

THÈSE / UNIVERSITÉ DE BRETAGNE OCCIDENTALE
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE

Mention : STIC / Automatique
École Doctorale SICMA

présentée par

Aymeric Bethencourt
Préparée à l'ENSTA Bretagne (ex ENSIETA),
Equipe OSM, Pôle STIC

Analyse par intervalles pour
la localisation en essaim.
Application à la robotique

sous-marine.

Thèse soutenue le 30 septembre 2014
devant le jury composé de :

Luc JAULIN, directeur de thèse
Professeur, Université de Bretagne Occidentale, LAB-STICC, Brest.

Philippe BONNIFAIT, rapporteur
Professeur, Université de Technologie de Compiègne, Lab Heudiasyc,
Compiègne.

Simon LACROIX, rapporteur
Professeur, CNRS, Laboratory for Analysis and Architecture of Systems,
Toulouse.

Laurent HARDOUIN, examinateur
Professeur, Université d'Angers, Angers.

Benoit ZERR, examinateur
Professeur, Université de Bretagne Occidentale, LAB-STICC, Brest.

Gilles CHABERT, examinateur
Maître de conférences, École des Mines de Nantes, Nantes.

Gaël DESILLES, invitée
Responsable métier guidage-navigation, DGA, Bagneux.

Prey is a novel by Michael Crichton, first published in November 2002. The novel tells the story of
researchers that created a swarm of millions of robots in the nanometer range. The goal of this swarm was
to be an autonomous camera for military applications.

However, it escaped the control of the researchers and became self-aware and self-replicating, posing a threat
for all human beings. This apocalyptic scenario among many others shows the fear for scientific advances
and technological progress.

What if we lose control?

1

Interval Analysis for swarm localization. Application to underwater
robotics.

Aymeric BETHENCOURT

September 29, 2014

2

Contents

1 Introduction 17

1.1 Context . 17

1.2 Objectives, hypothesis, constraints and contributions. 18

1.3 Plan . 19

2 Interval analysis and its application to robot localization 21

2.1 Introduction . 21

2.2 Set-membership approach . 22

2.3 Interval analysis . 22

2.3.1 Intervals . 23

2.3.2 Interval Arithmetic . 25

2.3.3 Boxes . 26

2.3.4 Inclusion function . 27

2.3.5 Contractors . 29

2.4 Set Inversion Via Interval Analysis (SIVIA) . 34

2.4.1 Sub-paving . 34

2.4.2 SIVIA . 35

2.4.3 SIVIA with a contractor . 36

2.4.4 Robust SIVIA . 38

2.4.5 GOMNE . 41

2.5 Conclusion . 44

3

3 Computing optimal contractors using geometrical transformation 45

3.1 Introduction . 45

3.2 Contractors . 45

3.3 Extending contractor algebra for geometrical transformation 46

3.4 Computing a minimal contractor for Atan2 . 47

3.4.1 Step 1 : Building the contractor on a monotonic box. 48

3.4.2 Step 2 : Ox symmetry . 49

3.4.3 Step 3 : Oy symmetry . 49

3.4.4 Step 4 : 2π-modulo symmetry . 50

3.5 Application to robot localization . 51

3.6 Conclusion . 53

4 Solving non-linear constraint satisfaction problems involving time-dependant functions 57

4.1 Introduction . 57

4.2 Intervals of functions (or tubes) . 57

4.2.1 Tubes . 57

4.2.2 Tube arithmetic . 58

4.2.3 Constraint propagation on tubes . 60

4.2.4 State estimation . 64

4.3 Examples . 67

4.3.1 Example 1: Sinusoidal signal . 67

4.3.2 Example 2: Non-linear mass-spring system . 69

4.3.3 Example 3: Group of AUVs . 72

4.4 Conclusion . 80

5 Cooperative localization of underwater robots with unsynchronized clocks 81

5.1 Introduction . 81

5.2 Problem Statement . 82

5.3 Cooperative localization as a constraint satisfaction problem 83

4

5.4 Test cases . 85

5.4.1 Simple example with 2 AUVs. 85

5.4.2 Full simulation with 6 AUVs. 89

5.4.3 Sea testing with 2 real AUVs. 94

5.5 Conclusion . 94

6 Large-scale swarm localization using interval analysis 99

6.1 Introduction . 99

6.2 AUV model . 100

6.3 Behavioral command . 101

6.3.1 Reynolds’rules . 101

6.3.2 Separation . 102

6.3.3 Cohesion . 102

6.3.4 Alignment . 104

6.3.5 Swarming . 104

6.3.6 Adapting the Reynold’s rules to our model . 105

6.4 Test cases . 105

6.4.1 With 3 AUVs . 105

6.4.2 With 300 AUVs . 106

6.4.3 With 1,000 AUVs . 106

6.4.4 Performances . 106

6.5 Conclusion . 110

7 Conclusion 113

A Visual localization and 3D reconstruction using the Kinect device coupled with an IMU.117

A.1 Introduction . 117

A.2 Standard algorithms . 119

A.2.1 Principle . 119

5

A.2.2 About Sift . 119

A.2.3 About SURF . 120

A.2.4 About RANSAC . 121

A.2.5 About ICP . 122

A.2.6 About HOG-Man . 122

A.3 Our method . 122

A.3.1 About A-SIFT . 122

A.3.2 System of equations . 123

A.3.3 Forward-backward Algorithm . 124

A.3.4 Result . 125

A.4 Adding an IMU . 128

A.4.1 Why ? . 128

A.4.2 Position from acceleration . 128

A.5 Conclusion . 130

B Design and experimental validation of a visual goniometric localization system for a
group of indoor robot vehicles 131

B.1 Introduction . 131

B.2 Realization . 131

B.2.1 System design . 132

B.2.2 Coding the software . 134

B.3 Conclusion . 142

C Résumé en français 143

C.1 Introduction . 143

C.2 L’analyse par intervalle et son application à la localisation en robotique 144

C.2.1 L’approche ensembliste . 144

C.2.2 L’analyse par intervalle . 144

C.3 Résolution de systèmes de satisfaction de contraintes non linéaires impliquant des fonctions
dépendantes du temps . 149

6

C.4 Localisation coopérative de robots sous-marins avec horloges désynchronisés 155

C.5 Localisation de robots en essaim à grande échelle . 158

C.6 Conclusion . 161

Articles, Congresses and Reports 165

Summary of main contributions 167

Additional activities 169

Videos 175

Index 176

Bibliographie 179

7

8

List of Figures

2.1 The robot 4 (in purple) is localized by measuring distances with bounded errors to three other
robots (1, 2 and 3 in brown). 23

2.2 Multiple set-membership representations of the solution : (a) Interval box, (b) sub-paving,
(c) ellipsoids, (d) polyhedral approximations. 24

2.3 A box [1, 3]× [1, 2] . 27

2.4 Image of a box by the function f , the inclusion function [f] and the minimal inclusion function
[f]∗. 28

2.5 Example of both convergent and monotonic inclusion function. 28

2.6 Successive contractions of the box enclosing the position of robot 4, (a) at start, (b) after
applying the forward-backward contractor with robot 1, (c) with robot 2, (d) with robot 3,
(e) with robot 1, 2 and 3 again and (f) until a fixed point is reached. 33

2.7 Inner approximation X and outter approximation X̄ = X∪∆ X of the set X. The dashed
square represents the simple minimal box enclosing the set. Sub-pavings show to be more
powerful. 35

2.8 Inclusion test for set inversion. 37

2.9 (a) Simple SIVIA algorithm applied to a distance measurement d34 = [3, 4] to robot 3 at
position (3, 3). (b) The SIVIA algorithm with a contractor needs less bissections. 37

2.10 SIVIA with a contractor applied to the distance measurement, (a) with robot 3 only, (b) with
robot 1 and 3, (c) with robot 1, 2 and 3. 39

2.11 (a) A fourth measurement can improve the quality of the localization... (b) unless the mea-
surement is faulty. The subpavings of the inner and outter approximations are empty. 40

2.12 (a) 1-relaxed intersection, (b) 2-relaxed intersection and (c) 3-relaxed intersection. 42

3.1 θ =atan2(y, x) displayed in MATLAB. 48

3.2 CSIV IA applied to θ =atan2(y, x) for [θ] = [1, 1.3] . 49

9

3.3 CSIV IA applied to θ =atan2(y, x) for [θ] = [−1,−1.3] . 50

3.4 CSIV IA applied to θ =atan2(y, x) for [θ] = [−2,−2.3] . 51

3.5 CSIV IA applied to θ =atan2(y, x) for [θ] = [6, 7] . 53

3.6 (a) Angle measurement to robot 1, (b) to robot 1 and 2 and (c) to robot 1,2 and 3. 54

3.7 (a) 1-relaxed intersection and (b) 2-relaxed intersection. 55

4.1 A tube [x] of R which encloses the function x . 58

4.2 (a) represents the trajectory x and its tube [x], (b) the trajectory y and its tube [y], and (c)
illustrates the supremum x+ ∧ y+ (upper bound of the purple area) and infimum x− ∨ y−
(lower bound of purple area). 61

4.3 Asynchronous constraint propagation on tubes. 63

4.4 On the left, we illustrate the axial symmetry. On the right, the central symmetry. 64

4.5 Successive contraction of the tube [a]. 68

4.6 Mass-Spring-Sonar system . 69

4.7 MATLAB’s Ode45 solution for the mass-spring-sonar system. Notice that Ode45 is only used
to simulate the system using the differential equation and the initial conditions. Then a
sonar is simulated, and from the solution provided by Ode45, inter-temporal measurements
are generated. Without using the initial conditions (supposed unknown), but based solemnly
on the differential equation and the inter-temporal measurements, our interval approach then
allows us to find a tube around the solution. 75

4.8 Successive applications of the STRANGLE2 algorithm: (1) before application, (2) at k0 = 0s,
(3) at k0 = 0s, k0 = 25s and at k0 = 50s, and (4) for all k0 such that k0%5 = 0s. (p) is the
position and (s) is the speed. 76

4.9 Result on an x, ẋ plane of the STRANGLE2 bisections at (a) t = 0s and (b) t = 50s. The
white boxes represent tubes that get empty at some point. The blue boxes represent the
tubes that never have empty interval for all t. The solution is in the union of all these tubes.
These figures can be interpreted as a "slice" of the ([x], [ẋ]) tubes at a given time. Notice
that the slice at t = 0s gives us the initial conditions. 77

4.10 SwarmX v1 : 3D simulation of a group of 6 AUVs. AUVs 1,2 and 3 can contract their position
box when reaching the surface, and AUVs 4,5 and 6 can contract their position box when
communicating with other AUVs (communication symbolized by a red line between AUVs).
A video of the simulation is available on http://youtu.be/0cjzzsaWTvA. 78

10

http://youtu.be/0cjzzsaWTvA

4.11 Result of the contractions for the abscissa of robot i = 4, (a) if no ping is received, (b) if
2 pings is received and we use the contractor associated with the observation, (b) then we
use the contractor associated with the evolution with t increasing (real time) (c) then with t
decreasing (post-treatment). 79

5.1 When robot 1 sends a sonar signal, it is received by robot 2 after b(k)− a(k) seconds. Both
robots have moved during this time. Therefore the measurement is the distance from robot
1 at a(k) to robot 2 at b(k). 84

5.2 Illustration of the contraction of the position box and clock interval. The purple area rep-
resents all the possible positions for robot j compatible with the distance measurement to
robot i. As robot j already knows a box arround its position before receiving the signal, it
can contract his box using the forward-backward contractor. Notice that if there is "some
space left" in the purple area (possible contraction to the red doted rounded rectangle), this
usually translates in the forward-backward contractor as a contraction on the robot’s clock. . 86

5.3 (1) Both the position and the clock are contracted. (2) Only the position is contracted. (3)
Only the clock is contracted. 87

5.4 Simple example with two AUV moving on a circular trajectory. AUV 1 emits, AUV 2 receives. 88

5.5 Illustration of an hypothetical clock function in red and the tube that encloses it. 89

5.6 (1) AUV 1 sends a ping at what it thinks is ã(0) in its own clock. (2) We use the tube inverse
of [h1] to compute that the ping was actually sent at a time enclosed in [a(0)]. (3) We use the
tubes [x1] and [y1] to compute the position of AUV 1 when sending the ping. (4) The ping
sent to AUV 2 contains the data [a(0)], [y1(0)]([a(0)]) and [x1(0)]([a(0)]). (5) AUV 2 receive
the ping at what he thinks is b̃(0) in its clock. (6) We use the tube inverse of [h2] to compute
that the ping was actually received at a time enclosed in [b(0)]. (7) We use the tubes [x2] and
[y2] to compute the position of AUV 2 when receiving the ping. 90

5.7 (8) We apply our forward-backward algorithm, which contract the intervals [b(0)], [y2(0)]([b(0)])

and [x2(0)]([b(0)]). (9) We apply the contraction to the tube [h2] and re-synchronizing the
clock. (10) We can compute the receiving time in the robot’s own clock. (11) We apply
the contractions to the position tubes [x2] and [y2]. (12) We use the integral contractors to
propagate the constraint to the rest of the tube. 91

5.8 SwarmX v2 : 3D simulation of a group of 6 AUVs. The position of the AUVs is represented
by the boxes. The red line shows that the robots are in range of communication and the blue
circles represent the displacement of the sonar wave. A video of this simulation is available
on http://youtu.be/7Uzjr-U7xY4. 92

5.9 Contracted tubes for (a) [h4] and (b) [x4] if (1) no ping is received, (2) two pings are received
considering online localization, (3) two pings are received considering offl ine localization. . . . 93

11

http://youtu.be/7Uzjr-U7xY4

5.10 (a), (b), (c) and (d) : Sea testing in the Brest harbour, France, with two CISCREA AUVs. (e)
Satellite view (c© Google Earth) of the testing area. (f) The blue trajectory represents AUV
1 staying on the surface. The red trajectory represents AUV 2 supposed to stay underwater
(but actually on the surface as well to collect control GPS data). Both AUVs are commanded
with a joystick. The green lines represent simulated sonar pings when the AUV are in range.
A video of the experiment is available on http://youtu.be/1QFpko0tYO0. 95

5.11 Result of contraction on tubes enclosing (a) the abssica x2 of AUV 2 and (b) its clock h2. . . 96

6.1 Illustration of the separation rule. 102

6.2 Illustration of the cohesion rule. 103

6.3 Illustration of the alignment rule. 104

6.4 SwarmX v3 : (a) Position of the AUVs. (b) Vertices appears between the AUVs when they
are in range of communication. (c) Localization boxes of the AUVs. (d) Sonar pings emitted
by the AUVs. 107

6.5 At t0 = 0s we randomly introduce 300 AUVs into the simulation. 108

6.6 At tf = 30s, all AUVs are in swarming positions and well localized. A video of the simulation
is available on http://youtu.be/F4ntGSBS1J4. 109

6.7 Tubes [xi] and [yi] positions from t0 = 0s to tf = 30s for a random AUV i. 110

6.8 Simulation with 1,000 AUVs of 3 types. 111

A.1 Kinect’s projected IR structured light . 119

A.2 Principle of existing methods . 120

A.3 Comparison of the number of correspondances found on an ENSTA mechanical prototype
between SIFT on the left and A-SIFT on the right. 123

A.4 Selection of (a) 10 almost collinear correspondances, and (b) 3 non-collinear correspondances 125

A.5 Kinect capture of two poses. 126

A.6 The reconstructed structure from the two poses using the computed transform. 127

A.7 My own car reconstructed from 7 Kinect poses. A video of the capturing process is avail-
able on http://youtu.be/GZHYMGErA6E and the reconstructed model on http://youtu.be/
HKuSv8X3UWM. 127

A.8 The IMU is mounted on the Kinect. 128

A.9 Representation of the speed intervals (a) without zero speed at the end of the movement (b)
with zero speed at the end of the movement.. 129

12

http://youtu.be/1QFpko0tYO0
http://youtu.be/F4ntGSBS1J4
http://youtu.be/GZHYMGErA6E
http://youtu.be/HKuSv8X3UWM
http://youtu.be/HKuSv8X3UWM

B.1 A group of robot moving in the arena. 132

B.2 Early project view. 133

B.3 (a) First version of the LED Tower. (b) Second version of the LED Tower. 133

B.4 The Playstation Move (c© Sony Entertainment) . 133

B.5 (a) First prototype. (b) Second prototype. (c) Second prototype as seen by another robot.
(d) The assembly line. (e) Three completed robots. (f) The robots were built identical. . . . 135

B.6 (a) HSV measurements. (b) RGB measurements. The lozenges represents the red LED, the
crosses the blue LED and the circled crosses the green LED. 136

B.7 (a) At t = 0ms, we get a picture with the lights off. (b) At t = 250ms, we get a picture with
the lights on. (c) Subtration of (a) to (b) .(d) Segmentation of the colors. (e) Barycenters of
each segmented areas. 137

B.8 Simple representation of the distance measurement. 138

B.9 Calibration between the real distance to the robot and observed difference of height between
the LEDs on screen. 138

B.10 Polynomial interpolation of the data. 138

B.11 Geometrical representation of the azimut problem. The upper image represents the real world,
and the lower image the image observed by the webcam. 139

B.12 (a) Azimut calibration tests using a giant handmade protractor. (b) View from the webcam. 140

B.13 Distances in pixels between the blue (B), green (G) and red (R) LEDs when turning the robot.140

B.14 The 6 orientation areas of the observed robot in reference to the observer. 141

B.15 Example of the computation of the linearized equation of the orientation of the robot, here
in the R-G-B area. 141

B.16 The HMI of the localization program. 142

C.1 Le robot 4 (en violet) se localise grâce à des mesures de distance à erreur bornée avec trois
autres robots (1, 2 et 3 en marron). 145

C.2 Présentation de l’image d’une boite par la fonction f , de la fonction d’inclusion [f] et de la
fonction d’inclusion minimale [f]∗. 147

C.3 Contractions successives de la boite incluant la position du robot 4 (a) initialement (b) après
un appel au contracteur par propagation et retro-propagation sur la distance au robot 1, (c)
au robot 2, (d) au robot 3, (e) aux robots 1, 2 et 3 une seconde fois (f) jusqu’au point fixe. . 150

C.4 Un tube [x] de R qui encadre la fonction x. 151

13

C.5 Contractions successives du tube [a]. 154

C.6 Système masse-ressort-sonar . 155

C.7 Contractions successives de la position (1p, 2p, 3p et 4p) et de la vitesse (1v, 2v, 3v et 4v)
de la masse. 156

C.8 Quand le robot 1 émet un ping, celui-ci est reçu par le robot 2 après b(k) − a(k) seconds.
Chaque robot s’est déplacé pendant ce temps. La mesure est donc entre le robot 1 à l’instant
a(k) et le robot 2 à l’instant b(k). 158

C.9 Tubes contractés pour (a) [h4] et (b) [x4] si (1) aucun ping n’est reçu, (2) deux pings sont
reçus avec propagation online, (3) deux pings sont reçus avec propagation offl ine. 159

C.10 Illustration de la séparation. 160

C.11 Illustration de la cohésion . 160

C.12 Illustration de l’alignement. 161

C.13 Simulation de 500 AUVs. (a) représente la position réel des AUVs. (b) montre un lien entre
les AUVs à porté de modem acoustique, (c) montre les boites d’incertitude sur la position
des AUVs et (d) illustre la propagation des pings. 162

C.14 (a) The ENSTA robotics club. (b) Reproduction of the competition arena of the Coupe de
France de Robotique. (c) Measures provided in real-time by the scanning range finder. (d)
Localization of the robot in the arena, computed by ROS’s AMCL. (e) The early version of the
ENSTA robot. On top level is the computer running ROS. In the middle level is an Arduino
card with power bridges to control the motors, and on the lower level are the scanning range
finders and the wheels. (f) The latest version of the ENSTA robot in the competition against
the SUPELEC robot. 170

C.15 (a) The VAIMOS sailboat at the WRSC. (b) In red is the requested trajectory and in green
is the actual trajectory of the robot. 171

C.16 (a) The Université d’Angers team at the CAROTTE competition with its 3 robots ready to
start the mapping mission. (b) The arena, buit to reproduce an indoor environment. 172

C.17 (a) The ENSTA CISSEAU team at the SAUC-E competition, (b) getting a robot into the
water, (c) and launching the mission. 173

14

Thanks

I would like to thank :

- Luc JAULIN for his guidance as my supervisor,

- Laurent HARDOUIN for following my progresses over the years,

- Gilles CHABERT for his assistance with IBEX,

- Tamara BRIZARD for her support and for spellchecking this thesis,

- Fabrice LE BARS for his help on many technical issues,

- Annick BILLON COAT for her help with administrative paperwork,

- Simon LACROIX and Philippe BONNIFAIT for being my reporters and their precious insights,

- and finally the persons at the DGA that gave me the opportunity to realize this Ph.D.

I would not have been able to do it without you.

15

16

Chapter 1

Introduction

1.1 Context

Localization and spatial awareness are fundamental to any application involving mobility, and essential to
life on earth. The human body needs to be localized in space to move towards a goal. The main sensors
used by humans for localization are the eyes and the vestibular system, dedicated to balance. Just like the
human body, a good localization is essential for any mobile robotics application. However robots do not
yet have the same computing capability as the human brain. Although it is possible to use sensors similar
to the eyes; like cameras, or similar to the vestibular system, like gyroscopes, robots cannot yet effi ciently
localize themselves based solemnly on these sensors. Robots often use the Global Positioning System (GPS),
a space-based satellite navigation system that provides location and time information anywhere on or near
the Earth. However, what happens when the GPS is not; or partially not, available? For many indoor or
underwater applications, the GPS is simply not a solution as the high frequency electromagnetic waves that
it uses barely propagate in these environments.

As the number of underwater operations increases every year, the need for autonomous underwater robots
becomes greater. My recent interview on the subject for national television is a testament to the flourishing
interest on the subject from both the public and private sectors (interview available on http://youtu.be/
Zwjbufay9Z0). As the interviewer states, renewable marine energies and the exploitation of underwater
resources are fields that are expanding exponentially. These resources can be exploited through deep-
water off-shore structures that require regular inspection. This job is usually done by operators onboard
submarines, which can be perilous, or remotely by operators using Remotely Operated Vehicles (ROVs). The
latter has multiple drawbacks including a heavy cable (called umbilical cable) needed to connect the station
to the ROV for control and power. Regardless of the method used, the work stays repetitive and laborious
for the operator. However; this work can be automated using Automated Underwater Vehicles (AUVs)
[Veres et al., 2008], which do not need an umbilical cable to operate. Neither do they need an operator as
the mission is done autonomously using the embedded algorithms in the AUV. To accomplish this, they need
the best possible localization to reach their objective and return to the station [Baccou and Jouvencel, 2002].

There are many other underwater robotics applications in the fields of oceanography, biology and wreck
exploration. As this thesis has been realized under fundings of the Délégation Général pour l’Armement

17

http://youtu.be/Zwjbufay9Z0
http://youtu.be/Zwjbufay9Z0

18 Chapter 1. Introduction

(DGA), the french military procurement agency, military applications are also heavily considered, for which
applications are area inspection and mine sweeping among others. In both the civilian and military fields, it
is sometimes necessary to use a group or a swarm of robots that need to cooperate to realize a task. Projects
like SpiceRack (http://www.cgg.com/default.aspx?cid=5650) realized by CGG and Saudi Aramco will
use a swarm of 3,000 underwater AUVs to realize seismic surveys of the seabed. For this, the AUVs in
the swarm need to position themselves in a precise grid pattern, and stay in position despite potentially
strong currents. It is important that the robots localize themselves effectively and quantify the error on
their position. If the robot is not where "it thinks" it is, the seismic survey could be corrupted, or a robot
could collide against another AUV.

In this context, the use of interval methods is relevant as they allow to represent the set of compatible
solutions and their uncertainty. Measures from sensors or variables used to describe the state of the robots
are often filled with errors. These can be represented is several ways : probabilistic distributions, point
clouds, continuous sets, etc. Usually, sensors and actuators are provided with error bounds, which can
be represented as intervals. Using these intervals and a set of equations or inequations, interval analysis
allows to numerically compute the interval enclosing the solution. Moreover, interval analysis has several
advantages. It works for non-linear equations without approximation, and common functions like cos, exp
or sqrt can be used as are. Moreover, the results are guaranteed. No solution can exist outside the bounds
of the interval (according to the data and hypothesis considered). If the result of the computation is an
empty set, then there is no solution (or there exists a flaw in the conception or realization of the algorithm).
Finally, interval methods are a very to solve systems with a much higher number of equations compared to
the number of variables, which is particularly useful for a swarm of robots.

1.2 Objectives, hypothesis, constraints and contributions.

- Multiple thesis have been written on solving the localization of one AUV with interval analysis using
SLAM (Simultaneous Localization and Mapping) with fleeting data [Le Bars, 2011], using set polynomial
based solvers and accumulators [Sliwka, 2011], or even using visibility contractors [Guyonneau, 2013]. Yet,
none of them considers the problem of localizing several AUVs moving in a swarm. This is therefore the
main focus of this thesis.

- We successively consider a group of 2, then 6, then 300, and finally 1,000 AUVs.

- We consider the system on AUVs to be decentralized (or distributed), meaning each AUV only computes
its own localization; in opposition to a centralized system where a central unit computes the position of all
AUVs.

- We consider that the robots are well spaced, meaning that they might have moved between the time of
emission and reception of acoustic waves.

- We consider that the robots have unsynchronized clocks, which is often the case in real applications and
complicates the localization problem.

- We consider both online localization (the position is computed in real-time as the robot performs its
mission) and offl ine localization (the robot performs its whole mission, then the trajectory is reconstructed

18

http://www.cgg.com/default.aspx?cid=5650

1.3. Plan 19

after the mission from all the data collected).

- We use an Inertial Measurement Unit (or IMU , an electronic device that measures and reports on an
AUV’s velocity, orientation, and gravitational forces, using a combination of accelerometers and gyroscopes,
sometimes also magnetometers), to easily obtain the orientation of the robot with good precision. Therefore,
this thesis focuses on solving the position of the robots rather than their orientation, considered known.

- In this thesis, we often consider the resolution of differential equations. As a lot of research have already
been done on this specific subject [Nedialkov, 2006][Nedialkov et al., 1999], it is not the focus of this thesis.
We purposefully use a simple Euler method to solve the equations and prove the concept, despite loosing
the interval guarantee.

- All developments are done in the IBEX (Interval Based EXplorer) library [Chabert and Jaulin, 2009](http:
//www.ibex-lib.org/) for easy reusability and transparency of the results.

1.3 Plan

In this first chapter we introduced the notion of localization and why it is important for autonomous robots,
especially underwater.

In the second chapter we present the basic notions of interval arithmetic and a few algorithms to estimate
parameters of a given system with observations of this system with bounded errors. Using set inversion
via interval analysis, we compute an inner and outer approximation of a static localization problem with
outliers.

In the third chapter we extend the contractor algebra to allow for the geometrical transformation of contrac-
tors and show that it is possible to build minimal contractors in a very easy way for some constraints with
symmetries. As an application, we consider the construction of a contractor associated with the constraint
θ = atan2 (x, y) and demonstrate its effi ciency on another static localization problem.

In the fourth chapter we no longer consider static problems and modelize dynamic systems. We introduce
the notion of tubes, or interval of functions to enclose intervals at different times. Then, an arithmetic is
developed around this notion, and a contractor-based approach follows. As a result, a method is proposed
to contract tubes that enclose the solution. Several test cases are provided to demonstrate the approach,
including the estimation of the position of AUVs.

In the fifth chapter we go further by considering that the clocks of the robots are unsynchronized, making
time measurements uncertain. To solve this problem, we consider the cooperative localization problem as
an inter-temporal constraints satisfaction problem. We contract the box around the position of the AUVs
and their clock using a forward-backward algorithm on each measurement made by the AUVs. A simulator
is developed to prove the effi ciency of the algorithm and real tests at sea are then made.

Finally, the sixth chapter focuses on studying the scalability of our approach by scaling up our simulation
to 1,000 AUVs evolving together in real-time.

The seventh chapter concludes the thesis.

19

http://www.ibex-lib.org/
http://www.ibex-lib.org/

20 Chapter 1. Introduction

20

Chapter 2

Interval analysis and its application to
robot localization

2.1 Introduction

Interval analysis has become over the past few years a strong alternative to traditional probabilistic ap-
proaches [Bonnifait and Garcia, 1996][Lacroix et al., 2002][Thrun et al., 2005] to solve complex non-linear
systems of equations, e.g. Simultaneous Localization And Mapping [Di Marco et al., 2001][Jaulin, 2011],
[Drocourt et al., 2005], 3D Reconstruction (presented in annex A), path planning [Delanoue et al., 2006],
design of robust controllers [Lhommeau et al., 2004], or more generally the characterization of the state
evolution of dynamic systems [Aubin and Frankowska., 1990][Abdallah et al., 2008]. The idea is to cast the
system as a constraint satisfaction problem by considering intervals enclosing the solution and use contractors
(built from the constraints) to successively contract these intervals until a fixed point is reached.

This first chapter introduces the basic notions of interval analysis and demonstrates their application to a
simple academic localization problem. The objective is to estimate a vector of parameters from a set of
measurements. In other words, we want to find the position of the robots given distance measurements
between them. We first consider the problem to be planar and static, meaning that the time is fixed and
therefore that the robots are not moving (we will study dynamic systems in the following chapters). The
distance measurements are synchronous, meaning that all measurements are obtained at the same sampling
time.

Consider the following problem : A robot of unknown Cartesian position measures its distance to other
robots, for which their positions are known. This problem is similar to positioning problems involving fixed
beacons [Drevelle, 2011]. Consider each robot capable of radio-communication (or acoustic communication
underwater) and able to measure distances using time-of-flight technics [Röhrig and Müller, 2009]. The
observation model is :

dij =
√

(xi − xj)2 + (yi − yj)2 (2.1)

21

22 Chapter 2. Interval analysis and its application to robot localization

where (xi, yi) are the coordinates of robot i, (xj , yj) are the coordinates of robot j and dij the distance
measured between them. Notice that this problem is non-linear, especially when robots are close to each
other.

Outliers can appear when the measurement error is too high (e.g. because of interferences) or when the
observation model poorly matches the reality. For instance, when robots are indoors, radio waves can reflect
on the walls, a phenomenon known as multi-beam paths. In some extreme cases, a robot might only receive
a reflected wave and therefore measure the reflected distance instead on the true line of sight distance.

Like with beacons, a robot needs to measure the distances to a minimum of three other robots with known
positions to localize itself effi ciently, a technique known as triangulation. Usually, and especially in swarms,
robots can actually collect many more measurements. This redundancy can be used to increase the precision
of the localization, and eventually detect and exclude outliers.

This chapter is organized as follows. Section 2 briefly introduces the set-membership approach and section
3 presents the basics of interval analysis. These tools are then used in section 4 to solve the localization
problem via set inversion. Section 5 concludes the chapter.

2.2 Set-membership approach

We consider a set-membership approach which is based on bounded errors and consists in computing all
the parameters compatible with the observation and their respective error bounds. The bounds on the
observation are supposed to be known. Therefore, the problem is not to find the value of the parameters
that minimize the error, but to find all values compatible with the observation bounds.

Consider that the error on the distances measured by our robot is bounded. We can write dij ∈ dmeasuredij +

[eij] where dij is the real distance, dmeasuredij is the measurement and [eij] is the interval enclosing the mea-
surement error. The measurements are thus represented by rings centered on each robot. The intersection
of the rings encloses the position of the robot making the measurements. Fig. 2.1 demonstrates the principle
for one robot measuring its distance to three others.

Notice that the solution set can have any shape. That’s why multiple set-membership representations
have been developed over the years, each more or less adapted to specific classes of problems. From old-
est to newest, we can find interval boxes [Moore, 1966], sub-pavings [Jaulin and Walter, 1993], ellipsoids
[Maksarov and Norton, 1996] and polyhedral approximations [Combastel, 2005]. Fig. 2.2 illustrates each
representation. However, for non-linear systems, only intervals and sub-pavings have been proven effi cient
[Jaulin et al., 2001a], which is why this thesis will only consider these.

2.3 Interval analysis

In interval analysis, we consider intervals instead of real numbers. This was first developed to quantify
the error on numerical computations [Moore, 1966]. In computers, real numbers are usually represented by
floats with limited significant digits. This limitation leads to a small error that can drastically propagate

22

2.3. Interval analysis 23

Figure 2.1: The robot 4 (in purple) is localized by measuring distances with bounded errors to three other
robots (1, 2 and 3 in brown).

and increase along successive operations. In this thesis, we will use interval analysis to manipulate the
uncertainty on parameters. This section presents its basics.

2.3.1 Intervals

An interval [x] is defined as the set of numbers x between a lower bound x and an upper bound x̄.

[x] = [x, x̄] = {x ∈ R, x ≤ x ≤ x̄} (2.2)

This representation has several advantages: it allows us to represent random variables with imprecise prob-
ability density functions, deal with uncertainties in a reliable way and more importantly, it is possible
to contract the interval around all feasible values given a set of constraints (i.e. equations or inequali-
ties). For example, the sets ∅ = [∞,−∞]R; R = [−∞,∞]R; [0, 1]R and [0,∞]R are intervals of R, the set
{2, 3, 4, 5} = [2, 5]N is an interval of the set of integers N and the set {4, 6, 8, 10} = [4, 10]2N is an interval of
2N. Let us first work with intervals of R.

The intersection of two non-empty closed intervals [x] and [y] satisfies:

[x] ∩ [y] =

{
[max{x, y},min{x̄, ȳ}]

∅
if max{x, y} ≤ min{x̄, ȳ}

otherwise
(2.3)

Example: [1, 3] ∩ [2, 5] = [2, 3]

23

24 Chapter 2. Interval analysis and its application to robot localization

Figure 2.2: Multiple set-membership representations of the solution : (a) Interval box, (b) sub-paving, (c)
ellipsoids, (d) polyhedral approximations.

24

2.3. Interval analysis 25

The interval union of two non-empty closed intervals [x] and [y] satisfies:

[x] t [y] = [min{x, y},max{x̄, ȳ}] (2.4)

Example: [1, 3] t [5, 7] = [1, 7]

The interval union is not to be mistaken with the simple union ∪ which might not be an interval. We define
the interval hull of a subset X of R as the smallest interval [X] that contains it. Therefore:

[x] t [y] = [[x] ∪ [y]] (2.5)

The center of a non-empty closed interval [x] is

mid([x]) =
x+x̄

2
(2.6)

The width of a non-empty interval [x] is

w([x]) = x̄− x (2.7)

A punctual interval is denoted by {x} = [x, x].

2.3.2 Interval Arithmetic

We can apply arithmetic operators and functions to intervals to obtain all feasible values of the variables.
For example, consider a real α and [x] a non-empty interval. Then

α[x] =

{
[αx, αx̄]

[αx̄, αx]

if α ≥ 0

if α ≤ 0
(2.8)

For two intervals [x] and [y] and an operator � ∈ {+,−, ∗, /}, we define [x] � [y] as the smallest interval
containing all feasible values for x � y when x ∈ [x] and y ∈ [y] or

[x] � [y] = [{x � y ∈ R|x ∈ [x], y ∈ [y]}] (2.9)

In the case of closed intervals, we have

[x] + [y] = [x+ y, x̄− ȳ] (2.10)

[x]− [y] = [x− ȳ, x̄− y] (2.11)

[x] ∗ [y] = [min{xy,xȳ,x̄y,x̄ȳ},max{xy,xȳ,x̄y,x̄ȳ}] (2.12)

25

26 Chapter 2. Interval analysis and its application to robot localization

The inversion is given by

1/[y] =

∅
[1/ȳ, 1/y]

[1/ȳ,∞[

]−∞, 1/ȳ]

]−∞,∞[

if [y] = [0, 0]

if 0 /∈ [y]

if y = 0 and ȳ > 0

if y < 0 and ȳ = 0

if y < 0 and ȳ > 0

(2.13)

and the division by

[x]/[y] = [x] ∗ (1/[y]) (2.14)

These rules are simplified for punctual intervals, in which case we use the rules of arithmetic for real numbers.
Therefore interval arithmetic can be considered as an extension of the arithmetic for real numbers.

For example:

[−1, 3] + [2, 7] = [1, 10] (2.15)

[−1, 3]− [2, 7] = [−8, 1] (2.16)

[−1, 3].[2, 7] = [−7, 21] (2.17)

[−1, 3]/[2, 7] = [−1/2, 3/2] (2.18)

2.3.3 Boxes

A box [x] of Rn is the Cartesian product of n intervals. The set of all boxes of Rn is denoted by IRn.

[x] = [x1]× ...× [xn] = [x1, x̄1]× ...× [xn, x̄n] (2.19)

Fig. 2.3 represents an axis-aligned box of Rn.

Most rules defined for intervals are compatible with boxes. Thus, upper and lower bounds for a box are

x = (x1, ..., xn)T (2.20)

x̄ = (x̄1, ..., x̄n)T (2.21)

The width of a box is defined by

w([x]) = max
1≤i≤n

w([xi]) (2.22)

26

2.3. Interval analysis 27

Figure 2.3: A box [1, 3]× [1, 2]

Finally, operations on intervals can be extended to operations on boxes by considering interval computations
on each component of the box.

2.3.4 Inclusion function

The image of f([x]) of an interval by a function f is

f([x]) = {f(x)|x ∈ [x]} (2.23)

This image might not be an interval. Indeed, if f is not continuous f([x]) is a union of intervals. The
interval extension is defined as the function returning the following interval hull:

[f]([x]) = [{f(x)|x ∈ [x]}] (2.24)

The interval extension of elementary functions can be directly written through its bounds. E.g., for a
non-empty interval [x], the interval extension of the exponential function is

[exp]([x]) = [expx, exp x̄] (2.25)

In case of non-monotonic functions, the situation is more complex. Indeed [cos]([−π, π]) = [−1, 1] differs
from [cos(−π), cos(π)] = [−1,−1]. Specific algorithms can be constructed for the interval evaluation of such
functions [Bouron, 2002].

In the same way, the image of a box [x] by a function f is usually not a box, and there is no both exact and
easy representation of the image set. We will therefore use inclusion functions, which enclose the image by
a box. The interval function [f] : IRn → IRm is an inclusion function for f : Rn → Rm if and only if

∀[x] ∈ IRn, f([x]) ⊂ [f]([x]) (2.26)

27

28 Chapter 2. Interval analysis and its application to robot localization

Figure 2.4: Image of a box by the function f , the inclusion function [f] and the minimal inclusion function
[f]∗.

Figure 2.5: Example of both convergent and monotonic inclusion function.

In other words, for all shapes of f([x]), [f]([x]) contains the image of [x] by f . Fig. 2.4 illustrates this notion.

An inclusion function is thin if the image of a punctual interval {x} is a punctual interval, i.e. if [f]({x}) =

f({x}).

An inclusion function is convergent if for a series of boxes [x](k), we have

lim
k−→∞

w([x](k)) = 0 =⇒ lim
k−→∞

w([f]([x](k))) = 0 (2.27)

Convergence is usually a requirement for algorithms using interval analysis.

An inclusion function is monotonic in respect with the inclusion if [x] ⊂ [y] =⇒ [f]([x]) ⊂ [f]([y]).

An inclusion function is minimal if, for all [x], [f]([x]) is the smallest box enclosing f([x]). This inclusion
function is unique and is noted [f]∗. All inclusion functions that are not the minimal inclusion functions are
called pessimistic because of the poor enclosure of the image.

Consider a function f built as a finite number of compositions of elementary functions (e.g. sin, cos, sqr,
max, etc.) and operators (+,−, /, ∗). A simple method to build an inclusion function for f is by replacing
the scalar variables by their interval counterpart and replacing the elementary functions by their interval

28

2.3. Interval analysis 29

extension. The function obtained is called the natural inclusion function and is denoted [f]n. It is finite
and monotonic in respect to the inclusion. Moreover, if f is solely made of continuous elementary functions,
then [f]n is convergent.

Example : Consider f(x, y) = x∗y+cos(x+y)−
√
x+ 2. The natural inclusion function of f is [f]n([x], [y]) =

[x] ∗ [y] + cos([x] + [y])−
√

[x] + 2.

Natural inclusion functions are usually not minimal because of dependencies between variables and the
wrapping effect. However, the natural inclusion function will be minimal if each variable appears only once
in the definition of f and if all operators and elementary functions used are continuous.

In our localization example with four robots, the observation function is :

g : R2 → R3(
x4

y4

)
7−→

√

(x4 − x1)2 + (y4 − y1)2√
(x4 − x2)2 + (y4 − y2)2√
(x4 − x3)2 + (y4 − y3)2

 (2.28)

The natural inclusion function for g is :

[g] : IR2 → IR3(
[x4]

[y4]

)
7−→

√

([x4]− [x1])2 + ([y4]− [y1])2√
([x4]− [x2])2 + ([y4]− [y2])2√
([x4]− [x3])2 + ([y4]− [y3])2

 (2.29)

Notice that for now, we consider the position of robots 1,2 and 3 as punctual intervals (i.e. [x1] = {x1}).
Moreover, as each variable appears only once and as we only use continuous elementary functions and
operators, [g] is the minimal inclusion function for g.

2.3.5 Contractors

Consider nx real variables xi ∈ R, i ∈ {1, ..., nx} linked by nf relations (or constraints) of the form :

fj(x1, x2, ..., xnx) = 0, j ∈ {1, ..., nf} (2.30)

whereby fj denotes the function for each coordinate j. We know that each variable xi belong to a domain
Xi. To simplify, we consider the domains as intervals noted [xi]. We define x = (x1, x2, ..., xnx)T and the
domain for x as [x] = [x1] × [x2] × ... × [xnx]. We also note that f is a function with coordinate functions

29

30 Chapter 2. Interval analysis and its application to robot localization

fj . We can therefore re-write (2.30) in a vector form f(x) = 0 and this represents a constraint satisfaction
problem (CSP) that we can call = and write

= : (f(x) = 0, x ∈ [x]) (2.31)

Therefore a CSP is composed of a set of variables, domains containing these variables, and constraints. The
solution S of = is defined as

S = {x∈ [x]|f(x) = 0} (2.32)

Contracting a CSP = consists in replacing the domain [x] with a smaller domain [x′] without changing the
solution set. We have S ⊂ [x′] ⊂ [x]. An operator that allows the contraction of = is called a contractor.
We define the minimal contractor as the contractor replacing [x] by the smallest box containing S.

Many problems of estimation, control, robotics, etc. can be represented as constraint satisfaction problems
[Araya et al., 2008][Ceberio and Granvilliers, 2001] and many contractors can be designed to contract the
domains more of less well depending on the class of the problem [Chabert and Jaulin, 2009] : Gauss elimina-
tion, Gauss-Seidel algorithm, Krawczyk method, Newton algorithm, etc. [Jaulin et al., 2001a]. The one we
are going to use in our localization problem is the forward-backward contractor (also known as HC4-Revise)
[Benhamou et al., 1999] which contracts the domains of the CSP = : (f(x) = 0, x ∈ [x]) by isolating each
constraint separately. We suppose that each constraint has the form fj(x1, x2, ..., xnx) = 0, and that the
function fj can be broken down into a series of operations involving operators and elementary functions
such as +,−, ∗, /, sin, cos, exp, etc. called primary constraints.

In our localization problem, the associated constraint with the distance measurement is written:

d =
√

(xi − xj)2 + (yi − yj)2 (2.33)

It can therefore be broken down into primary constraints by introducing intermediate variables:

i1 = −xj
i2 = xi + i1

i3 = i22

i4 = −yj (2.34)

i5 = yi + i4

i6 = i25

i7 = i3 + i6

d =
√
i7

The initial domains associated with the intermediate variables ik are] − ∞;∞[. A method to contract
= with the constraint is to contract each primitive constraint until the contractor reaches a fixed point.

30

2.3. Interval analysis 31

This is the principle of constraint propagation introduced by Waltz [Waltz, 1975]. For constraints involving
two variables and a function, such as the square root, two steps of contraction are made by rewriting the
constraint: one from the direct image of the function and one from the inverse. E.g. the constraint d =

√
i7

can be re-written in two forms:

d =
√
i7 (2.35)

i7 = d2 (2.36)

and the contraction steps are :

[d] = [d] ∩
√

[i7] (2.37)

[i7] = [i7] ∩ [d2] (2.38)

For constraints linking three variables with a binary operation such as an addition, there are three ways
to rewrite the constraint. Let’s consider the constraint i7 = i3 + i6 with for example the initial intervals
[i3] = [−∞, 2], [i6] = [−∞, 3] and [i7] = [4,∞]. We can easily contract these intervals without removing any
feasible value:

i7 = i3 + i6 → i7 ∈ [4,∞] ∩ ([−∞, 2] + [−∞, 3])

= [4,∞] ∩ [−∞, 5] = [4, 5] (2.39)

i3 = i7 − i6 → i3 ∈ [−∞, 2] ∩ ([4,∞]− [−∞, 3])

= [−∞, 2] ∩ [1,∞] = [1, 2] (2.40)

i6 = i7 − i3 → z ∈ [−∞, 3] ∩ ([4,∞] + [−∞, 2])

= [−∞, 3] ∩ [2,∞] = [2, 3] (2.41)

We obtain smaller intervals: [i3] = [1, 2], [i6] = [2, 3] and [i7] = [4, 5].

The same principle is applied for all primary constraints in (2.34) in order to contract the intervals around the
feasible values of (2.33). The sequence of contractions made by the forward-backward algorithm is optimal to
maximize the contraction. The forward-backward algorithm is presented in table 2.1 and runs successively
on each constraint, i.e. each distance measurement. The contractor is minimal for each constraint but
dependencies between constraints might make it so that the contractions are not minimal for the whole
system. To contract the CSP further, we can run the contractor again and again until a fixed point is
reached.

A similar approach have been used in [Gning and Bonnifait, 2006] to localize a real car.

Fig. 2.6 presents the successive contractions that occur when calling the forward-backward contractor
associated with each distance measurement until a fixed point is reached.

31

32 Chapter 2. Interval analysis and its application to robot localization

Algorithm CFB (in : box, inout : [xi], [xj], [yi], [yj], [d])
// Forward steps

1 [i1] := [i1] ∩ −[xj]

2 [i2] := [i2] ∩ ([xi] + [i1])

3 [i3] := [i3] ∩ [i2]2

4 [i4] := [i4] ∩ [−yj]
5 [i5] := [i5] ∩ ([yi] + [i4])

6 [i6] := [i6] ∩ [i5]2

7 [i7] := [i7] ∩ ([i3] + [i6])

8 [d] := [d] ∩
√

[i7]

// Backward steps
9 [i7] := [i7] ∩ [d]2

10 [i3] := [i3] ∩ ([i7]− [i6])

11 [i6] := [i6] ∩ ([i7]− [i3])

12 [i5] := [i5] ∩
√

[i6]

13 [yi] := [yi] ∩ ([i5]− [i4])

14 [i4] := [i4] ∩ ([i5]− [y])

15 [yj] := [yj] ∩ −[i4]

16 [i2] := [i2] ∩
√

[i3]

17 [xi] := [xi] ∩ ([i2]− [i1])

18 [i4] := [i4] ∩ ([i2]− [xi])

19 [xj] := [xj] ∩ −[i1]

Table 2.1: Forward-backward algorithm applied to distance measurement (2.33).

32

2.3. Interval analysis 33

Figure 2.6: Successive contractions of the box enclosing the position of robot 4, (a) at start, (b) after
applying the forward-backward contractor with robot 1, (c) with robot 2, (d) with robot 3, (e) with robot
1, 2 and 3 again and (f) until a fixed point is reached.

33

34 Chapter 2. Interval analysis and its application to robot localization

Let us consider another example involving three constraints:

(C1) : y = x2 (2.42)

(C2) : xy = 2 (2.43)

(C3) : y = −x+ 1 (2.44)

If we have no information about x and y, we assign them the domain [−∞,∞]. Then, we contracts these
domains by applying the contractors until the contractions a not significant anymore. Notice that the
resulting domains are not dependent on the order in which we apply the contractors. However, computation
time might be. Let’s apply them in the following order:

(C1)→ y ∈ [−∞,∞]2 = [0,∞] (2.45)

(C2)→ x ∈ 2/[0,∞] = [0,∞] (2.46)

(C3)→ y ∈ [0,∞] ∩ ((−3).[0,∞] + 1) = [0, 1] (2.47)

x ∈ [0,∞] ∩ (−[0, 1]/3 + 1/3) = [0, 1/3]

(C1)→ y ∈ [0, 1] ∩ [0, 1/3]2 = [0, 1/9] (2.48)

(C2)→ x ∈ [0, 1/3] ∩ 1/[0, 1/9] = ∅ (2.49)

y ∈ [0, 1/9] ∩ 1/∅ = ∅

We obtain empty intervals which means that there is no feasible values for x and y that satisfy the system.

2.4 Set Inversion Via Interval Analysis (SIVIA)

Intervals and boxes are easy to manipulate thanks to interval arithmetic and inclusion functions. Contrac-
tors, as defined in the previous section, contract boxes according to given constraints. However, the form of
the solution set might be complex and its enclosure by a simple box might not be satisfactory, especially if
the solution set is dissociated.

2.4.1 Sub-paving

In order to represent a complex set X accurately while taking advantage of interval methods, we use sub-
pavings of Rn. A sub-paving of a box [x] ⊂ Rn is the union of non-empty non overlapping boxes. Two boxes
of the same sub-paving can have a non-empty intersection if they have a common border, but their inside
have to be disjoint.

As presented in Fig. 2.7, we can enclose the set X in-between two sub-pavings : an inner approximation X
and an outer approximation X̄ = X∪∆X, where ∆X is the sub-paving of the border, such that:

X ⊂ X ⊂ X̄ (2.50)

34

2.4. Set Inversion Via Interval Analysis (SIVIA) 35

Figure 2.7: Inner approximation X and outter approximation X̄ = X∪∆ X of the set X. The dashed square
represents the simple minimal box enclosing the set. Sub-pavings show to be more powerful.

Knowing X and X̄ gives us powerful information about X, e.g. if X is non-empty then X is non-empty as
well, and if X̄ is empty then X is empty as well. The volume of the sub-paving enclosing ∆X characterize
the precision of the approximation.

When each box of a sub-paving can be obtained with successive bisections, the sub-paving is called regular.
Regular sub-pavings have multiple advantages including their representation as a binary tree in machines,
which limits their storage in memory and make it easy to manipulate them for operations like the union,
the intersection or the inclusion [Jaulin et al., 2001b].

2.4.2 SIVIA

We want to characterize the set X such that f(x) = y where f :X −→ Y, i.e. we want to characterize
the inverse image x = f−1(y) by considering Y as a sub-paving. The SIVIA (Set Inversion Via Interval
Analysis) algorithm presented in table 2.2 computes an inner and outer approximation X and X̄ for X
[Jaulin and Walter, 1993]. Notice that as the algorithm works with boxes, a convergent inclusion function
[f] for f is needed. The algorithm works as follows :

- A starting box [x] is provided, and is guaranteed to enclose the solution. As we may have no specific
knowledge about the solution, the box provided can be very large.

- An inclusion test is performed on [x] using [f].

· If [f]([x]) ∩ [y] = ∅ then f([x]) ∩ [y] = ∅. In other words, if the image [x] by [f] is disjoint from Y,
then [x] is guaranteed not to belong to the solution set. The box is discarded. This case is presented in fig.

35

36 Chapter 2. Interval analysis and its application to robot localization

Algorithm SIV IA (in : [x], f , [y], ε ; inout: X, X̄)
1 if [f]([x]) ∩ [y] = ∅ then
2 draw([x], ’blue’); return
3 end if
4 if [f]([x]) ⊂ [y] then
5 X = X∪[x]; X̄ = X̄∪[x];draw([x], ’red’); return
6 end if
7 if w([x]) < ε then
8 X̄ = X̄∪[x];draw ([x], ’yellow’); return
9 end if
10 bisect [x] into [x1] and [x2]

11 SIV IA([x1], f , [y], ε, X, X̄)
12 SIV IA([x2], f , [y], ε, X, X̄)

Table 2.2: SIVIA

2.8(a).

· If [f]([x]) ⊂ [y] then f([x]) ⊂ [y], i.e. if the image [x] by [f] is included in Y, then [x] is guaranteed to
belong to the solution set. The box is added to the sub-paving of X and X̄. This case is presented in fig.
2.8(b).

· For all other cases, [x] is considered undetermined and bisected into two sub-boxes on which SIVIA
is run again. This case is presented in fig. 2.8(c).

- The algorithm is run recursively until the undetermined boxes reach a given width ε.

Fig. 2.9(a) presents the result of the SIVIA algorithm applied to a distance measurement d43 = [3, 4] to
robot 3 at position (3, 3). The red sub-paving represents the inner approximation X for the solution and
the union of the red and yellow sub-pavings represent the outer approximation X̄ for the solution. The blue
sub-paving is guaranteed not to contain the solution.

2.4.3 SIVIA with a contractor

bisections are costly in terms of computation time. In order to improve it, we can use a version of SIVIA
using a contractor C that contracts the box [x] around the solution before applying the bisection. For a
given number of bisections, the sub-paving obtained is more precise than with a simple SIVIA algorithm.
Multiple contractors can be used for C as described in the previous section.

The table 2.3 presents the algorithm and fig. 2.9(b) shows the new sub-paving. Notice that the sub-paving
obtained is no more regular, but that every box is now touching the border ∆X, which shows that the
contractor we use is minimal (also called optimal).

Let us now apply the algorithm to all distance measurements in our localization problem. As a reminder,
we are looking to enclose the position of robot 4 in a sub-paving knowing the distance to robot 1, 2 and 3.

36

2.4. Set Inversion Via Interval Analysis (SIVIA) 37

Figure 2.8: Inclusion test for set inversion.

Figure 2.9: (a) Simple SIVIA algorithm applied to a distance measurement d34 = [3, 4] to robot 3 at position
(3, 3). (b) The SIVIA algorithm with a contractor needs less bissections.

37

38 Chapter 2. Interval analysis and its application to robot localization

Algorithm CSIV IA (in : [x], C, f , [y], ε ; inout: X, X̄)
1 [x] := C([x])

2 if [x] = ∅ then
3 return
4 end if
5 if [f]([x]) ∩ [y] = ∅ then
6 draw([x], ’blue’); return
7 end if
8 if [f]([x]) ⊂ [y] then
9 X = X∪[x]; X̄ = X̄∪[x];draw([x], ’red’); return
10 end if
11 if w([x]) < ε then
12 X̄ = X̄∪[x];draw ([x], ’yellow’); return
13 end if
14 bisect [x] into [x1] and [x2]

15 CSIV IA([x1], C, f , [y], ε, X, X̄)
16 CSIV IA([x2], C, f , [y], ε, X, X̄)

Table 2.3: SIVIA

Fig. 2.10(a) is the result of CSIV IA to a distance measurement d43 = [3, 4] to robot 3 at position (3, 3).
Fig. 2.10(b) adds the measurement d41 = [5, 6] to robot 1 at position (−3,−1) and fig. 2.10(c) adds the
measurement d42 = [4, 5] to robot 1 at position (−2, 2). The resulting sub-paving is small enough to localize
robot 4 with a good precision.

2.4.4 Robust SIVIA

Notice that the more measurements we add, the better the localization. In general, interval methods are
very powerful when the number of constraints is far superior to the number of variables. Let us add a fourth
measurement d45 = [3, 4] to a robot 5 at position (4,−4). The resulting sub-paving is presented in fig.
2.11(a) and is smaller than in fig. 2.10(c). However, if the measurement is false (e.g. faulty sensor, error
bounds too tight, etc.), the resulting sub-paving is empty, meaning that the constraints are incompatible
with the system and that no solution exists. If we measure d45 = [1, 2], the fig. 2.11(b) shows that there is
no solution. This usually happens when using cheap sensors with no redundancy, or when the observation
model does not match the real system.

A solution for solving this class of problems is to use the q-intersection [Sliwka, 2011]. The principle is to
consider that we have q outliers among our m observations (here distance measurements). We then realize
a q-relaxed set inversion by considering the solutions that only satisfy m− q observations.

Consider m constraints i associated with m solution sets X1, ...,Xm of Rn. The q-intersection is noted
{q}
∩

i∈{1,...,m}
Xi and is the set of all x ∈ Rn that belongs to at least m − q sets Xi. Notice that the 0-relaxed

intersection is the classical intersection between sets, and that the (m− 1)-relaxed intersection is the union

38

2.4. Set Inversion Via Interval Analysis (SIVIA) 39

Figure 2.10: SIVIA with a contractor applied to the distance measurement, (a) with robot 3 only, (b) with
robot 1 and 3, (c) with robot 1, 2 and 3.

39

40 Chapter 2. Interval analysis and its application to robot localization

Figure 2.11: (a) A fourth measurement can improve the quality of the localization... (b) unless the mea-
surement is faulty. The subpavings of the inner and outter approximations are empty.

40

2.4. Set Inversion Via Interval Analysis (SIVIA) 41

of the m sets. The RSIV IA (Robust Set Inversion Via Interval Analysis) algorithm [Jaulin et al., 2001b]
is presented in table 2.4 and computes the q-relaxed intersection of the solution sets Xi such that [xi] =

f−1([yi]). The inclusion test of RSIV IA is slightly different from SIV IA to determine the membership
of a box to the q-released solution set. We define the degree of inclusion incl of a box in another and the
degree of separation sep between two boxes [Jaulin et al., 2002] such that:

incl([x], [y]) =

m∑
i=1

incl([xi], [yi]) (2.51)

sep([x], [y]) =

m∑
i=1

sep([xi], [yi]) (2.52)

where:

incl([xi], [yi]) =

{
1

0

if [xi] ⊂ [yi]

else
(2.53)

sep([xi], [yi]) =

{
1

0

if [xi] ∩ [yi] = ∅
else

We can then define an inclusion test of a box [x] to the q-relaxed solution set as:

sep([f]([x]), [y]) > q

incl([f]([x]), [y]) ≥ m− q
else

[x] does not contain the solution
[x] is included in the solution set

[x] is undetermined
(2.54)

Obviously, RSIV IA can be combined with CSIV IA for a robust set inversion with contractors. Fig. 2.12
presents the result of such algorithm for different values of q. The case q = 0 is not represented as it
corresponds to the classic non-robust set inversion with contractors presented in fig. 2.11(b). With q = 1,
the algorithm display the sub-paving that only satisfies m − q = 3 observations, which corresponds to the
solution we previously had without the faulty measurement. For q = 2, only 2 observations have to be
satisfied, but the localization with only 2 distance measurements is ambiguous as two disjoint sub-pavings
(symmetrical to the axis joining the 2 robots) can contain the solution. They are presented in fig. 2.10(b).
Therefore the 2-relaxed intersection presented in fig. 2.12(b) is equivalent to the union of all pairs of distance
measurements between two robots. Finally when q = 3, m − q = 1, which is basically the union of all the
sets that satisfy one distance measurement.

2.4.5 GOMNE

The robust set inversion method presented in the previous subsection uses the q-intersection to compute
sub-pavings guaranteed to contain the solution as long as the number of outliers is inferior or equal to a given
q. In practice, q can be determined empirically for a specific problem. However, when q is overestimated, the

41

42 Chapter 2. Interval analysis and its application to robot localization

Figure 2.12: (a) 1-relaxed intersection, (b) 2-relaxed intersection and (c) 3-relaxed intersection.

42

2.4. Set Inversion Via Interval Analysis (SIVIA) 43

Algorithm RSIV IA (in : [x], f ,q, [y], ε ; inout: X, X̄)
1 incl := 0; sep := 0;

2 for i = 1...m do
3 if [fi]([x]) ⊂ [yi] then
4 incl := incl + 1

5 else if [fi]([x]) ∩ [yi] = ∅
6 sep := sep+ 1

7 end if
8 end for
9 if incl ≥ m− q then
10 X = X∪[x]; X̄ = X̄∪[x];draw([x], ’red’); return
11 else if sep > q then
12 draw([x], ’blue’); return
13 else if w([x]) < ε then
14 X̄ = X̄∪[x];draw ([x], ’yellow’); return
15 else
16 bisect [x] into [x1] and [x2]

17 RSIV IA([x1], f , q, [y], ε, X, X̄)
18 RSIV IA([x2], f , q, [y], ε, X, X̄)
19 end if

Table 2.4: SIVIA

solution set can be very pessimistic. A way to determine q automatically is to successively run RSIV IA with
an increasing q until the solution sub-paving is non-empty. This algorithm is called GOMNE for Guaranteed
Outlier Minimal Number Estimator [Jaulin et al., 1996] and is presented in table 2.5.

Running GOMNE on our localization problem with an outlier, we obtain the same result as presented in
fig. 2.12(a). The number of faulty measurements is correctly estimated by the algorithm. However the
algorithm stops when the sub-paving X is simply non-empty. This alone does not guarantee that the sub-
paving encloses the solution. Indeed, some outliers might be consistent with each other and form a "false
solution" on their own if the redundancy for the "real solution" is insuffi cient. Therefore, it is important
to understand that GOMNE computes the minimum number qmin of outliers with no guarantee on the
real number. In order to increase the robustness of the algorithm, we can define a security margin r of

Algorithm GOMNE (in : [x], f ,[y], ε ; inout: q,X, X̄)
1 q := −1

2 repeat
3 X := ∅; X̄ := ∅
4 q := q + 1

5 RSIV IA([x1], f , q, [y], ε, X, X̄)
6 until X 6=∅

Table 2.5: SIVIA

43

44 Chapter 2. Interval analysis and its application to robot localization

non-detected outliers and actually compute the (qmin + r)-relaxed set inversion.

2.5 Conclusion

In this chapter, we presented the basic notions of interval arithmetic and a few algorithms to estimate
parameters of a system given observations of this system with bounded errors. Using set inversion via
interval analysis, we were able to compute an inner and outer approximation of a simple localization problem
with an outlier.

In the next chapter we see how to extend contractor algebra to allow geometrical transformations of con-
tractors.

The algorithms and notions presented in this chapter represents the state of the art in interval analysis. All
copyrights go to cited authors.

44

Chapter 3

Computing optimal contractors using
geometrical transformation

3.1 Introduction

In this chapter, we present the first contribution of this thesis and show that it is possible to extend contractor
algebra to allow for the geometrical transformation of contractors and build optimal contractors in a very
easy way for some constraints with symmetries. Many problems involve constraints with symmetries, i.e.
central symmetry for the sine function, axial symmetry for the cosine function and 2π-modulation for
both. We show that this extension makes it possible to build minimal contractors in an easy way for some
constraints with symmetries. As an application, we consider the construction of the minimal contractor
associated with the constraint θ =atan2(x, y) and demonstrate its application to robot localization.

This chapter is organized as follows : Section 2 reviews the notion of contractors and section 3 proposes new
theorems for the application of symmetries to contractors. Section 4 proposes a new minimal contractor for
atan2 based on symmetries, and section 5 presents an application to localize a robot in a group. Finally,
the section 6 concludes the chapter.

3.2 Contractors

As a quick reminder, an interval of R is a closed connected subset of R. A box [x] of Rn is the Cartesian
product of n intervals. The set of all boxes of Rn is denoted by IRn. A contractor C is an operator IRn 7→ IRn

such that
C([x]) ⊂ [x] (contractance)
[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]) (monotonicity)

(3.1)

We define the inclusion between two contractors C1 and C2 as follows

C1 ⊂ C2 ⇔ ∀ [x] ∈ IRn, C1([x]) ⊂ C2([x]) (3.2)

45

46 Chapter 3. Computing optimal contractors using geometrical transformation

A set S is consistent with the contractor C (we will write S ∼ C) if for all [x], we have

C([x]) ∩ S = [x] ∩ S. (3.3)

Two contractors C and C1 are consistent each other (we will write C ∼ C1) if for any set S, we have

S ∼ C ⇔ S ∼ C1. (3.4)

A contractor C is minimal if for any other contractor C1, we have the following implication

C ∼ C1 ⇒ C ⊂ C1. (3.5)

A contractor represents a set of Rn. The set associated with a contractor C is

set (C) = {x ∈ Rn, C({x}) = {x}} (3.6)

For instance, the set associated with the contractor

C1

 [x1]

[x2]

[x3]

 def
=

 [x1] ∩ ([x3]− [x2])

[x2] ∩ ([x3]− [x1])

[x3] ∩ ([x1] + [x2])

 (3.7)

is
set (C1) = {(x1, x2, x3) , x3 = x1 + x2} (3.8)

A contractor is also one way to represent one equation x3 = x1 + x2.

A set S ⊂ Rn is said to be functional if there exists n monotonic functions ϕ1, . . . ϕn : Rn−1 → R such that

(x1, . . . , xn) ∈ S ⇔ x1 = ϕ1 (x2, . . . , xn) (3.9)

⇔ x2 = ϕ2 (x1, x3, . . . , xn) (3.10)

⇔ . . . (3.11)

⇔ xn = ϕn (x1, . . . , xn−1) (3.12)

For such a set, a minimal contractor C ([x]) can easily be built by testing all end points of [x].

3.3 Extending contractor algebra for geometrical transformation

We define the following operations

intersection (C1 ∩ C2) ([x])
def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x])
def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x])
def
= C1 (C2 ([x]))

repetition C∞ def
= C ◦ C ◦ C ◦ . . .

modulo (Cmod u) ([x]) = tiTi.u ◦ C ([x])

where T is any transformation and Ti.u is the translation of i.u.

46

3.4. Computing a minimal contractor for Atan2 47

A function is said to be box conservative if

f([X]) = [f(X)] (3.13)

where X is a set of Rn, f is a bijective function and [X] is the interval envelope of X . This means that f−1

is also box conservative. Indeed,

f−1([X]) = [f−1(X)]

⇔ f ◦ f−1([X]) = f ◦ ([f−1(X)]) as f is bijective

⇔ f ◦ f−1([X]) = [f ◦ (f−1([X]))] as f is box conservative

⇔ [X] = [X] as f ◦ f−1 = Id.

Therefore, f−1([X]) = [f−1(X)] and so f−1 is also box conservative.

Theorem. If CY is a minimal contractor associated to Y, and if f is box conservative (symmetry, translation,
etc.) then f−1 ◦ CY ◦ f is the minimal contractor associated to X = f−1(Y).

Proof. The minimal contractor associated with X is

CX([x]) = [[x] ∩ X]

= [f−1 ◦ f([x]) ∩ f−1 ◦ f(X)] as f−1 ◦ f = Id

= [f−1(f([x]) ∩ f(X))]

= f−1([(f([x]) ∩ f(X))]) as f−1 is box conservative

= f−1([f([x]) ∩ Y]) as Y = f(X)

= f−1(CY(f([x]))) as f([x]) is a box and CY([y]) = [[y] ∩ Y]

= f−1 ◦ CY ◦ f([x]).�

3.4 Computing a minimal contractor for Atan2

Atan2 is a function which is non monotonic and with discontinuities. A minimal contractor for the constraint
= atan2(y, x) cannot be obtained without decomposing the constraints on the plane (x, y) into boxes where

the fonction is monototic. This is why we’ll first apply the contractor to a monotonic part of the function
then contract all other parts only using symmetries. The principle of using symmetries to build minimal
contractors was proposed by Pau Herrero in his thesis [Herrero, 2006]. We define the constraint

θ = atan2 (x, y)⇔ ∃` ≥ 0.

x = ` cos θ

y = ` sin θ

x2 + y2 = `2
(3.14)

47

48 Chapter 3. Computing optimal contractors using geometrical transformation

Figure 3.1: θ =atan2(y, x) displayed in MATLAB.

Fig. 3.1 presents the atan2 function.

The set associated with this constraint is denoted by S, i.e.,

S =
{

(x, y, θ) ∈ R3 | θ = atan2 (x, y)
}

(3.15)

We want to build the minimal contractor for this constraint.

3.4.1 Step 1 : Building the contractor on a monotonic box.

We define the set
S0 = S∩

(
R+ × R+ × [0,

π

2
]
)

(3.16)

Since

(x, y, θ) ∈ S⇔

x = y.cotan θ

y > 0,

θ ∈ [0, π2 [

⇔

y = x tan θ

x > 0,

θ ∈
[
0, π2

] ⇔

θ = atan

(y
x

)
x > 0,

y > 0.

(3.17)

the set S0 is functional with

ϕx (y, θ) = y.cotan θ if y > 0, θ ∈ [0,
π

2
[and undefined otherwise

ϕy (x, θ) = x tan θ if x > 0, θ ∈ [0,
π

2
] and undefined otherwise (3.18)

ϕθ (x, y) = atan
(y
x

)
if x > 0, y > 0 and undefined otherwise

The minimal contractor C0 is thus given by [x]

[y]

[θ]

→
 ([x] ∩ R+) ∩ ([y] ∩ R+) · cotan

(
[θ] ∩

[
0, π2

])
([y] ∩ R+) ∩ ([x] ∩ R+) · tan

(
[θ] ∩

[
0, π2

])(
[θ] ∩

[
0, π2

])
∩ atan

(
[y]∩R+
[x]∩R+

)
 (3.19)

Fig.3.2 shows the result when this contractor is applied in the CSIV IA algorithm presented in the first
chapter. The red sub-paving represents the inner approximation for x and y that verify [θ] =atan2([x], [y]).
The union of the red and yellow sub-paving represents the outer approximation.

48

3.4. Computing a minimal contractor for Atan2 49

Figure 3.2: CSIV IA applied to θ =atan2(y, x) for [θ] = [1, 1.3]

3.4.2 Step 2 : Ox symmetry

Define the set

S1 = S ∩
(
R+ × R× [−π

2
,
π

2
]
)

(3.20)

We have

S1 = S0 ∪ SOx (S0) (3.21)

where SOx is the symmetry with respect to the axis 0x, defined by x

y

θ

→
 x

−y
−θ

 (3.22)

Thus the minimal contractor associated to S1 is

C1 = C0 ∪ SOx (C0) (3.23)

Numerically, the contractor C1 is built by applying C0 to atan2(x,−y), then applying an Ox axial symmetry
to the result. Fig.3.3 shows the result of this contractor on a set inversion via interval analysis.

3.4.3 Step 3 : Oy symmetry

Define the set

S2 = S ∩ (R× R× [−π, π]) (3.24)

49

50 Chapter 3. Computing optimal contractors using geometrical transformation

Figure 3.3: CSIV IA applied to θ =atan2(y, x) for [θ] = [−1,−1.3]

We have
S2 = S1 ∪ SOy (S0) (3.25)

where SOy is the symmetry defined by x

y

θ

→
 −x

y

π − θ

 (3.26)

Thus the minimal contractor associated to S1 is

C2 = C1 ∪ SOy (C1) (3.27)

Numerically, the contractor C2 is built by applying C1 to atan2(−x, y), then applying an Oy axial symmetry
to the result. Fig.3.4 shows the result of this contractor on a set inversion via interval analysis.

3.4.4 Step 4 : 2π-modulo symmetry

An minimal contractor for S is
C = (C2 mod u) (3.28)

where

u =

 0

0

2π

 (3.29)

50

3.5. Application to robot localization 51

Figure 3.4: CSIV IA applied to θ =atan2(y, x) for [θ] = [−2,−2.3]

Numerically, the C contractor is built by applying a 2π modulation to θ then get it back between [−π, π],
and then applying the C2 contractor. the Fig.3.5 shows the result of this contractor on a set inversion via
interval analysis. Notice that we are therefore not limited to [−π, π], but can compute the set inversion for
all [θ] ∈ R.

The final algorithm is presented in the table 3.1.

Notice that all the boxes of the sub-paving touch the yellow border, meaning that no bisection occurred and
hence that the contractor proposed for atan2 is minimal.

3.5 Application to robot localization

Atan2 is used in many applications. One of them is bearings-only robot localization [Bishop et al., 2009]
[Oshman and Davidson, 1999][Bekris et al., 2006][Logothetis et al., 1997]. Let’s consider a group of n robots
that can measure their angle in respect to each other. The feasible set for the position of the robots is:

X = {(xi, yi)|∀i, j ∈ {1, 2, .., n}, i 6= j, θij = atan2(xi − xj , yi − yj)} (3.30)

where (xi, yi) is the position of the robot i, and θij is the measured angle between this robot and another
robot j. We want to find an inner and an outer approximation of the feasible set.

Let’s consider n = 4 robots. The positions of robots 1, 2 and 3 are known but the position of robot 4 is
unknown. However it can measure:

51

52 Chapter 3. Computing optimal contractors using geometrical transformation

Algorithm CATAN2 (inout : [x], [y], [θ])
1 if [x] in R+ and [y] in R+ and [θ] in [0, π2]

2

 [x]

[y]

[θ]

 =

 cotan ([θ])

tan ([θ])

atan
(

[y]
[x]

)

3 return ([x], [y], [θ]);

4 else
[θ] = mod([θ], 2π)

5 [x1] = [x] ∩ [0,+∞)

6 [y1] = [y] ∩ [0,+∞)

7 [θ1] = [θ]

8 CATAN2 ([x1], [y1], [θ1])
9 [x2] = [x] ∩ [0,+∞)

10 [y2] = [y] ∩ (−∞, 0]

11 [θ2] = −[θ]

12 CATAN2 ([x2], [y2], [θ2])
13 [x3] = [x] ∩ (−∞, 0]

14 [y3] = [y] ∩ (−∞, 0]

15 [θ3] = [π − θ]
16 CATAN2 ([x3], [y3], [θ3])
17 [x4] = [x] ∩ (−∞, 0]

18 [y4] = [y] ∩ [0,+∞)

19 [θ4] = [θ − π]

20 CATAN2 ([x4], [y4], [θ4])
21 [x] = [x1] ∪ [x2] ∪ (−[x3]) ∪ (−[x4])

22 [y] = [y1] ∪ (−[y2]) ∪ (−[y3]) ∪ [y4]

23 [θ] = [θ1] ∩ (−[θ2]) ∩ (π − [θ3]) ∩ (π + [θ4])

29 return ([x], [y], [θ]);

Table 3.1: Atan2 Contractor

52

3.6. Conclusion 53

Figure 3.5: CSIV IA applied to θ =atan2(y, x) for [θ] = [6, 7]

· [θ41] = [0.2, 0.3] to robot 1 at position (−3,−3) presented in fig 3.6(a),

· [θ42] = [5.55, 5.65] to robot 2 at position (−4, 4) presented in fig 3.6(b),

· [θ43] = [4.4, 4.5] to robot 3 at position (3, 1) presented in fig 3.6(c).

The resulting sub-pavings of CSIV IA enclose the position of robot 4.

As in the first chapter, we can apply a q-relaxed intersection if we suspect the presence of outliers (fig. 3.7).

3.6 Conclusion

This chapter extended contractor algebra to allow for the geometrical transformation of contractors and
showed that it is possible to build minimal contractors in a very easy way for some constraints with sym-
metries. As an application, we considered the construction of a contractor associated with the constraint
θ =atan2(x, y) using central, axial and 2π-modulo symmetries, and showed that this contractor was min-
imal. The test case has been realized using the IBEX (Interval Based EXplorer) library developed by
Gilles Chabert (http://www.ibex-lib.org/). The contractor proposed for atan2 has been approved for
offi cial release in the next version of IBEX. In the meantime, all source codes are available for download on
http://aymericbethencourt.com/thesis.

So far we have only considered static problems in this thesis. However time is often a variable that we have
to consider in real problems. In order to consider dynamic problems, we have to develop a new tool that
will enclose intervals and boxes at different times.

53

http://www.ibex-lib.org/
http://aymericbethencourt.com/thesis

54 Chapter 3. Computing optimal contractors using geometrical transformation

Figure 3.6: (a) Angle measurement to robot 1, (b) to robot 1 and 2 and (c) to robot 1,2 and 3.

54

3.6. Conclusion 55

Figure 3.7: (a) 1-relaxed intersection and (b) 2-relaxed intersection.

55

56 Chapter 3. Computing optimal contractors using geometrical transformation

The work presented in this chapter has been submitted to: Reliable Computing , 2014, and is currently
awaiting reviews.

56

Chapter 4

Solving non-linear constraint satisfaction
problems involving time-dependant
functions

4.1 Introduction

In this chapter, we consider dynamic localization problems where time is an important variable. In other
words, we look to resolve non-linear constraint satisfaction problems where the variables of the systems are
trajectories (functions from R to Rn) [Drevelle and Bonnifait, 2009]. We introduce the notion of tubes (or
intervals of functions), inspired from Taylor models [Berz and Makino, 1998], and for which the lower and
upper bounds are trajectories with respect to the inclusion. We then define basic operators and prove a
few propositions verified by tubes in. We show the possibility to build contractors on tubes and propagate
constraints to solve problems involving time-dependant functions as the unknown variables. We show that
this approach can be particularly powerful when inter-temporal equations (e.g. delays) are involved. Finally,
in order to illustrate the principle and effi ciency of the approach, several test cases are provided.

4.2 Intervals of functions (or tubes)

In interval analysis, the unknown variables are usually boolean numbers, integers or real numbers, but the
originality of this chapter is to consider trajectories.

4.2.1 Tubes

A Tube (or interval of a trajectory) [Kurzhanski and Valyi, 1997][Milanese et al., 1996] is a set-membership
vision of a random signal. A tube [x] is an interval [x−,x+] of Fn, i.e., a pair of two trajectories x−,x+

such that for all t, x− (t) ≤ x+ (t). The set of all tubes of Fn is denoted by IFn. In the coninuous case, a
tubes is also called an interval-valued function, a special case of set-valued functions.

57

58 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

Figure 4.1: A tube [x] of R which encloses the function x

An element x of Fn belongs to the tube [x] if ∀t,x (t) ∈ [x] (t). Fig. 4.1 illustrates a function x ∈ F1 which
is inside a tube [x]. This tube gives us information related to the unknown function x.

If x is a function from R to Rn (i.e., x ∈ Fn), we define

x ([t]) = {x (t) , t ∈ [t]} . (4.1)

Numerically, a tube [x] is defined by
[x] ([t]) =

⊔
t∈[t]

[x] (t) , (4.2)

i.e., [x] ([t]) is the smallest box which encloses all boxes [x] (t) , t ∈ [t]. It is easy to prove that

x ∈ [x] , t ∈ [t]⇒ x (t) ∈ [x] ([t]) , (4.3)

and that no box smaller than [x] ([t]) satisfies this property.

Given two trajectories x and y, the least upper bound of x and y according to a pointwise order is called
the join or supremum and is denoted by x ∨ y. The greatest lower bound according to a pointwise order is
called the meet or infimum and is written as x ∧ y.

4.2.2 Tube arithmetic

We can extend operations on intervals to tubes. The extension is the smallest tube which encloses the
solution. Therefore we can extend operations such as the sum, multiplication, image by a function, etc. to

58

4.2. Intervals of functions (or tubes) 59

tubes. We use the rules of interval arithmetic and inclusion functions [Moore, 1979]. An arithmetic on tubes
is thus a direct extension of interval arithmetic. As it is the case for interval computation, the result of an
operation on tubes contains all results of the same operation performed on the enclosed elements of Fn.

Integral. Consider two numbers t1, t2 such that t2 ≥ t1 ≥ 0. The integral of a tube [x] over an interval
[t1, t2] is defined [Aubry et al., 2013] by∫ t2

t1

[x] (τ) dτ =

{∫ t2

t1

x (τ) dτ such that x ∈ [x]

}
. (4.4)

We deduce from the monotonicity of the integral operator that∫ t2

t1

[x] (τ) dτ =

[∫ t2

t1

x− (τ) dτ,

∫ t2

t1

x+ (τ) dτ

]
. (4.5)

where [x] = [x−, x+]. From the definition of tube integrals, we have

x ∈ [x]⇒
∫ t2

t1

x (τ) dτ ∈
∫ t2

t1

[x] (τ) dτ. (4.6)

Moreover, the interval primitive defined by
∫ t

0 [x] (τ) dτ defines a tube that vanishes for t = 0.

Extension of operators. If � is a binary operator in Rn(such as +,−,the multiplication ∗ when n = 1

or the dot product when n >= 2) then it can be extended to Fn (in the Minkowski sense) and to IFn as
follows

([x] � [y])(t) = ([x](t) � [y](t)) (4.7)

E.g., for [x] and [y] ∈ IFn and a ∈ R+

[z] = [x] + [y] =⇒ ∀t, [z](t) = [x](t) + [y](t) (sum)
[z] = shifta([x]) =⇒ ∀t, [z](t) = [x](t+ a) (shift)

[z] = [x] ◦ [y] =⇒ ∀t, [z](t) = [x]([y](t)) (composition)

[z] =
∫

[x] =⇒ [z](t) =
[∫ t

0 x− (τ) dτ,
∫ t

0 x+ (τ) dτ
]

(integral)

(4.8)

Consider a collection {fi, i ∈ N} of functions. The tube envelope �{fi, i ∈ N} is the smallest tube enclosing
all fi. We have

�{fi, i ∈ N} = [∧i∈Nfi;∨i∈Nfi)] (4.9)

For instance,

for t ∈ [0,∞],�{t, cos(t),−1} = [−1; t] (4.10)

59

60 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

We define the tube inclusion as follows

[x] @ [y]⇐⇒ y− 6 x− 6 x+ 6 y+ (4.11)

We define the tube intersection as follows

[x] u [y]⇐⇒ [[x] ∨ [y], [x] ∧ [y]] (4.12)

4.2.3 Constraint propagation on tubes

Consider a constraint L(x) on a trajectory x of Fn. A contractor associated with the constraint L is an
operator CL

CL : IFn −→ IFn
[y] 7−→ [x]

where [x] and [y] are tubes, such that

∀t, [x](t) ⊂ [y](t) (contraction)(
L(x)

x ∈ [x]

)
=⇒ x ∈ [y] (completeness)

(4.13)

We call C* the minimal contractor for L that returns the tube [y] with the smallest width and is consistent
with the constraint L.

We can propose minimal contractors for tubes, but let us first separate our constraints into two categories:

• Synchronous constraint: Constraint that is set to happen at the same time, typically x(t) = y(t) is
synchronous.

• Asynchronous constraint: Constraint that is set to happen at different times, typically x(t) = y(t − 2) is
asynchronous. This requires to have the history of the variable y and this is where tubes will be particularly
powerful.

We are now proposing a few minimal contractors for both types.

Proposition 1. The minimal contractor associated with the synchronous constraint x 6 y or ∀t ∈
[0,∞[, x(t) 6 y(t) is

C6

(
[x]

[y]

)
=

(
[x−, x+ ∧ y+]

[x− ∨ y−, y+]

)
(4.14)

60

4.2. Intervals of functions (or tubes) 61

Figure 4.2: (a) represents the trajectory x and its tube [x], (b) the trajectory y and its tube [y], and (c)
illustrates the supremum x+ ∧ y+ (upper bound of the purple area) and infimum x− ∨ y− (lower bound of
purple area).

Proof. x 6 y so we can find a such that y = x + a with a > 0. We can therefore contract the associated
tube.

[y] = [y] ∩ ([x] + [a]) (4.15)

⇐⇒ [y] = [y− ∨ (x− + a−), y+ ∧ (x+ + a+)]

⇐⇒ [y] = [y− ∨ (x− + 0), y+ ∧ (x+ +∞)]

⇐⇒ [y] = [y− ∨ x−, y+]

since [a] = [0,∞[. By considering x = y + a with a 6 0, we can prove that [x] = [x−, x+ ∧ y+] the same
way.�

Fig. 4.2 illustrates the contractions.

Proposition 2. The minimal contractor associated with the synchronous constraint x = y (which means

61

62 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

that ∀t ∈ [0,∞], x(t) = y(t)) is

C=

(
[x]

[y]

)
=

(
[x] ∩ [y]

[x] ∩ [y]

)
(4.16)

Proof. As x = y, any given elements of x and y cannot exceed each other’s range. Both variables will share
a new interval equal to the intersection of their respective intervals

∀t, [x](t) = [x](t) ∩ [y](t) (4.17)

⇐⇒ [x] = [x] ∩ [y]

The same is proven for y. Notice that we could also make the proof by aplying the superiority contractor
to x 6 y then y > x. �

Proposition 3. The minimal contractor associated with a translation or delay ∀t ∈ [0,∞[, x(t) = y(t− τ)

is

Cdelay

(
[x]

[y]

)
=

(
[x] ∩ [y](t−)

[y] ∩ [x](t+)

)
(4.18)

Proof. The proof is immediate considering Proposition 2.

Fig. 4.3 illustrates this notion. The purple area represents ∀t, [x](t) ∩ [y](t−)

Let us notice that this constraint is asynchronous as it involves two different times: t and t− τ .�

Special case. If the constraint is x(t) = x(t − τ), then x is τ -periodic and ∀k ∈ N, Cperiodic ([x]) =

[x] ∩ [x](t−) ∩ [x](t− 2) ∩ ... ∩ [x](t− k)

Proposition 4. The minimal contractor associated with an axial symmetry around the axis t = τ is

CASym ([x(+ t)]) = [x](+ t) ∩ [x](− t) (4.19)

Proof. Let’s define the axial symmetry as an increasing operator S on trajectories such that (S(f))(τ+t) =

f(τ − t).

Moreover,

[x(τ + t)] = [x−(τ + t), x+(τ + t)] (4.20)

⇔ S([x(τ + t)]) = [S(x−(τ + t)), S(x+(τ + t))]

⇔ S([x(τ + t)]) = [x−(τ − t), x+(τ − t)] as S is increasing.

Therefore CASym ([x(τ + t)]) = [x](+ t) ∩ S([x(τ + t)]) = [x](+ t) ∩ [x](− t). �

62

4.2. Intervals of functions (or tubes) 63

Figure 4.3: Asynchronous constraint propagation on tubes.

63

64 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

Figure 4.4: On the left, we illustrate the axial symmetry. On the right, the central symmetry.

Special case : When τ = 0, then x is even and Ceven ([x(t)]) = [x−(t) ∨ x−(−t);x+(t) ∧ x+(−t)]

Fig.4.4 illustrates this case.

Proposition 5. The minimal contractor associated with a central symmetry around the axis t = τ is

CCSym ([x(+ t)]) = [x](+ t) ∩ −[x](− t) (4.21)

Proof. The proof is identical to proposition 4 considering S decreasing.�

Special case : When τ = 0, then x is odd and Codd ([x(t)]) = [x−(t) ∨ (−x+(−t));x+(t) ∧ (−x−(−t))]

Notice that both symmetries are asynchronous constraints.

4.2.4 State estimation

The problem to be considered in this section is the state estimation of a non-linear continuous-time systems
in a bounded error context. Usually we describe the system as follows:

ẋ(t) = f(x(t)) (4.22)

y(t) = g(x(t))

64

4.2. Intervals of functions (or tubes) 65

where t ∈ [0,∞[is the time, x(t) ∈ Rn and y(t) ∈ Rn are respectively the state and the output vectors at
time t, and f and g the evolution and observation functions. The particularity of our approach is to consider
that g is no longer the observation function at a given state, but a relationship between two states of the
system at different times. g is therefore an inter-temporal equation between the state of the system at time
ti and its state at time tj . The system (4.22) becomes

ẋ(t) = f(x(t)) (4.23)

y(ti, tj) = g(x(ti),x(tj))

This representation allows us to describe inter-temporal constraints, and use them to solve time-dependent
problems as presented in the next section. An Extended Kalman Filter (EKF) [Ljung, 1979] could be
considered, but the inter-temporality of the constrainsts make it hard to work with. Our membership
approach is based on variants of the CONTRACT and STRANGLE algorithms from [Jaulin, 2002].

We propose the following way to estimate the smallest tube around the solution(s). We first start with a
large tube enclosing x and contract [x] for all t using the output vectors, i.e. y(ti, tj) will contract [x](ti)

and [x](tj). We then apply the STRANGLE algorithm from [Jaulin, 2002] presented in the table 4.1. We
first apply the STRANGLE algorithm at a given time k0 and initial box [box] with a precision of ε. [box]

is the box we fix at time k0, chosen initially big enough to make sure it contains the solution. We then
apply all contractors and see if the resulting tubes are empty. If they are empty, [box] does not contain the
solution at time k0. If the tube is not empty, then [box] does not contain the solution at time k0. We then
bisects the box [box] into two sub-boxes and propagates each sub-box using the CONTRACT algorithm
presented in the table 4.2. If the contracted tube using one of the sub-boxes possesses an empty interval at
any t, then the sub-box does not contain the solution and we discard it. If the contracted tube has no empty
interval, then the sub-box contains the solution and STRANGLE bisects it again and call CONTRACT
recursively until the precision is reached. We then take the union of all non-empty tubes. The union is
guaranteed to contain the solution, in regard, of course, of the chosen model and the integration method.

The CONTRACT algorithm uses the operators as defined in [Jaulin, 2002] to compute enclosures of the
state vector at times δ, 2δ, ...k̄δ where δ is the sampling time and k̄ is the largest integer smaller than t̄/δ,
from a given box [x] containing x. t̄ is the end time of the problem. [φ] is the operator for the time increasing
that computes the state of the system at time k+ 1 from k. [φ̃] is the operator for the time decreasing that
computes the state of the system at time k from k+ 1. For the sake of simplicity in the following examples,
we are using a basic Euler method for [φ] and thus for solving the ODE by computing the successive states
of the system. Notice that using an Euler method means that we lose the interval guarantee but this does
not impact the proof of concept. Moreover, there exist multiple libraries for computing rigorous bounds
on the solution of ordinary differential equations, e.g. VNODE [Nedialkov, 2006] and methods especially
designed for studying the evolution of dynamic systems [Bouissou et al., 2013].

65

66 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

Algorithm CCONTRACT (in : k0, [box], inout: [x])
1 for k := 0 to k̄
2 if(k == k0)
3 [x](k) = [box];

5 endif
6 [x](k + 1) = [x](k + 1) ∩ [φ]([x](k), [ẋ](k));

13 endfor
14 for k := k̄ to 0

15 if(k == k0)
16 [x](k) = [box];

18 endif
19 [x](k) = [x](k) ∩ [φ̃]([x](k + 1), [ẋ](k + 1));

20 endfor
21 return [x];

Table 4.1: Contract algorithm

Algorithm CSTRANGLE (in : k0, [box], ε, inout : [x])
1 if([box].width > ε)
2 Bisect([box], [x1], [x2]);

3 [z] = CONTRACT (k0, [x1], [x])

4 if([z] has no empty interval)
5 STRANGLE(k0, [x1], [z]);

6 else discard [z] and paint [x1] white;
7 endif
8 [z] = CONTRACT (k0, [x2], [x]);

9 if([z] has no empty interval)
10 STRANGLE(k0, [x2], [z]);

11 else discard [z] and paint [x2] white;
12 endif
13 else
14 [z] = CONTRACT (k0, [box], [x]);

15 if([z] has no empty interval)
16 [x] = [x] t [z];

17 paint [box] blue;
18 endif
19 endif

Table 4.2: Strangle algorithm

66

4.3. Examples 67

4.3 Examples

4.3.1 Example 1: Sinusoidal signal

Let’s consider an unknown signal a(t) where t is the time. We consider to know only a few properties about
a and want to find the smallest tube enclosing the solution. For example, let us consider that a verifies :

a([−∞;∞]) ⊂ [−1; 1] (4.24)

a([
π

2
, π]) ⊂ [−0.7(t− π

2
) + 0.99, (4.25)

−0.1(t− π

2
) + 1.01]

a(t+ π) = −a(t) (4.26)

a(t+ 2π) = a(t) (4.27)

b(t− π

2
) = a(t) (4.28)

b(t) = ȧ(t) (4.29)

We first define the tube [a](t) = [a−(t), a+(t)] = [−∞,∞] then apply contractors 4.24 and 4.25. Each
inclusion actually represents two contractors. For instance, 4.25 is equivalent to

∀t ∈ [
π

2
, π],

a(t) 6 −0.1(t− π
2) + 1.01

a(t) > −0.7(t− π
2) + 0.99

(4.30)

Therefore, we apply the superiority contractor presented in section 3. The result is presented Fig. 4.5(a).
Contractors 4.26 and 4.27 respectively shows that our signal is symmetrical with respect to the point (π, 0)

and is 2π periodic. We apply the symmetry and periodicity contractors. The results of the contractions are
presented Fig. 4.5(b) and Fig. 4.5(c).

Then we apply the time delayed contractor on 4.28 to create a new tube [b] :

[b(t)] = [b(t)] ∩ [a(t+
π

2
)] (4.31)

Finally, from the differential equation 4.29, we can integrate [b] and contract [a] using the equality contractor
:

[a(t)] = [a(t)] ∩ [

t∫
τ=0

db+(τ)

dt
dτ ,

t∫
τ=0

db−(τ)

dt
dτ] (4.32)

The results is illustrated in Fig. 4.5(d). To contract the tube even more, we can re-apply all the contractors
one time (Fig. 4.5(e)), three times (Fig. 4.5(f)), five times (Fig. 4.5(g)) or just until the width of the tube
is satisfying or until a fixed point is reached (Fig. 4.5(h)). We here clearly recognize the sine signal.

67

68 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

Figure 4.5: Successive contraction of the tube [a].

68

4.3. Examples 69

Figure 4.6: Mass-Spring-Sonar system

For the sake of transparency, we used a window size of 20s, a step of 0.01s. Vector size : 20000 intervals
represented as two doubles. Contractions are made linearly (sliding interval) from 0s to 20s. The compu-
tation time is directly proportional to the size of the computation window. The code was realised in C++
with no optimisation. Over 10 runs of the algorithm, the computation time on a single 3.2Ghz processor is
on average 7 ms for Fig. 4.5(d) and 55 ms for Fig. 4.5(h), and respectively use 250Ko and 2Mo of memory.

4.3.2 Example 2: Non-linear mass-spring system

Let us now consider an example based on the famous academic problem that is the mass-spring system
presented in Fig.4.6. In actual systems, there is a progressive stiffening or weakening of the spring in x3

as it is elongated or compressed. This causes the response of the system to be non-linear. Its dynamics is
given by Newton’s second law :

m.ẍ+ γ.ẋ+ κ.x− βx3 = 0 (4.33)

where β is the stiffness of the spring, m is the mass, x is the displacement, κ is the spring elasticity and γ
is the damping constant.

Knowing the initial conditions, this system could be easily solved using standard numerical methods. How-
ever, the particularity of our approach is to consider that we do not know the initial conditions. In return,
we equip the mass with a acoustic modem that sends a ping every second. We consider the sound wave
sent at t1 to travel at c = 100m.s−1 to the right wall, where it is reflected and received back to the acoustic
modem at t2. In our simulation, we place the right wall at L = 10m. This means that the mass moves
significantly between the emission and the reception of pings. Each ping is represented by an inter-temporal
equation:

69

70 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

(L− x(t1)) + (L− x(t2)) = c.(t2 − t1)

⇔ x(t2) + x(t1) = 2L− c.(t2 − t1) (4.34)

To our knowledge, we cannot easily solve this nonlinear system with standard numerical methods. We thus
consider this problem as a state estimation problem of a non-linear delayed system and use our constraint
propagation approach defined in the previous section. We first rewrite the system as state equations :

d
dt

(
x

ẋ

)
=

(
ẋ

(βx2−κ).x−γ.ẋ
m

)
(Evolution equation)

x(ti) + x(tj) = 2L− c.(ti − tj) (Observation equations)

(4.35)

where the tj are sending times and ti are receiving times. Each ping represents an asynchronous constraint
that translates into a contractor for [x] and [ẋ].

We developed a simulator using MATLAB’s Ode45 and defined an arbitrary initial state. The result
is presented Fig.4.7. We then simulated acoustic pings every seconds. We also simulated errors within
known bounds in the measurements up to +/− 0.05m to stay consistent with guaranteed results. We also
purposefully "lost" a few pings to simulate sporadic measurements. For the sake of transparency, we used
m = 8kg, γ = 1, κ = 2, β = −0.5 and L = 100m. Initial conditions are x0 = 10m and ẋ0 = 0m.s−1.

The simulated observations have the following form:

x(3.00) + x(3.48) = 34.33

x(9.00) + x(9.54) = 15.46 (4.36)

x(12.00) + x(12.55) = 13.06

x(20.00) + x(20.51) = 24.38

etc.

We call i the numerical discretized version of ti and respectively j for tj . In order to demonstrate the
procedure numerically, let’s choose a simple Euler method, 4.35 then becomes :

x(k + 1) = x(k) + dt.ẋ(k) (4.37)

ẋ(k + 1) = ẋ(k) + dt.
(βx2(k)− κ).x(k)− γ.ẋ(k)

m
x(i) + x(j)− l = 0

where l = 2L− c.(i− j) which is a small measured interval. Therefore we have :

70

4.3. Examples 71

x(tj) = x(j − 1) + dt.ẋ(j − 1) (4.38)

= x(j − 2) + dt.ẋ(j − 2) + dt.ẋ(j − 1)

= x(j − 3) + dt.ẋ(j − 3) + dt.ẋ(j − 2) + dt.ẋ(j − 1)

= x(i) + dt.

j−1∑
k=i

ẋ(k)

and

x(j)− x(i) = v (4.39)

x(j) + x(i) = l (4.40)

where v =

j−1

dt.
∑

k=i

ẋ(k) which is equivalent to

x(i) =
1

2
(l − v) (4.41)

x(j) =
1

2
(l + v)

To sum up, we have the following contractors :

◦ State equation. Tubes [x] and [ẋ], contracted using the evolution equation from 4.35:

[ẋ(t)] = [ẋ(t)] ∩
t∫

τ=0

[
(βx2 − k).x− c.ẋ

m

]
(τ).dτ (4.42)

[x(t)] = [x(t)] ∩
t∫

τ=0

[ẋ] (τ).dτ

◦ Movements. Using the speed tube [ẋ] of the mass, we can compute all the nmax variables vn = dt.

jn−1∑
k=in

ẋ(k),

where n corresponds to the n-th acoustic ping and vn corresponds to the movement of the mass between
the n-th acoustic emission and n-th acoustic reception. We have the following contractor:

[vn] = [vn] ∩ dt.
jn−1∑
k=in

[ẋ](k) (4.43)

◦ Positions. From 4.41, we get two more contractors:

71

72 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

[x](in) = [x](in) ∩ 1

2
([ln]− [vn]) (4.44)

[x](jn) = [x](jn) ∩ 1

2
([ln] + [vn])

where in is the discretized time of emission ti of the ping n and jn is the discretized time of emission tj .

The algorithm STRANGLE and CONTRACT algorithms are generic versions meant to explain the prin-
ciple on one dimension. The algorithm STRANGLE2 and CONTRACT2 presented in table 4.3 and 4.4
are the versions specifically adapted to the mass-spring-sonar example, meant to work simultaneously on
two dimensions, the position x and speed ẋ. Given an initial [box] = [0, 100] × [−100, 100] for [x] and [ẋ]

at an arbitrary chosen time k0, STRANGLE2 bisects [box] and call CONTRACT2 on both sub-boxes.
CONTRACT2 then apply the contractors 4.43 and 4.44, 4.42 and propagates the evolution equation for-
ward then backward along the tubes. If the contracted tubes contain empty intervals, the given sub-box
at k0 does not contain the solution. In this case, we discard the sub-box (white area on Fig.4.9). If the
contracted tubes have no empty interval, then the tubes might contain the solution (blue area on Fig.4.9).
The sub-box become the new [box] and STRANGLE2 is called again until a given width ε (or precision) is
reached. STRANGLE2 then takes the union of all non-empty tubes. The union is guaranteed to contains
the solution (in respect to the integration method).

Notice that because of the wrapping effect on each step of the propagation, the tubes [x] and [ẋ] rapidly
explode. It is therefore impossible to contract effi ciently the tubes from start (k0 = 0) to end (k0 = k̄) in
one passing. Therefore, STRANGLE2 have to be called for multiple time k0 between 0 and k̄.

Fig.4.8 shows the result of the algorithm. (1p) represents the position tube [x] after applying the contrac-
tors 4.44 and (1s) represents the speed tube [ẋ]. (2p) and (2s) represent the same tubes after applying
STRANGLE2 for k0=0s. (3p) and (3s) for k0 = 0s, k0 = 25s and k0 = 50s. The final result is shown in
(4p) and (4s) for which STRANGLE2 is applied for all k0 such that k0%5 = 0s.

Just as the STRANGLE2 and CONTRACT2 are specific versions for the mass-spring-sonar system, the
STRANGLE and CONTRACT algorithms can be adapted to constraint satisfaction problems that has a
differential evolution equation, and inter-temporal observation functions. For the sake of transparency, we
used a window size of 60s and a step of 0.01s. Vector size : 60000 intervals represented as two doubles. For
each call to the STRANGLE algorithm, contractions are made linearly (sliding interval) from 0s to 60s,
then again from 60s to 0s. The computation time is directly proportional to the size of the computation
window. Code realised in C++ with no optimisation. Over 10 runs of the algorithm, the computation time
for 4.8(4p) and (4s) on a single 3.2Ghz processor is on average 2.5s and uses 7Mo of memory.

4.3.3 Example 3: Group of AUVs

Let us now consider a group of AUVs. When not submerged, the AUVs are able to use the GPS to
accurately compute their position. However, when they are underwater, they can no longer use the GPS
and have to estimate their position using their state equations. To illustrate the method, we developed a
3D simulator, namely SwarmX for Swarm explorer, that generates a set of data from a simulated group

72

4.3. Examples 73

Algorithm CCONTRACT2 (in : k0, [box], inout: [x], [ẋ])
1 for k := 0 to k̄
2 if(k == k0)
3 [x](k) = [box](1);

4 [ẋ](k) = [box](2);

5 endif
6 [x](k + 1) = [x](k + 1) ∩ [φ1]([x](k), [ẋ](k));

7 [ẋ](k + 1) = [ẋ](k + 1) ∩ [φ2]([x](k), [ẋ](k));

8 if(k == in or k == jn)

9 [vn] = [vn] ∩ dt.
jn−1∑
p=in

[ẋ](p);

10 [x](in) = [x](in) ∩ 1
2([ln]− [vn]);

11 [x](jn) = [x](jn) ∩ 1
2([ln] + [vn]);

12 endif
13 endfor
14 for k := k̄ to 0

15 if(k == k0)
16 [x](k) = [box](1);

17 [ẋ](k) = [box](2);

18 endif
19 [x](k) = [x](k) ∩ [φ̃1]([x](k + 1), [ẋ](k + 1));

20 [ẋ](k) = [ẋ](k) ∩ [φ̃2]([x](k + 1), [ẋ](k + 1));

21 if(k == in or k == jn)

22 [vn] = [vn] ∩ dt.
jn−1∑
p=in

[ẋ](p);

23 [x](in) = [x](in) ∩ 1
2([ln]− [vn]);

24 [x](jn) = [x](jn) ∩ 1
2([ln] + [vn]);

25 endif
26 endfor
27 return ([x], [ẋ]);

Table 4.3: Contract algorithm for Ex. 2

73

74 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

Algorithm CSTRANGLE2 (in : ε, k0, [box], inout : [x], [ẋ])
1 if(box.width > ε)
2 Bisect([box], [subbox1], [subbox2]);

3 ([z], [ż]) = CONTRACT2([subbox1], [z], [ż])

4 if([z] and [ż] have no empty interval)
5 STRANGLE2([subbox1], [z], [ż]);

else discard ([z], [ż]) and paint [subbox1] white;
6 endif
7 ([z], [ż]) = CONTRACT2([subbox2], [z], [ż])

8 if([z] and [ż] have no empty interval)
9 STRANGLE2([subbox2], [z], [ż]);

else discard ([z], [ż]) and paint [subbox2] white;
10 endif
11 else
12 ([z], [ż]) = CONTRACT2([box], [z], [ż])

13 if([z] and [ż] have no empty interval)
14 [x] = [x] t [z];

15 [ẋ] = [ẋ] t [ż];

paint [box] blue;
16 endif
17 endif

Table 4.4: Strangle algorithm for Ex. 2

74

4.3. Examples 75

Figure 4.7: MATLAB’s Ode45 solution for the mass-spring-sonar system. Notice that Ode45 is only used to
simulate the system using the differential equation and the initial conditions. Then a sonar is simulated, and
from the solution provided by Ode45, inter-temporal measurements are generated. Without using the initial
conditions (supposed unknown), but based solemnly on the differential equation and the inter-temporal
measurements, our interval approach then allows us to find a tube around the solution.

of 6 robots following given trajectories. The controller of each robot aims to make it follow the following
trajectories :

∀i ∈ {1, 2, 3}, x̂i =

 100 sin t

100 cos t

(10 cos t)− 10

 (4.45)

∀i ∈ {4, 5, 6}, x̂i =

 100 sin t

100 cos t

(10 cos t)− 30

 (4.46)

We assume that the state of each AUV is described by the following equations :

ẋ1 = u1 cosu2 cosu3

ẋ2 = u1 cosu2 sinu3

ẋ3 = −u1 sinu2

(4.47)

where the speed u1, yaw u2 and pitch u3 are the entrance of the system. The roll is not commanded but the
robot is weighted so that it naturally tends to zero. The initial state is unknown. The estimated position
is represented by a box enclosing the real position of each AUV. This box is obviously very thin when the

75

76 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

Figure 4.8: Successive applications of the STRANGLE2 algorithm: (1) before application, (2) at k0 = 0s,
(3) at k0 = 0s, k0 = 25s and at k0 = 50s, and (4) for all k0 such that k0%5 = 0s. (p) is the position and (s)
is the speed.

76

4.3. Examples 77

Figure 4.9: Result on an x, ẋ plane of the STRANGLE2 bisections at (a) t = 0s and (b) t = 50s. The white
boxes represent tubes that get empty at some point. The blue boxes represent the tubes that never have
empty interval for all t. The solution is in the union of all these tubes. These figures can be interpreted as
a "slice" of the ([x], [ẋ]) tubes at a given time. Notice that the slice at t = 0s gives us the initial conditions.

AUV uses the GPS, then gets bigger and bigger underwater. AUVs 1,2 and 3 have a trajectory that reaches
the surface at some point, so they can contract their position box using the GPS. AUVs 4,5 and 6 never
reach the surface but their trajectory place them in range of acoustic communication with AUVs 1,2 and
3. The idea is to contract these boxes when two or more AUVs are in range of communication with each
other. We equipped each submarine with a acoustic modem that can broadcast the estimated position box
of the AUV every second. The particularity of our approach is to consider that the distance measurements
are not instantaneous. The sonar waves move at the celerity c of the sound underwater. As AUVs are
often slow compared to c and close to each other, we can often neglect the time for a sonar wave to go
from an AUV to another. Here we won’t make this approximation. Therefore we cannot suppose that we
measure a true distance between AUVs at the same time, but between AUVs at different times. Note that
the communication is one-way only and does not have to be synchronized between the AUVs. When AUV
i received at ti a acoustic ping from robot j emitted at tj , we get a constraint of the form :

||pi(ti)− pj(tj)|| = c.(ti − tj) (4.48)

where c is the celery of the sound in water and pi is the position vector of a submarine i in x-y-z coordinates.
Therefore, we have a system of constraints similar to the example 2. Fig.4.10 presents the 3D simulator
developed to generate the constraints for each AUV, e.g.:

77

78 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

Figure 4.10: SwarmX v1 : 3D simulation of a group of 6 AUVs. AUVs 1,2 and 3 can contract their position
box when reaching the surface, and AUVs 4,5 and 6 can contract their position box when communicating
with other AUVs (communication symbolized by a red line between AUVs). A video of the simulation is
available on http://youtu.be/0cjzzsaWTvA.

||p1(1.00) + p2(1.32)|| = 128.44 (4.49)

||p1(9.00) + p3(9.74)|| = 284.38 (4.50)

||p3(9.00) + p5(9.15)|| = 72.49 (4.51)

||p5(17.00) + p4(18.13)|| = 682.98 (4.52)

etc.

Using the same approach than in the example 2, we can solve this problem using constraint propagation on
tubes. Fig. 4.11 shows the result of the contractions for the position of an AUV.

For the sake of transparency, we used a window size of 100s and a step of 0.1s. Vector size : 10000 intervals
represented as two doubles. The contractions are made linearly (sliding interval) from 0s to 100s for 4.11(b)
and again from 100s to 0s for 4.11(c). The computation time is directly proportional to the size of the
computation window. Code realised in C++ with no optimisation. Over 10 runs of the algorithm, the
computation time on a single 3.2Ghz processor is on average 15ms and uses 900Ko of memory.

78

http://youtu.be/0cjzzsaWTvA

4.3. Examples 79

Figure 4.11: Result of the contractions for the abscissa of robot i = 4, (a) if no ping is received, (b) if 2
pings is received and we use the contractor associated with the observation, (b) then we use the contractor
associated with the evolution with t increasing (real time) (c) then with t decreasing (post-treatment).

79

80 Chapter 4. Solving non-linear constraint satisfaction problems involving
time-dependant functions

4.4 Conclusion

Solving nonlinear systems involving differential equations is a diffi cult problem, especially when the initial
conditions are unknown or when the problem is ill-conditioned, e.g. inter-temporal measurements are
involved. To numerically solve this class of problems, this chapter has first introduced the notion of tube
which encompasses the informations needed to guarantee associations upon trajectories. Then, an arithmetic
was developed around this notion, and a contractor-based approach has followed. As a result, a method has
been proposed to contract tubes that enclose the solution. As most interval-based methods, this approach
can be combined with probabilistic methods [Abdallah et al., 2008] and made robust with respect to outliers
by relaxing a given number of constraints (Chapter 1).

Finally, in order to share our research with the community, we integrated tubes, their properties, operators
and minimal contractors presented below within the IBEX library and should soon be integrated by default in
IBEX. In the meantime you can download all source codes for this chapter on http://aymericbethencourt.
com/thesis.

In the next chapter, we will consider a more realistic approach for the localization problem by considering
that the clock of the robots is not properly synchronized and therefore that the time measurements are
uncertain.

The work presented in this chapter has been published in : Mathematics in Computer Science, Special
Issue on Interval Methods and Applications, 2014.

80

http://aymericbethencourt.com/thesis
http://aymericbethencourt.com/thesis

Chapter 5

Cooperative localization of underwater
robots with unsynchronized clocks

5.1 Introduction

This chapter proposes a new approach to localize a group of AUVs. Localizing AUVs can be particularly
diffi cult underwater as there is no installed infrastructure. As we saw in the previous chapter, AUVs can
only access the GPS on the surface as the electromagnetic waves can hardly penetrate water. The only
tools available underwater are dead-reckoning and acoustical localization systems. To solve this problem,
many probabilistic approaches have been studied [Thrun et al., 2005][Bahr et al., 2006], that usually con-
sider the robots close to each other and moving slowly enough so that the displacement of the acoustic
signal can be consider negligible compared to the precision of the localization [Zhang et al., 2009]. The
distance between the robots is measured, and the triangular inequalities are solved to localize the robots
[Leonard and Durrant-Whyte, 1992]. This, of course, implies that the clocks of each robot is perfectly
synchronized [Lin et al., 2005].

In our approach, we use acoustic communication and consider that the travel time of the acoustic waves
cannot be neglected, e.g. when the robots are fast and far-spaced. Therefore we cannot suppose that we
measure a true distance between robots at the same time, but between robots at different times. Moreover,
as the clocks of the robots are unsynchronized, the emitting and receiving times of the acoustic waves are
uncertain. We also consider our system to be completely decentralized, meaning that each robot will only
localize itself using the data received from the few other robots that are in range of communication.

Two approaches can be considered to solve this problem. As previously mentioned, the first approach is
probabilistic. If the system is linear, the problem can be solved using for instance a Kalman Filter, and
if the problem is non-linear, an Extended Kalman Filter (EKF) [Ljung, 1979] or a Sequential Monte Carlo
(SMC) method [Thrun et al., 2005] can be considered. This approach has been proven to be particularly
effective for robot localization [Bonnifait and Garcia, 1996][Lacroix et al., 2002].

The second approach is based on set-membership. When the problem is linear, Ellipsoids and Poly-
topes [Gollamudi et al., 1996] can be particularly effi cient. However, for non-linear systems, only intervals

81

82 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

and sub-pavings have been proven to be effi cient [Jaulin et al., 2001a]. The advantage of this approach
compared to probabilist methods is that the result is guaranteed. A closed non-empty interval is guar-
anteed to contain the solution. Moreover interval analysis is particularly effi cient when the number of
equations is far superior to the number of variables, which is often the case in localization applications
[Jaulin, 2011][Le Bars et al., 2010]. Notice that [Gning and Bonnifait, 2005] proposes a comparison between
Kalman filtering and constraints propagation techniques as presented in this thesis.

In brief, this chapter proposes an interval based approach for localizing a group of underwater robots with
unsynchronized clocks and therefore deal with the inter-temporal constraints on uncertain times. To solve
this problem, we cast the state equations of our robots as a constraint satisfaction problem and use notion of
tube presented in the previous chapter to encompass the robots trajectory and clock with their uncertainty.
We then use interval propagation to successively contract these intervals around the true position and clock
of the robots. A simulation and a real experimental test case are presented.

5.2 Problem Statement

Let us first describe our cooperative localization problem. For a robot i in our group or swarm, consider the
state equations of the robot as follows:

ẋi = f(xi,ui) + nx (evolution equation)
yi = g(xi) (observation equation)

(5.1)

where xi is the state vector of the robot i, ui its inputs or commands, yi its outputs or measures, and f and
g respectively the evolution and observation functions. nx is the state noise. The uncertainty on yi will be
represented by an interval around its unknown value. Notice that the observation function usually depends
on the state of the robot at the current time. The originality of our approach is to consider a acoustic
communication between the robots, which will be represented as an inter-temporal constraint between the
states of the robot at different times. We consider that each ping encloses the estimated position box of the
emitting robot, along with the interval around the emitting time in the robot’s clock.

Formulation. An inter-temporal relation (or ping for short) corresponds to a 4-tuple p = (a, b, i, j) where
a ∈ R corresponds to the emission time, b ∈ R to the reception time, i ∈ {1, . . . ,m} the emitting robot, and
j ∈ {1, . . . ,m} the receiver. Due to the causality, we have b > a, or equivalently (a, b) is an element of the
t-plane [Aubry et al., 2013]. Denote by p (k) the kth ping, and by t the true time. We denote by τ = hi (t)

the clock function [Srikanth and Toueg, 1987] which for an absolute time t matches the inner time τ of the
robot i. Notice that hi is strictly increasing when no re-synchronization happens and piecewise increasing
when it does. For i ∈ {1, . . . ,m}, t ∈ R and k ∈ {1, . . . , kmax}, we have:

(i) ẋi (t) = f (xi (t) ,ui (t)) + nx(t)

(ii) g
(
xi(k) (a (k)) ,xj(k) (b (k)) , a (k) , b (k)

)
= 0

(iii) ã (k) = hi (a (k))

(iv) b̃ (k) = hj (b (k))

(v) ḣi (t) = 1 + nh (t)

(5.2)

82

5.3. Cooperative localization as a constraint satisfaction problem 83

(i) corresponds to the state equations of the i-th robots. The state noise nx (t) is assumed to be bounded.

(ii) is the inter-temporal observation function so that g : Rn × Rn × R× R is here:

g (x1,x2, a, b) = ‖x1 − x2‖ − c ∗ (b− a) (5.3)

where c is the speed of sound. Using the Euclidean norm, (ii) can be re-written as

c ∗ (b(k)− a(k)) =

√
(xi(k) (a (k))− xj(k) (b (k)))2

+(yi(k) (a (k))− yj(k) (b (k)))2 (5.4)

(iii) ã (k) corresponds to the inner time of the robot i (k) (i.e. the emitter has emitted the kth ping). The
clock function hi matches the inner time ã (k) to the real time a (k).

(iv) b̃ (k) corresponds to the inner time of the robot j (k) (i.e. the receiver has received the kth ping). The
clock function hj matches the inner time b̃ (k) to the real time b (k).

(v) nh (t) is the clock noise and is assumed to be bounded.

Notice that for all k, we know exactly: ã (k) , b̃ (k) , i (k) , j (k) .

The advantage of such formalism is that it can encompass multiple previous formalisms of set-membership
localization [Jaulin, 2011][Le Bars et al., 2010] and in addition takes into consideration inter-temporal con-
straints on uncertain times. To our knowledge, such formalism has never been considered before. This
formalism can also be applied to SLAM by considering only one robot and that landmarks are stationary
robots. Measurements with the GPS above surface can also be considered as a measurement of the robot
to itself. Therefore this formalism is particularly powerful.

When an AUV send a acoustic ping k at t = a(k) received by another AUV at time t = b(k), the distance
between the two AUV can be measured as c ∗ (b(k) − a(k)) where c is the celerity of the sound. Thus the
measurement between the two robots is inter-temporal and between the position of AUV 1 at a(k) and the
position of AUV 2 at b(k). Figure 5.1 illustrates the principle. Notice that these times are uncertain, as the
clocks of the robots might not be synchronized. We initially only know a tube (which may be very large)
around the clock function h of each robot and are going to contract it to re-synchronize the clock. To our
knowledge, this problem cannot be easily solved using standard Monte Carlo methods.

5.3 Cooperative localization as a constraint satisfaction problem

The cooperative localization problem described in 5.2 can be considered as a constraint satisfaction problem
on tubes and thus we shall apply the contractors presented in the previous chapter. Let’s consider a group
of multiple AUVs. For any AUV j in our group, we can contract the tubes [xj] and [hj] using the integral

83

84 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

Figure 5.1: When robot 1 sends a sonar signal, it is received by robot 2 after b(k) − a(k) seconds. Both
robots have moved during this time. Therefore the measurement is the distance from robot 1 at a(k) to
robot 2 at b(k).

contractor from constraints (5.2i) and (5.2v):

[xj](t) = [xj](t) ∩
∫ t

0
([f]([uj(τ)],[xj(τ)]) + [nx(τ)])dτ (5.5)

[hj] (t) = [hj] (t) ∩
∫ t

0
(1 + [nh] (τ))dτ (5.6)

These contractors are available for any t; and because of the state noise and clock noise, the width of
tubes [xj] and [hj] will keep on growing if nothing is done. However when the robot receives a acoustic
communication (or ping), equations (5.2ii), (5.2iii) and (5.2iv) will be available as constraints on [xj] and
[hj] and thus enable us to contract them punctually at each ping reception.

Let’s consider a robot i emitting a ping received by robot j. Each ping contains the estimated position box
[xi] of the emitting robot, along with the interval around the time [a(k)] robot i sent the ping k in its own
clock; so each time j receives a acoustic ping from a robot i, the receiving robot j has data on [a (k)], [b(k)],
[xi(k)](a (k)), [xj(k)](b (k)), [yi(k)](a (k)), [yj(k)] (b (k)) and it can apply a simple forward-backward contractor
as presented in Chapter 2 to contract the intervals of :

c ∗ ([b(k)]− [a(k)]) =

√
([xi(k)] ([a (k)])− [xj(k)] ([b (k)]))2

+([yi(k)] ([a (k)])− [yj(k)] ([b (k)]))2 (5.7)

Notice that we chose an arbitrary value for the celerity of the sound c. However it is quite possible to set c
as an interval [c] and use the forward-backward algorithm to contract this interval arround its true value.

84

5.4. Test cases 85

Fig. 5.2 illustrates the contractions made by the forward-backward algorithm. The purple area represents the
interval enclosing the solution xj(k) (b (k))). Before receiving the ping, an interval [xj(k)] ([b (k))]) (before)

is known from the contracted tube [xi] (contractor 5.5). This interval can be contracted to [xj(k)] ([b (k))])

(after) by intersecting it with the solutions of (5.2ii), which contracts the position of the robot. Notice
that the purple area can also be contracted to the red doted form. This translates in the forward-backward
algorithm as a contraction of [c∗(b(k)−a (k))] and thus [b(k)] and the clock as illustrated in the next section.
Fig. 5.3 illustrates different cases of contraction.

5.4 Test cases

In all presented test cases, we consider fast and far-spaced AUVs defined by the following evolution equation:

ẋi(t) =

(
ui1(t). cos(ui2(t))

ui1(t). sin(ui2(t))

)
+ nx (t) (5.8)

where ui1(t) and ui2(t) are the components of vector ui(t). They are respectively the given speed and
steering command to robot i. The vector xi contains the abscissa xi and ordinate yi of the robot i. nx (t)

is the state noise.

5.4.1 Simple example with 2 AUVs.

Let us first demonstrate the contractions with a simple example involving only two AUVs. The AUVs follow
circular trajectories such that :

x1(t) = 10

(
cos t

sin t

)
(5.9)

x2(t) = 10

(
cos(t+ π)

sin(t+ π)

)
(5.10)

The state and clock noises are considered higher for the receiving robot than for the emitting robot to clearly
illustrate the contraction.

For AUV 1, ∀t,nx(t) ∈ [−0.1, 0.1] and nh (t) ∈ [−0.01, 0.01] (5.11)

For AUV 2, ∀t,nx (t) ∈ [−1, 1] and nh (t) ∈ [−0.1, 0.1] (5.12)

AUV 1 starts at (10, 0)T and AUV 2 at (−10, 0)T . Fig. 5.4 illustrates this example. We consider the celerity
of the sound c = 100m/s to simplify.

Using (5.5) and (5.6) the AUVs can estimate their position and clock over time thanks to the tubes enclosing
their real value. However, the width of the tubes will increase indefinitely if nothing is done.

85

86 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

Figure 5.2: Illustration of the contraction of the position box and clock interval. The purple area represents
all the possible positions for robot j compatible with the distance measurement to robot i. As robot j already
knows a box arround its position before receiving the signal, it can contract his box using the forward-
backward contractor. Notice that if there is "some space left" in the purple area (possible contraction to the
red doted rounded rectangle), this usually translates in the forward-backward contractor as a contraction
on the robot’s clock.

86

5.4. Test cases 87

Figure 5.3: (1) Both the position and the clock are contracted. (2) Only the position is contracted. (3)
Only the clock is contracted.

87

88 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

Figure 5.4: Simple example with two AUV moving on a circular trajectory. AUV 1 emits, AUV 2 receives.

AUV 1 sends a acoustic ping k = 0 at what it "thinks" is t = 1s in its own clock. This is what we note
ã(0) = 1s and is not the real time a(0). However using the inverse tube of [h1], we can get an interval [a(0)]

enclosing the real emitting time. Using the tube [x1] and [y1], we can then get intervals [x1]([a(0)]) and
[y1]([a(0)]) enclosing the position of AUV 1 when emitting the signal. In this example, we obtain:

ã(0) [a(0)] [x1]([a(0)]) [y1]([a(0)])

1.00 [0.99, 1.01] [5.21, 5.59] [8.26, 8.57]

AUV 2 receives the transmission from AUV 1 at what it "thinks" is t = 1.37s. This is what we note
b̃(0) = 1.37s and is not the real time b(0). However using the inverse tube of [h2], we can get an interval
[b(0)] enclosing the real emitting time. Using the tube [x2] and [y2], we can then get intervals [x2]([b(0)])

and [y2]([b(0)]) enclosing the position of AUV 2 when receiving the signal. In this example, we obtain:

b̃(0) [b(0)] [x2]([b(0)]) [y2]([b(0)])

1.37 [1.22, 1.51] [−4.67, 0.90] [−11.49,−8.16]

We can then apply our forward-backward algorithm on (5.4) to contract the intervals of AUV 2. The output
is as follow (the contracted values have been emphasized):

b̃(0) [b(0)] [x2]([b(0)]) [y2]([b(0)])

1.23 [1.22,1.23] [−4.67,−1.25] [−11.49,−9.98]

88

5.4. Test cases 89

Figure 5.5: Illustration of an hypothetical clock function in red and the tube that encloses it.

Notice that the box around the position of AUV 2 at the reception of the ping has been contracted. The
interval enclosing the real time of reception was also contracted which allows us to re-synschronize the clock
from 1.37s to 1.23s at the reception of the signal. We then use the integral contractors (5.5) and (5.6) to
propagate the constraint to the rest of the tube. The result of this simulation and the step-by-step procedure
is explained in fig. 5.6 and fig. 5.7.

5.4.2 Full simulation with 6 AUVs.

Let us now consider a group a 6 simulated AUVs following two circular trajectories:

∀i ∈ {1, 2, 3},xi(t) = 10

(
sin t− 10

cos t

)
(5.13)

∀i ∈ {4, 5, 6},xi(t) = 10

(
sin t

cos t

)
(5.14)

All other parameters are the same than in Example 1. Each robot is equipped with a simulated data pinger
with a range of 5m emitting its position box and clock interval every 10 seconds. Any robot at a distance
more than this range will not receive the ping. We suppose that AUVs i = 1, 2 and 3 go to the surface when
xi(t) < −9m. Therefore they can access the GPS to contract their position box and clock interval. AUV
4, 5 and 6 however never go to the surface and have to localize themselves using only the received pings from
other AUVs. The simulation is presented in Fig. 5.8 and results for AUV 4 in Fig. 5.9.

89

90 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

Figure 5.6: (1) AUV 1 sends a ping at what it thinks is ã(0) in its own clock. (2) We use the tube inverse of
[h1] to compute that the ping was actually sent at a time enclosed in [a(0)]. (3) We use the tubes [x1] and
[y1] to compute the position of AUV 1 when sending the ping. (4) The ping sent to AUV 2 contains the
data [a(0)], [y1(0)]([a(0)]) and [x1(0)]([a(0)]). (5) AUV 2 receive the ping at what he thinks is b̃(0) in its
clock. (6) We use the tube inverse of [h2] to compute that the ping was actually received at a time enclosed
in [b(0)]. (7) We use the tubes [x2] and [y2] to compute the position of AUV 2 when receiving the ping.

90

5.4. Test cases 91

Figure 5.7: (8) We apply our forward-backward algorithm, which contract the intervals [b(0)], [y2(0)]([b(0)])

and [x2(0)]([b(0)]). (9) We apply the contraction to the tube [h2] and re-synchronizing the clock. (10) We
can compute the receiving time in the robot’s own clock. (11) We apply the contractions to the position
tubes [x2] and [y2]. (12) We use the integral contractors to propagate the constraint to the rest of the tube.

91

92 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

Figure 5.8: SwarmX v2 : 3D simulation of a group of 6 AUVs. The position of the AUVs is represented by the
boxes. The red line shows that the robots are in range of communication and the blue circles represent the
displacement of the sonar wave. A video of this simulation is available on http://youtu.be/7Uzjr-U7xY4.

92

http://youtu.be/7Uzjr-U7xY4

5.4. Test cases 93

Figure 5.9: Contracted tubes for (a) [h4] and (b) [x4] if (1) no ping is received, (2) two pings are received
considering online localization, (3) two pings are received considering offl ine localization.

93

94 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

We illustrated the method with online propagation only, meaning that we contracted the tubes only in the
direction of time increasing. However it is possible to consider offl ine propagation as well, in which we
retro-propagate the contractions in decreasing time once the simulation or experiment is done. Fig. 5.9(3)
illustrates the principle. Offl ine localization allows us to contract the tubes of the AUVs with much better
accuracy but is only useful once the experiment is over.

This simulation runs in real-time on a 3.2GHz dual core processor.

5.4.3 Sea testing with 2 real AUVs.

Let us now demonstrate the adequacy of our algorithm at sea with the two AUVs from the company
CISCREA presented in Fig. 5.10. As no regulator was implemented onboard, we had to command the AUVs
with a joystick, making them follow approximate circles and reconstruct their trajectories by measuring the
command ui from the joystick every 0.001s. AUV1 was staying at the surface so it could continuously use its
GPS to contract its position and resynchronize its clock. AUV 2 was supposed to stay underwater (altough
it actually stayed on the surface to get the GPS trajectory). The trajectories of the AUVs are represented
in fig. 5.10. We then simulated accoustic pings between the AUVs to contract the position and clock of
AUV 2 as presented in fig. 5.11.

We notice that the abscissa tube can be contracted. However the clock tube can never be contracted as the
noise on the position was too high compared to the clock drift. We indeed chose to use the clock drift of a
typical quartz which is 50 ppm (parts per million), which mean that the clock can drift 50 s every 1,000,000
s or approximatly 1 s every 6 hours. This shows the limits of our algorithm as the two first test cases were
considering a high clock drift of 0.1s per second. In actual AUVs, the clock only drifts much less. Therefore,
on small length missions as presented in this experiment, there is no effective contraction on actual clocks
drift, except if the clocks are initially drifted for a few seconds before the start of the mission. We could
also imagine long term missions of several months, or consider AUVs staying asleep at the bottom of the
ocean for several months before awakening with their clock drifted for a few seconds.

5.5 Conclusion

Localizing a group of AUVs while synchronizing their clocks is a diffi cult problem, mainly due to the inter-
temporal constraints on uncertain times. To solve the problem, this chapter has considered the cooperative
localization as a constraint satisfaction problem and contracted the boxes around the positions of the AUVs
and their clock using a forward-backward algorithm on the inter-temporal measurements made with an
acoustic modem. Several test cases were provided, proving the effi ciency of the algorithm when the un-
certainty on the position and the clock have the same order of magnitude. However we also shown that
the algorithm was ineffective at contracting the clock when the orders of magnitude were too far apart,
especially on short term missions with accurate clocks.

Finally, we have so far only considered a small group of maximum six AUVs. As the main purpose of
this thesis is to study large swarms of robots, the next and final chapter of this thesis will focus on the
development of a swarm simulator with hundreds of robots, and show that it is possible to localize them in

94

5.5. Conclusion 95

Figure 5.10: (a), (b), (c) and (d) : Sea testing in the Brest harbour, France, with two CISCREA AUVs.
(e) Satellite view (c© Google Earth) of the testing area. (f) The blue trajectory represents AUV 1 staying
on the surface. The red trajectory represents AUV 2 supposed to stay underwater (but actually on the
surface as well to collect control GPS data). Both AUVs are commanded with a joystick. The green lines
represent simulated sonar pings when the AUV are in range. A video of the experiment is available on
http://youtu.be/1QFpko0tYO0.

95

http://youtu.be/1QFpko0tYO0

96 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

Figure 5.11: Result of contraction on tubes enclosing (a) the abssica x2 of AUV 2 and (b) its clock h2.

96

5.5. Conclusion 97

real-time using the algorithm presented in this chapter.

The work presented in this chapter has been published in : Paladyn, Internatinal Journal of Behaviorhal
Robotics, Special issue on underwater robotics, VERSITAS, 2013.

97

98 Chapter 5. Cooperative localization of underwater robots with unsynchronized clocks

98

Chapter 6

Large-scale swarm localization using
interval analysis

6.1 Introduction

In the previous chapter, we proposed a distributed model for the localization and clock synchronization of
AUVs in a group. Yet the approach failed to demonstrate the scalability and performance of the algorithm.
In this chapter, we take an interest in scaling up the demonstration. We introduce a new simulation (that we
called SwarmX v3) with up to 1,000 simultaneous AUVs running in real-time. For this, we use a collective
motion model inspired from flock of birds, herds of animals and schools of fish [Vicsek and Zafeiris, 2012].
These biological systems are spectacular to watch and are based on the same universal pattern: the velocity
vectors of neighboring individuals tend to become parallel to each other. The pattern and underlying con-
trolling mechanism seem like a prerequisite to safe, stable and collision free motion. Therefore, it might be
advantageous to incorporate the mathematical model that produces this pattern to a group of autonomous ro-
bots. As in the previous chapter, each robot is equipped with an acoustic modem and an on-board computer
to estimate its state, run our localization algorithm and perform all controlling calculations. This definition
prohibits the use of a central processing unit computing the group dynamics like in [Kushleyev et al., 2013]
and [Bürkle et al., 2011], but allows the use of external references of positions like the measure of distance
to another AUV, or the use of GPS when the AUV surfaces.

According to Reynolds [Reynolds, 1987], collective motion can be achieved by following three simple princi-
ples : separation (repulsion in short range), cohesion (attraction in long range) and alignment (which aligns
the velocity vectors of nearby units). These rules can be written in mathematical form and adapted for the
motion of AUVs.

Even the simplest flocking model includes an alignment rule, described as an explicit mathematical ax-
iom [Vicsek et al., 1995], which tends to align the velocity vector of all agents. It is possible to general-
ize this term by adding coupling of accelerations [Szabó et al., 2009], preferred directions (animal groups)
[Couzin et al., 2005] and adaptive decision-making schemes to extend the stability for higher velocities
[Dong et al., 2013]. In other models, the alignment rule is a consequence of interaction forces [Grossman et al., 2008]

99

100 Chapter 6. Large-scale swarm localization using interval analysis

or velocity terms based on over-damped dynamics like for tissue cells [Szabo et al., 2006].

An important feature of biological flocks is their locality, units adapt each other only in a finite neighborhood.
In autonomous robotics, the communication between robots also have a finite range. In other words, units
can send messages (e.g. their position, velocity and clock) only to nearby units. In our example, AUVs will
be limited by the range of their acoustic modem. Another analogy between biological flocks and robotic
swarms is that they are both agent-based. Each bird in a flock evolves individually through the dynamic
system, and likewise each AUV in our model has its own computer and on-board sensors to control its
individual dynamic.

Because of these similarities, some properties of flocking models can be integrated into the control dynamics
of autonomous robots. There is a wide range of methods using features of collective behavior in robotics
[Brambilla et al., 2013][Turgut et al., 2008][Hauert et al., 2011]. Yet none of them consider using interval
analysis to localize individuals in a swarm. We believe that interval analysis can easily be applied to
swarming models and perform well, especially since interval methods are well known to work best when the
number of equations is far superior to the number of parameters to evaluate.

The goal of this chapter is to demonstrate that interval analysis can be applied to swarming models and that
the algorithm presented in Chapter 5 can be applied to a large swarm of hundreds of AUVs simultaneously.
Section 2 recalls our AUV model with a few modifications and section 3 presents Reynolds’rules and how
to adapt them to our model. Section 4 presents the simulated results for 300 and 1,000 AUVs and Section
5 concludes the chapter.

6.2 AUV model

In this section, we recall the AUV model used in this Chapter 5 and based on a realistic robotic system.

For a robot i ∈ {1, . . . ,m} in a swarm and acoustic ping k ∈ {1, . . . , kmax}, we consider the state equations
of the robot as follows:

(i) ẋi (t) = f (xi (t) ,ui (t)) + nx (t) (Evolution equation)
(ii) g

(
xi(k) (a (k)) ,xj(k) (b (k)) , a (k) , b (k)

)
= 0 (Ping observation equation)

(iii) ã (k) = hi(k) (a (k)) (Local time function of AUV i)
(iv) b̃ (k) = hj(k) (b (k)) (Local time function of AUV j)
(v) ḣi (t) = 1 + nh (t) (Clock function of AUV i)

(6.1)

(i) corresponds to the state equations of the i-th robots, where xi is the state vector of the robot i, ui its
inputs or commands, yi its outputs or measures. The state noise nx (t) is assumed to be bounded.

(ii) is the inter-temporal observation function where a ∈ R corresponds to the emission time, b ∈ R to
the reception time, i ∈ {1, . . . ,m} the emitting robot, and j ∈ {1, . . . ,m} the receiver. Here we have
g : Rn × Rn × R× R so that:

g (x1,x2, a, b) = ‖x1 − x2‖ − c ∗ (b− a) (6.2)

100

6.3. Behavioral command 101

where c is the speed of sound. Using the Euclidean norm, (ii) can be re-written as

c ∗ (b(k)− a(k)) =

√
(xi(k) (a (k))− xj(k) (b (k)))2

+(yi(k) (a (k))− yj(k) (b (k)))2 (6.3)

(iii) ã (k) corresponds to the local time of the robot i (k) (i.e. the emitter has emitted the kth ping).

(iv) b̃ (k) corresponds to the local time of the robot j (k) (i.e. the receiver has received the kth ping).

(v) We denote by τ = hi (t) the clock function [Srikanth and Toueg, 1987] which for an absolute time t
matches the inner time τ of the robot i. nh (t) is the clock noise and is assumed to be bounded.

Notice that for all k, we know exactly: ã (k) , b̃ (k) , i (k) , j (k) .

Each acoustic ping encloses some data: The position box and emission interval of the emitting AUV as
described in Chapter 5. In this chapter however pings will also enclose the box around the velocity vector
of the AUV as this will be useful for the swarming behaviors presented in the next section. Basically, each
ping k transmits [xi(k) (a (k))], [ẋi(k) (a (k))] and [ã (k)] to all AUVs that are in range.

We use a controlling algorithm with an input, the preferred velocity vector of the AUV. During the flocking
movements, the time-dependance of the preferred velocity of the i−th AUV can be a function of the position
and velocity of the other AUVs :

ẋpreferredi (t) = ei({xj(t)}Nj=1, {ẋj(t)}Nj=1, t) (6.4)

whereN will be the number of j nearby (in range) neighbors, and ei is the control function enclosing arbitrary
features of the controlling dynamics. Note that the controller algorithm can be e.g. a PID controller. The
acceleration of the unit is of course limited by the power and inertia parameters.

6.3 Behavioral command

6.3.1 Reynolds’rules

The controlling algorithm is based on the three basic principles first proposed by Craig Reynolds in his
ground breaking 1987 paper [Reynolds, 1987]. The principles (also known as Reynolds’rules) propose three
steering behaviors: separation, cohesion and alignment. Each principle determines how a member of the
swarm reacts to other members in its local neighborhood. Members of the swarm that are not in its local
neighborhood are ignored. The neighborhood is specified by a distance d which defines when two members
are "nearby", or in our case in range of acoustic communication.

101

102 Chapter 6. Large-scale swarm localization using interval analysis

Figure 6.1: Illustration of the separation rule.

Algorithm SEPARATION (in : AUV , out : dvelocity)
1 dposition := 0; dvelocity :=0
2 neighbours := getNeighbours(AUV)
3 foreach nAUV in neighbours do
4 dposition+ = nAUV.position−AUV.position

5 end
6 dposition = dposition/neighbours.size()

7 dvelocity = −dposition/dt

8 return dvelocity

Table 6.1: SEPARATION Algorithm

6.3.2 Separation

Separation is a steering behavior that gives a member of the swarm (here an AUV) the ability to maintain
a certain distance from the others nearby AUVs. This allows AUVs to avoid collisions. To compute steering
for separation, the AUV first searches for other AUVs in its neighborhood. For each nearby AUV, a repulsive
force is computed by subtracting the position of the AUV to the nearby AUVs , normalizing it and then
applying an 1/d weighting. The repulsive forces from each nearby AUV are summed up to produce the
overall steering force. Fig. 6.1 illustrates the rule and Table 6.1 presents the algorithm.

6.3.3 Cohesion

Cohesion is the second steering behavior and gives an AUV the ability to cohere with (approach and form
a group with) other nearby AUVs. For this, the AUV first searches for other AUVs in its neighborhood, as
in Separation. Then it computes the average position, or center of gravity, and applies a steering force in
that direction. Cohesion and Separation are usually in opposition and insure that an AUV is never too far
nor too close to nearby AUVs. Fig. 6.2 illustrates the rule and Table 6.2 presents the algorithm.

102

6.3. Behavioral command 103

Figure 6.2: Illustration of the cohesion rule.

Algorithm COHESION (in : AUV , out : dvelocity)
1 dposition := 0; dvelocity :=0
2 neighbours := getNeighbours(AUV)
3 foreach nAUV in neighbours do
4 dposition+ = nAUV.position

5 end
6 dposition = dposition/neighbours.size()

7 dvelocity = (dposition−AUV.position)/dt

8 return dvelocity

Table 6.2: COHESION Algorithm

103

104 Chapter 6. Large-scale swarm localization using interval analysis

Figure 6.3: Illustration of the alignment rule.

Algorithm ALIGNMENT (in : AUV , out : dvelocity)
1 dvelocity := 0
2 neighbours := getNeighbours(AUV)
3 foreach nAUV in neighbours do
4 dvelocity+ = nAUV.velocity

5 end
6 dvelocity = dvelocity/neighbours.size()

7 return dvelocity

Table 6.3: ALIGNMENT Algorithm

6.3.4 Alignment

Alignment is the last steering behavior and gives an AUV the ability to align itself with nearby AUVs.
Steering for alignment can be computed by averaging the velocity vector of all nearby AUVs and subtracting
this value to the current velocity vector of the AUV. This steering will tend to align the AUV with its
neighbors. Fig. 6.3 illustrates this rule and Table 6.3 presents the algorithm.

6.3.5 Swarming

The swarming (or flocking) behavior is the addition of the separation, cohesion and alignment behaviors,
which together form a motion very similar to what is found in animal flocks, herds and schools. Table 6.4
presents the swarming algorithm, in which we first normalized the three steering components for better
control. Note that in some applications [Hodgins and Brogan, 1994][Tu and Terzopoulos, 1994][Tu, 1999], a
weighting factor can be applied to each behavior to better balance the system.

104

6.4. Test cases 105

Algorithm SWARMING (inout : AUV)
1 alignment := ALIGNMENT (AUV).normalize(1)

2 cohesion := COHESION(AUV).normalize(1)

3 separation := SEPARATION(AUV).normalize(1)

4 AUV.velocity.x+ = alignment.x+ cohesion.x+ separation.x

5 AUV.velocity.y+ = alignment.y + cohesion.y + separation.y

6 AUV.velocity.z+ = alignment.z + cohesion.z + separation.z

Table 6.4: SWARMING Algorithm

6.3.6 Adapting the Reynold’s rules to our model

Reynolds’rules can easily be adapted to our AUV model. The neighborhood distance to consider is the range
of the acoustic of the AUVs. Each AUV emits a acoustic ping every second which encloses the position box,
velocity box and emitting time interval of the emitting robot. We consider the center of each box as the
position and velocity that we provide to the computation of the Reynolds’rules.

As the rules are based on finding neighbors at the same given time, our algorithm has to estimate the
position of all neighbors by predicting their position from the latest acoustic ping received from the AUV.
As the pings are emitted every second and enclose the position and velocity of the AUV, it is possible to
estimate the position with a good accuracy. We then run the forward-backward algorithm presented in
Chapter 5 to contract the position box and clock interval of the AUV. All interval computations are handled
by IBEX, that we integrated directly within our SwarmX v3 simulation.

Notice that the separation rule is usually defined by a static parameter, which is fine when the position of
the AUV is precisely known. In our case, AUVs do not know their real position but know a position box,
in which they are guaranteed to be. When the width of the boxes increases or decreases, the separation
distance must be adapted in real time to guarantee that no collision will happen. The minimum separation
distance between a robot i and j is therefore :

dseparation =
width([xi(t)]) + width([xj(t)])

2
(6.5)

6.4 Test cases

6.4.1 With 3 AUVs

The simulation takes place in a 1km3 underwater environment of spatial coordinates (x, y, z) = [0, 1000]×
[0, 1000]× [−1000, 0]. Each AUV starts with a random position box, that will inflate over time as state noise
occurs. We consider that they can use the GPS to contract their position box and clock interval when they
get near the surface (z > −100). Each AUV emits a acoustic ping every second enclosing the position box,
velocity box and clock interval. If another AUV receives the ping, it will apply the localization algorithm
presented in Chapter 5 to contract its own position box and clock interval. The swarming algorithm is

105

106 Chapter 6. Large-scale swarm localization using interval analysis

applied for every sampling time of the simulation.

Fig. 6.4 presents a simple simulation of 3 AUVs. (a) shows the position of the AUVs. (b) displays vertices
when AUVs are in range of communication, but does not mean that a ping have actually been emitted.
(d) represents the actual acoustic pings. Finally, (c) shows the position box around each AUV. When an
AUV is too deep to use the GPS and is not in range of acoustic communication with another AUV, these
boxes keep inflating with the state noise. As the box inflate, the preferred distance for the separation rule
also increases (as presented in 6.5) to guarantee that the boxes never intersect and therefore that the AUVs
never collide. In this example, the AUVs keep on moving away from each other until one of them can access
the GPS and transmit its contracted box to the other two AUVs.

Keep in mind that although the simulation runs on a single computer, the algorithm is completely distrib-
uted. Each AUV is coded as an autonomous individual that is only aware of itself and its neighborhood.

6.4.2 With 300 AUVs

In this simulation, we spawned 300 AUVs at t0 = 0s at random locations (Fig. 6.5(a)) with random starting
position boxes (Fig. 6.5(c)). We then run the simulation for 20s. Fig. 6.6 presents the result. We can
clearly observe that the Reynolds’cohesion rule makes all the AUVs gather into groups, but the separation
rule still prevents any collision. We also notice that the AUVs in groups have nearly the same direction,
result of the alignment rule. AUVs on top of the box are close to the surface and can contract their position
box using the GPS. A few pings are then suffi cient to propagate the contractions to the bottom of the swarm
which then maintain a good localization through the whole swarm. Fig. 6.7 represents the tubes within
IBEX for the abscissa and ordinate of one of the bottom AUVs.

6.4.3 With 1,000 AUVs

We now introduce 1,000 AUVs into the simulation. To increase the diffi culty, we also consider three distinct
groups of AUVs. The green AUVs are faster than the default blue AUVs. They are considered cheaper
version, and therefore are smaller and equipped with small-range acoustic modems. The red AUVs are
bigger than the blue AUVs and are more expensive and slow due to their inertia. They are equipped with
long-range acoustic modem. The three groups are communicating for collision avoidance (separation) but
do not trust each other for other tasks like alignment and cohesion for unclear reasons (e.g. they belong
to different companies). The simulation presented in 6.8 shows that small groups are formed by the green
swarm. The blue swarm usually try to regroup but is often broken apart by the red swarm that rarely
form cohesive groups. We can also notice that the more AUVs we add to the simulation, the better the
localization and clock synchronization, but the less cohesive are the AUVs.

6.4.4 Performances

All the simulations presented in this chapter are running in real-time at minimum 30 FPS on a 3.2GHz Intel
core i7. Frame lag begins to appear above 1,000 AUVs. Keep in mind that this simulation is running on

106

6.4. Test cases 107

Figure 6.4: SwarmX v3 : (a) Position of the AUVs. (b) Vertices appears between the AUVs when they are
in range of communication. (c) Localization boxes of the AUVs. (d) Sonar pings emitted by the AUVs.

107

108 Chapter 6. Large-scale swarm localization using interval analysis

Figure 6.5: At t0 = 0s we randomly introduce 300 AUVs into the simulation.

108

6.4. Test cases 109

Figure 6.6: At tf = 30s, all AUVs are in swarming positions and well localized. A video of the simulation
is available on http://youtu.be/F4ntGSBS1J4.

109

http://youtu.be/F4ntGSBS1J4

110 Chapter 6. Large-scale swarm localization using interval analysis

Figure 6.7: Tubes [xi] and [yi] positions from t0 = 0s to tf = 30s for a random AUV i.

a single computer but that the localization algorithm is in reality distributed and running on each AUV,
which demonstrates the speed and scalability of the algorithm.

6.5 Conclusion

In this chapter, we showed that it was possible to scale up our localization algorithm while maintaining good
performances. As we did in Chapter 5, the simulation could be considered offl ine and retro-propagate the
contractions on the tubes for a better localization after the mission. As always, a video of the simulation
and the source code is available on http://aymericbethencourt.com/thesis/.

The work presented in this chapter has been submitted to : Swarm intelligence, 2014, and is currently
awaiting reviews.

110

http://aymericbethencourt.com/thesis/

6.5. Conclusion 111

Figure 6.8: Simulation with 1,000 AUVs of 3 types.

111

112 Chapter 6. Large-scale swarm localization using interval analysis

112

Chapter 7

Conclusion

In this thesis we proposed a new way to localize a swarm of AUVs using interval analysis.

In the first chapter we introduced the notion of localization and why it is important for autonomous robots,
especially underwater.

In the second chapter we presented the basic notions of interval arithmetic and a few state-of-the-art al-
gorithms to estimate parameters of a given system with observations of this system with bounded errors.
Using set inversion via interval analysis, we were able to compute an inner and outer approximation of a
simple range-only localization problem with outliers.

In the third chapter we extended contractor algebra to allow for the geometrical transformation of contractors
and showed that it was possible to build minimal contractors in a very easy way for some constraints with
symmetries. As an application, we considered the construction of a contractor associated with the constraint
θ = atan2 (x, y) using central, axial and 2π-modulo symmetries, and showed that this contractor was
minimal. We integrated the contractor in IBEX and demonstrated its effi ciency on a angle-only localization
problem.

In the fourth chapter we no longer considered static problems but modelized dynamic systems. We intro-
duced the notion of tubes, or interval of functions that encloses intervals at different times and encompasses
the informations needed to guarantee associations upon trajectories. Then, an arithmetic was developed
around this notion, and a contractor-based approach followed. As a result, a method was proposed to
contract tubes that enclose the solution. Several test cases were provided to demonstrate the approach, in-
cluding the estimation of the state of AUVs. We programmed tubes and their contractors within IBEX, and
created a simulator, namely SwarmX v1, to simulate a group of 6 AUVs able to communicate underwater
to exchange localization data. The inter-temporal constraints were solved using tubes.

In the fifth chapter we pushed the simulation further by considering that the clocks of the robots were
unsynchronized, making the time measurements uncertain. To solve this problem, we considered cooperative
localization as a constraint satisfaction problem and contracted the boxes around the positions of the AUVs
and their clock using a forward-backward algorithm on inter-temporal measurements made possible by an
acoustic modem equipping each AUV. SwarmX v2 was developed to prove the effi ciency of the algorithm
when the uncertainty on the position and on the clock drift had the same order of magnitude. However real

113

114 Chapter 7. Conclusion

tests at sea showed that the algorithm was ineffi cient at contracting the clock when the orders of magnitude
were too far apart, especially on short term missions with accurate clocks.

Finally, the sixth chapter focused on studying the scalability of such approach. We created SwarmX v3 to
simulate 1,000 AUVs evolving in real-time and following the three Reynolds’rules.

Further work can include the study of outliers, integration with DAEs, coupling with probabilistic methods
and integration with guaranteed differential evaluation methods.

Videos, sources codes and pdf versions of the published articles are available on http://aymericbethencourt.
com/thesis/.

114

http://aymericbethencourt.com/thesis/
http://aymericbethencourt.com/thesis/

115

115

116 Chapter 7. Conclusion

116

Appendix A

Visual localization and 3D reconstruction
using the Kinect device coupled with an
IMU.

As the final project of my master degree, I had my first experience with interval analysis using the Kinect
device to reconstruct scenes and objects in 3D. As the subject is relevant to this thesis, this appendix
presents my work.

A.1 Introduction

The Microsoft Kinect sensor device was released for the Microsoft Xbox 360 video game console at the end
of the year 2010. The device allowed a user to play video games just by moving his body and therefore
allowed gaming without the use of any game pad or joystick. The Kinect includes a color RGB camera, an
infrared depth sensor, an accelerometer, four microphones and a motor to adjust the tilt. In addition to
the commercial success of the Kinect as a gaming device, it attracted a lot of interest from the scientific
community thanks to its numerous integrated features, its low price and its shelf availability. The depth
sensor is in fact a near-infrared projector that projects a known structured pattern of speckles that is being
observed by a CMOS IR camera. Each speckle is unique and can be recognize from others. The device then
computes the triangulation of each speckle between the known virtual pattern and the observed pattern
to construct the depth image. The calibration between the projector and the camera has of course to be
known. The depth images can be represented as a 3D metric points cloud by projecting the image points
into the real world coordinate:

−→x = K[R|t]−→X (A.1)

where:

−→x is the homogeneous coordinate vector of a point in the image,

117

118 Chapter A. Visual localization and 3D reconstruction using the Kinect device coupled
with an IMU.

K is the intrinsic parameters matrix (available in the datasheets),

R and t are the extrinsic parameters matrices (respectively equal to identity and 0 since we do not consider
any rotation or translation here),

−→
X is the homogeneous coordinate vector of a point in the world.

By expending the matrices, we obtain:

 x

y

w

 =

 fx 0 cx 0

0 fy cy 0

0 0 1 0

X

Y

Z

W

 =

 fxX + cxZ

fyY + cyZ

Z

 (A.2)

where:

X,Y, Z are the homogeneous world coordinates of a point,

x, y, w are the homogeneous image coordinate of the same point,

fx, fy are the focal length on each direction,

cx, cy are the coordinates of the principal point of the camera.

Since we are in homogeneous coordinates, we can write the inverse relation for X and Y as follows:

X =
(x− cx)Z

fx
and Y =

(y − cy)Z
fy

(A.3)

Notice that the particularity of this type of camera is that we know the depth Z. The device also has a
RGB camera which needs to be calibrated in order to associate a color to a depth pixel. For that, we have
to use the intrinsic parameters of both cameras and the extrinsic mapping between the two cameras [?].
The mapping can be expressed as the following:

 Xrgb

Yrgb
Zrgb

 = R

 Xir

Yir
Zir

+ t (A.4)

where:

Xrgb, Yrgb, Zrgb are the homogeneous coordinates of a point in the rgb camera frame,

Xir, Yir, Zir are the homogeneous image coordinates of a point in the ir sensor frame,

R and t represent the transformation between the rgb camera and ir sensor.

The RGB and depth images can therefore be represented together as a colored metric points cloud. In
section 2, we examine the state of the art for computing the transformation between two points cloud. We
then present a new approach using interval analysis in section 3 and add an IMU to the Kinect to optimize
the performances in section 4.

118

A.2. Standard algorithms 119

Figure A.1: Kinect’s projected IR structured light

A.2 Standard algorithms

A.2.1 Principle

We tested most of the existing open source methods including:

- RGB-D Mapper by P. Henry, M. Krainin , E. Herbst, X. Ren and D. Fox [Henry et al., 2010].

- RGBDemo by N. Burrus.

- RGB-D SLAM by N. Engelhard, F. Endres, J. Hess, J. Sturm , W. Burgard [Engelharda et al., 2011].

- KinectFusion by A. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim
and A. Fitzgibbon [Izadi et al., 2011].

They all more or less use the same algorithms based on 4 steps: First, they extract SIFT features (or
its variants like SURF) from the incoming color images. Then they match these features against features
from the previous images. By evaluating the depth images at the locations of these feature points, they
obtain a set of point-wise 3D correspondences between any two frames. Based on these correspondences,
they estimate the relative transformation between the frames using RANSAC. The third step is to improve
this initial estimate using a variant of the ICP algorithm. As the pair-wise pose estimates between frames
are not necessarily globally consistent, they optimize the resulting pose graph in the fourth step using a
pose graph solver like HOG-Man. The output of their algorithm is a globally consistent 3D model of the
perceived environment, represented as a colored point cloud.

A.2.2 About Sift

Scale-Invariant Feature Transform (or SIFT) [Lowe, 1999] is an algorithm in computer vision to detect and
describe local features in images. The algorithm was published by David Lowe in 1999. For any object in

119

120 Chapter A. Visual localization and 3D reconstruction using the Kinect device coupled
with an IMU.

Figure A.2: Principle of existing methods

an image, interesting points on the object can be extracted to provide a "feature description" of the object.
This description, extracted from a training image, can then be used to identify the object when attempting
to locate it in a test image containing many other objects. To perform reliable recognition, it is important
that the features extracted from the training image be detectable even under changes in image scale, noise
and illumination. Such points usually lie on high-contrast regions of the image, such as object edges.

The key stages in the SIFT algorithm are:

- Scale-invariant feature detection: Lowe’s method for image feature generation transforms an image into
a large collection of feature vectors, each of which is invariant to image translation, scaling, and rotation,
partially invariant to illumination changes and robust to local geometric distortion.

- Feature matching and indexing: Indexing consists of storing the feature vectors and identifying matching
feature vectors from the new image. Lowe used a modification of the k-d tree algorithm called the Best-
bin-first search method that can identify the nearest neighbors with high probability using only a limited
amount of computation.

- Cluster identification by Hough Transform voting: Hough Transform is used to cluster reliable model
hypotheses to search for feature vectors that agree upon a particular model pose. Hough Transform identifies
clusters of features with a consistent interpretation by using each feature to vote for all object poses that are
consistent with the feature. When clusters of features are found to vote for the same pose of an object, the
probability of the interpretation being correct is much higher than for any single feature. An entry in a hash
table is created predicting the model location, orientation, and scale from the match hypothesis. The hash
table is searched to identify all clusters of at least 3 entries in a bin, and the bins are sorted into decreasing
order of size.

A.2.3 About SURF

Speeded Up Robust Feature (or SURF) [Bay et al., 2006] is also a robust image detector & descriptor, first
presented by Herbert Bay in 2006. It is partly inspired by the SIFT descriptor. The standard version of
SURF is several times faster than SIFT and claimed by its authors to be more robust against different image

120

A.2. Standard algorithms 121

transformations than SIFT. SURF is based on sums of approximated 2D Haar wavelet responses and makes
an effi cient use of integral images. It uses an integer approximation to the determinant of Hessian blob
detector, which can be computed extremely quickly with an integral image. For features, it uses the sum of
the Haar wavelet response around the point of interest.

A.2.4 About RANSAC

RANSAC is an abbreviation for RANdom SAmple Consensus [Fischler and Bolles, 1987]. It is an iterative
method to estimate parameters of a mathematical model from a set of observed data which contains outliers.
It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain
probability, with this probability increasing as more iterations are allowed. The algorithm was first published
by Fischler and Bolles in 1981. A basic assumption is that the data consists of "inliers", i.e., data whose
distribution can be explained by some set of model parameters, and "outliers" which are data that do not fit
the model. In addition to this, the data can be subject to noise. The outliers can come, e.g., from extreme
values of the noise or from erroneous measurements or incorrect hypotheses about the interpretation of
data. RANSAC also assumes that, given a (usually small) set of inliers, there exists a procedure which can
estimate the parameters of a model that optimally explains or fits this data. RANSAC achieves its goal by
iteratively selecting a random subset of the original data.

These data are hypothetical inliers and this hypothesis is then tested as follows:

- A model is fitted to the hypothetical inliers, i.e. all free parameters of the model are reconstructed from
the inliers.

- All other data are then tested against the fitted model and, if a point fits well to the estimated model,
also considered as a hypothetical inlier.

- The estimated model is reasonably good if suffi ciently many points have been classified as hypothetical
inliers.

- The model is reestimated from all hypothetical inliers, because it has only been estimated from the initial
set of hypothetical inliers.

Finally, the model is evaluated by estimating the error of the inliers relative to the model. This procedure
is repeated a fixed number of times, each time producing either a model which is rejected because too few
points are classified as inliers or a refined model together with a corresponding error measure. In the latter
case, we keep the refined model if its error is lower than the last saved model. An advantage of RANSAC is
its ability to do robust estimation of the model parameters, i.e., it can estimate the parameters with a high
degree of accuracy even when a significant number of outliers are present in the data set. A disadvantage
of RANSAC is that there is no upper bound on the time it takes to compute these parameters. When the
number of iterations computed is limited, the solution obtained may not be optimal, and it may not even be
one that fits the data in a good way. In this way RANSAC offers a trade-off; by computing a greater number
of iterations the probability of a reasonable model being produced is increased. Another disadvantage of
RANSAC is that it requires the setting of problem-specific thresholds.

121

122 Chapter A. Visual localization and 3D reconstruction using the Kinect device coupled
with an IMU.

A.2.5 About ICP

Iterative Closest Point (ICP) [Besl and McKay, 1992][Rusinkiewicz and Levoy, 2001] is an algorithm em-
ployed to minimize the difference between two clouds of points. ICP is often used to reconstruct 2D or 3D
surfaces from different scans, to localize robots and achieve optimal path planning [Yang and Medioni, 1992]
(especially when wheel odometry is unreliable due to slippery terrain), to co-register bone models, etc. The
algorithm is conceptually simple and is commonly used in real- time. It iteratively revises the transformation
(translation, rotation) needed to minimize the distance between the points of two raw scans. The inputs are
points from two raw scans, initial estimation of the transformation, criteria for stopping the iteration, and
the output is the refined transformation.

Essentially, the algorithm steps are:

- Associate points by the nearest neighbor criteria.

- Estimate transformation parameters using a mean square cost function.

- Transform the points using the estimated parameters.

- Iterate (re-associate the points and so on).

A.2.6 About HOG-Man

HOG-Man [Grisetti et al., 2010] is an optimization approach for graph-based SLAM (Simultaneous localiza-
tion And Mapping). It provides a highly effi cient error minimization procedure that considers the underlying
space is a manifold and not an Euclidian space. It furthermore generates a hierarchy of pose-graphs which
is used perform the operations during online mapping in a highly effi cient way.

A.3 Our method

We chose to keep the principle of finding the correspondences between the two 2D images then use them to
compute the transformation between the 3D points clouds. However, instead of using SIFT, we chose to use
A-SIFT, and instead of using probabilistic methods like RANSAC, we developed our own algorithm based
on interval analysis techniques.

A.3.1 About A-SIFT

While SIFT is fully invariant with respect to only three parameters namely zoom, rotation and translation,
the new method treats the two remaining parameters: the angles defining the camera axis orientation.
Methods like SIFT and SURF normalize the translation and rotation component and simulate the scale
(zoom) through image pyramids to obtain a description invariant to these parameters and partially invariant
to affi ne transformations. A-SIFT (for Affi ne SIFT) [Morel and Yu, 2009] attempts to obtain a description
fully invariant to affi ne transformations. The method simulates all image views obtainable by varying the

122

A.3. Our method 123

Figure A.3: Comparison of the number of correspondances found on an ENSTA mechanical prototype
between SIFT on the left and A-SIFT on the right.

latitude and longitude camera angles. If a physical object has a smooth or piecewise smooth boundary, its
images obtained by cameras in varying positions undergo smooth apparent deformations. These deformations
are locally well approximated by affi ne transforms of the image plane. In consequence the solid object
recognition problem has often been led back to the computation of affi ne invariant image local features. Such
invariant features could be obtained by normalization methods, but no fully affi ne normalization method
existed before. Yet the similarity invariance (invariance to translation, rotation, and zoom) is dealt with
rigorously by the SIFT method. By simulating on both images zooms out and by normalizing translation
and rotation, the SIFT method succeeds in being fully invariant to four out of the six parameters of an
affi ne transform.

ASIFT is therefore much more effi cient for our purposes. Moreover we believed it was possible to retrieve
the rotation and translation parameters computed by ASIFT to obtain an estimation of those parameters
to use them in our algorithm in the next chapter. However we haven’t being able to do so yet.

A.3.2 System of equations

In the next part of this appendix, we solve the equations of the transformation between two poses using
interval analysis and constraints propagation [Jaulin et al., 2001a]. Let’s consider the following definition of
the transformation matrix:

T =
(
R t

)
(A.5)

where:

T is the transformation matrix,

R is the rotation matrix,

123

124 Chapter A. Visual localization and 3D reconstruction using the Kinect device coupled
with an IMU.

t is the translation vector.

The transformation T is estimated such that for each couple of corresponding points i and j, ideally:

 Xi

Yi
Zi

− T
 Xj

Yj
Zj

 = 0 (A.6)

where Xi, Y i and Zi are the coordinates of a point at the first pose and Xj, Y j and Zj are the coordinates
of the corresponding point at the second pose. We define the translation vector as

t = (tx ty tz)T (A.7)

and the rotation matrix as the standard orthogonal matrix corresponding to a clockwise/left-handed rotation
with Euler angles φ, θ, ψ with x− y − z convention:

R =

 cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ

 (A.8)

Developing A.8 gives us three equations (or constraints) for each corresponding points.

(C1) : Xi − (cos θ cosψ.Xj + (− cosφ sinψ + sinφ sin θ cosψ).Yj (A.9)

+ (sinφ sinψ + cosφ sin θ cosψ).Zj + tx) = 0

(C2) : Yi − (cos θ sinψ.Xj + (cosφ cosψ + sinφ sin θ sinψ).Yj (A.10)

+ (− sinφ cosψ + cosφ sin θ sinψ).Zj + ty) = 0

(C3) : Zi − (− sin θ.Xj + (sinφ cos θ).Yj + (cosφ cos θ).Zj (A.11)

+ tz) = 0

A.3.3 Forward-backward Algorithm

Let us remind that in our problem of finding the transformation parameters, we have three constraints per
couple of corresponding points. They have to be treated simultaneously in a forward-backward algorithm
to find the smallest boxes [x] = [φ].[θ].[ψ].[tx].[ty].[tz] which encloses the solution set. We applied a forward-
backward algorithm as presented in Chapter 2. Due to its size of 116 lines we haven’t enclosed the full
algorithm in this chapter. It can however be found at http://aymericbethencourt.com.

124

http://aymericbethencourt.com

A.3. Our method 125

Figure A.4: Selection of (a) 10 almost collinear correspondances, and (b) 3 non-collinear correspondances

A.3.4 Result

We implemented our algorithm in C++ using Luc Jaulin’s interval library. The main advantage of an
interval approach is generally its speed for solving strongly non-linear systems of equations as long as we
have more equations than unknown variables. In our problem, we have six unknowns and three equations
per corresponding points. This means that we only need two couples of corresponding points to solve the
problem using interval analysis. In practice, all correspondence found by A-SIFT are sent to the forward-
backward algorithm in order to maximize contractions. We first obtained what seemed to be random results,
as we were feeding the algorithm with as many couples of points as it needed to contract the intervals to
a acceptable width of 0.1rad on the rotation angles and 0.05m on the translation parameters. To reach
this goal, our algorithm sometimes needed 200 couples of points (which was a problem when we had less
correspondences found by A-SIFT) and sometimes needed as little as 3 points to attain this precision, making
the computation time varying from 0.13 to 6.1ms (0.1ms to initialize and 0.03ms to compute the forward-
backward algorithm per corresponding couple of points). We eventually figured out that it depended on
where the correspondences where located on the 3D model.

Fig. A.4a shows 10 almost collinear correspondences with which our contractors were not contracting well.
We needed 200 of these points to get exploitable results. However, when using as little as 3 points that were
clearly not collinear (fig. A.4b) we immediately contracted the intervals to the requested width. This was
later explained as every isometry is completely determined by its effect on three independent (not collinear)
points.

Fig. A.5 shows two PNG pictures and point clouds taken from a "right pose" and a "left pose" around the
mechanical prototype. For this we used the Robot Operating System (ROS) with the OpenNI drivers.

We ran the PNG pictures of the two poses in ASIFT to obtain the correspondences. The algorithm computed
for 45s on a Intel core 2 duo and found 287 correspondences over the structure.To compare the results,
we also ran SIFT which took only 11s but found only 13 correspondences. We also noticed that they
were all on the hood of the prototype meaning that the points were almost collinear and that our forward-
backward algorithm would have failed. SIFT therefore requires to take intermediary poses to reconstruct the
structure, which finally isn’t making the use of SIFT faster than A-SIFT. However, existing reconstruction
programs like RGBDSLAM use a parallel version of SIFT called SIFT GPU using the Nvidia’s CUDA
technology which considerably reduce its computation time. We decided to keep only 3 correspondences
that we judged good enough (red points in fig.A.5). We eventually implemented a way for the program to
automatically keep 3 points that were clearly not collinear: Among the correspondence points, we randomly

125

126 Chapter A. Visual localization and 3D reconstruction using the Kinect device coupled
with an IMU.

Figure A.5: Kinect capture of two poses.

choose 3 points. If they are almost collinear, we discard one point and randomly pick another one, and
check again if they are almost collinear until they are not. Points can be shown to be almost collinear by
determining that the scalar product of two vectors formed by the points is close to 0. In practice, we chose a
arbitrary threshold depending on the performances we wanted to achieve. Once we had 3 clearly not collinear
corresponding points, we recovered the depth information in the point clouds, converted the points into world
coordinates and ran the points one after the other through our forward-backward algorithm, successively
contracting [φ], [θ], [ψ] and [tx], [ty], [tz] to the requested width. We first started with big intervals, for
instance, [ψ] = [−3.14, 3.14] and [tx] = [−10, 10]. The program then outputted the contracted intervals after
each pass of the forward-backward algorithm:

Point 1 [ψ] = [−3.122, 2.593], [tx] = [1.241, 1.489],

Point 2 [ψ] = [−1.523,−1.623], [tx] = [1.322, 1.412],

Point 3 [ψ] = [−1.572,−1.573], [tx] = [1.345, 1.385].

The intervals are repeatedly contracting around the solution and reached the requested width in 0.209ms.
Fig.A.6 shows the reconstructed scene using the two point clouds set with the computed transformation.
We applied the same principle to 7 different poses taken around a car and displayed the result in fig. A.7.

Notice that the method can be made robust to outliers using the q-intersection presented in Chapter 2.

126

A.3. Our method 127

Figure A.6: The reconstructed structure from the two poses using the computed transform.

Figure A.7: My own car reconstructed from 7 Kinect poses. A video of the capturing process is available
on http://youtu.be/GZHYMGErA6E and the reconstructed model on http://youtu.be/HKuSv8X3UWM.

127

http://youtu.be/GZHYMGErA6E
http://youtu.be/HKuSv8X3UWM

128 Chapter A. Visual localization and 3D reconstruction using the Kinect device coupled
with an IMU.

Figure A.8: The IMU is mounted on the Kinect.

A.4 Adding an IMU

A.4.1 Why ?

The IMU or Inertial Measurement Unit contains an accelerometer, a magnetometer and a gyroscope. These
last two combined allows us to obtain the orientation of the IMU (and thus the Kinect) at any time, therefore
providing us with the rotation parameters between two poses (or at least a small interval around it). We
used the IMU-UM6 from CHRobotics and fixed it to the Kinect as shown in fig. A.8. In practice, the IMU
turned out to be very precise about its orientation. According to the datasheets, this model was precise
to +/ − 0.035rad, which was more than suffi cient for our purposes. With this accuracy, contracting the
intervals on φ, θ, ψ was not needed anymore. However, an IMU doesn’t return its position so we still had to
apply our forward-backward algorithm to compute the translation parameters. The IMU still improved our
performances since only one correspondence was then needed to contract these parameters to an acceptable
precision of 0.05m. The computation then dropped to 0.1msto initialize plus 0.03ms to run the forward-
backward algorithm once. Moreover the need to use only one correspondence made it possible to use less
effective but faster algorithm than A-SIFT, like SIFT. Further studies could even lead to the implementation
of a very fast algorithm that would only compute one correspondence and stop.

A.4.2 Position from acceleration

In order to discard all computation about solving the transformation parameters, we tried to obtain the
position from the acceleration data from the IMU and reconstruct the 3D scene according to them only. By
integrating twice the acceleration, we could theoretically find the translation between two poses. Knowing
that the Kinect (thus the IMU) was at zero speed at t = 0s allowed us to get rid of the constants. We also
decided to stop the movement at each poses, meaning that the Kinect would also be at zero speed at the
end of the movement. We imagined an algorithm based on the forward-backward principle: While moving,
the estimated intervals of the speed of the Kinect are growing (see fig. A.9a), which, when integrated lead
to a relatively imprecise estimation of the position with an important drift. Using the fact that the Kinect
was at zero speed at the end of the movement, we contracted the speed intervals backward and obtained a
better estimation of the position (see fig. A.9b).

As interval analysis is a "guaranteed" method, if, at line 6, {0} is not included in the speed interval at the
end of the movement, it means that the IMU is not stopped. In practice, the noise on the measures was
very important because of the acceleration from gravity. If the Kinect stayed horizontally (like moving on a

128

A.4. Adding an IMU 129

Figure A.9: Representation of the speed intervals (a) without zero speed at the end of the movement (b)
with zero speed at the end of the movement..

Algorithm CACCEL2POS (in : [a], out : [x])
1 [a]0 = {0}; [v]0 = {0}; [x]0 = {x0}; k = 0;

2 for t = 0 : dt : T − dt
3 read [a]t;

4 [v]t+dt = [v]t + [a]t ∗ dt;
5 endfor
6 if {0} is not included in [v]T then error;
7 else
8 [v]T = {0};
9 for t = T : −dt : dt

10 [v]t+dt = [v]t−dt\([v]t − [a]t ∗ dt);
11 enfor
12 for t = 0 : dt : T − dt
13 [x]t+dt = [x]t + [v]t ∗ dt
14 endfor
15 endfi

Table A.1: Forward-Backward Algorithm for computing pose from acceleration

129

130 Chapter A. Visual localization and 3D reconstruction using the Kinect device coupled
with an IMU.

table), we could subtract the acceleration from gravity from the input acceleration on the z axis. However,
in any other cases, we had to project the gravity on the estimated axis of the IMU. Although small, the
noise and inaccuracy on theses axis was amplified by the double integrations which made the position very
inaccurate. Translating the IMU of 1m without turning it already generated an error of +/ − 11cm. If
we rotated the Kinect at the same time, the error jumped to +/ − 70cm, making the measure completely
unexploitable.

A.5 Conclusion

Our research showed that it was possible to apply interval analysis to find the transformation between two 3D
images. We have been able to reconstruct object and scenes in 3D. The addition of the IMU showed that it
was possible to do so without any computation. However, we still have to figure out how to robustly compute
the position of the IMU at any time. Further studies may include loop closure detection [Aubry et al., 2013]
and the combination with probabilistic methods [Lemaire et al., 2005]. Notice that we tried to integrate
the reconstructed car into a game engine. However, we had to convert the points cloud into a mesh. We
tried different algorithm in different software but the results were either containing too many polygons for
a game engine to run it, or too simplified to still look like a car. This problematic is a very active topic
of research in the graphics world. A company named JCL found a side solution by developing a game
engine exclusively for displaying point clouds of trillions of points in real-time. It would therefore be easy
for developers to scan an object or a scene with the Kinect (or any 3D scanner) and include it in a game.
Finally, we believe that it is possible to build complete robot navigation and interaction systems solely based
on cheap depth cameras like the Kinect, especially since vison-based SLAM has already been achieved using
panoramic images [Lemaire and Lacroix, 2007] and stereovision images [Lemaire et al., 2007]. Further work
will include mounting a Kinect with an IMU on an autonomous robot to perform 3D SLAM.

The work presented in this chapter has been published in : InTech, International Journal of Advanced
Robotics, 2012.

130

Appendix B

Design and experimental validation of a
visual goniometric localization system for
a group of indoor robot vehicles

As the final project of my engineering degree, I designed a visual goniometric localization system for the
CAROTTE competition. As the subject is relevant to this thesis, this appendix presents my work.

B.1 Introduction

The CAROTTE (CArtographie par ROboT d’un TErritoire) competition has been created by the DGA
(Direction Général pour l’Armement) for military purposes. The goal is for a group of robots to explore an
unknown building and perform SLAM while detecting various pre-defined objects. In order to take part in
the competition, we built robots designed to detect and localize each other in the arena. Each robot have
an rotating laser that enable it to map and localize himself in his visible environment. To strengthen the
localization, robots can put their maps in common to aggregate them into a global map. However to build
the aggregated map, each robot’s map must be put in relation with each other. For this, each robot must
know the distance, angle and azimuth to other robots. Using camera calibration, we developed a new visual
goniometric localization system that put a robot in geometrical relationship with another when its camera
sees it.

B.2 Realization

When a robot sees another, it must be able to compute the distance and azimuth to the robot, and the
angle of the observed robot. For this, a simple system of multiple LEDs (Light-Emitting Diodes) on each
robot is suffi cient. Using methods of camera calibration, the distance on screen between each observed LED
can lead to the real geometric parameters in the real world.

131

132 Chapter B. Design and experimental validation of a visual goniometric localization
system for a group of indoor robot vehicles

Figure B.1: A group of robot moving in the arena.

B.2.1 System design

In order to realize the desired function, we first imagined two hoops over the robot in order to form a
tetrahedral structure with 4 LEDs. The three LEDs at the base would allow to compute the angle of the
observed robot, and the LED at the top (which could be on the same color of a base LED) would allow
to compute the distance to the robot by measuring the distance with the base LEDs. It was important to
always see at least the top LED and two base LEDs.

We first designed several early views of the project, e.g. Fig. B.2, which showed multiple flaws, like the
impossibility to open the on-board computer anymore. We therefore considered an concept of LED tower as
presented in fig. B.3(a) with the 4 LEDs mounted height on a tower. In order to maximize the segmentation
of the LEDs’light, we used 200 degrees ultra-bright LEDs.

However the problem with an ultra-bright LED is that the center is so bright that it saturates the CCD
sensor of a webcam. The result on picture was a white center with a diffuse colored halo, making it hard to
segment because of its intricate and skewed form in certain directions. Segmenting fig. B.3(a) was disastrous.
We then had the idea to use a concept inspired from the Playstation Move presented in fig. B.4. The Move
is a game controller used with a webcam placed on top of the TV. The webcam tracks the movements of
the player thanks to an opaque sphere, which light is clear and uniform.

Using ping-pong balls cut in half, we were able to create a second version of the LED tower shown in
fig. B.3(b). The semi-transparent matter of the balls acted as a filter to the ultra-bright light, giving the
luminous halos a spheric shape and uniform color just like the Playstation Move. Computing the barycenter
of these luminous areas would therefore be much more precise.

The first segmentation tests of this LED tower rapidly showed a new issue. The LEDs were way too close
from each others. With a webcam resolution of 640×480px, the barycenters of two LEDs were only 3 pixels
away on screen when the robot was 5m away from the webcam. This would have been disastrous for the

132

B.2. Realization 133

Figure B.2: Early project view.

Figure B.3: (a) First version of the LED Tower. (b) Second version of the LED Tower.

Figure B.4: The Playstation Move (c© Sony Entertainment)

133

134 Chapter B. Design and experimental validation of a visual goniometric localization
system for a group of indoor robot vehicles

precision of the measures during the competition; so we increased the space between the LEDs. We modified
the concept of the robot and added the LEDs directly on it. Using PVC tubes, we were able to place the
LEDs as far away from each other on the robot chassis and built the first prototype in fig. B.5(a).

This version kept the tetrahedral shape of the LED tower but with the robot chassis and depending on the
point of view, it was not always possible to see three LEDs at the same time. By viewing only two LEDs,
it would be impossible to compute either the distance or the angle of the robot. After multiple tryouts,
we found a way an optimize the LEDs arrangement. We even removed one of the LED at the bottom and
moved the other two like presented in fig. B.5(b) and (c). This way, the three LEDs were almost always
visible regardless of the angle of the robot.

The difference in height (on the y axis) between the LED on top and the two lower LEDs allowed to compute
the distance to the robot, and the arrangement of all three LEDs on the x axis allowed to compute the angle
of the robot. Finally, the barycenter of all LEDs would allow to computer the azimuth of the robot.

We first believed that there would be an issue when one of the tube would hide a LED, but as the blue LED
is higher, only two angles of the robot can hide the green or red LED, in which case we actually perfectly
know which angle engenders the occlusion.

A few tests on this prototype were very conclusive, and so the "assembly line" began. Seven platforms were
built.

B.2.2 Coding the software

OpenCV Implementation

Each robot embedded a Core 2 duo eee-pc to run the localization program, and a PIC 16F887 to make the
LEDs blink at 4Hz. We coded the localization program in C using the OpenCV library. The program took
an image every 250ms to get a picture with LEDs off (fig. B.7(a)) and LEDs on (fig. B.7(b)). The program
then took the difference between both images in order to keep only the LEDs (fig. B.7(c)). The image is
then segmented to identify the colored clusters. In order to work for all light intensity, we first decided to
work in HSV (Hue Saturation Value). We took HSV measurements from each LED as seen by the webcam
and tried computing 95% enclosing spheres. Unfortunately, the measures proved to be very entangled and
hardly separable. We then remembered that we first chose the HSV model to easily segment a yellow LED
used in previous prototypes. We then made new measurements in RGB (Red Green Blue) presented in fig.
B.6.

The values were more separated and segmenting the colors were easier. However depending on the ambient
luminosity, the RGB values change a lot in a non-linear way (not the case in HSV). These variations were
even more present when the webcam was adjusting it contrast and gain automatically like most webcam.
We had to modify the pilots of the webcam to de-activate this functionality. In the meantime, we took
the opportunity to adjust the webcam gain settings to accentuate bright colors on each red, green or blue
channel and make the segmentation even more powerful. Fig.B.7(d) shows the segmentation result. From
this picture, it was easy to compute the barycenter of each LED (fig.B.7(e)).

134

B.2. Realization 135

Figure B.5: (a) First prototype. (b) Second prototype. (c) Second prototype as seen by another robot. (d)
The assembly line. (e) Three completed robots. (f) The robots were built identical.

135

136 Chapter B. Design and experimental validation of a visual goniometric localization
system for a group of indoor robot vehicles

Figure B.6: (a) HSV measurements. (b) RGB measurements. The lozenges represents the red LED, the
crosses the blue LED and the circled crosses the green LED.

It was therefore possible to compute the distance, angle and azimuth of the observed robot.

Distance measurement

The distance was simply computed by applying :

hpix/h real = δ/d real (B.1)

where :

hpix is the distance on screen in pixels between the top blue LED and any of the lower LEDs,

h real is the real distance,

dpix is the distance from the robot to the webcam (that we look to compute),

δ is a calibration parameter that needed to be calibrated.

Therefore d real = δ ∗ h real /hpix. We found the calibration parameter δ experimentally. For this, we
realized the setup presented in fig. B.8 and realized measurements presented in table B.2.

hpix (pixels) dreel (cm)
63 100

45 150

34 200

29 250

24 300

19 350

18 400

16 450

(B.2)

136

B.2. Realization 137

Figure B.7: (a) At t = 0ms, we get a picture with the lights off. (b) At t = 250ms, we get a picture with the
lights on. (c) Subtration of (a) to (b) .(d) Segmentation of the colors. (e) Barycenters of each segmented
areas.

137

138 Chapter B. Design and experimental validation of a visual goniometric localization
system for a group of indoor robot vehicles

Figure B.8: Simple representation of the distance measurement.

Figure B.9: Calibration between the real distance to the robot and observed difference of height between
the LEDs on screen.

Figure B.10: Polynomial interpolation of the data.

138

B.2. Realization 139

Figure B.11: Geometrical representation of the azimut problem. The upper image represents the real world,
and the lower image the image observed by the webcam.

Fig.B.10 presents the polynomial interpolation that was later done on the data, to compute the model that
best fitted the data. We deduced that δ = 886.74. After implementing this equation into the program, a
few tests showed that it was possible to compute the distance to the robot with a precision of +/− 4cm.

Azimuth measurement

We then had to find the equation to compute the azimuth θ of the robot. The webcam we were using had
an aperture angle of 62 degree or 1.08rad according to its datasheets. The image on screen was 640 pixels
large. As the position on screen of a point C moves linearly according to its angle to the webcam in the real
world (fig. B.11), we could easily deduce that:

θ = (640− x) ∗ 1.08/640 + 1.03 (B.3)

where θ is the azimuth of the robot C in relation to the webcam centered on its ordinate axis and x the
abscissa on screen of C in pixels.

During the tests presented in fig. B.12, this equation proved to be precise to +/ − 0.07rad. Knowing the
azimuth and distance of the robot, it was already possible to map the position of every robot seeing each
others.

Orientation measurement

During the tests above on different azimuths, we also turned the robot to different orientations δ and took
multiple distance measurements on screen between the LEDs. The result for an azimuth of 90 degrees and

139

140 Chapter B. Design and experimental validation of a visual goniometric localization
system for a group of indoor robot vehicles

Figure B.12: (a) Azimut calibration tests using a giant handmade protractor. (b) View from the webcam.

Figure B.13: Distances in pixels between the blue (B), green (G) and red (R) LEDs when turning the robot.

distance of 1m is presented fig.B.13.

Six orientation areas can be identified as presented in fig.B.14 for which we can assume that the orientation
of the robot moved in a linear fashion compared to the distance between the LEDs on screen.

Fig. B.15 presents for example the R-G-B area (the green LED moves between the red and blue LEDs).
When the green LED is at maximum to the right side (the blue and green LED are aligned), we measured
θ = 0.30rad. When the green LED is at maximum on the left side (the red and green LED are aligned), we
measured θ = 1.57rad. We then simply computed a linear interpolation θ = BG/BR ∗ (1.57− 0.30) + 0.30

where BG is the distance observed on screen between the blue and green LEDs, and BR is the distance
between the blue and red LEDs.

This linear model was very approximated but still provided good results during tests with a precision of
+/− 0.11rad. We then simply coded an interface (fig. B.16) to localize the robot on screen.

140

B.2. Realization 141

Figure B.14: The 6 orientation areas of the observed robot in reference to the observer.

Figure B.15: Example of the computation of the linearized equation of the orientation of the robot, here in
the R-G-B area.

141

142 Chapter B. Design and experimental validation of a visual goniometric localization
system for a group of indoor robot vehicles

Figure B.16: The HMI of the localization program.

B.3 Conclusion

In this appendix, we showed the work realized for the robotic competition CAROTTE. We developed a
new goniometric method to visually put robots in geometrical relationship with each other. Using 3 LEDs
mounted on the robots, we used camera calibration techniques to compute the distance, orientation and
azimuth of the observed robot. Further developments will include the segmentation of multiple robots
observed at the same time on screen and the grouping of each 3-upplets of LEDs. Finally, notice that this
approach only provides a relative localization of the robots with each others, and could be combined with
an odometric system [Bonnifait and Garcia, 1998] for a global localization.

The work presented in this chapter has been submitted to : Revue de l’électronique et de l’électricité, 2014,
and is currently awaiting reviews.

142

Appendix C

Résumé en français

C.1 Introduction

La localisation est un sens essentiel à toute créature terrestre visant à se déplacer dans son environnement.
Les organes ou senseurs utilisés par les humains sont en partie les yeux et le système vestibulaire (oreille
interne). Tout comme les humains, les robots ont besoin de capteurs pour se localiser, respectivement une
caméra et un gyroscope. Cependant les machines n’ont pas encore les capacités du cerveau humain pour se
localiser. C’est pourquoi il est important de développer des algorithmes effi caces de localisation, et plus parti-
culièrement sous l’eau où il n’est pas possible d’utiliser le GPS. Les AUVs (Véhicules sous-marins autonomes)
sont de plus en plus développés dans les domaines civils (recherche sismique, inspection d’installations
marines, etc.) et militaires (guerre des mines). Je fus personnellement interviewé par France 2 sur ce sujet
qui s’étend de manière exponentielle (interview disponible sur http://youtu.be/Zwjbufay9Z0). L’avantage
des AUVs comparés aux traditionnels ROVs (Véhicules télé-opérés) est leur habilité à se "débrouiller tout
seul". La mission est chargée dans l’AUV et la réalise sans connexion à l’opérateur. Une bonne localisation
de l’AUV est alors essentielle.

A cela s’ajoute des problématiques de monté en échelle. Certains projets développés par la Direction Général
pour l’Armement, ou de grandes compagnies telles que CGG ou Saudi Aramco prévoient la mise en place
d’essaims de plusieurs milliers d’AUVs simultanément afin de réaliser des mesures sismiques. Les AUVs
doivent alors se positionner en grille de manière très précise. L’utilisation de méthodes dites par intervalle
semble donc justifiée dans ce contexte où la localisation de l’AUV à besoin d’être garantie.

En effet, les méthodes par intervalle permettent de représenter des ensembles solution avec leur incertitudes,
garantissant qu’aucune solution n’existe en dehors de ses bornes. Nous verrons également que l’analyse par
intervalles possède de nombreux outils particulièrement éffi caces pour notre problématique. Les méthodes
par intervalle sont notamment très puissantes pour la résolution de larges systèmes d’équations, particulière-
ment adaptés dans le cas de milliers d’AUVs.

Cette thèse est organisée comme suit. Le chapitre 1 introduit le sujet. Le chapitre 2 présente l’analyse
par intervalle et son application à la localisation en robotique mobile. Le chapitre 3 (non-présenté dans ce
résumé) étend la notion de contracteur et propose l’évaluation de contracteurs minimaux par transformations

143

http://youtu.be/Zwjbufay9Z0

144 Chapter C. Résumé en français

géométriques. Le chapitre 4 formalise le problème de localisation dynamique d’AUVs sous la forme d’un
problème de satisfaction de contraintes, et propose un nouvel outil, le tube, pour résoudre ce problème. Le
chapitre 5 s’intéresse ensuite à un modèle d’AUV plus proche de la réalité, pour lequel l’horloge du robot
est désynchronisée par rapport au temps réel. Enfin le chapitre 6 conclu la thèse par une forte monté en
échelle des algorithmes et simulations présentés dans les chapitres précédent.

C.2 L’analyse par intervalle et son application à la localisation en robo-
tique

C.2.1 L’approche ensembliste

Ce premier chapitre introduit les notions basiques de l’analyse par intervalle et démontre leur application
sur un simple problème académique de localisation. Considérons le problème suivant : un robot de position
incertaine peut mesurer sa distance à d’autres robots dont la position est connue. Le modelé d’observation
est :

dij =
√

(xi − xj)2 + (yi − yj)2 (C.1)

où (xi, yi) sont les coordonnées du robot i, (xj , yj) sont les coordonnées du robot j et dij est la distance
mesurée entre eux. On remarque que le problème est non-linéaire.

L’approche ensembliste (ou par intervalle) consiste à considérer que l’erreur de mesure est bornée et donc
que la distance réel dij ∈ dmeasuredij + [eij] ou dmeasuredij est la distance mesurée et [eij] est l’intervalle qui
inclue l’erreur de mesure. La mesure de distance n’est alors pas représentée par un cercle autour du robot
mais par un anneau. L’image C.1 illustre le principe avec quatre robots.

C.2.2 L’analyse par intervalle

Un intervalle [x] est définie comme l’ensemble des nombres réels x entre une borne inférieure x et une borne
supérieure x̄.

[x] = [x, x̄] = {x ∈ R, x ≤ x ≤ x̄} (C.2)

Cette représentation permet de travailler avec des valeurs incertaines de manière fiable. Quand des con-
traintes (égalités ou inégalités) sur les variables sont disponibles, il est possible de contracter l’intervalle sans
perdre de solution.

L’intersection de deux intervalles non vides [x] et [y] satisfait :

[x] ∩ [y] =

{
[max{x, y},min{x̄, ȳ}]

∅
si max{x, y} ≤ min{x̄, ȳ}

sinon

144

C.2. L’analyse par intervalle et son application à la localisation en robotique 145

Figure C.1: Le robot 4 (en violet) se localise grâce à des mesures de distance à erreur bornée avec trois
autres robots (1, 2 et 3 en marron).

Exemple : [1, 3] ∩ [2, 5] = [2, 3]

L’union de deux intervalles non vides [x] et [y] satisfait :

[x] t [y] = [min{x, y},max{x̄, ȳ}] (C.3)

Exemple : [1, 3] t [5, 7] = [1, 7]

Pour deux intervalles [x] et [y] et un opérateur � ∈ {+,−, ∗, /}, nous définissons [x]� [y] comme étant le plus
petit intervalle contentant toutes les valeurs possibles pour x � y telle que x ∈ [x] et y ∈ [y] où

[x] � [y] = [{x � y ∈ R|x ∈ [x], y ∈ [y]}] (C.4)

Pour des intervalles fermés :

[x] + [y] = [x+ y, x̄− ȳ] (C.5)

[x]− [y] = [x− ȳ, x̄− y] (C.6)

[x] ∗ [y] = [min{xy,xȳ,x̄y,x̄ȳ},max{xy,xȳ,x̄y,x̄ȳ}] (C.7)

Exemple :

145

146 Chapter C. Résumé en français

[−1, 3] + [2, 7] = [1, 10] (C.8)

[−1, 3]− [2, 7] = [−8, 1] (C.9)

[−1, 3].[2, 7] = [−7, 21] (C.10)

Une boite [x] de Rn est le produit cartésien de n intervalles.

[x] = [x1]× ...× [xn] = [x1, x̄1]× ...× [xn, x̄n] (C.11)

Les règles définies pour les intervalles valent aussi pour les boites.

L’image f([x]) d’un intervalle [x] par une fonction f est

f([x]) = {f(x)|x ∈ [x]} (C.12)

L’image peut ne pas être un intervalle, par exemple si f n’est pas continue. L’extension intervalle est définie
comme la fonction retournant l’enveloppe intervalle :

[f]([x]) = [{f(x)|x ∈ [x]}] (C.13)

L’extension intervalle des fonctions élémentaire peut être directement écrite par ses bornes. Par exemple,
pour [x] non vide, l’extension d’intervalle de la fonction exponentielle est :

[exp]([x]) = [expx, exp x̄] (C.14)

De même, l’image d’une boite [x] par une fonction f n’est pas toujours une boite. Nous utiliserons alors la
fonction d’inclusion qui inclue l’image de la boite. La fonction [f] : IRn → IRm est une fonction d’inclusion
pour f : Rn → Rm si et seulement si

∀[x] ∈ IRn, f([x]) ⊂ [f]([x]) (C.15)

La fonction d’inclusion minimale [f]∗ est definie comme la fonctions dont l’image est la plus boite incluant
l’image de f . L’image C.2 illustre la notion.

Considérons maintenant nx variables réelles xi ∈ R, i ∈ {1, ..., nf} liées par nf relations (ou contraintes) de
la forme :

fj(x1, x2, ..., xnx) = 0, j ∈ {1, ..., nf} (C.16)

ou fj dénote la fonction pour chaque coordonné j. On sait que chaque variable xi appartient à l’intervalle
[xi]. On definit x = (x1, x2, ..., xnx)T et le domaine pour x comme [x] = [x1]× [x2]× ...× [xnx]. On note aussi
f la fonction dont les fonctions coordonnées sont fj . On peut donc réécrire (C.16) sous sa forme vectorielle

146

C.2. L’analyse par intervalle et son application à la localisation en robotique 147

Figure C.2: Présentation de l’image d’une boite par la fonction f , de la fonction d’inclusion [f] et de la
fonction d’inclusion minimale [f]∗.

f(x) = 0. On appelle alors cela un problème de satisfaction de contraintes (CSP en anglais) que l’on notera
=.

= : (f(x) = 0, x ∈ [x]) (C.17)

Un CSP est donc composé de variables, domaines contenants ces variables et de contraintes. La solution S
de = est définie comme suit :

S = {x∈ [x]|f(x) = 0} (C.18)

Contracter un CSP, c’est remplacer le domaine [x] par un plus petit domaine [x′] sans changer la solution.
Notons que les domaines considérés dans cette thèse sont des intervalles de R. Nous avons donc S ⊂ [x′] ⊂ [x].
L’operateur permettant de contracter = est appelé un contracteur. On définie le contracteur minimal comme
le contracteur remplaçant [x] par la plus petite boite contenant S.

De nombreux problèmes en estimation, control, robotique, etc. peuvent etre représentés par des CSP
[Araya et al., 2008],[Ceberio and Granvilliers, 2001] et de nombreux contracteurs minimaux sont défnies
pour resoudre optimalement certaines classes de problème [Chabert and Jaulin, 2009] [Jaulin et al., 2001a].
Le contracteur que nous allons utiliser pour notre problème de localisation est le contracteur par prop-
agation et retro-propagation [Benhamou et al., 1999] qui permet de contracter les domaines d’un CSP
= : (f(x) = 0, x ∈ [x]) en isolant chaque contrainte séparément. Pour rapel, chaque distance mesurée
par notre robot s’écrit :

d =
√

(xi − xj)2 + (yi − yj)2 (C.19)

La première étape du contracteur par propagation et retro-propagation est donc de décomposer cette con-
trainte en contraintes primaires en introduisant de nouvelles variables.

147

148 Chapter C. Résumé en français

i1 = −xj
i2 = xi + i1

i3 = i22

i4 = −yj (C.20)

i5 = yi + i4

i6 = i25

i7 = i3 + i6

d =
√
i7

Initialement, les intervalles associés au variables ik sont] −∞;∞[. La méthode pour contracter = est de
contracter chaque contrainte primitive jusqu’au point fixe [Waltz, 1975]. Pour les contraintes binaires (deux
variables) tel que la racine carrée, deux étapes de contractions sont nécessaires : la contraction par l’image
directe de la fonction et la contraction par l’inverse de la fonction. Dans notre exemple, la contrainte d =

√
i7

se réécrit sont les formes :

d =
√
i7 (C.21)

i7 = d2 (C.22)

et les contractions qui en découlent sont :

[d] = [d] ∩
√

[i7] (C.23)

[i7] = [i7] ∩ [d2] (C.24)

Pour les contraintes ternaires (reliant trois variables), il y a trois formes possibles de réécriture de la con-
trainte. Considérons la contrainte i7 = i3 + i6 avec par exemple des intervalles initiaux [i3] = [−∞, 2], [i6] =

[−∞, 3] et [i7] = [4,∞]. Nous pouvons facilement contracter ces intervalles sans supprimer de valeur com-
patible avec la contrainte :

i7 = i3 + i6 → i7 ∈ [4,∞] ∩ ([−∞, 2] + [−∞, 3]) (C.25)

= [4,∞] ∩ [−∞, 5] = [4, 5]

i3 = i7 − i6 → i3 ∈ [−∞, 2] ∩ ([4,∞]− [−∞, 3]) (C.26)

= [−∞, 2] ∩ [1,∞] = [1, 2]

i6 = i7 − i3 → z ∈ [−∞, 3] ∩ ([4,∞] + [−∞, 2]) (C.27)

= [−∞, 3] ∩ [2,∞] = [2, 3]

148

C.3. Résolution de systèmes de satisfaction de contraintes non linéaires impliquant des
fonctions dépendantes du temps 149

Algorithme CFB (in : box, inout : [x], [ẋ])
// Propagation

1 [i1] := −[xj]

2 [i2] := [xi] + [i1]

3 [i3] := [i22]

4 [i4] := [−yj]
5 [i5] := [yi] + [i4]

6 [i6] := [i25]

7 [i7] := [i3] + [i6]

8 [d] := [d] ∩
√

[i7]

// Retro-propagation
9 [i7] := [i7] ∩ [d]2

10 [i3] := [i3] ∩ ([i7]− [i6])

11 [i6] := [i6] ∩ ([i7]− [i3])

12 [i5] := [i5] ∩ (sqr−1[i6])

13 [yi] := [yi] ∩ ([i5]− [i4])

14 [i4] := [i4] ∩ ([i5]− [y])

15 [yj] := [yj] ∩ −[i4]

16 [i2] := [i2] ∩ (sqr−1[i3])

17 [xi] := [xi] ∩ ([i2]− [i1])

18 [i4] := [i4] ∩ ([i2]− [xi])

19 [xj] := [xj] ∩ −[i1]

Table C.1: Algorithm de propagation et retro-propagation appliqué à chaque mesure de distance. (2.33).

Nous obtenons alors de plus petits intervalles [i3] = [1, 2], [i6] = [2, 3] et [i7] = [4, 5].

Le même principe peut être appliqué pour toutes les contraintes primaires de (C.20) de manière à contracter
les domaines de (C.19). La séquence de contraction effectuée par l’algorithme de propagation et retro-
propagation est optimale pour maximiser la contraction. L’algorithme est présenté au tableau C.1 et tourne
successivement pour chaque contrainte (mesure de distance).

L’image C.3 représente successivement les contractions prenant place à chaque appel de l’algorithme.

C.3 Résolution de systèmes de satisfaction de contraintes non linéaires
impliquant des fonctions dépendantes du temps

Dans le chapitre précédent nous avons présenté les notions basiques de l’analyse par intervalle et avons étudié
la localisation statique d’un robot. Dans ce chapitre nous définissons les outils qui vont nous permettre
de localiser dynamiquement des robots. Nous introduisons la notion de tube qui permet d’englober les
trajectoires des robots à tout moment. Une arithmétique est développée autour de cette notion, et une
approche par contracteurs est définie pour résoudre le problème.

149

150 Chapter C. Résumé en français

Figure C.3: Contractions successives de la boite incluant la position du robot 4 (a) initialement (b) après
un appel au contracteur par propagation et retro-propagation sur la distance au robot 1, (c) au robot 2, (d)
au robot 3, (e) aux robots 1, 2 et 3 une seconde fois (f) jusqu’au point fixe.

150

C.3. Résolution de systèmes de satisfaction de contraintes non linéaires impliquant des
fonctions dépendantes du temps 151

Figure C.4: Un tube [x] de R qui encadre la fonction x.

Tubes

En analyse par intervalle, les variables sont généralement des booléens, des nombres entiers ou des nombres
réel. L’originalité de ce chapitre est de considérer des trajectoires.

Un tube (ou intervalle de trajectoire) [Kurzhanski and Valyi, 1997][Milanese et al., 1996] est une vision en-
sembliste d’un signal aléatoire. Un tube tube [x] est un intervalle [x−,x+] de l’ensemble Fn des fonctions
de R dans Rn, c’est à dire deux fonctions x−,x+ tel que pour tout t, x− (t) ≤ x+ (t).

Un élément x de Fn appartient au tube [x] si ∀t,x (t) ∈ [x] (t). L’image C.4 illustre une fonction x ∈ F1

appartenant à [x]. Ce tube nous donne des informations sur la fonction inconnue x.

Si x ∈ Fn, on définit :
x ([t]) = {x (t) , t ∈ [t]} . (C.28)

Numériquement, un tube [x] est défini par :

[x] ([t]) =
⊔
t∈[t]

[x] (t) , (C.29)

C’est à dire [x] ([t]) est la plus petite boite qui inclut toute boite [x] (t) , t ∈ [t]. Il est facile de prouver que :

x ∈ [x] , t ∈ [t]⇒ x (t) ∈ [x] ([t]) , (C.30)

et qu’aucune boite plus petite que [x] ([t]) ne satisfait cette propriété.

151

152 Chapter C. Résumé en français

Ajoutons qu’il est possible de définir une arithmétique sur les tubes similaire aux intervalles. Par exemple,
pour [x] et [y] ∈ IFn et a ∈ R+

(i) [x] + [y] = [x− + y−, x+ + y+]

(ii) a[x] = [ax− ∧ ax+, ax+ ∨ ax−]
(C.31)

ou ∨ est la plus petite borne supérieur (ou supremum) et ∧ est la plus grande borne inférieur (ou infimum).
On peut aussi définir l’intégral d’un tube :

∫ t2

t1

[x] (τ) dτ =

[∫ t2

t1

x− (τ) dτ,

∫ t2

t1

x+ (τ) dτ

]
. (C.32)

Propagation de contrainte sur les tubes

L’arithmétique des tubes nous permet de construire des contracteurs. Considérons par exemple un signal
inconnu a(t) ou t est le temps. Nous souhaitons trouver le plus petit tube incluant la solution, sachant que
a vérifie :

a([−∞;∞]) ⊂ [−1; 1] (C.33)

a([
π

2
, π]) ⊂ [−0.7(t− π

2
) + 0.99, (C.34)

−0.1(t− π

2
) + 1.01]

a(t+ π) = −a(t) (C.35)

a(t+ 2π) = a(t) (C.36)

b(t− π

2
) = a(t) (C.37)

b(t) = ȧ(t) (C.38)

On définit initialement [a](t) = [a−(t), a+(t)] = [−∞,∞] puis on applique les contracteurs associés aux
contraintes C.33 et C.34. Chaque inclusion représente en réalité deux contraintes. C.34 équivaut à :

∀t ∈ [
π

2
, π],

a(t) 6 −0.1(t− π
2) + 1.01

a(t) > −0.7(t− π
2) + 0.99

(C.39)

Le résultat est présenté image C.5(a). Les contraintes C.35 et C.36 montrent respectivement que le signal
est symétrique par rapport au point (π, 0) et 2π périodique. Les résultats de contraction sont présentés aux
images C.5(b) et C.5(c).

Le contracteur associé à C.37 est :

[b(t)] = [b(t)] ∩ [a(t+
π

2
)] (C.40)

152

C.3. Résolution de systèmes de satisfaction de contraintes non linéaires impliquant des
fonctions dépendantes du temps 153

Enfin le contracteur associé à C.38 permet d’intégrer [b] pour contracter [a] :

[a(t)] = [a(t)] ∩ [

t∫
τ=0

db+(τ)

dt
dτ ,

t∫
τ=0

db−(τ)

dt
dτ] (C.41)

Le résultat est illustré à l’image C.5(d). Nous pouvons réappliquer tous les contracteurs une fois (Fig.
C.5(e)), trois fois (Fig. C.5(f)), cinq fois (Fig. C.5(g)) ou même jusqu’à ce que la largeur du tube soit
satisfaisante ou ne contracte plus davantage (Fig. C.5(h)). Nous pouvons alors clairement reconnaitre un
signal sinusoïdal.

Considérons maintenant un systeme masse-ressort présenté à l’image C.6. Dans les systèmes réels, il existe
une variation de la raideur du ressort en fonction de l’élongation. Le système est alors non-linéaire et s’écrit
:

m.ẍ+ γ.ẋ+ κ.x− βx3 = 0 (C.42)

où β est la raideur du ressort, m est la masse, x est le déplacement, κ est l’élasticité du ressort γ une
constante d’amortissement.

En connaissant les conditions initialles, ce système serait facilement résolvable via les méthodes standards de
résolution numérique. Cependant nous considérons ici ne pas connaitre les conditions initiales. En échange
nous équipons la masse d’un modem acoustique capable d’émettre une onde chaque seconde. Considérons
une onde émise à t1 voyageant à c = 100m.s−1 vers le mur de droite, s’y réfléchissant et captée par le modem
à t2. L’équation vérifiée par la masse est alors :

(L− x(t1)) + (L− x(t2)) = c.(t2 − t1)

⇔ x(t2) + x(t1) = 2L− c.(t2 − t1) (C.43)

A notre connaissance, ce problème ne peut être facilement résolut par les méthodes classiques. En considérant
le problème comme un problème de satisfaction de contraintes, nous pouvons réécrire le système comme suit
:

d
dt

(
x

ẋ

)
=

(
ẋ

(βx2−κ).x−γ.ẋ
m

)
(Equation d’évolution)

x(ti) + x(tj) = 2L− c.(ti − tj) (Equation d’observation)

(C.44)

ou les tj sont le temps d’émission et les ti les temps de réception. Chaque onde acoustique peut être considéré
comme une contrainte entre [x] et [ẋ]. Ces contraintes permettent alors de contracter les tubes de position
et de vitesse de la masse (image C.7). Notons que les équations d’observation ont généralement une forme
g(x(t), t) = 0. Nous introduisons donc pour la première fois une équation d’observation inter-temporelle du
type g(x(t),x(t′), t, t′) = 0.

153

154 Chapter C. Résumé en français

Figure C.5: Contractions successives du tube [a].

154

C.4. Localisation coopérative de robots sous-marins avec horloges désynchronisés 155

Figure C.6: Système masse-ressort-sonar

C.4 Localisation coopérative de robots sous-marins avec horloges dé-
synchronisés

Intéressons-nous maintenant à notre problème de localisation coopérative d’AUVs en groupe. Pour un robot
i dans le groupe, considérons les équations d’état suivantes :

ẋi = f(xi,ui) + nx (Equation d’évolution)
yi = g(xi) (Equation d’observation)

(C.45)

ou xi est le vecteur d’état du robot i, ui sont ses entrés ou commandes, yi ses sorties ou mesures, et f et
g sont respectivement les fonctions d’évolution et d’observation. nx est le bruit d’état. L’incertitude sur yi
est représentée par un intervalle autour sa valeur inconnue. Notons que la fonction d’observation dépend
généralement de l’état du robot au temps actuel. L’originalité de notre approche est de considérer une
communication par modems acoustiques entre les robots sous forme de ping. Puisque les ondes sonars ne se
déplacent pas instantanément, elles seront représentées par des contraintes inter-temporelles entre l’état des
robots à des temps différents. Nous considérons que chaque ping transmet l’intervalle de position estimé du
robot émetteur, ainsi que l’intervalle incluant l’instant d’émission du ping d’après l’horloge interne du robot
émetteur.

Formalisation. Une relation inter-temporal (ou ping pour faire court) correspond à un 4-tuple p =

(a, b, i, j) où a ∈ R est l’instant réel d’émission, b ∈ R est l’instant réel de réception, i ∈ {1, . . . ,m} est le
robot émetteur et j ∈ {1, . . . ,m} est le robot récepteur. La causalité démontre que b > a. Notons p (k)

le kème ping, et t le temps réel. τ = hi (t) est la fonction d’horloge [Srikanth and Toueg, 1987] qui à un
temps réel t fait correspondre un temps local τ associé à l’horloge interne du robot i. Notons que hi est
strictement croissante si il n’y a pas de resynchronisation, sinon la fonction est croissante par morceaux.

155

156 Chapter C. Résumé en français

Figure C.7: Contractions successives de la position (1p, 2p, 3p et 4p) et de la vitesse (1v, 2v, 3v et 4v) de
la masse.

156

C.4. Localisation coopérative de robots sous-marins avec horloges désynchronisés 157

Pour i ∈ {1, . . . ,m}, t ∈ R et k ∈ {1, . . . , kmax}, nous avons:

(i) ẋi (t) = f (xi (t) ,ui (t)) + nx (t)

(ii) g
(
xi(k) (a (k)) ,xj(k) (b (k)) , a (k) , b (k)

)
= 0

(iii) ã (k) = hi(k) (a (k))

(iv) b̃ (k) = hj(k) (b (k))

(v) ḣi (t) = 1 + nh (t)

(C.46)

(i) correspond à la fonction d’état du i-ème robot. Le bruit d’état nx (t) est assumé borné.

(ii) est la fonction d’observation inter-temporel tel que g : Rn × Rn × R× R est ici :

g (x1,x2, a, b) = ‖x1 − x2‖ − c ∗ (b− a) (C.47)

où c est la vitesse du son dans l’eau. En utilisant une norme euclidienne, (ii) peut être réécrit ainsi :

c ∗ (b(k)− a(k)) =

√
(xi(k) (a (k))− xj(k) (b (k)))2

+(yi(k) (a (k))− yj(k) (b (k)))2 (C.48)

(iii) ã (k) correspond au temps local du robot i (k) (c.à.d. l’émetteur émet le kème ping).

(iv) b̃ (k) correspond au temps local du robot j (k) (c.à.d. le récepteur reçoit le kème ping).

(v) nh (t) est le bruit d’horloge et est assumé borné.

Notons que pour tout k, nous connaissons exactement: ã (k) , b̃ (k) , i (k) , j (k) .

L’avantage de ce formalisme est qu’il englobe de nombreux précèdents formalismes de localisation ensembliste
[Jaulin, 2011][Le Bars et al., 2010] ainsi que notre problème avec contraintes inter-temporelles sur temps
incertains. A notre connaissance, un tel formalisme n’a encore jamais été proposé. Ce formalisme peut
même être appliqué au problème de localisation et cartographie simultanée (SLAM) en considérant que
les points de repère sont des robots stationnaires. Les mesures GPS en surface peuvent également être
considérées comme des mesures du robot avec lui-même.

Quand un AUV 1 émet un ping k à t = a(k) reçu par un autre AUV 2 à t = b(k), la distance entre les deux
AUVs peut etre mesuré par c ∗ (b(k) − a(k)). Par conséquent, la mesure de distance est inter-temporelle,
et met en relation la position de l’AUV 1 à a(k) et la position de l’AUV 2 à b(k). L’image C.8 illustre le
principe. Notons que ces temps sont incertains puisque l’horloge des AUVs peut être désynchronisée.

Le problème de localisation coopérative décrit aux équations C.46 peut être considéré comme un problème
de satisfaction de contraintes sur les tubes et nous pouvons donc définir des contracteurs associés à chaque
contrainte. Pour un AUV j dans le groupe, nous pouvons contracter les tubes [xj] et [hj] en utilisant le
contracteur intégrale définie au chapitre précèdent. Les contracteurs associés aux contraintes (C.46i) et
(C.46v) peuvent être :

[xj](t) = [xj](t) ∩
∫ t

0
([f]([uj(τ)],[xj(τ)]) + [nx(τ)])dτ (C.49)

[hj] (t) = [hj] (t) ∩
∫ t

0
(1 + [nh] (τ))dτ (C.50)

157

158 Chapter C. Résumé en français

Figure C.8: Quand le robot 1 émet un ping, celui-ci est reçu par le robot 2 après b(k)−a(k) seconds. Chaque
robot s’est déplacé pendant ce temps. La mesure est donc entre le robot 1 à l’instant a(k) et le robot 2 à
l’instant b(k).

Ces contracteurs sont disponibles pour tout t; et à cause du bruit d’état, les tubes [xj] et [hj] croient au
cours du temps. Si le robot reçoit un ping, les contraintes (C.46ii), (C.46iii) et (C.46iv) sont alors disponible
pour contracter ponctuellement [xj] et [hj].

Considérons un robot i émettant un ping reçu par le robot j. Chaque ping transmet la boite de position
estimée [xi] du robot émetteur, ainsi que l’intervalle incluant l’instant local d’émission [a(k)] du ping k par
le robot i d’après sa propre horloge. Le robot récepteur j recevant le ping k du robot i connait alors [a (k)],
[b(k)], [xi(k)](a (k)), [xj(k)](b (k)), [yi(k)](a (k)), [yj(k)] (b (k)) et peut appliquer l’algorithme de propagation-
rétropropagation présenté au chapitre 3 à l’équation C.48.

L’image C.9 présente les résultats de contraction des tubes de position [xj] et d’horloge [hj] pour un robot
j = 4 recevant deux pings d’autres robots. En appliquant l’algorithme de propagation et retro-propagation,
les tubes sont ponctuellement contractés. En appliquant le contracteur intégrale, les tubes peuvent être
contractés dans le sens des t croissants (localisation en temps réel ou online) et dans le sens des t décroissant
(localisation offl ine prenant place plus tard après la mission).

C.5 Localisation de robots en essaim à grande échelle

Afin de démontrer l’extensibilité de notre algorithme, il est intéressant de considérer une monté en échelle
de notre simulation. Afin de faire évoluer des milliers d’AUVs de manière cohérente, nous utilisons un
algorithme d’essaimage proposé par Craig Reynolds en 1987 [Reynolds, 1987], basé sur trois règles : sépa-
ration, cohésion and alignement. Chaque règle détermine comment chaque membre de l’essaim doit réagir
par rapport aux autres membres dans son voisinage. Les membres en dehors d’une certaine distance d de

158

C.5. Localisation de robots en essaim à grande échelle 159

Figure C.9: Tubes contractés pour (a) [h4] et (b) [x4] si (1) aucun ping n’est reçu, (2) deux pings sont reçus
avec propagation online, (3) deux pings sont reçus avec propagation offl ine.

159

160 Chapter C. Résumé en français

Figure C.10: Illustration de la séparation.

Figure C.11: Illustration de la cohésion

voisinage sont ignorés. Dans notre cas, d sera la portée du modem acoustique utilisé.

· La séparation est le principe d’éloigner l’AUV de ses proches voisins. Cela permet d’éviter les collisions.

· La cohésion est le principe de rapprocher l’AUV du centre de masse de ses voisins. La cohésion et la
séparation travaille en opposition afin de maintenir un comportement de groupe.

· L’alignement dirige l’AUV dans la direction moyenne de ses voisins.

L’essaimage est le principe d’évoluer en essaim et peut être réalisé en additionnant la séparation, la cohésion
and l’alignement. Le mouvement obtenu est alors très proche du comportement des essaims d’oiseaux.

Nous appliquons alors notre algorithme de localisation établie aux chapitres précédents. La simulation
démontre alors qu’il est possible de monter en échelle jusqu’à 1,000 AUVs tout en restant en temps-réel sur
un 3.2GHz core i7. Notons que de plus notre algorithme a été dévellopé pour être distribué sur chaque AUV
sans la gérance d’un système central.

160

C.6. Conclusion 161

Figure C.12: Illustration de l’alignement.

C.6 Conclusion

La localisation d’AUVs en essaim est un problème diffi cile. Au chapitre 1, nous avons introduit le sujet, puis
au chapitre 2, nous avons présenté l’analyse par intervalle et son application à la localisation en robotique
mobile. Le chapitre 3 a étendu la notion de contracteur et a proposé l’évaluation de contracteurs minimaux
par transformations géométriques. Le chapitre 4 à formalisé le problème de localisation dynamique d’AUVs
sous la forme d’un problème de satisfaction de contraintes inter-temporel, et a proposé un nouvel outil, le
tube, pour résoudre ce problème. Le chapitre 5 s’est ensuite intéressé à un modèle d’AUV plus proche de
la réalité, pour lequel l’horloge du robot est désynchronisée par rapport au temps réel. Enfin le chapitre 6
conclu la thèse par une forte monté en échelle des algorithmes et simulations présentés dans les chapitres
précédent.

161

162 Chapter C. Résumé en français

Figure C.13: Simulation de 500 AUVs. (a) représente la position réel des AUVs. (b) montre un lien entre
les AUVs à porté de modem acoustique, (c) montre les boites d’incertitude sur la position des AUVs et (d)
illustre la propagation des pings.

162

C.6. Conclusion 163

163

164 Interval analysis for swarm localization. Application to underwater robotics.

164

Articles, Congresses and Reports

Journal articles

A. Bethencourt and L. Jaulin. 3D reconstruction using the Kinect sensor coupled with an IMU.
Published in InTech, International Journal of Advanced Robotics, 2012.

A. Bethencourt and L. Jaulin. Cooperative localization of underwater robots with unsynchronized clocks.
Published in Paladyn, International Journal of Behavioral Robotics, Special issue on underwater robotics,
VERSITAS, Volume 4, Issue 4, pp 233-244, 2013.

A. Bethencourt and L. Jaulin. Solving non-linear constraint satisfaction problems involving time-dependant
functions.
Published in Mathematics in Computer Science, Special Issue on Interval Methods and Applications , 2014.

A. Stancu, A. Bethencourt and L. Jaulin. Building an optimal contractor for atan2 and its application to
robot localization.
Submitted to Reliable Computing, 2014.

A. Bethencourt and L. Jaulin. Large-scale swarm localization using interval analysis.
Submitted to Swarm Intelligence, 2014.

Congresses with a selection committee

O. Menage, A. Bethencourt, P. Rousseaux, S. Prigent. VAIMOS : Realization of an autonomous robotic
sailboat.
In Proceedings of the 6th International Robotic Sailing Conference, IRSC-WRSC 2013, IRSC-WRSC 2013,
France, pp 25-36, 2013.

Congresses without a selection committee

A. Bethencourt and L. Jaulin. 3D reconstruction using the Kinect sensor coupled with an IMU.
In Small Worskshop on Interval Methods, SWIM 2012, Germany, 2012.

165

166 Interval analysis for swarm localization. Application to underwater robotics.

A. Bethencourt and L. Jaulin. Cooperative localization of underwater robots with unsynchronized clocks.
In Small Worskshop on Interval Methods, SWIM 2013, France, 2013.

A. Bethencourt and L. Jaulin. Solving non-linear constraint satisfaction problems involving time-dependant
functions.
In Méthodes ensemblistes pour l’automatique, GDR MACS, France, 2013.

A. Bethencourt and L. Jaulin. Introducing Interval Analysis and their applications to robotics.
In Aeorospace research committee, University of Manchester, 2014.

L. Jaulin and A. Bethencourt. Nonlinear state estimation with delays.
In 1st Small Symposium on Set-Membership: Applications, Reliability and Theory, University of Manchester,
Aerospace Research Institute, UK, 2014

L. Jaulin and A. Bethencourt. Solving geometrical constraints in space-time.
In Contraintes et géométrie, Université de Nantes, France, 2014

Other documents

A. Bethencourt. Progress report for MRIS/DGA and EDSICMA, 2012.

A. Bethencourt. Realization report for Coupe de France de Robotique, E=M6, 2012.

F. Le Bars, Y. Sliwka, A. Bethencourt, Realization report for SAUC-E, 2012.

A. Bethencourt. Progress report for MRIS/DGA and EDSICMA, 2013.

A. Bethencourt. Realization report for Coupe de France de Robotique, E=M6, 2013.

F. Le Bars, A. Bethencourt, Realization report for SAUC-E, 2013.

A. Bethencourt. Mid-thesis progress defense with Luc Jaulin, Laurent Hardoin, Eva Crück and Gilles
Charbert, 2013.

A. Bethencourt. Progress report for MRIS/DGA and EDSICMA, 2014.

166

Summary of main contributions

My main contributions :

• Formalization of the swarm localization problem. Proposed a solution based on interval analysis.

• Development of the arithmetics of tubes. Proved multiple propositions involving tubes and time-
dependant functions.

• Formalization of the clock synchronization problem in a swarm. Proposed a solution based on tube
arithmetic.

• Proposed a method for solving inter-temporal constraint satisfaction problem with uncertain times.

• Integration of tubes and their arithmetic into the IBEX library.

• Integration of an atan2 contractor into the IBEX library using geometrical transformations.

• Development of SwarmX, an underwater swarm simulator using tube arithmetic.

• Software and hardware development for the 2012 and 2013 SAUC-E underwater robotics competition.

• Software and hardware development for the 2012, 2013 and 2014 Coupe de France de Robotique.

• Software and hardware development for the 2010 and 2011 DGA CAROTTE competition.

167

168 Interval analysis for swarm localization. Application to underwater robotics.

168

Additional activities

During my Ph.D., I had the chance to preside the robotics club and managed a team of students in three
robotics competitions : Coupe de France de Robotique, SAUC-E and CAROTTE. The goal in all these
competitions was to build robots from scratch. We had to develop the hardware along with the software.
In all three competitions, one of the main diffi culty was to localize the robots as we couldn’t use the Global
Positioning System (GPS), either because the robots were indoor or underwater. The interesting point
is that we used different approaches in each competition, both probabilistic and membership, illustrating
perfectly the state of the art in robot localization.

Coupe de France de Robotique

The Coupe de France de Robotique (or French Robotics Cup) involves 200 teams from universities and
schools in Europe. It takes place at La Ferté Bernard during 4 days in June. The competition consists
of 5 matches of 90 seconds against a robots from other schools on an arena of 3 by 2 meters filled with
objects. Objectives are usually to collect the objects and push buttons on the arena. For this, a good
localization on the arena is essential. Moreover the robots have to avoid collisions with each other and with
the environment. Therefore we chose to equip our robot with scanning range finders to measure distances
around the robot, and especially to measure distances to the known borders of the arena. Our approach
for this competition particularly emphasize the state of the art in probabilistic localization as we used an
Affi ne Monte-Carlo localization algorithm (AMCL) embedded into ROS (Robot Operating System), a famous
middleware for robotics. Monte Carlo localization, also known as particle filter localization, is an algorithm
for robots to localize themselves [Thrun et al., 2005][Dellaert et al., 1999][Thrun et al., 2000]. Given a map
of the environment, the algorithm estimates the position and orientation of a robot as it moves and senses
the environment. The algorithm uses a particle filter to represent the distribution of likely states, with each
particle representing a possible state, i.e. a hypothesis of where the robot is. The algorithm typically starts
with a uniform random distribution of particles over the configuration space, meaning that the robot has
no information about where it is and assumes it is equally likely to be at any point in space. Whenever the
robot moves, it shifts the particles to predict its new state after the movement. Whenever the robot senses
something, the particles are resampled based on recursive Bayesian estimation, i.e. how well the actual
sensed data correlate with the predicted state. Ultimately, the particles should converge towards the actual
pose of the robot. Fig. C.14 highlights the competition.

169

170 Interval analysis for swarm localization. Application to underwater robotics.

Figure C.14: (a) The ENSTA robotics club. (b) Reproduction of the competition arena of the Coupe de
France de Robotique. (c) Measures provided in real-time by the scanning range finder. (d) Localization of
the robot in the arena, computed by ROS’s AMCL. (e) The early version of the ENSTA robot. On top
level is the computer running ROS. In the middle level is an Arduino card with power bridges to control the
motors, and on the lower level are the scanning range finders and the wheels. (f) The latest version of the
ENSTA robot in the competition against the SUPELEC robot.

170

Interval analysis for swarm localization. Application to underwater robotics. 171

Figure C.15: (a) The VAIMOS sailboat at the WRSC. (b) In red is the requested trajectory and in green is
the actual trajectory of the robot.

WRSC

The WRSC (World Robotics Sailing Championship) involves sailing robots from all around the world. The
goal is to race against others given requested GPS checkpoints, and detect various objects along the way.
Obviously, the robots are completely autonomous and must sail with the wind conditions in real-time. To
localize themselves, the robots can here use the GPS.

Although I did not take part in the competition itself, I worked on the proceedings [Menage et al., 2014]
and presented the construction of the ENSTA/Ifremer sailboat VAIMOS (Voilier Autonome Instrumenté
pour Mesures Océanographiques de Surface).

CAROTTE

The CAROTTE (CArtographie RoboTique TErrestre) competition was organized by the DGA for military
applications. The goal was for a team of robots to map an indoor environment in an autonomous and effi cient
way, while avoiding and identifying various objects in the arena. Presented in Appendix B, I realized a visual
goniometric system for the robots to localize themselves in respect to each other.

SAUC-E

The objective of the SAUC-E (Student Autonomous Underwater Challenge - Europe) competition was to
design and build an autonomous underwater vehicle capable of performing realistic missions. Various ob-
jectives were presented, among them: getting through an underwater gate, detecting a pipeline, a buoy and
a beacon, and following a wall. The main diffi culty was obviously to work in an underwater environment.
Waterproofing was a big concern, and the localization was done based on acoustic waves echoing from the
walls of the harbour. An interval method proposed by [Sliwka, 2011] was used. Fig. C.17 highlights the

171

172 Interval analysis for swarm localization. Application to underwater robotics.

Figure C.16: (a) The Université d’Angers team at the CAROTTE competition with its 3 robots ready to
start the mapping mission. (b) The arena, buit to reproduce an indoor environment.

competition. Notice that I used the same robots in the 5th chapter of this thesis to test my own algorithms.

For more info, please visit http://aymericbethencourt.com/wordpress/robotics/.

Teaching

Over the 3 years of my Ph.D., I also teached a total of 120 hours of graduate level classes. I was mainly
involved in :

· Computer Vision, for which I had my own class. I personally wrote the course, presentation, and associated
documents, teached and designed coding exercises for the labs. I also wrote, gave and corrected the exam
on the subject.

· Automatics and robotics, for which I was mainly involved in teaching the labs and occasionally the course.

· Robot Operating System, for which I designed and teached a lab.

· C++ Programming and Qt Integration, for which I designed and teached a lab.

· Java Programming, for which I teached multiple labs.

For more info, please visit http://aymericbethencourt.com/wordpress/teaching/.

172

http://aymericbethencourt.com/wordpress/robotics/
http://aymericbethencourt.com/wordpress/teaching/

Interval analysis for swarm localization. Application to underwater robotics. 173

Figure C.17: (a) The ENSTA CISSEAU team at the SAUC-E competition, (b) getting a robot into the
water, (c) and launching the mission. 173

174 Interval analysis for swarm localization. Application to underwater robotics.

174

Videos

- Personal interview on national television France 2

http://youtu.be/Zwjbufay9Z0

- SwarmX v1 : Simulation of a group of 6 AUVs with instantaneous communication

http://youtu.be/0cjzzsaWTvA

- SwarmX v2 : Simulation of a group of 6 AUVs with inter-temporal communication and unsynchronized
clocks

http://youtu.be/7Uzjr-U7xY4

- SwarmX v3 : Simulation of a swarm of 1,000 AUVs with inter-temporal communication and unsynchronized
clocks

http://youtu.be/F4ntGSBS1J4

- Mass-Spring-Sonar simulation

http://youtu.be/57E8k0q9YIU

- Sea testing of our algorithms using 2 ENSTA AUVs

http://youtu.be/1QFpko0tYO0

- 3D reconstruction of my own car using interval analysis on the Kinect device

Reconstruction : http://youtu.be/HKuSv8X3UWM

Captures :http://youtu.be/GZHYMGErA6E

- The ENSTA team at the 2012 Coupe de France de Robotique

Part 1 : http://youtu.be/8TqE9YJjbwQ

Part 2 : http://youtu.be/YDg8NnFKXSo

- S.W.I.M. 2012 : 3D reconstruction using the Kinect sensor coupled with an IMU

http://youtu.be/HlHMhkBT77w

175

http://youtu.be/Zwjbufay9Z0
http://youtu.be/0cjzzsaWTvA
http://youtu.be/7Uzjr-U7xY4
http://youtu.be/F4ntGSBS1J4
http://youtu.be/57E8k0q9YIU
http://youtu.be/1QFpko0tYO0
http://youtu.be/HKuSv8X3UWM
http://youtu.be/GZHYMGErA6E
http://youtu.be/8TqE9YJjbwQ
http://youtu.be/YDg8NnFKXSo
http://youtu.be/HlHMhkBT77w

176 Interval analysis for swarm localization. Application to underwater robotics.

- S.W.I.M. 2013 : Cooperative localization of underwater robots with unsynchronized clocks

Part 1 : http://youtu.be/8DgbvWDzFGw

Part 2 : http://youtu.be/_xl-F0ckkFI

176

http://youtu.be/8DgbvWDzFGw
http://youtu.be/_xl-F0ckkFI

Index

A-SIFT, 122
Alignment, 104
AMCL, 169
Asynchronous constraint, 60
Atan2, 47
AUV, 17

Box, 26

CAROTTE, 131, 171
Center of an interval, 25
Centralized, 18
CISCREA, 94
Cohesion, 102
Consistent contractor, 46
Contractor, 30
Convergent inclusion function, 28
Coupe de France de Robotique, 169
CSP, 30

Decentralized, 18, 81
Degree of inclusion, 41
Degree of Separation, 41
DGA, 18, 131, 171
Distributed, 18

EKF, 81

Forward-Backward contractor, 30
Functional set, 46

GOMNE, 43
GPS, 17, 169

HC4-Revise, 30
HOG-Man, 122
HSV, 134

IBEX, 19, 53

ICP, 122
IMU, 19, 128
Inclusion function, 27
infimum, 58
Inter-temporal relation, 82
Intersection, 23
Interval, 23
Interval extension, 27
Interval hull, 25
Interval of function, 57
Interval primitive, 59
Interval union, 25

join, 58

Kalman Filter, 81
Kinect, 117

LED, 131
Localization, 17

meet, 58
Minimal contractor, 30
Minimal inclusion function, 28
Monotonic inclusion function, 28
Multi-beam paths, 22

Natural inclusion function, 29
Neighborhood, 101

Offl ine localization, 18
Online localization, 18

Pessimistic inclusion function, 28
Ping, 82
ping, 155
Ponctual interval, 25
Primary constraints, 30

Q-intersection, 38

177

178 Interval analysis for swarm localization. Application to underwater robotics.

Q-relaxed set inversion, 38

RANSAC, 121
Regular sub-paving, 35
Reynolds’rules, 101
RGB, 134
ROS, 125, 169
ROV, 17
RSIVIA, 41

SAUC-E, 171
Separation, 102
SIFT, 119
SIVIA, 35
SLAM, 18
SMC, 81
SpiceRack, 18
Sub-paving, 34
supremum, 58
SURF, 120
SwarmX v1, 78
SwarmX v2, 92
SwarmX v3, 107
Synchronous constraint, 60

Thin inclusion function, 28
Tube, 57
Tube envelope, 59
Tube inclusion, 60
Tube intersection, 60

Umbilical cable, 17
Union, 25

VAIMOS, 171

Width of a box, 26
Width of an interval, 25
Wrapping effect, 29
WRSC, 171

178

Bibliography

[Abdallah et al., 2008] Abdallah, F., Gning, A., and Bonnifait, P. (2008). Box particle filtering for nonlinear
state estimation using interval analysis. Automatica, 44(3):807—815.

[Araya et al., 2008] Araya, I., Neveu, B., and Trombettoni, G. (2008). Exploiting Common Subexpressions
in Numerical CSPs. In Proc. CP, Constraint Programming, pages 342—357, LNCS 5202.

[Aubin and Frankowska., 1990] Aubin, J. and Frankowska., H. (1990). Set-Valued Analysis. Birkhäuser,
Boston.

[Aubry et al., 2013] Aubry, C., Desmare, R., and Jaulin, L. (2013). Loop detection of mobile robots using
interval analysis. Automatica, 49(2):463—470.

[Baccou and Jouvencel, 2002] Baccou, P. and Jouvencel, B. (2002). Homing and navigation using one
transponder for auv, post-processing comparisons results with long base-line navigation. IEEE Int. Conf.
Robotics and Automation, pages 11—15.

[Bahr et al., 2006] Bahr, A., Leonard, J. J., Bahr, A., and Leonard, J. J. (2006). Cooperative localiza-
tion for autonomous underwater vehicles. In IN PROC. 10TH INTERNATIONAL SYMPOSIUM ON
EXPERIMENTAL ROBOTICS (ISER), RIO DE.

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Gool, L. (2006). Surf : Speeded up robust features. pages
404—417.

[Bekris et al., 2006] Bekris, K., Click, M., and Kavraki, E. (2006). Evaluation of algorithms for bearing-only
slam. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on, pages 1937—1943.

[Benhamou et al., 1999] Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J. F. (1999). Revising
hull and box consistency. In Proceedings of the International Conference on Logic Programming, pages
230—244, Las Cruces, NM.

[Berz and Makino, 1998] Berz, M. and Makino, K. (1998). Verified integration of odes and flows using
differential algebraic methods on high-order taylor models. Reliable Computing, 4(3):361—369.

[Besl and McKay, 1992] Besl, P. and McKay, H. D. (1992). A method for registration of 3 -d shapes. Pattern
Analysis and Machine Intelligence, 14(2):239—256.

179

180 Interval analysis for swarm localization. Application to underwater robotics.

[Bishop et al., 2009] Bishop, A., Anderson, B. D. O., Fidan, B., Pathirana, P., and Mao, G. (2009). Bearing-
only localization using geometrically constrained optimization. Aerospace and Electronic Systems, IEEE
Transactions on, 45(1):308—320.

[Bonnifait and Garcia, 1996] Bonnifait, P. and Garcia, G. (1996). A multisensor localization algorithm for
mobile robots and its real-time experimental validation. In Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, volume 2, pages 1395—1400. IEEE.

[Bonnifait and Garcia, 1998] Bonnifait, P. and Garcia, G. (1998). Design and experimental validation of an
odometric and goniometric localization system for outdoor robot vehicles. IEEE Transactions on robotics
and automation, 14(4):541—548.

[Bouissou et al., 2013] Bouissou, O., Chapoutot, A., and Djoudi, A. (2013). Enclosing temporal evolution
of dynamical systems using numerical methods. In 5th NASA Formal Methods Symposium, NFM 2013,
NASA Ames Research Center, Moffett Field, CA, USA.

[Bouron, 2002] Bouron, P. (2002). Méthodes ensemblistes pour le diagnostic, l’estimation d’état et la fusion
de données temporelles. PhD dissertation, Université de Compiègne, Compiègne, France.

[Brambilla et al., 2013] Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics:
a review from the swarm engineering perspective. Swarm Intelligence, 7(1):1—41.

[Bürkle et al., 2011] Bürkle, A., Segor, F., and Kollmann, M. (2011). Towards autonomous micro uav
swarms. Journal of intelligent & robotic systems, 61(1-4):339—353.

[Ceberio and Granvilliers, 2001] Ceberio, M. and Granvilliers, L. (2001). Solving nonlinear systems by
constraint inversion and interval arithmetic. In Artificial Intelligence and Symbolic Computation, volume
1930, pages 127—141, LNCS 5202.

[Chabert and Jaulin, 2009] Chabert, G. and Jaulin, L. (2009). Contractor Programming. Artificial Intelli-
gence, 173:1079—1100.

[Combastel, 2005] Combastel, C. (2005). State bounding observer for uncertain non-linear continuous-time
systems based on zonotopes. In Proc. of the 44th IEEE Conference on Decision and Control, and the
European Control Conference, pages 7228—7234.

[Couzin et al., 2005] Couzin, I. D., Krause, J., Franks, N. R., and Levin, S. A. (2005). Effective leadership
and decision-making in animal groups on the move. Nature, 433(7025):513—516.

[Delanoue et al., 2006] Delanoue, N., Jaulin, L., and Cottenceau, B. (2006). Using interval arithmetic to
prove that a set is path-connected. Theoretical Computer Science, Special issue: Real Numbers and
Computers, 351(1):119—128.

[Dellaert et al., 1999] Dellaert, F., Fox, D., Burgard, A., and Thrun, S. (1999). Monte-Carlo localization
for mobile robots. In "Proceedings of the IEEE International Conference on Robotics and Automation",
pages 1322—1328, Detroit, Michigan.

[Di Marco et al., 2001] Di Marco, M., Garulli, A., Lacroix, S., and Vicino, A. (2001). Set membership
localization and mapping for autonomous navigation. International Journal of Robust and Nonlinear
Control, 7(11):709—734.

180

Interval analysis for swarm localization. Application to underwater robotics. 181

[Dong et al., 2013] Dong, H., Zhao, Y., and Gao, S. (2013). A fuzzy-rule-based couzin model. Journal of
Control Theory and Applications, 11(2):311—315.

[Drevelle, 2011] Drevelle, V. (2011). Etude de mÃ
,
lthodes ensemblistes robustes pour une localisation mul-

tisensorielle intÃ́lgre. Application Ãă la navigation des vÃ
,
lhicules en milieu urbain. PhD dissertation,

UniversitÃ
,
l de Technologie de CompiÃ́lgne, CompiÃ́lgne, France.

[Drevelle and Bonnifait, 2009] Drevelle, V. and Bonnifait, P. (2009). High integrity gnss location zone
characterization using interval analysis. In ION GNSS.

[Drocourt et al., 2005] Drocourt, C., Delahoche, L., E. Brassart, B. M., and Clerentin, A. (2005). Incre-
mental construction of the robot’s environmental map using interval analysis. Global Optimization and
Constraint Satisfaction: Second International Workshop, COCOS 2003, 3478:127—141.

[Engelharda et al., 2011] Engelharda, N., Endresa, F., Hessa, J., Sturmb, J., and Burgard, W. (2011). Real-
time 3d visual slam with a hand- held rgb - d camera.

[Fischler and Bolles, 1987] Fischler, M. and Bolles, R. (1987). Random sample consensus: A paradigm
for model fitting with apphcatlons to image analysis and automated cartography. Graphics and Image
Processing, 24(6).

[Gning and Bonnifait, 2005] Gning, A. and Bonnifait, P. (2005). Dynamic vehicle localization using con-
straints propagation techniques on intervals a comparison with kalman filtering. In Robotics and Automa-
tion, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages 4144—4149.
IEEE.

[Gning and Bonnifait, 2006] Gning, A. and Bonnifait, P. (2006). Constraints propagation techniques on
intervals for a guaranteed localization using redundant data. Automatica, 42(7):1167—1175.

[Gollamudi et al., 1996] Gollamudi, S., Nagaraj, S., Kapoor, S., and Huang, Y.-F. (1996). Set-membership
state estimation with optimal bounding ellipsoids. In Int. Symposium on Information Theory and its
Applications.

[Grisetti et al., 2010] Grisetti, G., Kummerle, R., Stachniss, C., Frese, U., and Hertzberg, C. (2010). Hier-
archical optimization on manifolds for online 2d and 3d mapping. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA), Anchorage, AK, USA.

[Grossman et al., 2008] Grossman, D., Aranson, I., and Jacob, E. B. (2008). Emergence of agent swarm
migration and vortex formation through inelastic collisions. New Journal of Physics, 10(2):023036.

[Guyonneau, 2013] Guyonneau, R. (2013). MÃ
,
lthodes ensemblistes pour la localisation en robotique mobile.

PhD dissertation, UniversitÃ
,
l d’Angers, Angers, France.

[Hauert et al., 2011] Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J.-C., and Floreano,
D. (2011). Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning
rate. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages
5015—5020. IEEE.

181

182 Interval analysis for swarm localization. Application to underwater robotics.

[Henry et al., 2010] Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2010). Rgb-d mapping: Using
depth cameras for dense 3d modeling of indoor environments. In Proc. of the Intl. Symp. on Experimental
Robotics.

[Herrero, 2006] Herrero, P. (2006). Quantified Real Constraint Solving Using Modal Intervals with Applica-
tions to Control. PhD dissertation, Universitat de Girona, Girona,Spain.

[Hodgins and Brogan, 1994] Hodgins, J. and Brogan, D. (1994). Robot herds: Group behaviors for systems
with significant dynamics. In Proceedings of Artificial Life IV, pages 319—324.

[Izadi et al., 2011] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J.,
Hodges, S., Freeman, D., Davison, A., and Fitzgibbon, A. (2011). Kinectfusion: Real-time 3d reconstruc-
tion and interaction using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, UIST ’11, pages 559—568, New York, NY, USA. ACM.

[Jaulin, 2002] Jaulin, L. (2002). Nonlinear bounded-error state estimation of continuous-time systems.
Automatica, 38:1079—1082.

[Jaulin, 2011] Jaulin, L. (2011). Range-only SLAM with occupancy maps; A set-membership approach.
IEEE Transaction on Robotics, 27(5):1004—1010.

[Jaulin et al., 2001a] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001a). Applied interval analysis.
Springer-Verlag.

[Jaulin et al., 2001b] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001b). Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer-Verlag, London.

[Jaulin et al., 2002] Jaulin, L., Kieffer, M., Walter, E., and Meizel, D. (2002). Guaranteed robust nonlinear
estimation with application to robot localization. IEEE Transactions on systems, man and cybernetics;
Part C Applications and Reviews, 32(4):374—382.

[Jaulin and Walter, 1993] Jaulin, L. and Walter, E. (1993). Set inversion via interval analysis for nonlinear
bounded-error estimation. Automatica, 29(4):1053—1064.

[Jaulin et al., 1996] Jaulin, L., Walter, E., and Didrit, O. (1996). Guaranteed robust nonlinear parameter
bounding. In Proceedings of CESA’96 IMACS Multiconference (Symposium on Modelling, Analysis and
Simulation), volume 2, pages 1156—1161, Lille, France.

[Kurzhanski and Valyi, 1997] Kurzhanski, A. and Valyi, I. (1997). Ellipsoidal Calculus for Estimation and
Control. Birkhäuser, Boston, MA.

[Kushleyev et al., 2013] Kushleyev, A., Mellinger, D., Powers, C., and Kumar, V. (2013). Towards a swarm
of agile micro quadrotors. Autonomous Robots, 35(4):287—300.

[Lacroix et al., 2002] Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., and Chatila,
R. (2002). Autonomous rover navigation on unknown terrains: Functions and integration. The Interna-
tional Journal of Robotics Research, 21(10-11):917—942.

[Le Bars, 2011] Le Bars, F. (2011). Analyse par intervals pour la localisation et la cartographie simultanÃ
,
les;

Application Ãă la robotique sous-marine. PhD dissertation, ENSTA Bretagne, Brest, France.

182

Interval analysis for swarm localization. Application to underwater robotics. 183

[Le Bars et al., 2010] Le Bars, F., Bertholom, A., Sliwka, J., and Jaulin, L. (2010). Interval slam for
underwater robots; a new experiment. In NOLCOS 2010, Italy.

[Lemaire et al., 2007] Lemaire, T., Berger, C., Jung, I.-K., and Lacroix, S. (2007). Vision-based slam: Stereo
and monocular approaches. International Journal of Computer Vision, 74(3):343—364.

[Lemaire and Lacroix, 2007] Lemaire, T. and Lacroix, S. (2007). Slam with panoramic vision. Journal of
Field Robotics, 24(1-2):91—111.

[Lemaire et al., 2005] Lemaire, T., Lacroix, S., and Sola, J. (2005). A practical 3d bearing-only slam algo-
rithm. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference
on, pages 2449—2454. IEEE.

[Leonard and Durrant-Whyte, 1992] Leonard, J. and Durrant-Whyte, H. (1992). Dynamic Map Building
for an Autonomous Mobile Robot. International Journal of Robotics Research, 11(4).

[Lhommeau et al., 2004] Lhommeau, M., Hardouin, L., Cottenceau, B., and Jaulin, L. (2004). Inter-
val analysis and dioid: Application to robust controller design for timed event graphs. Automatica,
40(11):1923—1930.

[Lin et al., 2005] Lin, Y., Vernaza, P., Ham, J., and Lee, D. (2005). Cooperative relative robot localization
with audible acoustic sensing. In Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ
International Conference on, pages 3764—3769.

[Ljung, 1979] Ljung, L. (1979). Asymptotic behavior of the extended kalman filter as a parameter estimator
for linear systems. IEEE Transactions on Automatic Systems, 24:36—50.

[Logothetis et al., 1997] Logothetis, A., Isaksson, A., and Evans, R. (1997). An information theoretic ap-
proach to observer path design for bearings-only tracking. In Decision and Control, 1997., Proceedings of
the 36th IEEE Conference on, volume 4, pages 3132—3137 vol.4.

[Lowe, 1999] Lowe, D. (1999). Proceedings of the seventh ieee international conference on computer vision.
2:1150—1157.

[Maksarov and Norton, 1996] Maksarov, D. and Norton, J. P. (1996). State bounding with ellipsoidal set
description of the uncertainty. International Journal of Control, 65(5):847—866.

[Menage et al., 2014] Menage, O., Bethencourt, A., Rousseaux, P., and Prigent, S. (2014). Vaimos: Real-
ization of an autonomous robotic sailboat. In Bars, F. L. and Jaulin, L., editors, Robotic Sailing 2013,
pages 25—36. Springer International Publishing.

[Milanese et al., 1996] Milanese, M., Norton, J., Piet-Lahanier, H., and Walter, E., editors (1996). Bounding
Approaches to System Identification. Plenum Press, New York, NY.

[Moore, 1966] Moore, R. E. (1966). Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ.

[Moore, 1979] Moore, R. E. (1979). Methods and Applications of Interval Analysis. SIAM, Philadelphia,
PA.

183

184 Interval analysis for swarm localization. Application to underwater robotics.

[Morel and Yu, 2009] Morel, J.-M. and Yu, G. (2009). Asift: A new framework for fully affi ne invariant
image comparison. SIAM Journal on Imaging Sciences, 2:438—44.

[Nedialkov, 2006] Nedialkov, N. (2006). Interval tools for odes and daes. In Scientific Computing, Computer
Arithmetic and Validated Numerics, 2006. SCAN 2006. 12th GAMM - IMACS International Symposium
on, pages 4—4.

[Nedialkov et al., 1999] Nedialkov, N., Jackson, K., and Corliss, G. (1999). Validated solutions of initial
value problems for ordinary differential equations. Applied Mathematics and Computation, 105(1):21—68.

[Oshman and Davidson, 1999] Oshman, Y. and Davidson, P. (1999). Optimization of observer trajectories
for bearings-only target localization. Aerospace and Electronic Systems, IEEE Transactions on, 35(3):892—
902.

[Reynolds, 1987] Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput. Graph., 21(4):25—34.

[Röhrig and Müller, 2009] Röhrig, C. and Müller, M. (2009). Indoor location tracking in non-line-of-sight
environments using a ieee 802.15.4a wireless network. In Proceedings of the 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS’09, pages 552—557, Piscataway, NJ, USA.

[Rusinkiewicz and Levoy, 2001] Rusinkiewicz, S. and Levoy, M. (2001). In proc. third int 3-d digital imaging
and modeling conf. pages 145—155.

[Sliwka, 2011] Sliwka, J. (2011). Using set membership methods for robust underwater localisation. PhD
dissertation, ENSTA Bretagne, Brest, France.

[Srikanth and Toueg, 1987] Srikanth, T. K. and Toueg, S. (1987). Optimal clock synchronization. Journal
of the Association for Computing Machinery, 34(3):626—645.

[Szabo et al., 2006] Szabo, B., Szöllösi, G., Gönci, B., Jurányi, Z., Selmeczi, D., and Vicsek, T. (2006).
Phase transition in the collective migration of tissue cells: experiment and model. Physical Review E,
74(6):061908.

[Szabó et al., 2009] Szabó, P., Nagy, M., and Vicsek, T. (2009). Transitions in a self-propelled-particles
model with coupling of accelerations. Physical Review E, 79(2):021908.

[Thrun et al., 2005] Thrun, S., Bugard, W., and Fox, D. (2005). Probabilistic Robotics. MIT Press, Cam-
bridge, M.A.

[Thrun et al., 2000] Thrun, S., Fox, D., Burgard, W., and Dellaert, F. (2000). Robust Monte Carlo local-
ization for mobile robots. Artificial Intelligence, 128:99—141.

[Tu, 1999] Tu, X. (1999). Artificial animals for computer animation: biomechanics, locomotion, perception,
and behavior. Number 1635. Springer.

[Tu and Terzopoulos, 1994] Tu, X. and Terzopoulos, D. (1994). Artificial fishes: Physics, locomotion, per-
ception, behavior. In Proceedings of the 21st annual conference on Computer graphics and interactive
techniques, pages 43—50. ACM.

184

Interval analysis for swarm localization. Application to underwater robotics. 185

[Turgut et al., 2008] Turgut, A. E., Çelikkanat, H., Gökçe, F., and Şahin, E. (2008). Self-organized flocking
in mobile robot swarms. Swarm Intelligence, 2(2-4):97—120.

[Veres et al., 2008] Veres, S., Tsourdos, A., and Fisher, M. (2008). Low cost disposable autonomous vehicles.
Defense Management Journal, 42:64—65.

[Vicsek et al., 1995] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., and Shochet, O. (1995). Novel type
of phase transition in a system of self-driven particles. Physical review letters, 75(6):1226.

[Vicsek and Zafeiris, 2012] Vicsek, T. and Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3):71—
140.

[Waltz, 1975] Waltz, D. (1975). Generating semantic descriptions from drawings of scenes with shadows. In
Winston, P. H., editor, The Psychology of Computer Vision, pages 19—91. McGraw-Hill, New York, NY.

[Yang and Medioni, 1992] Yang, C. and Medioni, G. (1992). Object modelling by registration of multiple
range images. Image and Vision Computing, 10(3):145—155.

[Zhang et al., 2009] Zhang, L.-c., Xu, D.-m., Liu, M.-y., and Yan, W.-s. (2009). Cooperative navigation and
localization for multiple uuvs. Journal of Marine Science and Application, 8(3):216—221.

185

Résumé
 Une bonne localisation est essentielle à toute créature terrestre souhaitant se déplacer dans son environnement. Les
organes ou senseurs utilisés par les humains sont en partie les yeux et le système vestibulaire (oreille interne). Tout comme les
humains, les robots ont besoin de capteurs pour se localiser, respectivement une caméra et un gyroscope. Cependant les
machines n'ont pas encore les capacités du cerveau humain pour se localiser. C'est pourquoi il est important de développer des
algorithmes efficaces de localisation, et plus particulièrement sous l'eau où il n'est pas possible d'utiliser le GPS. Les AUVs
(Véhicules sous-marins autonomes) sont de plus en plus développés dans les domaines civils (recherche sismique, inspection
d'installations marines, etc.) et militaires (guerre des mines). Je fus personnellement interviewé par France 2 sur ce sujet qui
s’étend de manière exponentielle (interview disponible sur http://www.aymericbethencourt.com/thesis/). L'avantage des AUVs
comparés aux traditionnels ROVs (Véhicules télé-opérés) est leur habilité à se « débrouiller tout seul ». La mission est chargée
dans l'AUV et la réalise sans intervention de l'opérateur. Une bonne localisation de l'AUV est alors essentielle.

A cela s'ajoute des problématiques de monté en échelle. Certains projets développés par la Direction Général pour
l’Armement, ou de grandes compagnies telles que CGG ou Saudi Aramco prévoient la mise en place d'essaims de plusieurs
milliers d'AUVs simultanément, et cela afin de réaliser des mesures sismiques. Les AUVs doivent alors se positionner en grille
très précisément. L'utilisation de méthodes dites par intervalle semble donc justifiée dans ce contexte ou la localisation de l'AUV
à besoin d'être garantie.

En effet, les méthodes par intervalle permettent de représenter des ensembles solution avec leur incertitude, garantissant
qu'aucune solution n'existe en dehors de ses bornes. Nous verrons également que l'analyse par intervalles possède de nombreux
outils particulièrement puissants pour notre problématique. Les méthodes par intervalles sont notamment très puissantes pour la
résolution de larges systèmes d'équations, particulièrement adapté dans le cas de milliers d'AUVs.

Cette thèse est organisée comme suit. Le chapitre 1 introduit le sujet. Le chapitre 2 présente l'analyse par intervalle et
son application à la localisation en robotique mobile. Le chapitre 3 étend la notion de « contracteur » et propose l'évaluation de
contracteurs minimaux par transformations géométriques. Le chapitre 4 formalise le problème de localisation dynamique
d'AUVs sous la forme d'un problème de satisfaction de contraintes inter-temporel, et propose un nouvel outil, le tube, pour
résoudre ce problème. Le chapitre 5 s'intéresse ensuite à un modèle d'AUV plus proche de la réalité, pour lequel l'horloge du
robot est désynchronisée par rapport au temps réel. Enfin le chapitre 6 conclu la thèse par une forte monté en échelle des
algorithmes et simulations présentés dans les chapitres précédents.

Mots-clés : Localisation, intervalles, AUV, robotique, tube, contraintes inter-temporelles, mesures incertaines bornées.

Abstract
Localisation and spatial awareness are fundamental to any application involving mobility, and essential to life on earth.

The human body needs to be localized in space to move towards a goal. Just like the human body, a good localisation is
essential for any mobile robotics application. However robots do not (yet) have the same computing capability as the human
brain. Robots often use the GPS, but what happens when it is not; or partially not, available? For many indoor or underwater
applications, the GPS is simply not a solution as high frequency electromagnetic waves barely propagate in these environments.

As the number of underwater operations increases every year, the need for autonomous underwater robots becomes
greater. There are many underwater robotics applications in the fields of oceanography, biology and wreck exploration. As this
thesis has been realised under fundings of the Délégation Général pour l'Armement (DGA, the French Military Procurement
Agency), military applications are also heavily considered, for which applications are area inspection and mine sweeping among
others. In both the civilian and military fields, it is sometimes necessary to use a group or a swarm of robots that need to
cooperate to realize a task. Projects like SpiceRack realized by CGG and Saudi Aramco will use a swarm of 3,000 underwater
AUVs to realize seismic surveys of the seabed. For this, the AUVs in the swarm need to position themselves in a precise grid
pattern, and stay in position despite potentially strong currents. It is important that the robots localize themselves effectively and
quantify the error on their position. If the robot is not where “it thinks” it is, the seismic survey could be corrupted, or a robot
could collide against another AUV.

In this context, the use of interval methods is relevant as they allow to represent the set of compatible solutions with
their uncertainty. Moreover, interval analysis has several advantages. It works for non-linear equations without approximation,
no solution can exist outside the bounds of the interval, and finally, interval methods are a very fast for solving systems with a
high number of equations, which seems particularly adapted for a swarm of robots.

This thesis is organised as follows. Chapter 1 introduces the subject. Chapter 2 presents interval analysis and its

application to mobile robotics. Chapter 3 extends the notion of “contractor” and proposes the evaluation of minimal contractors
using geometrical transformations. Chapter 4 formalises the problem of dynamically localising a group of AUVs in the form of
an inter-temporal constraints satisfaction problem, and introduces a new tool, the tube, to solve this problem. Chapter 5 then
considers a more realistic AUV model, which clock is not synchronised with the real time. Finally the chapter 6 concludes the
thesis with a strong increase of the number of AUVs to prove the scalability of the algorithms presented in the previous
chapters.

Keywords: Localisation, intervals, AUV, robotics, tube, inter-temporal constraints, bounded uncertain measurements.

	Introduction
	Context
	Objectives, hypothesis, constraints and contributions.
	Plan

	Interval analysis and its application to robot localization
	Introduction
	Set-membership approach
	Interval analysis
	Intervals
	Interval Arithmetic
	Boxes
	Inclusion function
	Contractors

	Set Inversion Via Interval Analysis (SIVIA)
	Sub-paving
	SIVIA
	SIVIA with a contractor
	Robust SIVIA
	GOMNE

	Conclusion

	Computing optimal contractors using geometrical transformation
	Introduction
	Contractors
	Extending contractor algebra for geometrical transformation
	Computing a minimal contractor for Atan2
	Step 1 : Building the contractor on a monotonic box.
	Step 2 : Ox symmetry
	Step 3 : Oy symmetry
	Step 4 : 20=x"0119-modulo symmetry

	Application to robot localization
	Conclusion

	Solving non-linear constraint satisfaction problems involving time-dependant functions
	Introduction
	Intervals of functions (or tubes)
	Tubes
	Tube arithmetic
	Constraint propagation on tubes
	State estimation

	Examples
	Example 1: Sinusoidal signal
	Example 2: Non-linear mass-spring system
	Example 3: Group of AUVs

	Conclusion

	Cooperative localization of underwater robots with unsynchronized clocks
	Introduction
	Problem Statement
	Cooperative localization as a constraint satisfaction problem
	Test cases
	Simple example with 2 AUVs.
	Full simulation with 6 AUVs.
	Sea testing with 2 real AUVs.

	Conclusion

	Large-scale swarm localization using interval analysis
	Introduction
	AUV model
	Behavioral command
	Reynolds' rules
	Separation
	Cohesion
	Alignment
	Swarming
	Adapting the Reynold's rules to our model

	Test cases
	With 3 AUVs
	With 300 AUVs
	With 1,000 AUVs
	Performances

	Conclusion

	Conclusion
	Visual localization and 3D reconstruction using the Kinect device coupled with an IMU.
	Introduction
	Standard algorithms
	Principle
	About Sift
	About SURF
	About RANSAC
	About ICP
	About HOG-Man

	Our method
	About A-SIFT
	System of equations
	Forward-backward Algorithm
	Result

	Adding an IMU
	Why ?
	Position from acceleration

	Conclusion

	Design and experimental validation of a visual goniometric localization system for a group of indoor robot vehicles
	Introduction
	Realization
	System design
	Coding the software

	Conclusion

	Résumé en français
	Introduction
	L'analyse par intervalle et son application à la localisation en robotique
	L'approche ensembliste
	L'analyse par intervalle

	Résolution de systèmes de satisfaction de contraintes non linéaires impliquant des fonctions dépendantes du temps
	Localisation coopérative de robots sous-marins avec horloges désynchronisés
	Localisation de robots en essaim à grande échelle
	Conclusion

	Articles, Congresses and Reports
	Summary of main contributions
	Additional activities
	Videos
	Index
	Bibliographie

