And

cos 0

0 cos
0 0 0

sin 0

0 sin
0 0 0

q

e

q m
e
sj

q

e

q m

g
Z

µ

µ

µ

µ

+

+

  
  
  Φ
  
  ∂   =  ∂  
  
  Φ  
  
   



  





  



(3.113)

+m q+m

+m +m

1 0 z sin

1 0 z sin 0
0 0 0
0 1 z cos 0

0 1 z cos
0 0 0

q q

e

q e
e e
sj sj

q q er sj

e

q q

g g I
X X

I

µ

µ

µ

µ

 −  
  
  Φ
  −   

Φ     ∂ ∂      = =   ∂ ∂   
Φ      

     Φ  
  
   

  

  

Chapter 3. EKF-SPLAM Algorithm

106

3.4 Conclusion

In this chapter we have showed the development of some existing tools in order to
combine them and to obtain an SPLAM algorithm. Although these techniques are
appropriated and allow us to perform a full exploration over environments without a
specified geometry (for the case of representation of environments using B-Splines),
there are some problems found in them can affect the approach. These problems
are:

• For the method of deliberative exploration, we find that the stop criterion used
in which once the robot has reached a position where it cannot explore more,
it has to go back to parent nodes in the tree structure to search for new
unexplored regions, ending when the root of the tree is revisited and no
unexplored zone is found in this position. This means that no frontier control is
perform and therefore once the method chooses a new frontier to explore in a
position qk

, the robot will travel to it without knowing if more areas in this
position can be explored until the process of automatic backward movement of
the method will bring it back to this position to verify. With the previous we
infer that the robot will travel in unnecessary way looking for positions where it
could continue exploring in zones that it has already visited.

• Another problem with the method SRT is the tree structure that uses. This
does not allows to perform an optimized navigation; i.e., if during the creation
of a branch the robot close a loop with the root of the tree and the robot has to
return to it, the method does not allow just travel from the last position to the
root, instead it has to go all over the branch looking for new zones to explore
over it.

• With respect to the SLAM method based on the extended Kalman filter, the
main problem is the computational cost that grows quadratically with the
number of objects contained in the map. For this reason its application is
limited to maps formed by only a few hundred of objects.

• On the other hand, SLAM is a nonlinear problem so applying the EKF has the
limitation of reducing the accuracy and consistency due to the effect that the
linearizations have on estimates of the robot and hence over the map

107

Chapter 4. Topologic-SPLAM
Algorithm

In chapter 3 we have show an approach for the SPLAM problem using some well
known tools both in the field of SLAM as in the field of exploration environments.
Although these algorithms have shown good performance, some problems found in
them can provide negative effect to the proposed solution. This reason has
encouraged the development of new strategies and process that can improve the
performance of our SPLAM strategy. Between them we can mention:

• A Random Exploration Graph (REG). It is a modified version of the

algorithm of exploration SRT. Here, we include a frontier control to carry a
registry over the nodes that have not been fully explored. So, every time
that the robot goes to new frontiers to explore, the frontiers in the
neighbors nodes are updated in the registry and in the case that some
node is reported as fully explored, it is removed from the registry.

 Another modification of the SRT method is presented when two nodes
without relationship (they are not father and son) are found with their
regions of local security intersected, the structure of the method is then
transformed to a graph adding a connection between these two nodes.

The graph structure, next to the frontier control, will allow a more efficient
exploration given that the robot knows exactly where to go to continue the
exploration. It will be also able to navigate optimally between two nodes of
the structure without having to pass through the root node when a change
of branch is necessary.

• A topologic SLAM Approach. We present also a new method of
topologic SLAM based on B-Splines curves that exploits the structure used
by the exploration method but also all the information contained in this
kind of representation.

Chapter 4. Topologic-SPLAM Algorithm

108

4.1 The Random exploration graph approach

Franchi et al present in [Franchi et al. 2009] a modified version of their SRT
algorithm in which the tree structure is transformed to an exploration graph when a
path to travel between two nodes in a safe way is found. Although our approach
performs a restructuration of the tree in a similar way, the process of exploration is
completely different.

Remembering the process performed by the method SRT, our approach is based
also on the random choice of one of the free frontiers in the current node to continue
the exploration. On the contrary, in [Franchi et al. 2009] the choice of the next
position to explore is chosen using a probability proportional to the arc length of the
frontier. The choice of random frontiers in our work was taken considering the
property of completeness for the exploration methods, because no matter what
frontier is chosen the method will have to return to explore the remaining free
frontiers of the node as long as they exist.

Another important aspect of the method is the way in which the nodes with free
frontiers will be revisited once that the node where the robot is currently found
doesn’t have any more free frontiers (the region has been fully explored). For this
case, the method of Franchi et al. builds minimum spanning trees with all the nodes
in the graph for each node adjacent to the current node without regard this last one.
To the end, the tree of the node adjacent with the greatest weighted forward frontier
length is chosen. This process may require too much computation time if the number
of adjacent nodes and the number of nodes that form the environment built until that
moment are too high. Finally, the tree structure generates a discontinuous path that
forces the robot to go through the parent nodes if a change of branch is necessary
ignoring again the new structure.

Contrary to the method described above, the approach presented in this section fully
exploits the use of graph structure to plan a path toward nodes that have not been
fully explored once the robot is in a position where it can no longer continue with the
exploration.

For this planning can take place is necessary prior knowledge of these nodes. To this
end a border control (Figure 4.1) will be performed as follows: if once chosen the
random frontier of the current node qcurr on which the exploration will continue (as
indicates the method SRT that is used as base) there are more unexplored frontiers

Chapter 4. Topologic-SPLAM Algorithm

109

in it (Figure 4.1a), the qcurr

 node along with information on the number of remaining
frontiers to explore and their arc length will be added to a list that will be used to plan
a path to these nodes to continue the exploration (Figure 4.1b).

With this list obtained, the planning will be done using the method of path planning A*
in a bidirectional way planning the path from the current node towards the nodes in
the list and in the other side from the nodes in the list toward the current node ending
when a path between the current node and any of the nodes in the list is found. In
this way and unlike to the method of Franchi et al. the planning won’t be perform
using all the nodes in the graph and what is looked is the path towards the node with
possibility of exploration with the shortest distance.

Figure 4.1 Frontier control. a) Environment semi explored where the red arcs represent free

frontiers and the green arc is the next frontier chosen at the qcurr

 position to be explored.
Yellow region represent the global security region (GSR) at that time. b) List of nodes not fully

explored

4.1.1 Random exploration graph algorithm

As we have already said, the method of exploration proposed is an extension of the
SRT exploration method in its radial version [Espinoza et al. 2007] presented in
section 3.1 where the main structure is transformed into an exploration graph if in any
position qK the local safe region (LSR) of the current node intersects the LSR of some
previous node that is not its parent node and provided that it is possible to find a
collision-free path between the positions qk and qi

of these nodes (figure 4.3).

As in the SRT, in our method the graph represents the road map of the explored area
and is gradually built extending the structure towards borders selected randomly in

a) b)

Chapter 4. Topologic-SPLAM Algorithm

110

such way that the new configuration (and the path that leads to it) is contained in the
local safe region. Each node of the graph consists of a free-collision configuration q
that the robot has reached together along with the description of the local safe region
S surrounding q perceived by the sensors. Moreover, an arc between two nodes
represents a free-collision path.

In figure 4.2, we show the algorithm that implements the exploration method
proposed. The approach is based on a frontier control that will indicate what nodes
can continue being explored once the robot arrive to a position where it is not
possible to continue extending the structure. For this, we start a counter that will be
used as identifier to indicate the sequential position in which each node has been
built. Next, the list that will contain these identifiers is initialized as an empty list.

Figure 4.2 REG algorithm

INTEGRATED_REG_EXPLORATION (qinit, kmax)

1. Node_Ag = 0
2. qact = qinit
3. L_Nodes_Ex = Null
4. S←PERCEPTION(qact)
5. for k=1 to kmax
6 S← INTERSECTION_ACT(G,S,qact,L_Nodes_Ex)
7 F←FRONTIERS(S)
8 if F ≠ Null
9 Node_Ag= Node_Ag+1
10 (Frand,θrand)←FRONT_RAND(F)
11 F←REMOVE(F , Frand)
12 qdest←DISPLACE(qact , θrand ,α , r)
13 MOVE_TO(qact , qdest)
14 Sdest← PERCEPTION(qdest)
15 Frand←VERIFICATION(Frand , Sdest)
16 F←F∪ Frand
17 if F ≠ Null
18 L_Nodes_Ex = L_Nodes_Ex∪ Node_Ag
19 end
20 G←ADD(G, Node_Ag , qact , S, F)
21 qact = qdest
22 S = Sdest
23 else
24 (P, Ind_Node)←FIND_PATH(qact, L_Nodes_Ex)
25 for i = 1 to length(P)
26 MOVE_TO(qact , P(i))
27 qact← P(i)
28 end
29 L_Nodes_Ex ←REMOVE(L_Nodes_Ex , Ind_Node)
30 end
31. end
32. Return (G)

Chapter 4. Topologic-SPLAM Algorithm

111

The initial node referred like the departure and return point is built adding the initial
position qinit

 and performing a first reading of the environment around this position.
Although it has been created, the node is still not added to the graph because this
should not be taken into account when looking for possible connections with
neighboring nodes. At this point and with the elements mentioned built, the loop that
controls all the process starts.

In every iteration k of the algorithm a process of verification is made over all the
neighboring nodes of the qcurr

 position where two objectives are pursued.

• The first objective is to verifier what sections of the free-frontier of
these nodes are within the current LSR. If it is possible to find these free
frontiers intersecting the current LSR the node to which it corresponds
is updated removing the frontier or segment of border of it and of the
current node; if with this action the node is pointed as fully explored, the
list of nodes to be explored is also updated by removing the identifier of
the node from it.

• The second objective is to identify if between the intersected frontiers
of the neighboring nodes with the current node is possible to find a safe
path to travel between them. The criterion to ensure a collision-free path
is that the straight line joining the two nodes must cross free frontiers in
both nodes with a range of security to the left and right of the point over
the frontiers where the straight line pass (Figure 4.3). If the looked path
is found, an arc between these two nodes will be added to the structure.

The Function INTERSECTION_ACT performs the mentioned verifications. This
function takes as parameters the graph constructed so far, the qcurr

 position, the LSR
of the current node and the node list with possibility of exploration. The outputs of the
function are the graph, the current LSR and the update list of nodes with possibility of
exploration.

Chapter 4. Topologic-SPLAM Algorithm

112

Figure 4.3 Connection between nodes, the red, green and blue triangles represent positions of
robot, in gray are shown the RSL of each node, the frontiers are shown in blue color and the
intersections between the LSR are shown in yellow color. a) Connections (q1,q2) and (q2,q3)

possible since there is a direct path between the positions (dotted green line) and a range of
security (green double-headed arrow) both the left and the right side of the point where the

path passes over the frontier (white dots). b) Connections (q1,q2) and (q2,q3) possible but not
for (q1,q3) because although there is a direct path between the positions (dotted red line) the
requirement for a safety range for the left and right (red double-headed arrow) of the point

where the path passes over the frontier (white dots) is not achieved. c) Connections (q1,q2) ,
(q2,q3) y (q1,q3) possible.

Once performed the verification and update (if necessary) of the structures, the
function FRONTIERS will obtain the remaining free frontiers F of the LSR. If at least
one free frontier is found, the function FRONT_RAND will randomly choose one of
them and the middle point of the arc length of the chosen frontier will be the new
random direction θrand to visit as long as the arc length of the chosen frontier does not
exceed a certain threshold chosen proportional to the distance that the new LSR can
cover. Otherwise it will be chosen the frontier segment proportional to the arc length
that can be covered starting on the initial extreme of the frontier from which the
middle point of this segment will be taken as the direction to explore θrand. This is
done because we do not want to leave two frontiers to explore in opposite sides of
the LSR if the current frontier segment to explore is too big.

Chapter 4. Topologic-SPLAM Algorithm

113

Unlike the SRT method, our approach does not require a validation function to verify
that the new chosen direction is not within the LSR of some other node because the
frontier control performed removes frontiers contained in other nodes (function
INTERSECTION_ACT) and also because each node stores separately frontiers
corresponding to obstacles and free frontiers. The random frontier chosen is then
eliminated of the group of free frontiers found with the function FRONTIERS since by
now is not longer considered free.

Once that the random direction has been chosen, the function DISPLACEMENT will
get the new position qdest to be visited giving one step of length α·r in the direction
θrand

 where the constant r represents the radio of the LSR. The constant α<1 in turn
ensures that is inside of the LSR and that can be achieved through a path contained
in it; values close to 1 maximize the exploration but also increase the probability of a
collision with objects that have not been detected yet, on the other hand values close
to zero augment the margin of safety but it can result in a very slow exploration
process. In our case we have chosen a 75% of the length of the radius to find the
new position to explore.

With the new target position qdest

 calculated, the function MOVE-TO will carry the
robot from the current position to the new target position. The process is performed in
the same way that in section 3.1 taking a list of control inputs (list_U) and choosing
the one that best approximates the robot from the current position to the target
position. The process will be repeated until the current position and the target
position have a distance not greater than a threshold Ψ. In this function as in its
counterpart of section 3.1 we will use the reported information about the increases in
x,y and θ between the previous localized position and the current odometric position
as well as the information of the LSR to estimate the real position of the robot using
the proposed topological localization method that will be presented in section 4.2.

Once the robot has reached the target position, a new process of perception is
perform to estimate the surrounding space Sdest of this new position. With this
information, the function VERIFIES estimate what portion of the previous frontier Frand

chosen by FRONT_RAND has been covered. In the case where the frontier has not
been 100% covered, the function will return the remaining portion of frontier to
explore and this will be joined to the frontiers group F of the previous node that must
be explored.

Chapter 4. Topologic-SPLAM Algorithm

114

The reason to obtain the new LSR as well as the frontier verification is performed at
this point, is because the position qdest is never fully achieved but approximated to a
certain threshold distance, then if calculations to verify if the frontier has been fully
explored were performed immediately after having obtained the position qdest

 these
would have a position error and therefore would be inaccurate (Figure 4.4).

Figure 4.4 Explored frontier calculation based on the position of the robot qi and in the

estimated target position qdest. The red dot represents the target position qdest, the green and
blue triangle represents the position qi-1 and the position qi approximated to the position qdest
respectively. The green circumference represents the frontier of the LSR on the position qi-1,

the blue circumference in continuous line represents the frontier of the LSR on the position qi,
the blue circumference in dotted line represents the estimated frontier of the LSR in the
estimated position qdest. The gray shading zone represents the LSRs of the qi-1, qi and qdest

positions. a) The frontier segment in red represents the portion of real frontier that has been
explored since the robot only approaches the position qdest but cannot reach it exactly. b) The

yellow line shows the estimated frontier segment explored from the target position qdest

.

Obtained the information about the remaining free frontiers of the previous node the
method classifies the node as a node with possibility of exploring whether there are
still free frontiers, in this case the head of the node is added to the list of nodes to be
explored.

Finally the node is added to the structure of the graph and the curves in the map will
be extended with the new information (as will be shown in section 4.) using the

a) b)

Chapter 4. Topologic-SPLAM Algorithm

115

function ADD and the loop begins again now using the information qdest and Sdest as
qact

 and S.

Typically when the space has been fully explored the algorithm will fail to find a
frontier to explore. In this case, the exploration must continue in any of the nodes
stored in the node list with possibility of exploration in case they exist, otherwise the
method ends and the robot will return to the initial node. The search for the next node
to explore is performed using the graph-search algorithm A* in a bidirectional way.

The method A* evaluates the nodes by combining the cost to reach a node and the
estimated cost of going to the goal node:

f*(n) = g(n) + h(n) (4.1)

Since g(n) gives the cost of the path from start node to node n, and h(n) is the
estimated cost of cheapest path from n to the objective, f*(n) represents the
cheapest estimated cost of the solution through n.

The bidirectional use of this algorithm implies to extend the path both from the initial
position and from the wished position leading the search always towards the final
position reached by the opposite side and ending when both paths are in the same
node (Figure 4.5).

This strategy is not used individually, it is used simultaneously with all the nodes
contained in the list and stopped when a path is found; this procedure is performed
by the function FIND-PATH. The reason to seek individual paths from the current
position to all the nodes and not use simply an Euclidean distance to go to the
nearest node that is the aim, is that due to dead rooms and other structures the
distance to a node may seem small, however the path to reach it could be too
extensive.

Chapter 4. Topologic-SPLAM Algorithm

116

Figure 4.5 Evolution of the bidirectional A * algorithm. a) Environment explored where the
green robot represent the initial position, the red asterisks represent nodes with possibility of

exploration with its free frontiers in green, the orange robot represents the current position
qcurr that has been fully explored, the shaded part represents the free space explored and the
blue circumferences are the LSR frontiers of each node. b) Evolution of the A * algorithm in

t=1; the paths are extended simultaneously from qcurr toward the last node in the path partially
built that comes from the nodes that still have free frontiers and vice versa. b) The algorithm

finishes when a path between qcurr

 and some node with free frontier is found (path contained in
the yellow region).

Obtained the trajectory P, the method MOVE_TO will lead the robot from the current
node to the node where the exploration will be continued. Finally, the index of the
chosen node from which the exploration will continue is eliminated of the list of nodes
with possibility of exploration. With the new node to explore the method will continue
making the same process described in the algorithm until no more frontiers remains
to explore being in this moment when the robot returns to the initial node of the graph
ending the exploration.

4.2 Topologic SLAM with B-Splines

Although the SLAM strategies based on the Kalman filter have shown good results,
some problems are found such as the inevitable inconsistency and accuracy

Chapter 4. Topologic-SPLAM Algorithm

117

reduction in the estimation of the system state due to the effect that linearizations
produce on the estimates of the robot and the map.

Another problem found in the implementations of the filter is the computational cost
required by the method that by being squared with the number of items in the map its
application is limited to maps that contain a limited number of them.

Although many works have emerged to solve these problems, we have decided to
develop a new topological strategy partially based on the use of subregions
contained in each node of the exploration method (section 4.1) and in B-Spline
curves for the modeling of the obstacles. The lack of a covariance matrix and the use
of limited regions of the environment allow that the SLAM problem be easily attacked
even for very large environments in real time.

In this section we present the reasoning, concepts and algorithms needed that allow
the map construction where the entities that form it will be modeled by B-spline
curves.

4.2.1 Data management

Given that our method is based on the use of B-Splines to the representation of the
environment, in this section we will explain how we perform the interpretation of data
coming from the sensor to obtain the parametric splines that represents the physical
world surrounding the robot as well as the data association process to establish
correspondences between the detected splines and the splines contained in the map.

a) Acquisition

of the B-Splines

When the robot gets a new set of measures of its environment through its perception
system, the surrounding world is just a set of points 2

ip ∈ℜ (considering in our case

only a two-dimensional scenario) meaningless linked to each other only by the logic
of the ordination provided by the scanning sensor (Figure 4.6). With these raw data,
the first objective is to clearly identify to what object each one of the measurements
belongs grouping them into subsets to finally get the B-spline curves that represent
the portions of the detected objects as close as is possible.

Chapter 4. Topologic-SPLAM Algorithm

118

Figure 4.6 Measurements obtained with a laser scanning

As in section 3.3.2, the segmentation of the raw data will be performed using
adaptive cluster method proposed by Dietmayer from which we will obtain
measurements subgroups belonging to different objects. It is important to highlight at
this point that unlike the method of Pedraza et al [Pedraza et al. 2009] recreated in
Chapter 3, in our method the information obtained by the sensors is segmented just
once to get groups of points belonging to the same object and not twice as is
proposed by the authors in [Pedraza et al. 2009]. This because we have used
methods from the area of digital images and artificial intelligence where high
curvatures provide valuable information needed to perform a more efficient data
association.

Once obtained the subsets or clusters, the measurements corresponding to each one
of the detected objects will be approximated using unclamped B-spline curves of
degree 3 as we have mentioned in section 3.3.1. Recall that to fit measurement
points with B-Splines helps to reduce the noise contained in them. The choice of
using unclamped B-Splines is because the use of clamped B-Splines would force
to the extreme of the curve to pass directly from the start and end points of the set of
noisy points that form it, obtaining a less accurate representation of the object that we
are trying to model and therefore more difficult to associate (Figure 3.13).

Although the unclamped B-spline significantly reduce the noise in the measurements
provoked by errors of the measurement system itself; one last smoothing of the curve
must be performed using a Gaussian filter to guarantee that the process will not be
affected by false information. For this, an evolved version σΓ of the curve Γ can be

processed:

{ (,), (,)}x u y uσ σ σΓ = (4.2)

Chapter 4. Topologic-SPLAM Algorithm

119

Where

(,) () (,), (,) () (,)x u x u g u y u y u g uσ σ σ σ= ⊗ = ⊗ (4.3)

Here, ⊗ represents the convolution operator and (,)g u σ denotes a Gaussian filter of

widthσ . This last is chosen in such way that only eliminates the noise but not
valuable information on the curve so the value will be very low. Since our project
works normally with open curves, a certain number of points proportional to the
double of the Full width at half maximum (FWHM) for a Gaussian are symmetrically
compensated at both extremes of the curve when it is smoothed.

Finally, in order that the localization process can run effectively, the invariability in the
resolution of the curve must be assured. So, each discrete B-spline curve should be
stored taking equidistant points on it with a distance ε between each point:

(() , (1))p pd ist N u X N u X ε+ ≅∑ ∑ (4.4)

Where ()pN u X∑ is the recursive formula Cox-de-Boor to obtain a curve B-Spline

presented in the section 3.3.1. Of the previous we obtain a parametric vector
containing the B-spline, where the parameter u represents a point on the curve.

In addition, a restriction over the length of the curve is applied because objects too
small may not provide enough information and therefore it is not interesting to include
them to the map. Also, although our method is designed to work in static
environments, this restriction allows in some way to filter dynamic items (people par
example) that will not be included in the map.

Once the B-Splines have been obtained and chosen, we can search specific feature
contained in the curves that will be of great importance in the localization process.
Essentially, two types of features will be searched in the curves:

• Curvature Zero crossings

• Corners

Chapter 4. Topologic-SPLAM Algorithm

120

The Corner type is very common and does not require explanation. On the other
hand, the concept of Curvature zero crossings in a very general way refers to the
point on the curve where it passes from concave to convex or vice versa.

The process to obtain both features on the curve is based on the curvature scale
space CSS [Mokhtarian 1995] which is used to recover invariant geometric features.

b) B-Spline curvature

The term "curvature" of a B-Spline curve is defined as the local measure which
indicates how much a curve has moved away from a straight line. More formally, the
curvature of a point Xu =[xu,yu] in the b-spline, is defined as the amount equal to the
inverse of the radius of the osculator circle at the point (the circle that touches
tangentially to the curve at the point Xu

ρ
) which means that while smaller is the radius

 of this circle bigger will be the curvature at this point1/ ρ .

The formula for computing the curvature can be expressed as:

3
2 2 2

(,) (,) (,) (,)(,)
((,) (,))

x u y u x u y uk u
x u y u

σ σ σ σσ
σ σ

−
=

−

   

 

 (4.5)

Where according to the properties of convolution, the derivatives of each element can
be easily calculated since we know the exact forms of the first and second derived of
the Gaussian kernel used (,)g u σ and (,)g u σ . So:

(,) (() (,)) () (,)x u x u g u x u g u
u

σ σ σ∂
= ⊗ = ⊗
∂

  (4.6)

2

2(,) (() (,)) () (,)x u x u g u x u g u
u

σ σ σ∂
= ⊗ = ⊗
∂

  (4.7)

(,) () (,)y u y u g uσ σ= ⊗  (4.8)

(,) () (,)y u y u g uσ σ= ⊗  (4.9)

Chapter 4. Topologic-SPLAM Algorithm

121

b) Curve features search

With the list of curvatures k obtained from equation (4.2), the determination of the
curvature zero crossings in the curve is carried out simply by looking in the list for
points where a change of sign between two consecutive curvatures is found.

On the other hand, the search for corners requires a processing of the curvature
more complex since the detector is based on local and global properties of the
curvature [He et al. 2008]. In order that this new process can be applied correctly, the
curvature obtained must contain only positive values therefore only the absolute
value of k will be considered.

Initially all the local maxima of the curvature are seen as candidates to corner since is
assumed that the true corners are included in this group. But given that within these
local maxima could also be included curved segments that do not represent a true
corner, two criteria have been established to eliminate these false corners from the
list of candidates. The first of them refers to comparing the curvature of the
candidates with a curvature adaptive threshold, and the second to evaluate the
angles of the remaining candidate corners to eliminate those that provide trivial
details.

In the first criterion, although the curvature of a round corner is a local maximum,
the difference between this and the curvature of its neighbors may not be significant;
then, in order to use the curvature of the neighbors to eliminate rounded corners, the
concept of region of support (ROS) is introduced which is defined as the curve
segment bounded by the two minimum curvatures closest to the actual corner in
opposite senses to it (Figure 4.7).

Figure 4.7 Region of support (ROS) for the elimination of round curves

Local
minimum

Local
minimum

Local
maximum

ROS

Curvature

L1 L2

Chapter 4. Topologic-SPLAM Algorithm

122

The ROS of every corner will serve to obtain the adaptive threshold on which we will
perform the first discrimination of candidate corners which is calculated as follows:

2

1

1() 1.5 ()
1 2 1

u L

i u L
T u CxK x k i

L L

+

= −

= =
+ + ∑ (4.10)

Where u is the candidate corner position on the curve, C is a coefficient (normally set
at 1.5) , L1 + L2 is the size of the ROS (L1 and L2 is the length from the possible
corner to closest the minimum local to the left and right respectively) and k is the
curvature of the neighborhood.

With the adaptive threshold set, the curvatures of the possible corners are compared.
If the curvature of the candidate corners is greater than this threshold, they are then
declared as true corners; otherwise, they are removed from the list of candidates.

For the second criterion, an extended version of the ROS will be used, where this
is now defined as the curve segment bounded by the two candidate corners to the
left and right of the candidate corner that is currently being verified (Figure 4.8). For
consistency, in open curves the initial and final extremes will be treated as corners for
the determination of ROS.

Figure 4.8 Region of support (ROS) for the elimination of false corners

Once redefined our ROS, the angle of the candidate corner will be obtained using
tangents on the arms of the ROS (Figure 4.9). The calculation of these tangents is
done by fitting a circle (that best fits) on the points of the arm of the ROS. Since the fit
of this circle has not to be truly optimal, a three-step method is detailed down to find
this circle.

Local
maximum

Local
maximum

Current local

maximum

ROS

Curvature

Chapter 4. Topologic-SPLAM Algorithm

123

Figure 4.9 Definitions of angle of a corner. Figure taken from [He et al. 2008].

First three points are chosen on one arm of the ROS, being two of these the

candidate corner that is being tested (C) and the neighboring corner to the left (E),

the third point is the midpoint (M) of the curve segment bounded by the two previous

points. If these points are collinear, the direction of this arm of the ROS is defined

from C to E, else the center of the suppositional circle C0

which has the same

distance (radius of curvature of this ROS) of the three points is calculated using the

following equation:

2 2 2 2 2 2
1 1 2 3 2 2 3 1 3 3 1 2

0
1 2 3 2 3 1 2 3 1

()() ()() ()()
2 [() () ()]

x y y y x y y y x y y yx
x y y x y y x y y

+ − + + − + + −
=

⋅ − + − + −
 (4.11)

2 2 2 2 2 2
1 1 2 3 2 2 3 1 3 3 1 2

0
1 2 3 2 3 1 2 3 1

()() ()() ()()
2 [() () ()]

x y x x x y x x x y x xy
y x x y x x y x x

+ − + + − + + −
=

⋅ − + − + −
 (4.12)

Where ()1 1 ,C x y= , ()2 2 ,M x y= and ()3 3 ,E x y= .

Then a line is drawn between C and C0 θ and the direction that form is stored in ; this

can be easily calculated by a four-quadrant inverse tangent function. In a similar way,

the direction from C to M will be stored inφ . With these data, we can now calculate

the value of the tangent of C to this side of ROS using the following equation:

1 (sin())
2

sign πγ θ φ θ= + − ⋅ (4.13)

Chapter 4. Topologic-SPLAM Algorithm

124

The same procedure is performed to determine the tangent of the other arm (C to F)

of the ROS which will be denoted by 2γ . With the two tangents determined, we get

the angle of the corner that they form as:

| 1 2 | | 1 2 |
2 | 1 2 |

if
C

Otherwise
γ γ γ γ π

π γ γ
− − <

∠ =  − −
 (4.14)

Finally, the corner C∠ will be taken as a true corner if the angle formed is smaller

than a certain obtuse angle threshold maximum obtuseθ . Otherwise the corner will be

set as invalid and is removed from the list of candidate corners.

c) Association of B-Splines

The data association process used for our topological SPLAM is not perform
considering all the objects in the map built until the instant qk, instead we use only the
portions of the environment contained in the LSR of the last node built in the REG
exploration method shown in section 3.1. This can be seen is in figure 4.10, where
the yellow area indicates the portion of the environment on which the association will
be performed and the green lines indicate obstacles that have not been seen yet. In
this image we show that at the instant k the LSR has two objects BRSL,1 and BRSL,2 that
will serve as reference objects until the moment in which the robot reaches the
position qdest and

a new LSR is obtained.

Figure 4.10 LSR of the robot at the instant k

qk

qdest

BRSL,1

BRSL,2

Chapter 4. Topologic-SPLAM Algorithm

125

Figure 4.11 shows to the evolution of the robot until the instant k+s where three
objects are BO,1, BO,2 and BO,3 detected (shown in red) in the range of vision of the
sensor (circumference in dotted line). In this figure, we can see that the odometric
position is just an a priori approximation of the true position of the robot obtained
using the robot's motion model since errors and sensory noise will lead the robot to a
different real position that will not be the awaited one. For this reason, the objects
BO,1, BO,2 and BO,3

appear displaced and do not overlap exactly with the objects to
which they belong.

Figure 4.11 Robot in the odometric position qk+s

detected within its detection range
with three obstacles

As in section 3.3.2, the B-Splines association will be performed initially considering
only the points of the control polygon from which curves are obtained (Figure 4.12).
In this step, the distances between the points of the control polygons of all the
objects (those contained in the RSL on which we work and those observed in the
position qk + s

 are obtained associating the observed curves with the reference curves
using the following criteria:

()(), , , min
0

1
min ,

1
m

RSL i O j

i n
dist X X d

i n
= …

≤  = …
 (4.15)

Where XO,i and XRSL,I are the control points of the spline observed and the splines in
the current LSR respectively, dist(XRSL,i, XO,i) represents the Euclidean distance
between two points and nm and nO are the number of control points of the splines in
the LSR and of the observed splines respectively.

Chapter 4. Topologic-SPLAM Algorithm

126

At the end of this first stage, the splines with a minimum number μmin of related
control points will be associated and other ones for which no relationship has been
established will be marked as new curves to be added to the map once the robot's
position has been updated by the localization method and if the robot has reached
the new target position qdest

 where it will continue the exploration.

In figure 4.12 we can see how the curves (BRSL,1, BO,2) y (BRSL,2, BO,3) have been
associated since they have 5 and 7 points related of their control polygons
respectively obtained from the equation (4.15). On the other hand, we see that the
object BO,1

 has not been associated with any element and therefore will be marked
as a new element to be added once the previously mentioned requirements are
fulfilled.

Figure 4.12 Rough association performs with the control points of the curves

If some curves have been associated at this point, the next step is to look for corners
and Curvature Zero crossings contained in the related curves. If it has been possible
to find some of the searched features, the elements found will be used to perform a
precise association between each pair of curves (BRSL,i,BO,j

). The information about
the type of feature and of the curvature will be used to avoid errors in this step of
association (figure 4.13). If in some of the related curves any elements have been
found (lines or too smooth curves), the fine association process will be executed in a
similar way to that described in Section 3.3.2.

Chapter 4. Topologic-SPLAM Algorithm

127

Figure 4.13 Association of curves zero crossing and corners between the RSL curves and

curves observed. The green circles represent curves zero crossing while the diamonds
represent corners

Once related all the elements, a final process is performed in order to find the initial
and final points of the related curves. For this, taking the curvature zero crossing or
the corners most extremes as starting points contained in both curves will be taken a
number of continuous points on the parametric curve toward the end of this, where
the number of points to take will be the maximum number of elements that can be
taken in the curve segment of smaller length of the two related from the characteristic
point most extreme toward the ends of the curve.

This can be seen in detail in Figure 4.14, where taking the curves related
(BRSL,2,BO,3) we observe that the initial point represented by the blue circle was taken
by choosing 6 elements of the parametric curve (shown in blue) from the curvature
zero crossing represented by the green circle to the initial end of the curve since the
length of the curve segment BO, 3 since the beginning of the curve to the curvature
zero crossing has a larger length than the curve segment BRSL, 2

 from the beginning
of the curve to the curvature zero crossing and therefore the elements of the curve
segment with shorter length surely will be contained in the other of larger length.

The same process is performed on the final end of the curve where 15 points of the
parametric curve were taken from the corner represented by the green diamond
given that the curve segment of shorter length from the corner to the end of the curve
belonging to BRSL, 2

 contains only 15 points.

Chapter 4. Topologic-SPLAM Algorithm

128

Figure 4.14 Example of how the start and end points of curve segments related are found

Finally, when the association process is finished, the related curves will have an
appearance similar to the figure 4.15. Although the correction in the position of the
robot will be performed using the start and end points obtained, the curvature zero
crossing and the corners are not wasted since on them will be carry out the
verification to determine if the localization process has been performed correctly.

Figure 4.15 Segments of curves related with the process described. The blue circles represent
the extremes of the related curves and the green circles and diamonds represents the

curvature zero crossings and the corners respectively.

4.2.2 Topologic localization with B-Splines

So far, we have spoken of the tool necessaries for the representation of the
environment as well as the tools for the data association. In this section we present
the topological localization method developed which forms part of our strategy
SPLAM and whose algorithm is shown in Figure 4.16.

Chapter 4. Topologic-SPLAM Algorithm

129

()Ss D

4. PRelAmb,PRelEst,Num_Related_Curves (Ss,AMB_S)

5. Localizat

ˆ(, , _)

ion_Succesful False

6. W

ˆ1. .

2. ()

3.

h

q q Amb Sact

q q q incest act

D qest

←

←

←

← +

←

DATA_SEGMENTATION

TOPOLOGICAL_LOCALIZATION

SEN

DATA_AS

SOR_DA

SOCIATION

TA

()

()

ile(Localization_Succesful=False) and (Iteration Num_Related_Curves)

7. CoefA,CoefE GA,GE

8. e (CoefA,CoefE)

9. CoefA,CoefE GA,GE

10. e ,ex y

θ

≤

←

←

←

←

ANGULAR_COEFFICIENTS

ANGULAR_ERROR

POSITION_COEFFICIENTS

POSITION_ERR (CoefA,CoefE)

11. q .THETA q .THETA eact est

12. q . q . eact est x

13. q . q . eact est y

14. Localization_Succesful

15. end

16. qact

X X

Y Y

return

θ← +

← +

← +

←

OR

VERIFY_LOCALIZATION

Figure 4.16 Topological localization algorithm

Every time the robot moves from a position qk to a position qk+1

 the estimation of the
robot's new position is obtained by adding to the last localized position the increase
in x, y and θ obtained from the odometric information provided by the robot. As we
know, this new estimate position will be only an approximation to the true position
given that the noise in the sensors of the robot causes that the information provided
is inaccurate and therefore the estimated position also will be.

With the new estimated position, a new perception of the environment will be made
where the information obtained will be placed spatially with regard to this position
(function SENSOR_DATA). Then, the measurements obtained will be segmented
with the function DATA_SEGMENTATION using the Dietmayer’s adaptive cluster
criterion to obtain subgroups of measurements belonging to different objects as we
have shown in section 3.3.2.

The next step of the method is to find the relationship between the observed objects
contained in the subgroups found and objects contained in the current RSL (section
4.2.1c). This task will be performed by the function DATA_ASSOCIATION and will

Chapter 4. Topologic-SPLAM Algorithm

130

be the vital center on which will be made the corrections on the estimated position to
obtain the real position of the robot.

Once the curve segments have been associated and their respective initial and final
points have been obtained, this information will be used to correct the error in the
estimated position in two stages (first angular and then in translation x, y) considering
the following:

ˆ

ˆ

ˆ

curr X

curr Y

curr

X X e

Y Y e

eθθ θ

= +

= +

= +

 (4.16)

With (, ,)curr curr currx y θ as the real actual position of the robot, ˆˆ ˆ(, ,)x y θ the estimated

position and (, ,)X Ye e eθ are the errors in x, y and θ. Thus, the angular correction is

performed by taking the associated curve segments belonging to the LSR (that will
serve as a reference) on which the start and end points of each one of them will be
joined by line segments from which the function ANGULAR_COEFFICIENTS will get

a vector refα that will contain the angular coefficient of each one of these (line 6)
which is calculated as follows:

, , , ,
,

, , , ,

sin() sin()
arctan

cos() cos()
i F i F i I i I

RSL i
i F i F i I i I

p p
p p

ϕ θ ϕ θ
α

ϕ θ ϕ θ
+ − +

=
+ − +

 (4.17)

Where θ is the angle of the robot at the instant when the current RSL was obtained,
ϕ is the angle of the extreme point (initial and final) of the curve segment related to

the frame of reference of the robot and p is the distance from the extreme point (initial
and final) of the curve segment to the reference frame of the robot. At the same time,
the function ANGULAR_COEFFICIENTS use the same process over the associated
curve segments belonging to the last observation and clearly will give a different
vector currα due to the presence of errors in the estimation (figure 4.11). The equation
(4.17) is used in this case taking as reference the estimated position and to

ˆ
curr eθθ θ= + instead of θ so this equation depends only on eθ .

Obtained the angular coefficients (Figure 4.17), the function ANGULAR_ERROR use
the equation (4.18) to find the angular error that will be used to correct angular
position. The idea is then to correct the estimated orientation in such a way that the

Chapter 4. Topologic-SPLAM Algorithm

131

norm of the difference between the two vectors is minimized in a least-squares
sense.

_
* 2

1
arg min ()

Obj R
ref curr

e i i
i

e Ci
θθ α α

=

= −∑ (4.18)

The weight Ci

 in equation (4.18) depends on the reliability of the pair of features
(lines and curves where have been found curvature zero crossing or corners will
have more confidence than smooth curves).

Figure 4.17 Acquisition of angular coefficients

Figure 4.18 Angular correction performed

Chapter 4. Topologic-SPLAM Algorithm

132

After the angular correction *eθ has been obtained (figure 4.18), the corrections of

translation xe and ye must be processed. For this correction no special treatment is

required, the function POSITION_COEFFICIENTS just will take the coordinates of
the initial and final points of each pair of related segments (,)ref refX Y and

(,)curr currX Y with these last depending only on xe and ye respectively. Therefore, the

function POSITION_ERROR obtains the best estimates of these corrections of
translation as:

_
* 2

1
arg min ()

x

Obj R
ref curr

x e i i
i

e Ci X X
=

= −∑ (4.19)

_
* 2

1
arg min ()

y

Obj R
ref curr

y e i i
i

e Ci Y Y
=

= −∑ (4.20)

The errors obtained with equations (4.19) and (4.20) will be added to the estimated
position to obtain the real position of the robot (Figure 4.19).

Figure 4.19 Localization process finished

Finally, a verification process is performed by the function VERIFY_LOCALIZATION.
This process will ensure that the localization process has been successful by
measuring the distance between the initial and final related curves and also between
the corners and the curvature zero crossing (if exists). If these distances are less
than a certain threshold Ψ, the localization process will be considered successful. On
the other hand, if any of the measured distances is greater than the threshold, the
localization process will be reported as fail and restarted but this time considering
only individual curves instead of the whole set. If even considering individual curves
the process fail, the position will be reported as unsafe and therefore unusable to
extend the map.

Chapter 4. Topologic-SPLAM Algorithm

133

Considering our localization process, we can consider the following question. Why
use all the related elements and not just one of them?.

The reason of this phenomenon is that although we could effectively use only one
curve related to correct the position of the robot, the use of the full set allows to
obtain redundant information which allows to increase the robustness of the
correction procedure in presence of conflicting data (Figure 4.20c). This is, some
times and due to possible associations errors, the use of a single curve would result
in a incorrect localization that in absence of more data will not be able to be corrected
(Figure 4.20b).

Figure 4.20 Localization process with incorrect data association. a) Curves associates. b)
Localization using only on curve that has been incorrectly associated. c) Compensation of the

localization when more of one curve is used, even if one of them is incorrectly associated

a)

b) c)

Chapter 4. Topologic-SPLAM Algorithm

134

4.2.3 Extension of the map

As we know, the environment map is incrementally built each time that the robot
reaches a predefined position with the intention of exploring a free frontier (Section
4.1). The objects perceived as in section 3.3.4 can be classified after the association
process required for the localization of this new position as:

• New objects if they have not been associated with any object belonging to the
previous RSL.

• Partially associated objects whose information will be used to extend
objects in the map

a) Adding new objects to the map

The first type does not present any problem, when a new observation is not
associated with any of the splines in the map, these are considered as new elements
and the spline that defines its geometry is added to the map. When we talk of add
one spline, we refer to add the control points of the spline to the vector that
represents the explored map. This is done as follows:

1

2

n

O
O

Map
O
NO



= 




 (4.21)

Where Map is the vector containing the information of the map constructed so far, Oj

represents the curves of variable size and NO represents the new object that is being
added which is a vector containing the control points that form the new curve.

b) Extending objects in the map

Regarding the second type, the process to follow is different to that presented in
section 3.3.4. This because in our project we work with unclamped B-Splines which
makes that the extension process is different. The technique used for the extension
of objects will be explained with the image 4.21.

Chapter 4. Topologic-SPLAM Algorithm

135

Figure 4.21 Extension of the spline of the map with new data. a) Initial situation before the

location. b) Configuration of the curves after location. c) Search for the control points
belonging to the association points of the curves. d) Elimination of the control points that

describe the curve segment already in the map. e) Extended curve and their control points.

Given two curves associated CA and CO (Figure 4.21a) whose geometric
representation in the associated segments is, if not equal at least similar, the
objective is to eliminate in some way the control points of the curve observed
representing the overlapping area between the curves. For this, once the position of
the curves has been corrected through the localization method (figure 4.21b), we look
for the control points in the new curve belonging to the initial and final points of
association of the curve segments associated (gray circles in Figure 4.21b) whose
description is already in the map. With these points obtained (Figure 4.21c) the next
step is to eliminate these two control points and the control points that are contained
in this range to then connect the control points of the curve belonging to the map with
the remaining control points of the new curve (figure 4.21d):

t e nX X X= ∪ (4.22)

CA

a) b)

CO

c) d)

e)

Chapter 4. Topologic-SPLAM Algorithm

136

Where Xt represents the control points of the extended curve, Xe represents the
control points of the curve in the map and Xn

 represents the control points of the
observed curve. At the end of the process the control points of the new extended
curve (Figure 4.21e) will be added to the vector of the map in the same position
where it was the original curve.

4.3 Kidnapping

The kidnapping is one of the hardest problems to solve in the SLAM field. To kidnap
a robot means to take it in the course of its work and to move it quickly to any point in
the environment, without telling it that it has been kidnapped. It is similar than
knocking a human and moving him to a different place. This problem differs from the
global localization problem in that the robot might firmly believe to be somewhere
else at the time of the kidnapping.

Even when the kidnapping problem is an event that rarely occurs, it may happen
naturally due major landslides in the work area or even the robot itself. However, the
kidnapping problem also arises as a form to check the robustness of the localization
method and its ability to recover from catastrophic localization failures.

 The approach proposed to solve the kdnapping problem is described in detail below.

4.3.1 Collection and management of marks

The most important process for any kidnapping method is the collection and
processing of certain hallmarks that will help the system to relocate the robot once it
has been kidnapped.

a) Handling characteristics

The exploration process allows us to find distinctive features (characteristics) of the
environment and store them in a list. These features will undergo a treatment that will
simplify their use in our approach.

First, the distances of the characteristic features of the position qcurr are obtained and
sorted in ascending order. At the same time, the longest non-recurring distance is
selected and the other features are rotated in order to get a 0 degrees angle with it.
Then, the angles between the characteristics are obtained. If the distances between

Chapter 4. Topologic-SPLAM Algorithm

137

two different characteristics have the same length, they will be sorted according to
the obtained angles. It is important to note that the rotation should be performed in a
not repeated distance. This process is described in figures 4.22 and 4.23.

Figure 4.22 Characteristic marks found

Figure 4.23 Points rotated to get a 0 degrees angle for the slope d2

b) Generation of the code

A code that provides support in the relocation time is generated, after the data of
distances and angles are obtained. The code contains the number of marks included
N, the ordered distances, Dn, and the ordered angles of each of the lines connecting
the marks (denoted as An). Besides, the code keeps the marks position in the map
built before the kidnapping (Xi,Yi, i = 1 ... n).

Distance between the sorted
marks in ascending order

d10

d9

d8

d5

d1

d6

d4

d3

d2

d1

d5
d6

d7

d8

d9

d10

A B

C

D

E

A
B

C

E

D

B

A C

D
E

d4

d3

d2

d1

d5 d6

d7

d8

d9

d10

Chapter 4. Topologic-SPLAM Algorithm

138

Figure 4.24 Code or signature generated with the process described

4.3.2 Kidnapped robot

An important part of the kidnapping is the knowledge of the exact moment when the
robot has been moved from the original position to an unknown location. This thanks
to an inherent characteristic the methodology of exploration presented in section 4.1,
the local safe region (LSR).

If at any time during the scanning and location processes, the robot can not
associate any of the curves found in the LSR at the exploration time, with the curves
obtained in its current position, qcurr

, this means that the robot has been kidnapped.
At that time, the robot will enter in a kidnapping state, after which the system will try
to find and relate some of the characteristics stored in memory with its new features.

To maximize the information and minimize the exploration time, it is made an auxiliar
structure that can store the environment built up to the moment and restart the
construction of the new environment, considering the new position as (0,0,0). It
means that no matter the last position of the robot in the previous map, after the
kidnapping is identified, the system will reset its position at coordinates (0,0,0). As
mentioned, the above map is not removed, this is stored with the intention of finding a
known area, and to adjust the new map to this position and merge both maps to get
only one.

It should be mentioned that if any characteristic zone or with high information content
is detected before the kidnapping, the robot will not be relocated on the map being
created and therefore the kidnapping will not be resolved. In this case the previous
map is removed and it will be considered that there is no kidnapping.

B

A C

D
E

d4

d3

d2

d1

d5 d6

d7

d8

d9

d10

Chapter 4. Topologic-SPLAM Algorithm

139

4.3.3 Recovery of the kidnapping

Otherwise, if the robot is kidnapped and there are several codes of the areas already
explored, the process continues as described above, building a new map, until a
distinctive area, that allows the following procedure, is found:

A code considering the described steps is created. The stored list is verified to look
for codes with the same number of marks than the marks found. If the number
matches, the elements corresponding to the distance and angles will be used to look
for a coded that contains similar data, deferring at most in 0.01 m for the distances
and in 0.01 radians for the angles (these heuristic values are set after a series of
experiments).

If at this moment, there is a candidate mark, the coordinates of the stored marks are
obtained to analyze which marks corresponds to the newly found, using a cross-
reference as follows: The ordered distances lists that contains the marks that make
up each distance (considering the stored and the new marks lists) are used to relate
them in two possibly ways, as illustrated in the figure 4.25:

Figure 4.25 Mark relation process

Once the relationship matrix is obtained, it is sorted according to the first column of
the nodes stored in the list. Once ordered, the elements in the first column are
extracted to check which element appear N-1 times in columns 2 and 3, where N is
the number of marks contained in the code. Finally, this element will be the mark

d10 Da Ea

d9 Ca Ea

d8 Ca Da

d5 Ba Da

d1 Aa Ba

d6 Ba Ea

Distances list of
the stored marks

d10 B A

d9 E A

d8 E B

d5 D B

d1 C D

d6 D A

Da B A

Ea B A

.

.

Distances list of
the found marks

in the Kidnapping

Relation of marks

Chapter 4. Topologic-SPLAM Algorithm

140

corresponding to the stored mark. This method is repeated for all the different
elements of the first column (Figure 4.26).

Figure 4.26 Relationship found

When the relationship process is finished, we know exactly which characteristic node
of the observable area corresponds to the same node in the stored area. The above
is illustrated in figure 4.27.

Relation of
DISORDERED marks

Relation of
ORDERED marks

Da B A

Ea B A

Ca E A

Ea E A

Ca E B

Da E B

Ba D B

Da D B

Aa C D

Ba C D

Ba D A

Ea D A

Ba D E

Ca D E

Aa C B

Da C B

Aa C A

Ea C A

Aa C E

Ca C E

Aa C D

Aa C E

Aa C B

Aa C A

Ba D B

Ba C D

Ba D A

Ba D E

Ca E A

Ca D E

Ca E B

Ca C E

Da B A

Da E B

Da D B

Da C B

Ea B A

Ea E A

Ea D A

Ea C A

Aa C

Ba D

Ca E

Da B

Ea A

Relationed Marks

Chapter 4. Topologic-SPLAM Algorithm

141

Figure 4.27 Associated points

Once the zones and the nodes have been linked, the next step is to make a
correction, first by finding the angle and then the displacement. This process will
allow us to find a correlation between the stored and the explored areas. In other
words, the rotation and the translation take place in the new constructed map, after
the kidnapping, in order to merge it with the stored information.

The correction is performed similarly than in the proposed location method. First, a
complete graph with the marks is used, because the relationship between the nodes
of the two graphs is known and there is no need to look for the lines that must be
associated. The task now is to find the difference of angles between the lines,
allowing angular correction with the same formula used in the localization process.

After the angular correction eθ is made, the translation corrections ex and ey

 are
processed, using again the full characteristics graph built before.

Once the translation and angular corrections are made, they are applied to the
structure built during the kidnapping. Finally, to ensure a good merging, a last global
localization process is performed. Curves segments from the new environment
whose partner are close enough to the stored curves in the map built before the
kidnapping are selected if this association between the maps is correct. Then, the
global localization process has been carried out successfully.

Finally, in order to store only a structure that corresponds to the complete merged
map. The nodes in the new environment with a distance less or equal to a certain

Stored zone

d4

d3

d2

d1

d5
d6

d7

d8

d9

d10

Aa Ba

Ca

Da

Ea

Zone found later that the robot
has been kidnapped

d4 d3
d2

d1

d5
d6

d7
d8 d9

d10

C= Aa

D= Ba

E= Ca

B= Da

A= Ea

Chapter 4. Topologic-SPLAM Algorithm

142

threshold with respect to the stored map nodes are discarded (as they are
considered repeated). In the same way the nodes with a distance greater than this
threshold, but within the LSR of some node, will be added as child nodes of the node
that owns the LSR. The exploration will continue in the leaf nodes of the new
structure.

 4.4 Conclusion

This chapter has shown the development of a series of tools that allow an efficient
exploration of environments.

First we have developed an extension of the basic exploration method SRT called
REG which transforms the tree structure used into a graph, this allows to robot to
traveler in a more efficient way since it can take shortcuts to go from one place to
another.

The REG exploration approach also use a simplified criterion to find the next position
to explore which allows to stay into a specific region until this has been fully explores.
The main advantage of this is that the robot will travel short distances until the
nearest position that should be explored. In this way, we avoid that the robot travels
long distances in which there will be no gain of information. At the same time, this
strategy prevents the robot has to return to zones where it had already been.

The topological-SLAM presented, show a new method of data association using B-
Splines. Here, all the information contained in the curve is used to perform a more
accurate data association that as we know, represents a very important step for the
robot localization since incorrect or inexact associations between the curves will
cause divergences that might unleash in an erroneous map that will not be able to be
used and therefore in an overall system failure.

 With respect to the localization method, we have presented an approach based on
unclamped B-Splies that use the structure built for the REG method. The main
advantage of this is that e robot use just information local of a global frame to
performs the localization. This limits the calculations only to the interpretation and
association of objects contained in the current LSR of the current node.

Chapter 4. Topologic-SPLAM Algorithm

143

Finally, we have presented a mapping method that performs in a very easy and
intuitive way, the extension and addition of curves representing the objects in the
environment to the map.

 The results and comparisons with other methods will be presented in Chapter 5.

144

Chapter 5. Experimental Results

In this section we have carried out numerous experiments with both real and
simulated data in order to verify and validate the procedures and algorithms
proposed in this thesis. The data obtained with simulation experiments have allowed
to verify the accuracy and consistency properties of the algorithms by comparing
them with existing procedures and algorithms. On the other hand, experiments with
different data from real environments have allowed to verify the applicability and
effectiveness of these techniques.

Section 5.1 presents some experiments that help to validate the usefulness and
efficiency of the method of exploration proposed showing the versatility that offers the
transformation of the exploration tree into an exploration graph and the advantage of
having a frontier control.

Section 5.2 presents some experiments to help understand the technique of
approximation of data acquired through a laser sensor showing the importance of
order and type of restraint at the time of constructing the curves.

Section 5.3 presents the results of the proposed solution for the problem of SPLAM
which are compared with results obtained using SPLAM methods based on the
extended Kalman filter showing the properties of the algorithm from the point of view
of accuracy and consistency.

To end with the proofs, section 5.4 show the maps constructed with data acquired in
real environments.

Finally, the chapter closes with some conclusions collected in Section 5.5.

Chapter 5. Experimental Results

145

5.1 Exploration Methods

As we have mentioned repeatedly, the control of movements (known as exploration
in this area) for the task of SPLAM, plays a very important role in the performance of
the strategy and for the acquisition time of the map. Unlike the localization and
mapping necessary in the SPLAM task, the efficiency of the exploration method can
be analyzed and tested individually. Therefore, in this section are performed
comparative tests between the SRT exploration method that is used as a base, and
the proposed exploration method developed from it.

The tests carried out to the methods were made using a simulated and real diferential
robot Pioneer P3DX (Figure 5.1) equipped with a laser sensor Hokuyo URG-04lx
(Figure 5.2) which has a detection range of 0.02 to 4 meters approximately with a
typical deviation (σL

) of 1% of the measure, an angular resolution of 0.36 degrees
and a scan angle of 240 degrees. Furthermore, the robot has a ring of 16 ultrasonic
sensors of which 6 of them positioned in the rear are used to obtain information from
the environment in the 120 ° where the laser sensor cannot see.

Figure 5.1 Robot Pioneer P3DX

Figure 5.2 Laser sensor Hokuyo URG-04lx

Chapter 5. Experimental Results

146

The

 environments used are part of the installations of the Laboratory of computer
sciences, Robotics and Microelectronics of Montpellier (LIRMM) and they are shown
in the images 5.3 and 5.4.

Fig 5.3 LIRMM Office Environment

Fig. 5.4 LIRMM Corridor Environment

As we have mentioned, both the method of exploration of unknown environments
SRT developed by Oriolo et al. [Oriolo et al 2004] And the REG method developed
in this thesis, generate a data structure that determines the paths by which our robot
can travel.

For the case of SRT, the generated tree structure and the lack of border control to
indicate what nodes have not been fully explored force the robot to travel 2 times the
navigation structure generated (Figure 5.5 and 5.6) to complete the task; therefore,
the time required and the length of the path to cover all the environment are
completely dependent on the number of nodes that contain the structure. Also, the
shape of the structure used in this method would result particularly inappropriate if it
is conserved as a reference for future navigations; this because in some cases the

Chapter 5. Experimental Results

147

robot will be forced to retreat toward a parent node when the destination node is in
another branch even if it can be access directly from the current position.

Figure 5.5 Exploration tree obtained with the SRT method on the
LIRMM office environment

Figure 5.6 Exploration tree obtained with the SRT method on the
LIRMM corridor environment

On the contrary, the graph structure used by the REG method (Figure 5.7 and 5.8) as
the integrated concept of frontier control allows an exploration much more versatile
and efficient since the method knows exactly where to direct to the robot in order to
continue the exploration, while the structure allows to find an efficient route to this
new position thus allowing a shorter path and a lower time needed for the exploration
of the environment.

Chapter 5. Experimental Results

148

Figure 5.7 Exploration graph obtained with the REG method on the

LIRMM office environment

Figure 5.8 Exploration graph obtained with the REG method on the
LIRMM corridor environment

The above is verified in Figure 5.9, 5.10 and 5.11 where the data obtained with the
two methods are confronted to verify the assumptions that we have made.

Figure 5.9 Nodes needed to cover the LIRMM office and corridor environments
 respectively on the basis of 10 tests

26

27

28

29

30

31

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 n

od
es

Number of tests

LIRMM office environment
Method REG

Method SRT

16

16,5

17

17,5

18

18,5

19

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 n

od
es

Number of tests

LIRMM hall environment
Method REG

Method SRT

Chapter 5. Experimental Results

149

Figure 5.10 Path distance traveled to cover the LIRMM office and corridor environments
 respectively on the basis of 10 tests

 Figure 5.11 Time needed for the exploration of LIRMM office and corridor environments
 respectively on the basis of 10 tests

Finally, and based on the information presented in the previous graphs we can
conclude the following:

• It is noted that the nodes needed for the exploration (Figure 5.9) in most
cases is lower in the REG method than in the SRT method, this because the
REG method attempts to obtain in every border of each node as much
information as is possible and so the robot is always directed to the point over
the randomly chosen frontier where this goal can be reached. On the contrary,
the SRT method works on the basis of finding a valid random direction (in a
free frontier) regardless of the information gain.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Pa
th

 d
is

ta
nc

e
(m

)

Number of tests

LIRMM office environment
Method REG

Method SRT

50

55

60

65

70

1 2 3 4 5 6 7 8 9 10

Pa
th

 d
is

ta
nc

e
(m

)

Number of tests

LIRMM hall environment
Method REG

Method SRT

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

Ex
pl

or
at

io
n

ti
m

e
(s

)

Number of tests

LIRMM office environment
Method REG

Method SRT

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Ex
pl

or
at

io
n

ti
m

e
(s

)

Number of tests

LIRMM hall environment
Method REG

Method SRT

Chapter 5. Experimental Results

150

The above deduction is valid to some extent, because in hall type
environments with too narrow corridor will not be found a too marked
difference between the two methods with respect to the number of nodes
needed to complete the task.

• Another element that must be considered is the length of the traveled route in

the exploration of environments. In Figure 5.10 we can see that traveled
distance in the REG method is in most cases less than the distance traveled
by the SRT method. This is because the graph structure allows to use
shortcuts when the robot has to move within the structure something that
within the rigid structure of the tree is not allowed.

 Another important aspect that affects the traveled route is the knowledge of the

nodes that have not been fully explored; thanks to the introduced concept of
frontier control, the REG method knows what nodes should be revisited once
the node in which it currently is has been fully explored; this, unlike the
methodology used in the SRT, prevents that the robot have to revisit
unnecessary nodes without possibility of exploration.

• Finally, in Figure 5.11 we see that in most cases the execution time for the

exploration of environments is lower in the REG method than in the SRT
method; phenomenon that is closely linked just as in the previous point to the
versatility of the graph structure that allows the path planning using shortcuts
and also to the fact that the robot knows exactly where to go without the need
of revisit and examine nodes that cannot provide more information (frontier
control).

5.2 SLAM Method

The SLAM strategy developed in this thesis as well as any other solution proposed in
this field is validated using as criteria the computational performance, map quality
and consistency of the algorithm. However, unlike methods whose environmental
representation is based on specific geometries and where much of the information
acquired by the sensor is wasted, our approach attempts to exploit the maximum
amount of information possible provided by the sensor thus avoiding dangerous
simplifications.

Chapter 5. Experimental Results

151

Therefore, in addition to the mentioned tests to validate our SLAM method, we also
include a section dedicated to the treatment of information provided by the sensor
and the impact that this management has on our method.

5.2.1 Approximation of data points

One of the main priorities of this thesis is to exploit the maximum amount of
information possible provided by the laser sensor which will be used to obtain the
representation of the environment using B-spline curves as was seen in Chapter 3
and 4.

To achieve this goal some basic elements in the acquisition and processing of
information should be considered such as:

• Angular resolution of the laser. While greater it is the resolution of the laser
sensor greater will be the amount of information and therefore the details of
the environment making it possible to identify more easily characteristic traits.

• Degree of the curve. While more elevated it is the used degree smoother will

be the curve.

• Time-to-curve. The treatment time should be considered at every moment
time since if it is too high the SPLAM method cannot be executed in real time

.

In this way, in this sub section we will try to briefly study the mentioned parameters
and the influence that they have on the quality of the curve and over the modeling
time. For this, we will use data from a real environment with different laser sensor
angular resolutions (called clusters) and from which we obtain B-spline curves of
different degrees.

Chapter 5. Experimental Results

152

Figure 5.12 Segment acquired with a laser sensor resolution of 0.36° . a) Environmental data
points obtained with the laser sensor. b) y c) Curve of degree 3 obtained from the laser data

and its curvature respectively, obtained in a time t=0.038101. d) y e) Curve of degree 6 obtained
from the laser data and its curvature respectively, obtained in a time t= 0.039121. f) y g) Curve

of degree 9 obtained from the laser data and its curvature respectively, obtained in a time
t= 0.04255

a)

b) c)

d) e)

f) g)

Chapter 5. Experimental Results

153

Figure 5.13 Segment acquired with a laser sensor resolution of 1.08° . a) Environmental data
points obtained with the laser sensor. b) y c) Curve of degree 3 obtained from the laser data

and its curvature respectively, obtained in a time t= 0.0361902. d) y e) Curve of degree 6
obtained from the laser data and its curvature respectively, obtained in a time t= 0.038916. f) y
g) Curve of degree 9 obtained from the laser data and its curvature respectively, obtained in a

time t= 0.043407

a)

b) c)

d) e)

f) g)

Chapter 5. Experimental Results

154

Figure 5.14 Segment acquired with a laser sensor resolution of 1.8° . a) Environmental data
points obtained with the laser sensor. b) y c) Curve of degree 3 obtained from the laser data

and its curvature respectively, obtained in a time t= 0.026312. d) y e) Curve of degree 6
obtained from the laser data and its curvature respectively, obtained in a time t= 0.031838. f) y
g) Curve of degree 9 obtained from the laser data and its curvature respectively, obtained in a

time t= 0.032502

a)

c) b)

d) e)

f) g)

Chapter 5. Experimental Results

155

Figures 5.12, 5.13 and 5.14 show the results of approximating a segment of
environment using different cluster or resolutions over the laser that we use. The total
length of the curve that we pretend to approximate is 11.6 meters.

Figure 5.12a shows the result of obtaining the data points of the environment with a
sensor angular resolution of 0.36 °. In this case we have obtained 620 points along
the length of the object. Figure 5.12b shows the effect of approximating these 620
points with a B-spline curve of degree 3. At its side, Figure 5.12c shows the
calculated curvature belonging to the B-spline of degree 3. Similarly, the figures
5.12d and 5.12e show the result approximate the data points with a B-spline curve of
degree 6 and the calculated curvature associated with it. Finally, the figures 5.12f
and 5.12g show the approximation of the sensor data with a B-Spline curve of degree
9 and its associated curvature.

The images 5.13 and 5.14 just as in the previous paragraph shows the data obtained
with an angular resolution of 1.08 ° and 1.9 ° degrees from which we obtain 208 and
124 data points respectively. In these, just as in the image 5.12, we show the effect
of approximating curves using different degrees of curves which is reflected in the
calculation of the curvature.

As it can be appraised, the result is perfectly logical, as the object to represent
compte with a smaller number of data, we obtain smoother curves and the degree of
the curve affects them more. On the contrary, the curves with too much information
require higher order B-Splines if we want to get smoother curves. This can be verified
in the curvature graphs that are found to the right of each approximated curve. In
them we can see that when the degree of the curve increases its curvature
decreases; at the same time, we can observe in these graphs that having fewer data
points becomes more difficult to determine the exact position of the point with greater
curvature because the features are not as accentuated due to lack of information.

Finally, based on data obtained we can conclude that it must be found a compromise
between the resolution of the laser to obtain the greater amount of information
available from the laser sensor and the degree of the curve to eliminate as much
noise as possible on the measures without removing valuable information, given that
a high degree will smooth the curve in such a way that useful information would be
discarded. For this reason and because our method is based on using as much
information as is possible for the analysis of the curves, we have decided for the

Chapter 5. Experimental Results

156

higher angular resolution that can provide our device from which we get an average
of 700 readings and that allow us to exploit the potential of our the method. Thus, we
will used cubic B-Splines (which are the most commonly used) to make the
description of objects, since as we have seen, the effect of the degree of the curve
over the smoothing only results evident when using a high degree for the case of the
higher resolution which can affect the time of analysis making the method not
feasible for its use in real time.

5.2.2 Accuracy of the algorithms

As in section 5.2, we have experimented with simulated data environments (Figures
5.3 and 5.4) in order to evaluate the accuracy and effectiveness of the algorithms.
Although the shown environments pose no challenge to traditional geometric SLAM
algorithms based on the use of segments as a descriptive entity of the environment,
the use of B-Splines as a way of representation allows to take larger data segments
without the need of perform a segmentation of the information into smaller pieces and
even allows to represent straight line segments because these are a particular type
of curve. From the above we find that the B-Splines modeled extend the capabilities
to more general situations.

Figures 5.15, 5.16, 5.17, 5.18, 5.19 and 5.20 show the results of SLAM experiments
for the case of the classical extended Kalman filter, for the most recent strategy
based on B-Splines and on Extended Kalman Filter and finally for the strategy that
we have developed and which is also based on the use of B-splines for the
representation of the environment.

Chapter 5. Experimental Results

157

Fi
gu

re
 5

.1
5

A
cc

ur
ac

y
an

d
co

ns
is

te
nc

y
ex

pe
rim

en
t f

or
 th

e

C
la

ss
ic

al
 E

K
F-

SP
LA

M
 m

et
ho

d
on

 th
e

of
fic

e
en

vi
ro

nm
en

t s
ho

w
n

in
 F

ig
ur

e
5.

3

Chapter 5. Experimental Results

158

Fi
gu

re
 5

.1
6

A
cc

ur
ac

y
an

d
co

ns
is

te
nc

y
ex

pe
rim

en
t f

or
 th

e

B
-S

pl
in

es
 b

as
ed

 E
K

F-
SP

LA
M

 m
et

ho
d

on
 th

e
of

fic
e

en
vi

ro
nm

en
t s

ho
w

n
in

 F
ig

ur
e

5.
3

Chapter 5. Experimental Results

159

Fi
gu

re
 5

.1
7

A
cc

ur
ac

y
an

d
co

ns
is

te
nc

y
ex

pe
rim

en
t f

or
 th

e
B

-S
pl

in
e

ba
se

d
To

po
lo

gi
c-

SP
LA

M
 m

et
ho

d
 o

n
th

e
of

fic
e

en
vi

ro
nm

en
t s

ho
w

n
in

 F
ig

ur
e

5.
3

Chapter 5. Experimental Results

160

Fi
gu

re
 5

.1
8

A
cc

ur
ac

y
an

d
co

ns
is

te
nc

y
ex

pe
rim

en
t f

or
 th

e

cl
as

si
ca

l E
K

F-
SP

LA
M

 m
et

ho
d

on
 th

e
co

rr
id

or
 e

nv
iro

nm
en

t s
ho

w
n

in
 F

ig
ur

e
5.

4

Chapter 5. Experimental Results

161

Fi
gu

re
 5

.1
9

A
cc

ur
ac

y
an

d
co

ns
is

te
nc

y
ex

pe
rim

en
t f

or
 th

e

B
-S

pl
in

es
 b

as
ed

 E
K

F-
SP

LA
M

 m
et

ho
d

on
 th

e
co

rr
id

or
 e

nv
iro

nm
en

t s
ho

w
n

in
 F

ig
ur

e
5.

4

Chapter 5. Experimental Results

162

Fi
gu

re
 5

.2
0

A
cc

ur
ac

y
an

d
co

ns
is

te
nc

y
ex

pe
rim

en
t f

or
 th

e
B

-S
pl

in
e

ba
se

d
To

po
lo

gi
c-

SP
LA

M
 m

et
ho

d
 o

n
th

e
co

rr
id

or
 e

nv
iro

nm
en

t s
ho

w
n

in
 F

ig
ur

e
5.

4

Chapter 5. Experimental Results

163

The 6 figures above show in its left half, the actual path of the robot (blue continuous
line), the odometric trajectory (green dotted line) and the trajectory obtained by the
method of SPLAM (red dashed line). On the other hand, when there is real certainty
about the actual path of the robot (as in the simulations) it is possible perform some
checks to yield an idea of the quality of the algorithms from the point of view of its
consistency. For this reason it has been possible to include in the right half of each
figure the representation of the odometric error (blue line) in X, Y and Theta as well
as localization errors (red dashed line).

From these data and taking as reference the errors shown by the methods based on
Kalman filter, we conclude that the method proposed in this thesis maintains similar
levels of error and in some cases better than those shown by other methods (Figure
5.21).

Figure 5.21 Errors obtained with the SPLAM strategies

The maps obtained with the three strategies are shown in the Figures 5.22 and 5.23;
on them we can see the qualities of the maps obtained with the strategies but also
the differences in the continuity of the line segments (Figure 5.22a and 5.23a) and
curves (Figures 5.22b, 5.22c, 5.23b, 5.23c), where the first thing that stands out is
that in the EKF- lines based strategy and in the EKF B-Splines based the segments

0

0,2

1 3 5 7 9

Er
ro

r i
n

x

Number of test

Comparison of the error in the axe
x between the SPLAM methodes

Clasical EKF-
SPLAM

B-Spline based
EKF-SPLAM

B-Spline based
Topologic-SPLAM

0

0,1

0,2

1 3 5 7 9

Er
ro

r i
n

y

Number of test

Comparison of the error in the axe y
between the SPLAM methodes

Clasical EKF-
SPLAM

B-Spline based
EKF-SPLAM

B-Spline based
Topologic-SPLAM

0

0,02

0,04

1 3 5 7 9

Er
ro

r i
n
θ

Number of test

Comparison of the error in θ
between the SPLAM methodes

Clasical EKF-
SPLAM

B-Spline based
EKF-SPLAM

B-Spline based
Topologic-SPLAM

Chapter 5. Experimental Results

164

that form the corners (extended areas in the images) are discontinuous segments
while in our strategy (Figure 4.15c) the highlighted environmental portion consists of
a single continuous curve.

In the first case this is obvious because a corner represented by segments of lines
always consist of two of them. In the second case, the methodology proposed by
Pedraza et al. [Ref] forbids the use of too closed curves or corners, so in order to to
represent them we must use several segments curve. In our case, the hypothesis
used is that curves with highest curvatures are more easily associated and in
consequence it will be more accurate will be the association of data and therefore the
quality SPLAM method.

For us, the used hypothesis is that while more form or curvature has the curve
segments, more exact it could be the association of data and therefore the quality of
the SPLAM method.

Figure 5.22 LIRMM offices environment maps. a) office environment map obtained with the

method of classical EKF. b) Map obtained by EKF approach with B-Splines. c) Map obtained
with the strategy of SPLAM proposed in this work.

Chapter 5. Experimental Results

165

Figure 5.23 LIRMM corridor environment map. a) Corridor environment map obtained with the
method of classical EKF. b) Map obtained by EKF approach with B-Splines. c) Map obtained

with the strategy of SPLAM proposed in this work.

5.3 Kidnapping

As we have said in chapter 4, the kidnapping is one of the hardest problems to solve
in the SLAM field. Although under normal conditions is very unlikely to find this
problem, in this section we will show the operation of the proposed solution which
provide more robustness to our strategy SPLAM.

Using the environment shown in Figure 5.3 we will validate the strategy of kidnapping
proposed. Figure 5.24 shows the kidnapping of the robot from the position q11 in
which it was operating to an unknown position. At this point, the robot was built an
exploration graph with 11 nodes and it had collected 3 digital signatures from
recognizable zones.

Chapter 5. Experimental Results

166

Figure 5.24 Kidnapped robot

In this example, the robot easily recognizes that it has been kidnapped because the
RSL of the region where it was does not match with the observations performed and
therefore it goes into a kidnapping mode.

Being aware of your current situation, the map created so far is stored and the robot
reset its memory considering now that the position where it is placed is the initial
position. This can be seen in Figure 5.25, where the position of kidnapping is now
taken as the initial position and therefore the spatial change in the position of the
environment due to the change of the reference frame (Red dashed lines map)

.

Figure 5.25 New environment position after the kidnapping

Chapter 5. Experimental Results

167

In this point, the robot starts the construction of a secondary exploration graph. The
process continues until the digital signature of a distinguishable area is recognized
and identified (Figure 5.26).

Figure 5.26 Areas with similar digital signature

Once compared and identified the digital signature of the area, the robot adjusts its
position and the position of all nodes in the auxiliary graph to the reference frame of
the recognized area stored in the first exploration graph.

With the corrected position and the position of the auxiliary graph updated, we merge
the structures of the main graph and of the auxiliary graph so as to obtain a single
structure with which we will continue (if after the merger still remain free frontiers) the
exploration (Figure 5.27).

Chapter 5. Experimental Results

168

Figure 5.27 Random exploration graphs merged

Finally, as with the graph structure, the auxiliary map created after kidnapping (figure
5.28) is updated with the new corrected position of the robot and merged with the
partial map created before kidnapping (figure 5.29). With this last action we obtain a
complete map of the environment after solving the kidnapping problem (Figure 5.30).

Figure 5.28 Map constructed during kidnapping

Figure 5.29 Map constructed before the kidnapping

Chapter 5. Experimental Results

169

Figure 5.30 Before and after kidnapping maps fused

Figure 5.31, 5.32 and 5.33 show the errors obtained during the simulation. Here, we
can clearly see the moment in which the kidnapping occurred as a big leap in the
graphics error. Also, we observe that once the method recovers of the kidnapping, it

maintains similar levels of error that in cases without kidnapping.

Figure 5.31 Error in X during the kidnapping simulation

Chapter 5. Experimental Results

170

Figure 5.32 Error in Y during the kidnapping simulation

Figure 5.33 Error in Theta during the kidnapping simulation

5.4 Experiments with real data

Finally in this section, we present experiments with real data in real environments to
validate the results presented. In all the tests will be shown the maps obtained
considering only the odometric information reported by the robot and maps obtained
after applying the SPLAM method proposed in this thesis.

Figure 5.34 shows the real office environment used for the tests and figure 5.35 show
the map of this environment form which was obtained the simulated environment
shown in Figure 5.3. This environment has been built using 58 B-splines curve
segments of degree 3 which are used as modeling tool and which is defined by 1754
data points; the time required for the exploration of this environment was 463
seconds. Figure 5.35 shows the map obtained after the application of our SPLAM
method while Figure 5.36 shows the map constructed using only the robot's
odometric information.

Chapter 5. Experimental Results

171

Figure 5.34 Real office environment used for tests

Figure 5.35 Real office environment acquired with the SPLAM proposed method

Chapter 5. Experimental Results

172

Figure 5.36 Real office environment acquired using only odometric information

Figure 5.37 Difference of maps with and without the use of the SPLAM method

Chapter 5. Experimental Results

173

In the same way, figure 5.38 show the real corridor environment . The map obtained
with our SPLAM approach is shown in figure 5.39 while the odometric map obtained
using just odometric information is shown in figure 5.40.

Figure 5.38 Real corridor environment used for tests

Figure 5.39 Real corridor environment acquired with the SPLAM proposed method

Chapter 5. Experimental Results

174

Figure 5.40 Real corridor environment acquired using only odometric information

Figure 5.41 Difference of maps with and without the use of the SPLAM method

Chapter 5. Experimental Results

175

Finally, a last example is presented using the real environment called “the extension”
(Figure 5.42). An in the other two environments, the figure 5.43 presents the map
obtained with our SPALM approach. In the other hand, figure 5.44 shows the map
obtaines using only odometric information

Figure 5.42 LIRMM’s extension corridor used for tests

Figure 5.43 Real LIRMM’s extension corridor
environment acquired with the SPLAM proposed method

Chapter 5. Experimental Results

176

Figure 5.44 Real LIRMM’s extension corridor environment
acquired using only odometric information

Figure 5.45 Difference of LIRMM’s extension corridor maps obtained

with and without the use of the SPLAM method

Chapter 5. Experimental Results

177

5.5 Conclusions

In this chapter we have shown and validated experimentally the properties of the
algorithms presented in this thesis.

Experiments with simulated data have allowed evaluating the properties of the
estimation algorithm from the point of view of its consistency. The confrontations of
our methodology with other algorithms developed by other researchers have
revealed that the results obtained by our method remain within the error tolerance
range accepted or obtained by other methodologies. It has also shown that the use of
B-spline curves to represent the environment offers new possibilities to extract
geometric information furthermore offer the possibility to represent complex
environments which would be impossible to model geometric tools.

Finally, experiments with real data provide important results that have allowed us to
verify the applicability of the techniques developed in our thesis for the complex
problem of SPLAM.

178

Chapter 6. Conclusions and
Future Work

In previous chapters we have presented the construction of SPLAM tools
implementing and developing methods in the fields of SLAM and of exploration of
environments. With the tests and results obtained, in this chapter are summarized the
main conclusions highlighting the contributions and contributions that have been
made to the current state of the art of integrated Exploration or SPLAM.

Chapter 6. Conclusions and future work

179

6.1 Main contributions

In this thesis we have presented a new methodology for the process of exploration of
environments based on the construction of a graph of exploration where each node
represents a robot position with its respective segments of environment explored.
Although the use of such structures has already been used to solve this kind of
problems, our solution fully exploits the functionality of the structure to make
navigation on the portion of the known environment regardless of the purpose. Also,
unlike other graph-based solutions, our solution preserves the random nature since
this kind of solutions have proven greater effectiveness in the area of exploration
environments where we cannot have a certainty of which will be the next best
position to be explored.

Also, we have developed a B-spline curves based SLAM strategy to represent
environments. Although this is not the first job where it has been used this type of
representation, we have used mathematical algorithms used in the area of pattern
recognition (that until where our knowledge arrives had not been used before in the
SLAM area) in order to obtain the greater amount of information contained in this
representation and in this way to propose an innovative data association method to
SLAM.

In the same way, the methodology applied for the correction of the robot's position
and to adjust the environment based on local information using the structure of the
exploration method, represents an important contribution since in this way the
method does not waste time and energy trying to associate data out of range.

We have presented a method that gives solution to the problem of kidnapping, where
even though it is a simple solution to the problem, it is an efficient solution when the
robot works on environments with high content of distinguishable information (areas
of high curvatures).

Finally, despite the apparent difficulty that the symbiosis of the methods developed
could present, we have achieved a harmonious cooperation which fuses the
properties of the method of exploration of environments with the properties of the
SLAM method based on B-Spline curves.

As a general summary, we discuss briefly the results of each chapter pointing in each
one of them the contributions presented.

Chapter 6. Conclusions and future work

180

• Chapter 2 gives an overview of current state of the art in the field of SPLAM

which was taken as a reference and motivation for the development of this
thesis. In it, we analyze the contributions made so far first in the field of
SLAM, then in the field of exploration of environments and finally of the
strategies developed for the SPLAM problem where many of the solutions
found (as would be expected) are a fusion of the two previous elements

• Chapter 3 presents a SPLAM tool in which motion control is perform using the

SRT random exploration tool and the SLAM task is performed using the
extended Kalman filter in its classical version and also in the version
presented by Pedraza et al in [Ref]. This chapter also collected fundamental
aspects of B-spline curves which are used for the representation of
environments. The theory found in this chapter provides an understanding of
these curves as tools in the representation of maps and also of their use in the
well-known EKF-SLAM tool.

Although the individual usage of these tools is not innovative, to where our
knowledge arrives, these never before had been combined to obtain a strategy
of SPLAM based on the probabilistic control of movements and on the
extended Kalman filter and even less based on splines for the representation
of the environment. Despite this, the results obtained with the work made in
this chapter only will be used to verify the effectiveness and to validate the
algorithms presented in Chapter 4.

• Chapter 4 describes the main contributions of this thesis which have been
thought for the ultimate goal of obtaining an effective tool for the SPLAM
problem in which the modeled of the environment is performed using B-spline
curves. Thus the contributions of this chapter are listed below.

1. We have developed an exploration strategy that creates graph type
structure where each node in it represents a robot position with a
portion of environment associated with it. In this method, the concept
introduced of frontier control (which represents one of the main
contributions for the method) allows to have complete control over the
exploration avoiding to travel fully explored areas and and revisiting
those who still have the possibility for exploration. Once more, this
concept allows to reach the goal of completeness basic on all the
exploration methods

Chapter 6. Conclusions and future work

181

On the other hand, the developed method fully exploits the graph
structure generated allowing the use of all the connections contained in
the structure when the robot needs to travel from a position to another.
Finally, the criterion of choosing the node with possibility of exploration
with the lower measured path from the current position allows the
method to stay and explore nearby areas until they are fully explored
without having to travel from one end to another of the map.

2. We have proposed a data association method based on the analysis of
the curvatures of the curves related. Here, we use the CSS digital
imaging techniques, curvature zero crossing and corners extraction
techniques used in the field of pattern recognition. This mechanism of
association not only allows establishing a robust correspondence
between the observations realised by robot and the objects contained in
the current working node but also facilitates the parametric
correspondence between each pair of representative elements
associated.

3. The correction in the position of the robot and the associated data is
done topologically (scan matching) using the distinguishing elements
mentioned in point 2 correcting the information first in angular sense
and later in translation. Obviously, this type of location is novel given
that the representation used in it has been recently presented.

4. We present a simple and novel algorithm to lengthen the objects

contained in the map. This is possible and is natural after considering
the form in how the association of data is performed.

5. Finally, the use of sub areas of environment contained in the nodes of

the structure of the exploration method combined with the SLAM
method, allows that the run time of the SPLAM tool remains within the
acceptable limits to use our tool in real time. Thus, the construction of
the environment can be done both online and offline since that with the
information of the exploration graph we know what areas correspond to
what part of the environment.

• Finally, Chapter 5 presents the results that evaluate, demonstrate and validate
the algorithms presented in previous chapters.

Chapter 6. Conclusions and future work

182

We start with a series of tests made to the SRT and REG exploration methods
validating its effectiveness with respect to the path traveled, number of nodes
needed to complete the exploration and time spent to complete the task. We
continue with an analysis that relates the angular resolution of the laser with
the degree of the spline and how these affect the curvature of the spline from
which the information is obtained for the association and elongation of the
environment

We also show a series of simulation tests performed on the SLAM methods.
On them we show the accuracy obtained with each one of the methods and
with which we validated the SPLAM method that we have proposed since the
error levels remain within the limits obtained with the EKF-based methods.

At the end, we show the maps obtained with real data that allow to evaluate
the practical applicability of the proposed methods.

6.2 Future Work

The algorithms and methodologies presented in this thesis represent (from our point
of view) an interesting and complete form to deal qith

 the SPLAM problem as for
environments with geometries defined as for environments with complex forms.

Taking this into consideration, we are sure that this proposal opens the door to an
endless of future applications and developments between which we can emphasize
the following:

• Improve the data segmentation mechanism in which a more sophisticated
mechanism will determine more accurately the individual objects present in a
sensor observation in a more robust way.

• Explore the use of alternative representations for data fitting. In this section we

have thought about the use of another type of parametric curves (NURBS
[Fisher et al. 2004], X-Splines [Blanc et al. 1995], Beta-Splines [Joe et al.
1990], or curves of variable resolution) as modeling tools with which we could
obtain better results in the quality of fit, the automatic selection of the knot
vector and the ability to represent singular points (such as corners) using a
smaller amount of information to that needed with the use of B-Splines.

Chapter 6. Conclusions and future work

183

• Deepen in the methods recently introduced in the field of pattern recognition

which could get more interesting and effective solutions for data association
process using parametric curves.

• To improve the recovery process of the exploration when a robot kidnapping

has occurred not only exploiting unique features of the environment but also
invariant relations between the segments that form the environment. Although
the purpose of this point is not to go into details, we call invariant relations to
the comparison of the key metrics that define each type of relationship
between two found elements in the same area of the environment (Example:
high-curvature curve associated with a segment of straight line, curve with
high curvature associated with a point, two straight line segments, a point and
a straight line, etc.).

• Extend the presented approach to the multi-robot case in which, if used an
appropriate distribution of the robot in the environment, the exploration time
would be reduced dramatically depending on the number of robots that will
operate in the environment.

• Extend the obtained maps to the three-dimensional space using B-Splines
surfaces which could be used by a large number of types of robots since so far
the use of our maps is limited to the use of terrestrial robots.

184

Bibliography

Bennet et al. 2000  A. Bennet and J. J. Leonard. “A behavior-based approach to
adaptive feature mapping with autonomous underwater vehicles”. IEEE J. of Oceanic
Engineering, 25(2):213-226, 2000.

Bishop 2006  C. M. Bishop. “Pattern Recognition and Machine Learning”.
Springer, 2006.

Blanc et al. 1995  C. Blanc, C. Schlick. “X-splines: a spline model designed for the
end-user”,

Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques. 1995.

Bosse et al. 2004  M. C. Bosse, P. M. Newman, J. J. Leonard, and S. Teller.
“Simultaneous Localization and Map Building in Large-Scale Cyclic Environments
Using the Atlas Framework”. The International Journal of Robotics Research,
23(12):1113–1139, 2004.

Bourgault et al. 2002  F. Bourgault, A. A. Makarenko, S. B. Williams, B.
Grocholsky and H. F. Durrant-Whyte. “Information based adaptive robotic
exploration”. In IEEE/RSJ Int. Conf. on intelligent Robots ans Systems, pages 540-
545. 2002.

Burgard et al. 2005  Burgard, W., Moors, M., Stachniss, C., Schneider, F.,
“Coordinated multi-robot exploration”. IEEE Transactions on Robotics 21 (3), 376–
386. 2005.

Castellanos et al. 1997  J.A. Castellanos, J.D. Tardos, and G. Schmidt. “Building
a global map of the environment of a mobile robot: The importance of correlations”. In
IEEE International Conference on Robotics and Automation, pages 1053–1059,
1997.

Choset et al. 2001  H. Choset and K. Nagatani. “Topological Simultaneous
Localization and Mapping (SLAM): Toward Exact Localization Without Explicit
Localization”. Transactions on Robotics and Automation Vol. 17. 2001.

http://dl.acm.org/author_page.cfm?id=81100118797&coll=DL&dl=ACM&trk=0&cfid=78965035&cftoken=97706044�

Bibliography

185

Choset et al. 2004  H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun. “Principles of Robotic Motion: Theory, Algorithms, and
Implementation”. MIT Press, Cambridge, MA, 2004.

Davison et al. 2002  A. J. Davison and D. W. Murray. “Simultaneous localisation
and map-building using active vision”. IEEE Trans. Pattern Anal. Machine Intell.,
24(7):865–880, 2002.

de Boor 1978  C. de Boor, “A Practical Guide to Splines”, Springer-Verlag, New
York, 1978.

Dellaert et al. 1999  F. Dellaert, D. Fox, W. Burgard, and S. Thrun. “Monte Carlo
localization for mobile robots”. In IEEE International Conference on Robotics and
Automation, pages 1322– 1328, 1999.

Dellaert et al. 2006  F. Dellaert and M. Kaess. “Square root SAM: Simultaneous
localization and mapping via square root information smoothing”. Int. J. Robotics
Research, 25(12), December 2006.

Devy et al. 1995  M. Devy, R. Chatila, P. Fillatreau, S. Lacroix and F. Nashashibi.
“On autonomous navigation in a natural environment”. Robotics and Autonomous
Systems, vol. 16, no. 1, pages 5-16, 1995.

Di Marco et al. 2001 M. Di Marco, A. Garulli, S. Lacroix and A. Vicino. “Set
membership localization and mapping for autonomous navigation”. International
Journal of Robust and Nonlinear Control. 2001.

Dietmayer et al. 2001  K. C. J Dietmayer, J. Sparbert, D. Streller. “Model based
object classification and object tracking in traffic scenes from range images”.
Proceedings of the IV IEEE Intelligent Vehicles Symposium. 2001.

Doucet et al. 2000  A. Doucet, N. de Freitas, K. Murphy, and S. Russell. “Rao-
blackwellised particle Filtering for dynamic bayesian networks”. Proceedings of
Uncertainty in AI (UAI), 2000.

Durrant-Whyte et al 2006.  Hugh Durrant-Whyte and Tim Bailey, “Simultaneous
Localisation and Mapping (SLAM): Part I The Essential Algorithms”. IEEE Robotics
and Automation Magazine 2006.

http://www.amazon.com/gp/product/0262033275/qid=1126335651/sr=2-1/ref=pd_bbs_b_2_1/002-4279057-9611265?s=books&v=glance&n=283155�
http://www.amazon.com/gp/product/0262033275/qid=1126335651/sr=2-1/ref=pd_bbs_b_2_1/002-4279057-9611265?s=books&v=glance&n=283155�

Bibliography

186

Espinoza et al. 2007  J. Espinoza, A. Sánchez , M.A. Osorio. “Exploring unknown
environments with mobile robots using SRT-Radial”. IROS 2007.

Estrada et al. 2005  C. Estrada, J. Neira, and J. D. Tardós. “Hierarchical SLAM:
Real-Time Accurate Mapping of Large Environments”. IEEE Transactions on
Robotics, VOL. 21, NO. 4, 2005.
Eustice et al. 2006  R. M. Eustice, H. Singh, and J. J. Leonard. “Exactly sparse
delayed-state filters for view-based SLAM”. IEEE Trans. on Robotics, 22(6):1100-
1114, Dec 2006.

Feder et al. 1999  H.J.S. Feder, J.J. Leonard, and C.M. Smith. “Adaptive mobile
robot navigation and mapping”. International J. of Robotics Research, 18(7):650–
668, 1999.

Feder et al. 1999  H. Feder, J. Leonard, and C. Smith. "Adaptive mobile robot
navigation and mapping", International J. of Robotics Research, vol. 18, no. 7, pp.
650-668, 1999.

Fisher et al. 2004  J. Fisher, J. Lowther, C. Shene. ” If you know b-splines well,
you also nnow NURBS!”. Proceedings of the 35th SIGCSE technical symposium on
Computer science education. 2004.

Franchi et al. 2007  Franchi, A., Freda, L., Oriolo, G., Vendittelli, M., 2007. “A
randomized strategy for cooperative robot exploration”. Proceedings of the IEEE
International Conference on Robotics and Automation, Roma, Italy. 2007.

Franchi et al. 2009  A. Franchi, L. Freda, G. Oriolo, M. Vendittelli. “The Sensor-
based Random Graph Method for Cooperative Robot Exploration”. Transactions on
Mechatronics, Vol. 14, NO. 2, 2009.

Frese 2006  U. Frese. “Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping”. Autonomous Robots, 21(2):103-122, September 2006.

Frese 2006b  U. Frese. “Using Treemap as a Generic Least Square Backend for
6-DOF SLAM”. Procedings of the Spatial Cognition V Workshop Robotic 3D
Environment Cognition. 2006.

http://www.informatik.uni-trier.de/~Ley/db/indices/a-tree/l/Lama:Mar=iacute=a_Auxilio_Osorio.html�
http://www.informatik.uni-trier.de/~Ley/db/conf/iros/iros2007.html#EspinozaLL07�
http://dl.acm.org/author_page.cfm?id=81100550299&coll=DL&dl=ACM&trk=0&cfid=78965035&cftoken=97706044�
http://dl.acm.org/author_page.cfm?id=81339514529&coll=DL&dl=ACM&trk=0&cfid=78965035&cftoken=97706044�
http://dl.acm.org/author_page.cfm?id=81100660810&coll=DL&dl=ACM&trk=0&cfid=78965035&cftoken=97706044�

Bibliography

187

Garrido et al. 2008  S. Garrido, L. Moreno and D. Blanco. “Exploration of a
cluttered environment using Voronoi transform and fast marching”. Robotics and
Autonomous Systems 56 (12), 1069–1081. 2008.

Gonzalez et al. 2002  H. H. González-Baños and J.C. Latombe. “Navigation
strategies for exploring indoor environments”. Int. J. Robotic Res. 2002.

Grisetti et al. 2005  G. Grisetti, C. Stachniss, and W. Burgard. “Improving grid-
based slam with rao-blackwellized particle filters by adaptive proposals and selective
resampling”. Proceedings of the IEEE International Conference on Robotics and
Automation, 2005.

Grisetti et al. 2007  G. Grisetti, C. Stachniss, and W. Burgard. “Improved
Techniques for Grid Mapping With Rao-Blackwellized Particle Filters”. IEEE
Transaction on Robotics, 23(1):34-46, 2007.

He et al. 2008  X. C. He and N. H. C. Yung. “Corner detector based on global and
local curvature properties”. Optical Engineering. 2008.

Howard et al. 2006  A. Howard, G. S. Sukhatme, and M. J. Mataric. “Multi-robot
mapping using manifold representations”. Proceedings of the IEEE - Special Issue on
Multi-robot Systems, 2006.

Howard et al. 2006b  A. Howard, L. E. Parker, and G. S. Sukhatme. “Experiments
with large heterogeneous mobile robot team: Exploration, mapping, deployment and
detection”. International Journal of Robotics Research, 25(5):431–447, 2006.

Hu et al. 2002  S. Hu, C. Tai and S. Zhang. “An extension algorithm for B-splines
by curve unclamping”. Computer-Aided, 2002.

Ishida 1997  J. Ishida. “The general B-spline interpolation method and its
application to the modification of curves and surfaces”. Computer-Aided Design,
Volume 29, Issue 11, Pages 779–790, 1997.

Jaulin 2009  L. Jaulin. “A Nonlinear Set Membership Approach for the Localization
and Map Building of Underwater Robots”. IEEE Transactions on Robotics, 2009.

Joe et al. 1990  B. Joe. “Knot insertion for Beta-spline curves and surfaces”. ACM
Transactions on Graphics, 1990.

http://www.sciencedirect.com/science/journal/00104485�
http://www.sciencedirect.com/science/journal/00104485/29/11�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860�

Bibliography

188

Julia et al. 2008  M. Juliá, A. Gil, L. Payá and O. Reinoso. “Local minima detection
in potential field based cooperative multi-robot exploration”. International Journal of
Factory Automation, Robotics and Soft Computing 3. , 2008.

Julia et al. 2010  M. Juliá, O. Reinoso, A. Gil, M. Ballesta and L. Payá. “A hybrid
solution to the multi-robot integrated exploration problem”. Engineering Applications
of Artificial Intelligence . 2010.

Julia et al. 2011  M. Juliá, O. Reinoso, A. Gil, M. Ballesta and L. Payá. “Behaviour
Based Multi-Robot Integrated Exploration”. International Journal of Innovative
Computing, Information and Control. 2011.

Julier et al. 2001  S. J. Julier and J. K. Uhlmann. “A Counter Example to the
Theoryof Simultaneous Localization and Map Building”. In 2001 IEEE Int. Conf. on
Robotics and Automation, pages 4238-4243, Seoul, Korea, 2001.

Kaess et al. 2007  M. Kaess, A. Ranganathan, and F. Dellaert. “iSAM: Fast
incremental smoothing and mapping with efficient data association”. In IEEE Int.
Conf. Robot. Automat., pages 1670– 1677, Rome, 2007.

Khatib 1986  0. Khatib. "Real-Time Obstacle Avoidance for Manipulator and
Mobile Robots". The Int. JRobotics Research, vol. 5, no. 1, pp. 90-98, 1986.

Kim et al. 2008  C. Kim, R. Sakthivel and W. K. Chung. “Unscented FastSLAM: A
Robust and Efficient Solution to the SLAM Problem”. IEEE Transactions on Robotics,
Vol. 24, 2008.

Kuhn 1995  H. W. Kuhn. "The Hungarian method for the assignment problem".
Naval Research Logistics Quarterly, 2:83–97. 1955.

Kuipers et al. 1991  B. Kuipers and Y.T. Byun. “A robot exploration and mapping
strategy based on a semantic hierarchy of spatial representations”. Journal of
Robotics and Autonomous Systems, 8:47–63, 1991.

Kuipers et al. 1991 B. Kuipers and Y.T. Byun. “A robot exploration and mapping
strategy based on asemantic hierarchy of spatial representations”. Journal of
Robotics and Autonomous Systems, 8:47–63, 1991.

Bibliography

189

Lau 2003  H. Lau. “Behavioural approach for multi-robot exploration”. Proceedings
of the Australasian Conference on Robotics and Automation, 2003.

LaValle 1998  S. M. LaValle. “Rapidly-exploring random trees: A new tool for path
planning”. TR 98-11, Computer Science Dept., Iowa State University, 1998.

Le Bars te al. 2010  F. Le Bars, A. Bertholom, J. SLIWKA and L. JAULIN. “Interval
SLAM for underwater robots; a new experiment”. 8th IFAC Symposium on Nonlinear
Control Systems. 2010.

Leonard et al. 1991  J.J. Leonard and H.F. Durrant-Whyte. “Simultaneous map
building and localization for an autonomous mobile robot”. In IEEE International
Workshop on Intelligent Robots and Systems, pages 1442–1447, 1991.

Leonard et al, 1992  J. Leonard and H. Durrant-Whyte. “Directed Sonar Sensing
for Mobile Robot Navigation”. Boston: Kluwert Accademic Publisher. 1992.

Leonard et al. 2000  J. J. Leonard and H. J. S. Feder. “A computationally e±cient
method for large-scale concurrent mapping and localization”. In D. Koditschek and J.
Hollerbach, editors, Robotics Research: The Ninth International Symposium, pages
169-176, Snowbird, Utah, 2000.

Leonard et al. 2003  J. J. Leonard and P. M. Newman. “Consistent, convergent
and constant-time SLAM”. In Int. Joint Conf. on Artificial Intelligence, 2003.

Leung et al. 2008  C. Leung, S. Huang, and G. Dissanayake. “Active SLAM for
structured environments”. In IEEE Int. Conf. Robot. Automat., pages 1898–1903,
2008.

Lisien et al. 2005  B. Lisien, D. Morales, D. Silver, G. Kantor, H. Rekleitis, and I.
Choset. “The hierarchical atlas”. IEEE Transactions on Robotics and Automation,
21:473–481, 2005.

Lu et al. 1997  F. Lu and E. Milios. “Globally consistent range scan alignment for
environment mapping”. Autonomous Robots, 4:333–349, 1997.

Lu et al. 1997  F. Lu and E. Milios. “Robot Pose Estimation in Unknown
Environments by Matching 2D Range Scans”. Journal of Intelligent and Robotic
Systems 18: 249–275, 1997.

Bibliography

190

Maimone et al. 2004  M. Maimone, A. Johnson, Y. Cheng, R. Willson, and L.
Matthies. “Autonomous navigation results from the mars exploration rover (mer)
mission”. In 9th International Symposium on Experimental Robotics (ISER), 2004.

Makarenko et al. 2002  A. A. Makarenko, S. B. Williams, F. Bourgault, H. F.
Durrant-Whyte, "An experiment in integrated exploration", IEEEIRSJ Int. Conf. on
Intelligent Robots and System, Vol 1, pp. 534-539, 2002.

Mokhtarian 1995  F. Mokhtarian. “Silhouette-based isolated object recognition
through curvature scale space”. IEEE Pattern Analysis and Machine Intelligence
17(5): 539–544. 1995.

Montemerlo et al. 2002  M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit.
“FastSLAM: A factored solution to the simultaneous localization and mapping
problem”. In Proceedings of the AAAI National Conference on Artificial Intelligence,
2002.

Montemerlo et al. 2003 M. Montemerlo, S. Thrun, D. Koller and B. Wegbreit,
“FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous
Localization and Mapping that Provably Converges”. Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence (IJCAI), 2003.

Mount et al. 2007  D. M. Mount, N. S. Netanyahuy, K. Romanikz, R.
Silvermanx, A. Y. Wu. “A Practical Approximation Algorithm for the LMS Line
Estimator”. Computational Statistics & Data analysis. 2007.

Newmant et al. 2003  P. M. Newman, M. Bosse, and J. J. Leonard. “Autonomous
feature-based exploration”. In IEEE Int. Conf. Robot. Automat., pages 1234–1240,
2003.

Nieto et al. 2003  J. Nieto, J. Guivant, E. Nebot and S. Thrun. “Real time data
association for fastslam”. IEEE International Conference on Robotics and
Automation, 2003.

Oriolo et al 2004  G. Oriolo, M. Vendittelli, L. Freda and G. Troso. “The SRT
Method: Randomized strategies for exploration”. IEEE International Conference on
Robotics and Automation, 2004.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34�

Bibliography

191

Paskin et al. 2003  M. A. Paskin. « Thin Junction Tree Filters for Simultaneous
Localization and Mapping”. Int. Joint Conf. Artificial Intelligence, pages 1157-1164,
2003.

Pavlidis et al. 1974  T. Pavlidis, S. L. Horowitz. “Segmentation of plane curves”.
IEEE Transactions on Computers, 1974.

Paz et al. 2007 L. M. Paz, P. Jensfelt, J. D. Tardos and J. Neira. “EKF SLAM
updates in O(n) with Divide and Conquer SLAM”. In Proc. IEEE Int. Conf. Robotics
and Automation, 2007.

Pedraza et al. 2007  L. Pedraza, G. Dissanayake, J. Valls Miro, D. Rodriguez-
Losada and F. Matia. “BS-SLAM: Shaping the World”. Proceedings of Robotics:
Science and Systems, 2007.

Paz et al. 2008  L. M. Paz, J. D. Tardos, and J. Neira. “Divide and conquer: EKF
SLAM in O(n)”. IEEE Trans. on Robotics, 2008.

Pedraza et al. 2009  L. Pedraza, D. Rodriguez-Losada, F. Matia, G.
Dissanayake and J.V. Miro. “Extending the Limits of Feature-Based SLAM with B-
Splines”, Robotics, IEEE Transactions on, 2009.

Rogers 2001  D.F. Rogers. “An introduction to NURBS with historical perspective”.
2001.

Schultz et al. 1999  A.C. Schultz, W. Adams, B. Yamauchi, and M. Jones.
“Unifying exploration, localization, navigation and planning through a common
representation”. In IEEE International Conference on Robotics and Automation,
pages 2651–2658, 1999.

Sim 2005  R. Sim, "Stable Exploration for Bearings-only SLAM", Proceedings of
the IEEE International Conference on Robotics and Automation, 2005.

Sim 2005b  R. Sim. “Stabilizing information-driven exploration for bearings-only
SLAM using range gating”. In IEEE/RSJ Int.Conf.on Intelligent Robots and Systems,
pages 3396–3401, 2005.

Sim et al. 2005  R. Sim and N. Roy. “Global A-optimal robot exploration in SLAM”.
In IEEE Int. Conf. Robot. Automat., pages 673–678, 2005.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860�

Bibliography

192

Simons et al. 2000  R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S.
Thrun and H. Younes. “Coordination for multi-robot exploration and mapping”.
Proceedings of the AAAI National Conference on Artificial Intelligence, 2000.

Smith et al. 1987  R. Smith, M. Self, and P. Cheeseman. “A stochastic map for
uncertain spatial relationships”. In 4th International Symposium on Robotics
Research. MIT Press, 1987.

Sola et al. 2008  J. Sola, A. Monin, M. Devy & T. Vidal-Calleja. “Fusing Monocular
Information in Multicamera SLAM”. IEEE Transactions on Robotics, vol. 24, no. 5,
pages 958-968, 2008.

Stachniss et al. 2003  C. Stachniss and W. Burgard. “Exploring unknow
environments with mobil robots using coverage maps”. In int. Joint Conf. Artifitial
intelligence, pages 1127-1134, 2003.

Stachniss et al. 2006  C. Stachniss, O.M. Mozos and W. Burgard. “Speeding-up
multi-robot exploration by considering semantic place information”. Proceedings of
the IEEE International Conference on Robotics and Automation, 2006.

Tardos et al. 2002  J. D. Tardos, J. Neira, P. Newman, and J. Leonard. “Robust
mapping and localization in indoor environments using sonar data”. Int. J. Robotics
Research, 21(4):311-330, 2002.

Tardos et al. 2002b  Juan D. Tardós. “Data Association in SLAM”. Summer
School on SLAM. 2002.

Thrun et al. 2005  S. Thrun, W. Burgard, and D. Fox. “Probabilistic Robotics”. The
MIT Press, 2005.

Vidal-Calleja et al. 2006  T. Vidal-Calleja, A. J. Davison, J. Andrade-Cetto, and
D.W. Murray. “Active control for single camera SLAM”. In IEEE Int. Conf. Robot.
Automat., pages 1930–1936, 2006.

Walter et al. 2007  M. R. Walter, R. M. Eustice, and J. J. Leonard. “Exactly sparse
extended information filters for feature-based SLAM”. Int. J. Robotics Research,
26(4):335-359, 2007.

Bibliography

193

Williams et al. 2002  S. B. Williams, G. Dissanayake, and H. Durrant-Whyte. “An
efficient approach to the simultaneous localization and mapping problem”. In IEEE
Int. Conf. on Robotics and Automation, Vol. 1, pages 406-411, 2002.

Williams et al. 2004  S. Williams and I. Mahon. “Simultaneous localization and
mapping on the great barrier reef”. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2004.

Wurm et al. 2008  K.M. Wurm, C. Stachniss and W. Burgard. “Coordinated multi-
robot exploration using a segmentation of the environment”. Proceedings of the
IEEE-RSJ International Conference on Intelligent Robots and Systems, 2008.

Xiaoping et al. 1997  Y. Xiaoping and T. Ko-Cheng. “A wall-following method for
escaping local minima in potential field based motion planning”. Proceedings of the
International Conference on Advanced Robotics, 1997.

Yamauchi 1997  B. Yamauchi. “A frontier based approach for autonomous
exploration”. Proceedings of the IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 1997.

Yamauchi et al. 1998  B. Yamauchi, A. Schultz, and W. Adams. “Mobile robot
exploration and map-building with continuous localization”. In IEEE International
Conference on Robotics and Automation, pages 3715–3720, 1998.

Zhang et al. 2000.  L. Zhang and B.K. Ghost. “Line segment based map building
and localization using 2D laser range finder”. IEEE International conference on
robotics and Automation. Vol. 3. 2000.

Zunino et al. 2001.  G. Zunino and H.I. Christensen, “Simultaneous Localization
and Mapping in domestic Environments”. International Conference on Multisensor
Fusion and Integration for Intelligent Systems. 2001.

	Portada
	Mr. Philippe FRAISSE Professeur, Université Montpellier II Examinateur

	Index
	List of figures
	Capitulo 1 INTRODUCCION
	Capitulo 2 STATE OF THE ART
	Capitulo 3 EKF-SPLAM
	Capitulo 4 Topologic-SPLAM
	Chapter 5 Experimental Results
	Chapter 6 Conclusions and future work
	Bibliografia
	Blanc et al. 1995 (3TC. Blanc3T, C. Schlick. “5TX-splines: a spline model designed for the end-user”, 5TProceedings of the 22nd annual conference on Computer graphics and interactive techniques. 1995.
	Choset et al. 2001 (H. Choset and K. Nagatani. “Topological Simultaneous Localization and Mapping (SLAM): Toward Exact Localization Without Explicit Localization”. Transactions on Robotics and Automation Vol. 17. 2001.
	Di Marco et al. 2001(M. Di Marco, A. Garulli, S. Lacroix and A. Vicino. “Set membership localization and mapping for autonomous navigation”. International Journal of Robust and Nonlinear Control. 2001.
	Durrant-Whyte et al 2006. (Hugh Durrant-Whyte and Tim Bailey, “Simultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms”. IEEE Robotics and Automation Magazine 2006.

	Fisher et al. 2004 (J. Fisher, J. Lowther, C. Shene. ” If you know b-splines well, you also nnow NURBS!”. Proceedings of the 35th SIGCSE technical symposium on Computer science education. 2004.
	He et al. 2008 (X. C. He and N. H. C. Yung. “Corner detector based on global and local curvature properties”. Optical Engineering. 2008.
	Hu et al. 2002 (S. Hu, C. Tai and S. Zhang. “An extension algorithm for B-splines by curve unclamping”. Computer-Aided, 2002.
	Ishida 1997 (J. Ishida. “The general B-spline interpolation method and its application to the modification of curves and surfaces”. Computer-Aided Design, Volume 29, Issue 11, Pages 779–790, 1997.
	Jaulin 2009 (L. Jaulin. “A Nonlinear Set Membership Approach for the Localization and Map Building of Underwater Robots”. IEEE Transactions on Robotics, 2009.

	Joe et al. 1990 (B. Joe. “Knot insertion for Beta-spline curves and surfaces”. ACM Transactions on Graphics, 1990.
	Pedraza et al. 2009 (L. Pedraza, D. Rodriguez-Losada, F. Matia, G. Dissanayake and J.V. Miro. “Extending the Limits of Feature-Based SLAM with B-Splines”, Robotics, IEEE Transactions on, 2009.

