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Preface

About SWIM (Summer Workshop on Interval Methods)

The goal of SWIM is to bring together researchers and practitioners work-

ing on interval methods and their applications, in the broader sense, providing

a forum to review and discuss the state-of-the-art in this area and fostering

cross-fertilization between different approaches. The workshop was initiated by

the French MEA working group on Set Computation and Interval Techniques

of the French research group on Automatic Control GDR MACS. The MEA

group aims at promoting interval analysis techniques and applications.

About SMART (International Symposium on Set Membership - Ap-

plications, Reliability and Theory)

Set-membership techniques and related interval methods are computational

methods that can perform, in a natural way, nonlinear computations with sets of

real numbers. They are at the core of guaranteed system solving methods that

can prove the existence of a solution and, if the latter is not unique, compute

the set of all solutions while taking into account all sources of uncertainty.

These methods have direct applicability to a broad range of scientific areas from

engineering, to financial and medical domains. The goal of SMART is to bring

together researchers working on set-membership techniques and related interval

analysis methods, and interested in both fundamental and applied research. The

SMART symposium was initiated by the Aerospace Research Institute from

The University of Manchester, UK together with French MEA working group

on Set Computation and Interval Techniques of the French research group on

Automatic Control GDR MACS.
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Introduction

Almost all problems in applied mathematics deal with spaces of real-
valued functions on Euclidean domains in their formulation and solu-
tion, representing dependencies on parameters, time- and space- depen-
dent solutions, or distributions of random variables. For applications
requiring rigorous analysis and verification of dynamic systems, it is
important to be able manipulate functions in a natural, rigorous and
efficient way. I will present the rigorous calculus of continuous and
differentiable functions as implemented in the package Ariadne for
reachability analysis of hybrid systems [1], and suggest ideas for ex-
tensions to other classes of function.

Computable operations

From a theoretical perspective, it is important to know what repre-
sentations and operations are possible. Defining a real number x as
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a sequence of nested intervals [xn, xn] with intersection {x}, a contin-
uous function f : R → R can be defined by its interval extensions
in such a way that evaluation (f, x) 7→ f(x) is a computable oper-
ation. Composition f, g 7→ f ◦ g is computable, from which we can
deduce computability of pointwise arithmetical operations. Integra-

tion (f, a, b) 7→
∫ b
a f(x)dx is computable, but differentiation is uncom-

putable, so continuously differentiable functions must be specified di-
rectly via their derivatives (which can be computed automatically given
a symbolic formula). Algebraic equations with isolated nondegenerate
roots are solvable, as are differential equations with unique solutions.
The maximum over a closed bounded interval (f, a, b) 7→ maxx∈[a,b] f(x)
is computable, as as the supremum norm ||f ||[a,b] = maxx∈[a,b] |f(x)|.
Measurable functions can be defined as the effective completion of
continuous functions (or piecewise-constant functions) under the Fan
metric d(f, g) = sup{ε ∈ R+ | λ({x | d(f(x), g(x)) > ε}) < ε}, but
evaluation of measurable functions is uncomputable.

Function models

From a practical perspective, it is important to have efficient implemen-
tations of these function types. Continuous functions on unbounded
domains can be represented by interval extensions; we say a represen-
tative is effective if it allows arbitrarily accurate evaluation, and vali-
dated if evaluation is only possible up to a given precision. However,
it is more convenient to represent continuous functions by approxima-
tions on some bounded domain

∏n
i=1[ai, bi] with a given (uniform) error

bound. A natural representation is given by scaled Taylor polynomials
f(x) = p(s−1(x)) ± e where s : [−1,+1]n → ∏n

i=1[ai, bi] is a scaling
function, p(x) =

∑
α cαx

α is a polynomial in the standard (Taylor)
basis with coefficients cα, and e is an error bound [2]. The main com-
putable operations given above have all been implemented with respect
to this representation in Ariadne; for example, differential equations
can be solved using the Picard operator. Alternative and equivalent
representations include Chebyshev and Bernstein basis polynomials.
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Hybrid systems

Hybrid systems are dynamic systems in which the state evolves con-
tinuously via a differential equation ẋ = f(x) until a guard condition
g(x) ≥ 0 is satisfied, at which time the state jumps by the reset to
x′ = r(x). The solution of the differential equation at time t start-
ing at x can be represented by the flow φ(x, t), and assuming cross-
ings of the guard set boundary are transverse, the crossing time τ(x)
starting from a point x is given by g(φ(x, τ(x))), so the state imme-
diately following a jump is ψ(x) = r(φ(x, τ(x))).The evolution can
therefore be computed by the operations of (i) solving a differential
equation, (ii) solving a parametrised algebraic equation, and (iii) func-
tion composition. This approach is implemented in Ariadne, and
provides an accurate and efficient way of computing the infinite-time
reachable sets. The set reached starting in a set X0 up to the first event
is given by {φ(x, t) | x ∈ X0∧ t ∈ [0,∞) | t ≤ τ(x)}, and the set ψ(X0)
reached immediately after the first event is used as a starting-point for
further evolution.

Extended function types

Moving beyond finite-dimensional deterministic systems requires more
advanced function types and representations. Switching systems and
optimal control problems require piecewise-continuous functions. Galer-
kin methods for partial differential equations suggest the development
of a Fourier function calculus, such as that implemented in [3] for
the Kot-Schaffer growth-dispersal model, while finite-element methods
require rigorous spline functions. Stochastic processes require mea-
surable functions to represent probability distributions, which could
be represented as completions of piecewise-constant functions, or via
Gaussian basis functions. For all these applications, the key will be
to develop both efficient concrete representations and operations, and
clean abstractions to facilitate ease-of-use and interoperability of dif-
ferent implementations.
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Introduction

This discussion, which is concerned with test matrices for eigenvalue
problems, will be useful for verifying behavior of numerical algorithms
and the accuracy of numerical results. Test matrices are well sum-
marised in [2, Section 28]. There are matrices whose eigenvalues are
known exactly, e.g. circulant, Clement and the tridiagonal Toeplitz
matrices. We aim to develop a method which produces a matrix with
specified eigenvalues.

Problems and Overview of Proposed Method

From a given diagonal matrix D ∈ Rn×n, we use the following diago-
nalisation forms:

A := XDX−1 or B := QDQT (1)

where X ∈ Rn×n is a non-singular matrix and Q ∈ Rn×n is an or-
thogonal matrix. Then, the exact eigenvalues of A and B are known.
However, the following problems arise if floating-point numbers and
floating-point arithmetic are used.
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Problem 1 Even if X ∈ Fn×n, X−1 may not be represented by floating-
point numbers.

Problem 2 Q can be obtained from a non-singular matrix by QR
decomposition. However, the exact orthogonal matrix cannot be
obtained if rounding errors occur in QR decomposition computa-
tions.

Problem 3 Even if X,X−1 and Q can be represented by floating-
point numbers, XDX−1 and QDQT may not be representable by
floating-point numbers.

Let F be a set of floating-point numbers as defined by IEEE 754 [1].
We use a scaled Hadamard matrix for Q and an extension of uni-
modular matrices for X to solve Problems 1 and 2. Next, we compute
a diagonal matrix D′ ∈ Fn×n from D such that there is no rounding
error in the evaluation of XD′X−1 and QD′QT . Then, Problem 3 can
be solved. We can obtain the matrix D′ (≈ D) using an error-free
transformation of floating-point numbers [3, Algorithm 3.2]. The cost
of the proposed method is much less than that of matrix multiplication.
The details of the proposed method will be presented at the workshop.
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Introduction and Notation

Our talk is concerning accurate numerical solutions of linear systems.
The aim is to produce numerical results with guaranteed accuracy, e.g.
faithful rounding or rounding to the nearest floating-point number. In
addition, our method produces the best possible inf-sup interval as the
enclosure of the exact solution.

Let F be the set of floating-point numbers as defined in the IEEE 754
standard [1]. U denotes the set comprising the subnormal floating-
point numbers and zero. Let u be the relative rounding error unit.
The concept of “faithful rounding” was proposed by Rump, Ogita
and Oishi [2]. â ∈ F is a faithful rounding of a ∈ R if and only if
pred(â) < a < succ(â). This can be extended to vectors in a straight-
forward manner. The function ufp(a), for a ∈ F, returns the unit in
the first place of the binary representation of a. We consider linear
systems of the form Ax = b, where A ∈ Fn×n is the coefficient matrix
and b ∈ Fn is the right-hand-side vector.

Proposed method

We propose a method that produces results of guaranteed accuracy.
Each element of a numerical solution is represented by an unevaluated
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sum of floating-point numbers such that

x̂ =
k∑

i=1

x̂(i), x̂(i) ∈ Fn, k ≥ 2. (1)

We obtain x̂ using iterative refinements. We set δ ∈ Fn as

|
k∑

i=1

x̂(i) − x| ≤ δ. (2)

Here we present the following lemma based on [2].

Lemma 1. For δ in (2) and x̂ in (1), if

|
k∑

i=2

x̂(i)| + |δ| < u|x̂(1)| and x̂(1) ∈ Fn\Un

are satisfied, then x̂(1) is a faithful rounding of x. If

|
k∑

i=2

x̂(i)| + |δ| <
1

2
u · ufp(x̂(1)) and x̂(1) ∈ Fn\Un

are satisfied, then x̂(1) is the nearest floating-point number to x. As-
sume that x̂(1) is a faithful rounding of x and that | ∑k

i=3 x̂(i)| + |δ| <
|x̂(2)|, then

x̂(2) < 0 ⇒ pred(x̂(1)) < x < x̂(1), x̂(2) > 0 ⇒ x̂(1) < x < succ(x̂(1)).

Adaptive implementation and numerical results will be shown at
the presentation.
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Introduction and Preceding Study

This study aims to verify non-singularity of matrices using numerical
computations. For A ∈ Rn×n, if there exists R ∈ Rn×n such that
∥RA − I∥ < 1, A is non-singular, where I is the identity matrix.
Based on this theorem, a fast verification method has been proposed
by Oishi and Rump [1].

Here, we briefly review the Oishi-Rump method. Let L̂ and Û be
the computed LU factors of PA, where P is a permutation matrix, i.e.,
PA ≈ L̂Û . Matrices XL and XU are the approximate inverse matrices
of L̂ and Û , respectively. Let e = (1, . . . , 1)T ∈ Rn. Oishi and Rump
set R := XUXLP and derived the following inequality:

∥RA − I∥∞ ≤ ∥2nu|XU ||XL||L||U |e + nu|XU ||U |e∥∞, (1)

where u is the unit roundoff, e.g., u = 2−53 for the binary64 format in
the IEEE 754 standard. Assume that no underflow occurs in numerical
computations. The upper bound of Eq. (1) can be calculated without
matrix multiplication. The total cost is 4

3n
3 + O(n2) flops.
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The Proposed Method

Let R = (L̂Û)−1P and ∆A = PA − L̂Û . Then, we obtain

∥RA − I∥∞ = ∥RP T (L̂Û + ∆A) − I∥∞ ≤ ∥R∥∞∥∆A∥∞. (2)

Let ∆L = I − L̂XL and ∆U = I − XU Û . If ∥∆L∥ < 1 and ∥∆U∥ < 1,
then ∥R∥ is bounded by

∥R∥ = ∥(L̂Û)−1∥ ≤ ∥XUXL∥
(1 − ∥∆U∥)(1 − ∥∆L∥)

. (3)

By substituting Eq. (3) into Eq. (2), we obtain

∥RA − I∥∞ ≤ ∥XUXL∥∞∥∆A∥∞
(1 − ∥∆U∥∞)(1 − ∥∆L∥∞)

. (4)

From [2], the upper bounds of ∥∆A∥, ∥∆L∥ and ∥∆U∥ are given by

∥∆A∥ ≤ nu∥|L̂||Û |∥, ∥∆L∥ ≤ nu∥|L̂||XL|∥, ∥∆U∥ ≤ nu∥|XU ||Û |∥.

Then, we can compute the upper bound of (4) as follows

∥RA − I∥∞ ≤ nu∥|XU ||XL|e∥∞∥|L̂||Û |e∥∞

(1 − nu∥|XU ||Û |e∥∞)(1 − nu∥|L̂||XL|e∥∞)
. (5)

The computational cost of Eq. (5) is comparable to that of the Oishi-
Rump method. In addition, we propose methods with 11

6 n3 flops, 7
3n

3

flops and 17
6 n3 flops based on (4) using interval enclosure approaches.
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Introduction

Cyber-physical systems are made of discrete-time components, i.e.,
piece of software, and continuous-time components, i.e., a plant which
continuously and strongly interact each other. Such kind of systems is
usually found in critical application, e.g., aircraft autopilot or cruise
control mechanism in a car. In consequence, it is important to ensure
safety of such systems in order to avoid the lost of human life.

Formal safety verification techniques aim at automatically and ma-
thematically prove that a mathematical model of a cyber-physical sys-
tem is safe. One difficulty of this approach is to deal with models
involving a combination of state transition systems, representing the
software part, and ordinary differential equations, representing the
plant part. Model-checking techniques based on SAT Modulo The-
ory (SMT) techniques are efficient and robust enough to deal with
such heterogeneous mathematical models. More precisely, SAT mod-
ulo ODE techniques [3, 4] are very promising to prove safety prop-
erties of cyber-physical systems. A SMT solver aims at proving that
a first-order logical formula φ involving terms coming from different
theories, e.g., linear integer arithmetic (LIA) or non-linear real arith-
metic (NRA), is satisfiable, i.e., there is a value of the variables which
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make the formula φ true or unsatisfiable, i.e., for all values of the vari-
ables, φ is false. The main algorithm used in SMT solver is known as
Conflit-Driven Clause Learning (CDCL).

This article is interested in SMT with NRA theory. This theory is
associated to a solver based on Interval Constraint Propagation (ICP)
techniques [1] which is easily implementable with IBEX library. The
contribution of the paper is the definition of an algorithm dedicated
to the conflict analysis step. This algorithm is an adaptation of the
QuickXplain algorithm [2], mainly dedicated to discrete domain Con-
straint Satisfaction Problems (CSP), to continuous or numerical CSP.

Main contribution

Basically when only one theory T is involved, a SMT solver is made
of a SAT solver and a T -solver, such as IBEX for NRA theory. The
combination of the two solvers works as follows, starting from a log-
ical formula φ involving T terms in normal conjunctive form (CNF),
φCNF ≡

∧n
i=1

∨m
j=1 `ij,

1. For each literal `ij, e.g., cos(x) + y 6 1, a Boolean variable b(`ij)
is assigned.

2. SAT solver searches for an assignment α of b(`ij) such that φCNF
is true.

3. T -solver is started if an assignment α exists and it determines
if the conjunction of constraints induced by α holds true in the
theory T . If the constraints are true then SMT solvers returns
SAT, otherwise a conflict clause κ is generated and added to φCNF
to avoid unfeasible paths during the search of a new α in Step 2.

4. If no assignment α can be found then UNSAT is returned.

In iSat [3], which tightly integrates SAT and ICP solvers, a conflict
learning algorithm, to generate κ, is used based on the decision tree
at the SAT-solver level. Otherwise, it seems that no conflict analysis
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is defined for T -solver keeping the relative independence between the
two solvers. To cope with this lack, a new conflict analysis method is
proposed for NRA theory and based on the QuickXplain algorithm [2].
An implementation of this algorithm has been performed in IBEX.

Algorithm 1 Continuous QuickXplain algorithm
1: function QuickXplain(C, U , d)
2: if card(C) 6= 0 ∧ contract(C, d) = ∅ then
3: return ∅
4: end if
5: if U = ∅ then
6: return ∅
7: end if
8: α0, . . . , αn−1 be an enumeration of U
9: k ← 0; Cs ← C; ds ← d
10: while ds 6= ∅ ∧ k < card(U) do
11: Cs ← Cs ∪ {αk}; ds ← contract(Cs, d); k ← k + 1
12: end while
13: if ds 6= ∅ then
14: return ∅
15: end if
16: k ← k − 1; X ← {αk}; i← bk/2c
17: U1 ← {α0, . . . , αi−1}
18: U2 ← {αi, . . . , αk−1}
19: if U2 6= ∅ then
20: C2 ← C ∪ U1 ∪X
21: X2 ← QuickXplain(C2, U2, d)
22: X ← X ∪X2

23: end if
24: if U1 6= ∅ then
25: C1 ← C ∪X
26: X1 ← QuickXplain(C1, U1, d)
27: X ← X ∪X1

28: end if
29: return X
30: end function
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Results

The new conflict analysis method is given in Algorithm 1 where C
stands for the smallest set of conflicted constraints (initially ∅), U
stands for the initial set of constraints, d stands for the domain of
variables. The contract operations in Line 2 and 14 is implemented
using the HC4 algorithm. A positive side effect of this adaptation to
continuous constraints of the original work [2] is that some propagation
operations have been removed.
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Introduction

Taking a set as the input for a function, set computation returns an-
other set as the output of the function. Enclosing real numbers in inter-
vals and real vectors in boxes, interval analysis has become a powerful
set computation tool for nonlinear systems [1]. Interval set computa-
tion for nonlinear systems can take in an interval or a box as its input
and return an interval or a box as its output. For those inputs that
are not in the shape of an interval or a box, interval set computation
can also be applied through approximating those inputs by a union of
intervals or boxes obtained from bisection and selection.

Similar to interval set computation, the dynamic evolution of a
nonlinear system with a zonotopic set as the initial state can also be
computed directly via zonotopic set computation and the wrapping
effect can be reduced greatly with comparison to interval set compu-
tation [2]. Except for the reduced wrapping effect, zonotopes as a
special kind of polytopes are also more flexible in shape than intervals.
Therefore, zonotopic set computation has been increasingly used to
solve control and estimation issues for nonlinear systems.

Compared to intervals and zonotopes, polytopes are more flexible
in shape. The dynamic evolution of a nonlinear discrete-time system
with a polytopic set as the initial state cannot be computed directly due
to its mathematical format involving inequality constraints. However,
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exact polytopic set computation for nonlinear discrete-time systems
can be realized through computing the dynamic evolution of those
individual zonotopes whose intersection forms the polytope.

Polytopic set computation

The key to implement exact polytopic set computation for nonlinear
discrete-time systems is to represent the polytope P exactly by the
intersection of zonotopes P = Z1∩ · · · ∩Zn. Once the initial polytopic
set is represented exactly by the intersection of zonotopes, then f(P) =
f(Z1 ∩ · · · ∩ Zn) ⊆ f(Z1) ∩ · · · ∩ f(Zn) according to set theory.

Assume that the polytope P ⊂ <2 has nc inequality constraints,
then the convex polygon P can be represented exactly by the intersec-
tion of nc

2 zonotopes if nc is even or exactly by the intersection of nc+1
2

zonotopes if nc is odd. The construction of a parallelogram to contain
the 2-D polytope can be transformed to be a linear programming (LP)
problem that minimizes the sum of the base length and the side length
for the parallelogram to be minimal in volume.

Conclusion

This paper aims to extend interval and zonotopic set computation
to polytopic set computation for nonlinear discrete-time systems so
that the dynamic evolution of a nonlinear discrete-time system with a
polytopic set as the initial state can also be computed exactly.
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Introduction

If nonlinear dynamic systems with uncertain but bounded parame-
ters are concerned, it is desired to design feedback control strategies
that are capable of robustly stabilizing the system dynamics with a
minimum amount of conservatism. Conservatism is usually caused by
overapproximating the influence of uncertain parameters during offline
design stages in terms of worst-case (norm) bounds.

Classical Variable-Structure Control Techniques

Using such bounds, classical sliding mode techniques [7,8] can be de-
signed which lead to a guaranteed asymptotically stable behavior of the
closed-loop control system. However, the offline overapproximation of
the influence of uncertain quantities typically leads to unnecessarily
large control amplitudes. Such large control amplitudes are strongly
related to the effect of chattering, namely, switchings of the input sig-
nal with high frequency around some effective average value. In such a
way, chattering may cause undesired actuator wear and unnecessarily
large energy consumption.
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Interval-Based Control Procedures

To avoid chattering, interval-based variable-structure control proce-
dures were developed in previous work for a guaranteed stabilizing on-
line adaptation of the control strategy [3,5,6]. These approaches have
already been applied successfully to various real-life systems and have
been extended by approaches that allow for handling both one-sided
and two-sided hard state constraints [1,2]. Besides the interval-based
extension of variable-structure control laws, an interval-based general-
ization of backstepping controllers [4] was published in [1]. However,
these interval-based variable-structure and backstepping controllers
were so far only developed for single-input single-output systems (SISO
systems). This contribution aims at a generalization of both types of
control strategies to the more general case of multi-input multi-output
control tasks which cannot be decoupled perfectly — due to uncertain
parameters — into independent SISO systems by a nonlinear coordi-
nate transformation.
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Introduction

During the last decades, micro-positioning systems have gained much
attention in microrobotic applications such as micro/nano-assembly,
micromanipulation, nanotechnology,... [1,2]. However, the control of
micro-positioning systems always presents a very difficult task due
to the high sensitivity to the environment at this scale, the charac-
teristics of the used smart actuators (hysteresis, creep, ...), and the
cross-couplings effects present between the different axes for multi-
variable case. In fact, different controllers synthesis approaches have
been developed to control such system including real-time adaptive,
robust control (H∞, µ − synthesis, ..), nonlinear approaches and ro-
bust interval-based techniques [1-4]. In this presentation we suggest to
model the system uncertainties by a linear and time-invariant interval
state-space model which is well adapted to multivariable control sys-
tems. Furthermore, we propose a robust Observer-Based State Feed-
back design using interval techniques to control the micro-positioning
systems [4-6]. The proposed control strategy is tested in simulation
and validated experimentally using a multi-Dof (degrees of freedom)
micro-positioning system.
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Figure 1: Observer-based state feedback schema.

Problem formulation

In our work the problem of observer-based state feedback controller
with integral compensator is addressed for an interval state-space model
with realization ([A], [B], [C]), as shown in fig.1. The objective of
the proposed control strategy is to find the set of robust gains ma-
trices [[K] [Ki]] and [L], for the controller and the observer respec-
tively, such that the closed-loop state matrices of the controller and of
the observer possess their eigenvalues within two desired subregions:
one for the controller ΩDesired region controller and the other for the observer
ΩDesired regionObserver, as depicted in fig.2. These two subregions are defined
such that the closed-loop of the observer is (i.e. the state estimation),
at least, four times faster then the closed-loop of the controller, and
such that they provide a guaranteed stability margin and some prede-
fined performances.

Main results

In order to obtain the set of robust gains for the controller and the
observer using pole assignment techniques and interval analysis, fore-
most, we propose to adopt the separation theorem to be able to find
the gains of the controller and the observer in separated way and also
to reduce the computation complexity [7]. Furthermore we convert
the problem of pole assignment to set inversion problem and solve
it using the Set Inversion Via Interval Analysis (SIVIA) algorithm [5]
with the help of interval eigenvalues computation [8-10]. This recursive
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Figure 2: Desired regions for the controller and the observer.

SIVIA-based algorithm approximates with subpaving the set solutions
[[K] [Ki]] and [L] that satisfy the following inclusions:

eig [AController−cl([A], [B], [C], [[K] [Ki]])] ⊆ ΩDesired region controller (1)

eig [AObserver−cl([A], [B], [C], [L])] ⊆ ΩDesired region observer (2)

where Acontroller−cl is the augmented closed-loop matrix for the controller
and AObserver−cl is the closed-loop matrix for the observer. These two
closed-loop matrices are obtained from the separation theorem.

Finally, the effectiveness of the proposed algorithm is tested in sim-
ulation by mean of Monte-Carlo simulation and is illustrated by a real
experimentation to control a new multi-Dof micro-positioning system.
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Introduction

The presented approach allows for combining the fields of a verified
simulation of ordinary differential equations [1] and the robustly sta-
bilizing control design using linear matrix inequality (LMI) techniques
[2]. It aims, firstly, at a guaranteed stabilization of the system dy-
namics and, secondly, at a minimum amount of conservatism in the
controller gains by their adaptation in terms of guaranteed enclosures
for those state variables that influence entries in the system and input
matrices of quasi-linear state-space representations.

Gain Scheduling with Robust LMI-Based Control

The main idea is to compute controller gains off-line for a predefined
prediction horizon. As mentioned earlier, LMIs are used to ensure ro-
bust stability [3]. Although LMI techniques were originally developed
for purely linear system models, they can be extended towards non-
linear systems if the state equations can be reformulated into a quasi-
linear representation. The controller gain matrix ensures asymptoti-
cally stable convergence to the desired operating point for all following
time steps if the system model is time-invariant. Due to the fact that
asymptotic stability of the closed-loop system dynamics is desired by
the choice of a sequence of gain matrices, the final goal is to obtain
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state enclosures for which the prediction result of the interval vector
is a true subset of the actual interval vector in all components. If the
predicted interval is not a subset of the actual interval, it cannot be
proven that the interval width reduces in each of the vector compo-
nents. In this case, the controller gain needs to be adapted in such
a way that desired stability, robustness, and optimality criteria are
guaranteed to be satisfied for the complete prediction horizon. Finally,
for sufficiently large times, this leads to a contraction of the interval
widths between two subsequent temporal discretisation steps. To pre-
vent overestimation and an excessive blow-up of the interval width due
to the wrapping effect [4], techniques for the reduction of overestima-
tion are applied in the interval-based state prediction. In this, intervals
are subdivided and re-merged to limit the conservatism due to too big
bounding boxes. This is done once by a reduction of the number of
subintervals by a convex interval hull with bounded overestimation and
by a re-approximation using disjoint subintervals [5],[6]. The method
is implemented in Matlab and verified by simulating the application
scenario of an inversed pendulum together with possibilities to con-
struct computationally inexpensive exponential state enclosures and
suitable bonding systems.

Results

Starting from initial state intervals, guaranteed bounds of all reach-
able states were computed along with corresponding robustly stabi-
lizing controller gains. The calculation of the controller gains is done
by LMI techniques using a quasi-linear state-space representation of
the non-linear continuous-time system model of the pendulum. Thus,
robust stability and the optimization of performance criteria such as
the H2 and H∞ norms can be considered directly in addition to the
limitation of desired eigenvalue domains. While the gain scheduling
itself guarantees asymptotic stability, the techniques for the reduction
of overestimation in the interval-based state prediction are essential to
avoid a blow-up of the widths of the computed state enclosures due to
the dependency and wrapping effect. In such a way, the techniques for
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reduction of overestimation help to limit the computational effort and
simultaneously reduce conservatism in the controller gains [7].
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Introduction

This work aims at providing a new reliable (asymptotic) optimal mo-
tion planner, denoted BoxRRT? which can guarantee a safe path to an
unknown initial mobile robot localisation.
Our proposed motion planner is build upon: i) methods which use
stochastic sampling to discretise the configuration space, e.g., Rapidly-
exploring Random Tree, which can guarantee (asymptotic) optimality
of the solution, e.g., optimal RRT (RRT?, see for example [2]) and ii)
modern and new tools [1] for the guaranteed numerical integration.

Problem formulation

Consider the differential system which describes the evolution of a
mobile robot system:

ṡ(t) = f(s(t),u(t)) (1)

with s ∈ S ⊂ Rn the measurable state of the system and u(t) ∈ U the
admissible control input.
The purpose of the robust motion planner is to provide a sequence of
control inputs u ∈ U∆t

[u] bounded over intervals of time of the form

[K∆t, (K + 1)∆t[, with ∆t > 0 and K ∈ N, which will drive the
system to reach Sgoal from initial states s ∈ Sinit while avoiding the
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non-admissible states Sobs.
Starting from the formulation given in [3] of such a robust motion
planner, there exists a sequence of control input u ∈ U∆t

[u] to drive the

system from an uncertain initial state to a set of goal states Sgoal is as
follows

∃K > 0 and u ∈ U such that
∀s0 ∈ Sinit, ∀ s(K∆t; s0) ∈ Sgoal and
∀t ∈ [0, K∆t], s(t; s0) ∈ Sfree,

(2)

with s(t; s0) the exact solution of (1) from the initial condition s0.

Main results

Let G be the exploration tree, [sinit] = Hull(Sinit), [sobs] = Hull(Sobs)
and [sgoal] = Int(Sgoal), with Hull(Sinit) the smallest box which contains
Sinit (e.g., interval hull) and Int(S) a box included in S (e.g., inner
approximation). The minimal cost from [s1] to [s2] according to the
Hausdorff distance of two intervals (d), is denoted by cost([s1], [s2]).
Let cost([s1]) be the total cost to arrive at s1, that is cost([s1]) =
cost([sinit], [s1]).

BoxRRT? motion planner brief description:

1. First, G is initialized with the given initial configuration [sinit].

2. Then, a state [srand] ∈ Sfree is generated randomly.

3. The tree G is searched for the nearest vertex to [srand] according
to a user-defined metric d and the [snearest] vertex is provided.

4. A control input u is selected according to a desired behaviour.
Then, (1) is integrated over a fixed time interval ∆t with the initial
condition [snearest], to find a new state [snew]. If the new state and
the path between it and [snearest] lie in Sfree (e.g., is a collision free
path), then [snew] is added.
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5. Next, the planner tries to find a better parent and children for
[snew], which needs to provide collision-free-path and a lower cost to
and from [snew], respectively. For the better parent one searches a
set of k-nearest other potential parents to arrive at [snew], while for
the better children one searches a set of k-nearest other potential
children from [snew] to other vertices.

6. If a better parent and/or children are found with collision free path
and lower cost, than the [snew] parent and children information are
updated.

These steps are repeated until the algorithm reaches K iterations.
Thus, the BoxRRT? algorithm can improve the optimality of the so-
lution, in terms of distance, over time even after the first solution is
found.

Application:

The BoxRRT? is performed on the simple car model which involves
nonholonomic constraints. The resulted for K = 20000 are reported
and can be seen in Fig. 1.

Figure 1: A BoxRRT? solution
with [sinit] the blue box and [sinit]
the green one while the obstacles
are in red: CPU = 745 [s], the
number of vertices and the planned
path length are 96 and 105 [cm], re-
spectively, while the total number
of vertices is 13655.

Acknowledgement

This research was financial supported by the DGA MRIS.

44



References

[1] J. Alexandre dit Sandretto and A. Chapoutot. DynIBEX:
a differential constraint library for studying dynamical systems
(poster), HSCC, ACM, 2016.

[2] S. Karaman and E. Frazzoli. Optimal kinodynamic motion
planning using incremental sampling-based methods. CDC 2010,
pages 7681-7687.

[3] R. Pepy, M. Kieffer, and E. Walter. Reliable robust path
planning with application to mobile robots. Int. J. Appl. Math.
Comput. Sci., 19(3):413-424, 2009.

45



Vision based Pose domain
characterization of an Unmanned Aerial

Vehicle using Interval Analysis

Ide-Flore Kenmogne1, Vincent Drevelle1,2 and Eric
Marchand1,2

1 IRISA-INRIA Rennes Bretagne Atlantique,Rennes, France
ide-flore.kenmogne@inria.fr .
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Introduction

To navigate and accomplish their tasks, Unmanned Aerial Vehicles
(UAVs) need to locate themselves with respect to the environment
and have confidence information about their position. An onboard
camera can be used in order to enhance the robot localization using
an image-based primary positioning system which enables to overcome
GPS and compass unreliability in difficult environments. Solutions to
pose estimation from a set of known landmarks ([1]) exist in Computer
Vision but they classically provide a punctual estimate of the location.
Considering image measurements and landmark positions uncertain-
ties, we aim at characterizing a domain that contains the 3-D pose of
a UAV equipped with a camera and proprioceptive sensors. We use an
interval-based set-membership approach [2]; which is a powerful tool
for rigorous uncertainty propagation([3],[4]).

Problem statement

Estimating the pose of a camera consists in determining the transfor-
mation between the world frame Fw and the camera frame Fc (Fig. 1).
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Figure 1: Perspective projection of an object in the image plane

Let cTw be this transformation, defined by: cTw =
(

cRw | ctw
)
,

where cRw and ctw is a function of the attitude and position of the
camera in the world frame. To solve this problem, the perspective
projection equation of a 3-D point (in the world frame) on the image
frame (a 2-D point) is used.

x = K Π cTw
wX (1)

with wX = (X, Y, Z, 1)> the homogeneous 3-D point coordinates; x =
(u, v, 1)T the pixel coordinates (projection of wX in the image); K the
camera intrinsic parameters matrix and Π the perspective projection
matrix.

Supposing we have N points wXi, i = 1..N in Fw and their projec-
tions xi; pose estimation amount in solving the system of equations (1)
for cTw. This is an inverse problem that is known as the Perspective
from N Points problem or PnP. It is classically solved by minimizing
the norm of the reprojection error using a non-linear minimization such
as a Gauss-Newton of a Levenberg-Marquardt technique.

Interval based Pose Estimation

Placing ourselves in the context of bounded error measurements, each
image point xi and world point wXi can be represented as an interval
vector. Instead of computing the pose by solving equation (1), our
approach rely on seeking the domain of all the feasible poses q such
that (1) is verified for i = 1..N according to 2D-3D point correspon-
dences. It consists in computing the solution set :

Q = {q | ∃wX ∈ [wX], KΠcTw(q)wX ∈ [x])} (2)
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, which is the set of all feasible pose compatible with [x], [wX]. The
initial domain of the altitude, pitch and roll components of q is set
from onboard sensors measurements. We compute an outer subpaving
of Q using Interval Analysis.

Main results

Figure 2: Left: UAV in the room. Right: Onboard camera view

Experimental trials have been conducted with a quadcopter UAV
MK-Quadro from MikroKopter (left image of Fig. 2). This quadcopter
is equipped with an onboard camera for image acquisition. Six cubes
are used as landmarks of known coordinates and tracked in the image.
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Figure 3: Bounds of the computed pose domain in the whole trial with ±0.5px
error and ±1cm landmark coordinates error.Black : mid taken as punctual estimate,
Red : ground truth and Blue: Lower and Upper bounds of the domain
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Measurements Uncertainties influence on pose domain size

We can observe the evolution of the pose domain w.r.t. an increasing
error bounds in the image measurements in Fig. 4.

X

Y

Figure 4: X,Y plane of domain subpaving w.r.t. increasing image tracking error
bounds: ±0.25,±0.5,±1,±2 px

Fault detection and restart

It may happen that no solution can be found with the current set
of measurements. In this case, the method outputs an empty set.
Possible causes are modeling errors, underestimation of measurement
error bounds (it is not generally possible to fix a tight error bound that
will cover even rare events), or the presence of spurious measurements.
The latter case happens when the landmark tracking algorithm fails.
When an empty solution set occurs, a “fault detected” flag is raised,
and the landmark tracking is reset.

Conclusion

We proposed an interval based set-membership approach to compute
a domain that contains the pose of an UAV, from uncertain bounded-
error measurements of known landmarks in the image. While interval
methods provide guaranteed results as long as the measurement errors
bounds are not violated, setting guaranteed measurement error bound
in practice is generally impossible or very pessimistic. Fault detection
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system is thus implemented, in order to cope with inconsistencies due
to tracking errors.

References

[1] E. Marchand and H. Uchiyama and F. Spindler, Pose esti-
mation for augmented reality: a hands-on survey, IEEE Transac-
tions on Visualization and Computer Graphics 22,2633-2651,2016.

[2] Jaulin, Luc and Kieffer, Michel and Didrit, Olivier and
Walter, Eric, Applied interval analysis: with examples in pa-
rameter and state estimation, robust control and robotics, Springer
Verlag,2001.

[3] B. Telle and M. J. Aldon and N. Ramdani, Guaranteed
3D visual sensing based on interval analysis, Intelligent Robots
and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on 2,1566-1571,2003.

[4] V. Drevelle and P. Bonnifait, Localization Confidence Do-
mains via Set Inversion on Short-Term Trajectory, IEEE Transac-
tions on Robotics 29,1244-1256,2013.

50



Interval Methods for Resolving Neural
Computation Issues

S. P. Adam1,2, D. A. Karras 3, M. D. Magoulas 4 and M. N. Vrahatis 2

1 Dept. of Computer Engineering, Technological Education Institute of Epirus,
Arta, Greece,

adamsp@teiep.gr
2 Dept. of Mathematics, University of Patras, Greece,

3 Dept. of Automation, Technological Educational Institute of Sterea Hellas, Greece,
4 Dept. of Computer Science and Information Systems, Birkbeck College, University of

London, UK

Keywords: Neural computations, Interval methods, Reliable computing

Introduction

Effective handling of uncertainty constitutes an important issue when dealing
with systems built on concepts and methods from the areas of Computational
Intelligence. Uncertainty in such systems appears in various forms both when
modeling a real process, as well as, during deployment and exploitation of a
system, and typically, it is related to the input data and to model parame-
ters. A multitude of research efforts are reported in the literature, concerning
its quantification and effective handling. The majority of these efforts adopt
concepts and methods arising from areas such as, probabilities and stochas-
tic processes, Bayesian theory, fuzzy logic, mathematical theory of evidence,
rough sets, etc. However, these approaches have no means to handle nu-
merical errors, while at the same time it is questionable whether they can
effectively tackle uncertainty without specific knowledge of the underlying
process, such as the knowledge of an expert, or in the absence of known
probability distributions, etc.

Interval arithmetic was introduced as a means to perform numerical com-
putations with guaranteed accuracy and bounding the ranges of the quan-
tities, used in the computations. Nowadays, interval analysis offers a whole
toolbox for providing reliable solutions to several problems, especially, when
they concern processes for which the proposed model can be cast in some
closed-form or analytic expression.

The study and the use of interval analysis has attracted the interest of
researchers in the area of computational intelligence, and more specifically,
in the field of neural networks. Various trends are reported in the literature
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regarding the use of interval analysis approaches in artificial neural networks.
Most of them focus on endowing neural networks with the capability to pro-
cess uncertain data expressed in the form of intervals, while the “maximalist
approach”, in this direction, concerns the conception and the implementa-
tion of interval neural networks i.e., neural architectures which not only are
capable to process interval valued data but they, also, dispose some suitable
training mechanism based on interval optimization techniques, [1]. Other
notable research efforts dealing with the integration of the ability to process
interval data into classical neural networks, range from, suitably modifying
neural architectures, to proposing interval-like versions of the classical train-
ing algorithms such as gradient descent, [2,3].

Recent Research Results

Recently, aiming at these objectives has been reconsidered from a rather
different point of view. In contrast to maximalist approaches or to some
interval-mimicking techniques and algorithms, the work of Adam et al. [4,5,6]
focused on using interval methods in order to resolve specific neural compu-
tation issues for which there exists some appropriate transcription in terms of
intervals. In order to derive intervals for the values of the critical parameters
of the networks, we had to revisit fundamental neural network concepts and
well known approaches and identify the level of effective interventions. On
the other hand, in order for these interventions to be successful we had to
study and define the necessary theoretical tools for providing support to the
effective application of the interval methods. The issues, presented hereafter,
were identified for potential improvement or resolution.

Effective weight initialization of a neural network, [4]: The problem
of determining good initial conditions for a local search algorithm used to
train a multi-layer perceptron (MLP) was studied. For each node in the hid-
den layer synaptic weights are considered to be located within the bounds of
some unknown intervals. These intervals together with the intervals of the
values of the signals, input to a node, form an interval linear system cor-
responding to a linear interval tolerance problem. A number of theoretical
results are proved and a new algorithm is proposed for solving this problem
and, hence, for defining effective intervals for the initial weights. The pro-
posed approach inherently includes some of the major concepts involved in
neural network weight initialization, such as: the number of inputs to a node
in the first hidden layer, the statistical information of the input data, effective
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positioning of the hyper-planes in the pattern space and full utilization of the
dynamic range of the activation function. The proposed method is tested on
a number of well known benchmarks for MLPs trained with some well known
back-propagation algorithms and the experimental results obtained are com-
pared against the results of a number of well known and established weight
initialization methods.

Definition of the area in the weight space of an MLP where a global
minimizer of the network’s output error function is guaranteed to
be located, [5]: Using global optimization techniques for neural network
training has been an important issue in the field of neural computation as
these techniques succeed to find a global minimizer of the network’s error
function while avoiding the problems related to local search. However, a ma-
jor problem that still remains to be solved concerns the region where these
methods will effectively search for some global optimizer. Given that the
weight space of an MLP is unbounded, the current practice on this matter
consists in, heuristically, defining a bounded region hoping that some global
optimizer is contained in there. The approach elaborated in this research
relies on interval analysis and defines guaranteed bounds of the region in
the search space where some global search algorithm should operate when
training an MLP. These bounds, depend on the machine precision set for
the solution of the problem and the term guaranteed denotes that the region
determined surely encloses weight vectors that are global minimizers of the
neural network’s error function. Generally, the solution set of this bounding
problem of an MLP is non-convex. However, the theoretical results elab-
orated helped deriving a box which is a convex set. This box is an outer
approximation of the algebraic solutions to the interval equations resulting
from the functions implemented by the network nodes.

Reliable estimation of an MLP’s domain of validity, [6]: The qual-
ity of training of a neural network is represented to a great extent by its
domain of validity as it helps to assess the network’s ability to cope with a
given problem. A number of research efforts can be found in the literature
on this matter aiming to provide as accurate estimations of the domain of
validity as possible. Given that the dependence of a neural network output
on the pattern data is a nonlinear function, in this research, we consider that
derivation of the area in the input space, effectively taken into account by
the neural network function, can be addressed as a nonlinear parameter esti-
mation problem. Hence, this problem can be tackled by SIVIA, the approach
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originally introduced by Jaulin and Walter [7]. The use of interval computa-
tion, obviously, guarantees the reliability of the results in terms of accurately
detecting the domain of validity. The proposed method was experimentally
tested on a number of problems and the results obtained proved to be very
promising for obtaining reliable conclusions on aspects of the neural network
such as its ability to generalize well and its ability to be explicative.
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45000 Orléans, France.

nacim.ramdani@univ-orleans.fr

Keywords: Discrete-time linear systems, Observability, Set-membership
state estimation, Interval analysis, Set-inversion

Introduction

Based on the classical observability property of discrete-time linear
systems, a new interval state estimator is introduced in this work.
Although interval computation is used to design the proposed state
estimator, the convergence analysis of the width of the estimated state
enclosures is fully characterized. Compared to the existing approaches
in the literature [1, 2, 3, 4], the proposed interval method does not re-
quire solving optimization problems at each measurement time instant.
It computes in a direct way maximal and minimal bounds for the so-
lution sets. Therefore, this interval estimation approach allows saving
computation time while guaranteeing tightness of the state enclosures.

Problem statement

Consider an uncertain discrete-time linear system described by

{
xk+1 = Axk + Buk + Edk

yk = Cxk + Duk + Fvk
(1)
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where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector and
yk ∈ Rp is the measured output vector. The vectors wk and vk are re-
spectively the state perturbation and the measurement noise, which act
on the system. These quantities are assumed unknown-but-bounded
with known bounds, i.e.

∀k ≥ 0, dk ∈ [d, d] ⊂ Rnd and vk ∈ [v, v] ⊂ Rnv (2)

where the real vectors d and d (resp. v, v) are the perfectly known
endpoints of the box [d] (resp. [v]). The matrices A,B,C,D,E and
F have the appropriate dimensions.

This work proposes an interval estimator of all the possible state
trajectories of the uncertain system (1). More precisely, based on inter-
val analysis, an algorithm is designed to generate an interval sequence,
[xk] k ∈ {1, . . . , N}, which is tight, i.e. it frames tightly all the possible
state trajectories xk of system (1).

Main result

The proposed algorithm is a Prediction-Correction state estimator.

• The prediction stage is carried out by the following formula,

[xk]
p = Ak[xs] +

( k−1∑

i=0

Ai
)
E[d] +

k−1∑

i=0

A(k−i−1)Bus+i (3)

That means from a given time instant ts for which the state of
the system is included in the box [xs], all the upcoming state en-
closures, [xk] k > s, of the system (1) can be computed, in a
guaranteed way, by (3).

• The correction stage is based on the observability of the pair
(A,C). If the system (1) is observable, the state enclosure of
the system at the time instant tk can be computed from the future
sequences of its input and output as follows

[xk]
c = [xk]

p ∩ O−1
(
[Y(k:k+n−1)]−OdE[d]−OuU(k:k+n−1)

)
(4)
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where

O =




C
CA
...

CAn−1


 , Od =




0
C
...

C
∑n−1

i=0 Ai


 , Ou =




D 0 . . . 0 0

CB D . . .
...

...
...

... . . .
...

...
CAn−1B CAn−2B . . . CB D




and

[U(k:k+n−1)] =




uk

uk+1

...
uk+n−1


 , [Y(k:k+n−1)] =




ym
k

ym
k+1

...
ym
k+n−1


+




1
1
...
1


 [ey ] (5)

In (5), the vector ym
k stands for sensors data at the time instant tk

and [ey] stands for the box of the feasible output error.

The main novelty of this work is implemented by the following al-
gorithm.

Algorithm: Box-State-Est([x0], N)

• For k := 1 to k := n− 1

1. [xk]
p := Ak[x0] +

(∑k−1
i=0 Ai

)
E[d] +

∑k−1
i=0 A(k−i−1)Bui

2. [xk] := [xk]
p

• For k ≥ n− 1 to N

3. j := k − (n− 1)

4. [xj ]
inv := O−1

(
[Y(j:j+n−1)]−OdE[d]−OuU(j:j+n−1)

)

5. [xj ]
c := [xj ]

inv ∩ [xj ]
p

6. [xk]
c := An−1[xj ]

c +
(∑n−2

i=0 Ai
)
E[d] +

∑n−2
i=0 A(n−i−2)Buj+i

7. [xk] := [xk]
c ∩ [xk]

p

8. k := k + 1

9. [xk]
p := A[xk−1] +Buk−1 +E[d]

• Return [xk], k ∈ {0, 1, 2, . . . , N}

Proposition: If the uncertain system (1)-(2) is observable, the Algo-
rithm Box-State-Est generates an interval sequence [xk], k ∈ {0, 1, 2, . . . , N}
such that

∀k ≥ 0, the solution to (1)-(2), xk ∈ [xk]
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and the width of [xk] is lower than

w
(
[xk]
)
≤
∣∣An−1O−1

∣∣w
(
[ey]
)

+
∣∣(

n−2∑

i=0

Ai −An−1O−1Od

)
E
∣∣w
(
[d]
)
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Attitude estimation

Motion capture and analysis is a very active research field with many
applications in areas such as computer animation, video games, serious
games, medical therapy, tele monitoring, and human robot interaction.

The estimation of the orientation of a rigid body relative to an in-
ertial frame may be achieved using two main technologies. Having in
mind application in serious games and tele-monitoring, these sensing
technologies can be grouped in two families. The first type of sens-
ing uses RGB-D type sensors, a.o. Kinect type sensors, that need not
be attached on the body. To the contrary, the second type of sens-
ing modality is achieved by Inertial Measurement Units IMU which
take the form of body-attached equipments that combine gravity and
magnetic fields observation with measurement of the sensor angular
velocity to reconstruct the sensor attitude.

Both sensing modalities are used in wide application areas. For
instance, Bonnet et al. [2] used a Kinect sensor to develop an afford-
able mobile platform for pathological gait analysis, while Bethencourt
and Jaulin [1] used interval analysis to develop a method for Visual
Simultaneous Localisation and Mapping (VSLAM) coupling a Kinect
sensor with an Inertial Measurement Unit (IMU). At the price of a dra-
matically reduced performance, RGB-D sensors offer low-cost motion
capture solutions For example, the joint position data from the RGB-
D sensor Microsoft Kinect usually exhibits significant jitters caused by
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low depth accuracy, occlusions, ambiguity, and loss of tracking, and
the body segment lengths vary during the motion [7]. Furthermore,
IMU data are sensitive to perturbations such as cartesian accelera-
tion, magnetic disturbance, and bias in the measurement of angular
velocities.

In this work we investigate the potentials of bounded-error estima-
tion via interval analysis for accurate attitude estimation from IMU
sensors data. Our objective is to develop robust reconstruction tech-
niques to equip the new tele-monitoring system under construction
within the H2020 RISE PROPHETIC personal healthcare service for
holistic remote management and treatment of Parkinson patients [6].

Modelling

The orientation of a rigid body in space is determined when the axis ori-
entation of a coordinate frame attached to the body, the body frame,
B is specified with respect to an absolute coordinate systems, usu-
ally called the navigation frame N . Here, we use the unit orientation
quaternions, q ∈ Q, to characterize the body attitude

q = [s vT ]T , qT q = 1, vT = [vx vy vz]
T (1)

The rigid body angular motion obeys the vector differential equation

q̇ =
1

2
q ⊗ ωq =

1

2

[
−vT

I3s+ [v×]

]
·



ωx

ωy

ωz


 =

1

2
[Ω(ω)] · q, (2)

where ω = [ωx ωy ωz]
T is the vector of angular velocities, that are

measured by gyrometers, and where

[v×] =




0 −vx vy
vz 0 −vx
−vy vx 0


 (3)
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The other measured data are gathered in the total acceleration vector
f , and in the magnetic vector h. The observation model is given by

f = [fx fy fz]
T = MB

N (q) · (g − a) + δf (4)

h = [hx hy hz]
T = MB

N (q) ·m + δh (5)

where

MB
N (q) =




2(s2 + v2x)− 1 2(vxvy + svz) 2(vxvz − svy)
2(vxvy − svz) 2(s2 + v2y)− 1 2(svx + vyvz)
2(svy + vxvz) 2(vyvz − svx) 2(s2 + v2z)− 1


 , (6)

and where a is the body cartesian acceleration, g = [0 0 − 1]T

is the normalized gravity, and m = [cos(I) 0 − sin(I)]T the earth
magnetic field, with known tilt angle I. δf and δh are bounded noise
vectors.

Main results

The state-of-the-art non-linear bounded-error estimation techniques [4]
are used within a quaternion-based formulation.

Prior to the estimation, the actual data are pre-processed using a
complementary filtering approach [5, 3].

Then, the predictor-corrector approach is used. In the prediction
stage, the Picard-Lindelöf operator is used with Eq.(2) to compute
the reachable quaternions. In the correction stage, solution techniques
for non linear constraint satisfaction problems are used to prune off
inconsistent quaternions.

Results will be given using actual IMU data.
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Unmanned Aerial Vehicles (UAV) or Systems (UAS) are now entering the com-
mercial and domestic sector as proposed solutions to many day-to-day tasks. Innate
collision avoidance within such systems is considered a prerequisite when navigating
dynamic environments, confined spaces or simply in the preservation of other sys-
tems or human safety. Upcoming legislation is setting the grounds for provably safe
autonomous avoidance in [1]. Recent works in UAV collision avoidance, [2] and [3],
demonstrate the challenges engineers face in meeting these design constraints. High
fidelity systems; both in their obstacle tracking and intelligent decision making, and
ability to cope with real world factors are currently in high demand.

Currently, numerous avoidance techniques have been applied under the premise
of the free flight concept [2]. This paper draws attention to the non-cooperative case,
typically where communication has failed and a See-And-Avoid (SAA) approach is
necessary. Interval analysis is demonstrated as an effective tool for handling naviga-
tion scenarios in the presence of measurement uncertainty and non-linearity in [4].
This work demonstrates how Interval analysis is applied in the design of a robust
non-cooperative SAA algorithm [2],[5] for autonomous UAVs. Obstacle trajectories
are represented as bounded regions emulating measurement uncertainty from an
on board camera and range-finder system (see Figure 1). Using this description,
a geometric collision avoidance problem is posed incorporating the measurement
uncertainty and aircraft dynamics.

The interval obstacle trajectories are used to define an interval estimate for time
to collision. The required trajectory interval is then defined geometrically to satisfy
the minimum separation constraint. Finally, an interval containing the optimal
avoidance manoeuvre is defined and contracted before it is handed to the UAV’s
trajectory controller.

This work highlights how this approach can be extended to consider multiple
obstacle trajectories (and their respective uncertainties) by defining the intersection
of these optimal regions. Strategies for region selection where no intersection occur
are presented in the design of a unified escape trajectory. Preliminary results are
presented comparing the novel algorithm against existing geometric avoidance tech-
niques in typical air-traffic and scenarios in addition to conditions more likely seen
in uncoordinated UAV flight.
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Figure 1: A depiction of the localised SAA problem, and the interval uncertainty in
obstacle trajectory.
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Introduction

Motion planning algorithms are a center piece in the control frame-
work of mobile robots as they contribute to give them the ability of
have autonomous behaviors. Furthermore, such class of algorithms is
critical as a failure can cause the abort of the mission or can cause im-
portant amount of damage such as human loss. The validation of such
algorithms is then mandatory in order to increase the confidence of the
end users. However, those algorithms are also subject to constraints,
e.g., to reduce fuel consumption. So, computing a safe path is usually
not enough, an optimal one is search to minimize some costs.

Moreover, one of the challenge in order to design robust and reliable
motion planning algorithms is to take into account various sources of
uncertainties. For example, the environment is not exactly known
and some disturbance should have been considered. Mathematical
models of the mobile robots are not perfect and usually come from some
simplification in order to have efficient simulation activities. Lastly,
computer-aided design usually produces approximated results as it is
based on numerical methods which cannot produce close form solution
of a problem, e.g., the solution of an initial value problem for ordinary
differential equations. The set-membership framework is suitable to
deal with such kind of uncertainties.
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Main contribution

The main contribution of this article is the combination of set-member-
ship methods with optimizing approach. Hence, a correct-by-construct-
ion algorithm is defined with the intrinsic properties to be robust to
uncertainties as it relies on set-membership approach [1]. Moreover,
embedding the motion planning problem into a constraint satisfac-
tion problem (CSP) [2], and more precisely into a global optimiza-
tion framework [3], the proposed algorithm produces an optimal free-
collision path with respect to a given cost function which is minimized.

Experimentation

The motion planning of an AUV which has to move the closest to
the seabed is considered. Hence, the cost function is the depth of its
gravity center. As safety constraints, we want to ensure that the AUV
is closer to the seabed than the distance dmax and further than dmin.

Dynamics of an AUV

The dynamics of gravity center of the AUV follows the ODE defined
in [4] and it is such that





ẋ = v cos θ cosψ
ẏ = v cos θ sinψ
ż = −v sin θ

ψ̇ = sinϕ
cos θ · v · u1 + cosϕ

cos θ · v · u2
θ̇ = cosϕ · v · u1 − sinϕ · v · u2
ϕ̇ = −0.1 sinϕ+ θ · v · (sinϕ · u1 + cosϕ · u2)

(1)

with s = (x, y, z, ψ, θ, ϕ) is the state vector. It can be split into the
vector (x, y, z) of the coordinates of the gravity center and the vector
(ψ, θ, ϕ) of Euler angles; u = (u1, u2) is the control input vector; v is
the velocity.

Note that (1) has been simplified by substituting tan θ by θ in
the definition of ϕ̇ to avoid technical issues of the implementation.

66



Nonetheless, the algorithm remains valid.

Underwater environment and results

We define a function (x, y) 7→ seabed (x, y) which returns the depth of
the seabed at the coordinates (x, y). We also define dmin and dmax two
constants such that the AUV stays at a distance to the seabed between
dmin and dmax. Some constraints on AUV angles are considered: yaw
and roll are bounded in an interval (to go in a quite straight way and
to not capsize) and pitch is bounded by an extreme value (to limit
the dive angle). Finally, in order to force the AUV to move forward
through the x dimension, we impose xend > xinit. Thus, the problem is
to find the control u solution of

(PAUV) :





minu z
ṡ = f(s,u)
z > seabed (x, y) + dmin

z < seabed (x, y) + dmax

xend > xinit
θ < 0.8
ϕ, ψ ∈ [−0.5, 0.5]

Then the following seabeds are considered

• Seabed 1: (x, y) 7→ seabed
(
x−30
20 , y2

)
− 100;

• Seabed 2: (x, y) 7→ seabed
(
y
2 ,

x−30
20

)
− 100;

• Seabed 3: (x, y) 7→ seabed
(−x+30

20 , y2
)
− 100;

• Seabed 4: (x, y) 7→ seabed
(
y
2 ,
−x+30

20 , y2
)
− 100.

Some results are given in Figure 1.

Acknowledgement

This work benefited of the “Chair Complex Systems Engineering –
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Figure 1: Results of the AUV motion planning with seabed 1 to 4 from
top left to bottom right.
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Introduction

Viability Theory [2] provides a collection of set concepts and algorithms to
study the properties of dynamic systems. Thanks to paving techniques, in-
terval computing provides powerful numerical methods to approximate sets
[3]. Refined interval techniques as contractor programming and guaranteed
integration allow to implement viability kernel and capture basin algorithms.

Viability Theory Definitions

Let us consider either a temporal interval [0, T ] with finite horizon or [0,∞[
(denoted for simplicity by [0, T ] with T := ∞) with infinite horizon. We
consider an (evolving) environment :

K(·) : t ∈ [0, T ], t K(t) ⊂ X (1)

(defined by viability constraints) and, when T < +∞, an (evolving) target :

C(·) : t ∈ [0, T ], t C(t) ⊂ K(t) (2)

The usual case is a non evolving target for which C(t) = ∅ when t < T and
C(T ) = C. An evolution x(·) : t 7→ x(t) is said to be viable in K(·) if :

∀ t ∈ [0, T ], x(t) ∈ K(t) (3)

Finally, we introduce the right hand side F : (x, t) ∈ X×[0, T ] F (x(t), t) ∈
X of the differential inclusion :

∀ t ∈ [0, T ], x′(t) ∈ F (x(t), t)) (4)

We introduce the capture basin CaptF (K,C) of the target C(·) viable in the
environment K(·) as the set of initial states x0 ∈ K0 such that there exist :

1. a finite horizon T ?,
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2. at least one evolution x(·) starting at x0

(a) defined on [0, T ?],

(b) governed by the differential inclusion x′(t) ∈ F (x(t), t),

(c) viable in K(·),
(d) reaching the target at time T ?: x(T ?) ∈ C(T ?).

Although dynamical games make sense only in finite horizon temporal
case, in the infinite (or perennial) case T = +∞ for which the target is
empty, we introduce the viability kernel ViabF (K) as the set of initial
states x0 ∈ K0 such that there exist :

(a) at least one evolution x(·) starting at x0

i. governed by the differential inclusion x′(t) ∈ F (x(t), t),

ii. viable in K(·),

without closed subsets C ⊂ K, regarded as a target contained in an
environment K. An evolution x(·) is said to be viable in K on a
temporal interval [0, T ] if :

∀ t ∈ [0, T ], x(t) ∈ K(t) (5)

Viability Algorithms

Once a differential inclusion x′(t) ∈ F (x(t)) has been discretized in time
by xn+1 ∈ Φ(xn) and “restricted“ to grids of the finite dimensional vector
space, then the viable capture basin CaptΦ(K,C) of elements of K from
which an evolution (xn) viable in K reaches the target C in finite discrete
time can be obtained by two algorithms :

1. The capture basin algorithm. It is based on the formula :

CaptΦ(K,C) =
⋃

n≥0

Cn (6)

where the increasing sequence of subsets Cn ⊂ CaptΦ(K,C) is itera-
tively defined by :

{
C0 = C
∀ n ≥ 0, Cn+1 := K ∩ (Cn ∪ Φ−1(Cn))

(7)

2. And the viability kernel algorithm. Whenever K \ C is repeller (for
all x ∈ K \ C, all evolutions x(·) leave K \ C in finite time), there is
another class of general algorithms allowing to compute viable capture
basins :

CaptΦ(K,C) =
⋂

n≥0

Kn (8)
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where the decreasing sequence of subsets Kn ⊃ CaptΦ(K,C) is itera-
tively defined by :

{
K0 = K
∀ n ≥ 0, Kn+1 := C ∪ (Kn ∩ Φ−1(Kn))

(9)

Naturally, both subsets Cn and Kn are computed at each iteration subsets
on a grid of the state space. The convergence of the subsets Cn and the
Kn follows from convergence theorems presented in Chapter 19, p. 769,
of Viability Theory, New Directions, [2] (see for instance Theorem 19.3, p.
774).

Contractor Based Viability Set Computing

One of the main objective of Viability Theory is to find controls such that
at least one evolution satisfies environment constraints. Therefore, when
defining contractor based viability algorithms, we introduce control u ∈
U . We define CΦ ∃u ([xn, xn+1]) a contractor (on the box [xn, xn+1]) with
quantifier (on control u) associated to the flow described hereafter.

CΦ ∃u ([xn, xn+1]) : ∃u ∈ U | xn+1 = Φ (xn, u) (10)

CΦ∃u([xn, xn+1]) is an Ordinary Differential Equation (ODE) contractor [1]
between state vectors xn and xn+1. Using ODE contractors with quantifiers,
the sequence of sets Kn is computed, in the form of interval lattices, always
in an iterative manner, as follow :

K⊂0 = K⊂ = K \X (11)

K⊂n+1 =


 ⋃

[x]⊂Kn /Cn

⋂

[y]⊂Kn

([x]− Projx (CΦ ∃u ([x, y])))


⋃ K⊂n (12)

n ≥ 0 (13)

with Projx ([x, y]) = [x], the projection operator along the [x] dimension :

Projx : IR2m → IRm (m : state vector dimension of x) (14)

In a similar manner, we also re-write the capture basin algorithm using
contractor programming.

Conclusion

Contractor programming is used to implement the capture basin and the
viability kernel algorithms that are two types of algorithms to compute
CaptΦ(K,C). CaptΦ(K,C) is the set of elements of K from which an evo-
lution (xn) viable in K reaches the target C in finite discrete time.
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Abstract

In this paper, we present a tool for computing an inner and an outer
approximations of the largest positive invariant set associated with a non-
linear state equation. Further, we show how to solve rigorously complex
problems related to continuous time dynamical systems, such as the Eu-
lerian state estimation problem.

1 Introduction

Invariant sets are used in nonlinear control theory [2] [3], for instance to validate
(i) some properties of cyber-physic systems [10][27], (ii) to ensure the safe take
off [25] of an airplane or (iii) to avoid collisions [6] with other aircrafts. In
this paper, we deal with a dynamical system S defined by the following state
equation:

ẋ(t) = f(x(t)) (1)

where x(t) ∈ Rn is the state vector and f : Rn 7→ Rn is the evolution function
of S [7, 8]. Denote by ϕ the flow map of S, i.e., with the initial condition
x0 = x(0), the system S reaches the state ϕ(t,x0) at time t.

Two different types of approaches [16] are used to deal with the estimation
of the solution for (1): the Lagrangian and the Eulerian. This classification is
taken from the field of fluid mechanics [11]. In the Lagrangian point of view,
the observer follows an individual fluid parcel as it moves through the fluid. In
an Eulerian point of view, the observer stays at the same place and looks at
fluid motion moving around him.

When we deal with a dynamical system such as (1), the speed of the fluid
corresponds to the evolution function f(x(t)) and the position of a fluid parcel
at time t corresponds to the state x(t). A Lagrangian approach would require
simulations to find states that reach the target [20]. In the literature, this
method is generally restricted to linear dynamics [1] where a closed form for the
flow ϕ is available. It can also be used for nonlinear systems if we use guaranteed

1
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integration [24] [28], but the resulting method is slow. As shown in [12] [17] [9]
a Lagrangian method requires many bisections with respect to the time line (for
the integration of the state equation), but also on the state space. The Eulerian
methods are used for nonlinear systems [19] and try to avoid the integration
of the state equation but the corresponding algorithms rely on gridding the
state space [22]. To provide guaranteed results, gridding methods require the
knowledge of some Lipschitz constant which are rarely available in practice [23].
Lyapunov-based methods [21][5], level-set methods [15], or barrier functions [4]
can also be considered as Eulerian since they only check the constraints on the
state space and do not need to perform any integration though time. Now, these
methods required a parametric expression for candidate Lyapunov-like functions
[26].

This paper deal with Eulerian state estimation which can be formalized as
follows:

(i) ẋ(t) = f(x(t)) (evolution)
(ii) x(ti) ∈ Xi (event)
(iii) ∀ (i, j) ∈ J, ti ≤ tj (precedence)

(2)

where the ti are unknown times. Equation (i) corresponds to (1). Constraint (ii)
tells us that at some unknown times ti the trajectory has crosses a known set Xi.
This set corresponds to an untemporal observation such as: “the robot entered
in my house”. We deduce this information from the existence of wheelprints,
for instance, but we do not know when this event occurred. Constraint (iii)
expresses an order between event and is represented by a set J ⊂ N2. For
instance, if (2, 5) ∈ J, then the trajectory has crossed X2 before X5. Equations
(ii) and (iii) can be represented graphically by a graph or a Petri net [18]. Solving
such an estimation problem amounts to finding all states that are consistent with
one trajectory satisfying (2).

This paper presents an approach based on invariant sets to solve this prob-
lem.

2 Invariant sets

This section presents some definitions on invariant sets. We also show that the
solution set of several problems involving dynamical systems can be expressed
as an algebraic expression involving maximal positive invariant sets.

Positive invariant set. A set A is positive invariant [3] if for any trajectory
x(·) of (1), we have

x(0) ∈ A, t ≥ 0 =⇒ x(t) ∈ A. (3)

The set of all positive invariant sets is a lattice, i.e., the union and the
intersection of two positive invariant sets is positive invariant. A consequence
is that, given a set X, the notion of largest positive invariant set contained in
X and smallest positive invariant set enclosing X can be defined.

Largest positive invariant set. Given a set X, there exists a largest

2
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Figure 1: Vector field associated to the Van der Pol system in the box [−6, 6]×2

positive invariant set for (1) included in X. It is given by

Inv+(f , X) = {x0 | ∀t ≥ 0,ϕ(t,x0) ∈ X} . (4)

In [14][13] a tool has been developed to compute an inner and an outer
approximation for Inv+(f , X). As an illustration, consider the system described
by the Van der Pol equation:

{
ẋ1 = x2

ẋ2 =
(
1 − x2

1

)
· x2 − x1.

(5)

Figure 1 provides an illustration of its vector field.
Figure 2 shows that the largest positive invariant set in X = [−6, 6]×2 asso-

ciated to (5). All points in the magenta area will stay inside X forever whereas
all points in the blue zone will leave X.

Largest negative invariant set. It corresponds to the set

Inv−(f , X) = {x0 | ∀t ≤ 0,ϕ(t,x0) ∈ X} . (6)

Since
Inv−(f , X) = Inv+(−f , X), (7)

3
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X

x1

x2

Figure 2: Largest positive invariant set Inv+(f , X) where X = [−6, 6]×2 and f
is the evolution function of the Van der Pol system
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X

x1

x2

Figure 3: Largest negative invariant set Inv−(f , X) where X = [−6, 6]×2 corre-
sponding the Van der Pol system

the largest negative invariant set can be defined in terms of positive invariant
sets. Figure 3 shows that the largest negative invariant set in X = [−6, 6]×2

associated to (5). All points in the magenta area will go to X in the future
whereas all points in the blue zone will never reach X.

Largest invariant set. It corresponds to the set

Inv(f , X) = {x0 | ∀t ∈ R,ϕ(t,x0) ∈ X} . (8)

We have

Inv(f , X) = {x0 | ∀t ≤ 0,ϕ(t,x0) ∈ X ∧ ∀t ≥ 0,ϕ(t,x0) ∈ X}
= {x0 | ∀t ≤ 0,ϕ(t,x0) ∈ X} ∩ {x0 | ∀t ≥ 0,ϕ(t,x0) ∈ X}
= Inv+(−f , X) ∩ Inv+(f , X).

(9)

Thus Inv(f , X) can be defined in terms of largest positive invariant sets. Since,
in our Van der Pol example Inv−(f , X) ⊂ Inv+(f , X), the largest invariant set
also corresponds to Figure 3.

Forward reach set. It corresponds to the set

Forw(f , X) = {x | ∃t ≥ 0, ∃x0 ∈ X,ϕ(t,x0) = x} . (10)

Since
Forw(f , X) = {x | ∃t ≥ 0, ∃x0 ∈ X,ϕ(−t,x) = x0}

= {x | ∃t ≥ 0,ϕ(−t,x) ∈ X}
=

{
x | ∀t ≥ 0,ϕ(−t,x) ∈ X

}

= Inv+(−f , X)

(11)

5
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X

x1

x2

Figure 4: Forward reach set of the Van der Pol system. The frame box is
[−3, 3]×2

the set Forw(f , X) can be defined in terms of positive invariant sets. The set
Forw(f , X) corresponds to the smallest positive invariant set enclosing X =
[0.4, 1.0] × [1.4, 1.8]. An illustration is given by Figure 4.

Backward reach set. It corresponds to the set

Back(f , X) = {x0 | ∃t ≥ 0,ϕ(t,x0) ∈ X} . (12)

Since
Back(f , X) = Forw(−f , X)

= Inv+(f , X)
(13)

the set Back(f , X) can be defined in terms of positive invariant sets. An illustra-
tion is given on Figure 5 for X = [0.4, 1.0] × [1.4, 1.8]. All points in the magenta
area will reach X for some t ≥ 0.

3 Eulerian state estimation

Define ℓ sets X0, X1, . . . , Xℓ of the state space. Define Zforw
k the set of all state

vectors x(t) inside Xk that have visited X0, X1, . . . , Xk−1 in the past (i.e., before
time t) and in the specified order. We have

Zforw
k+1 = Forw

(
Zforw
k

)
∩ Xk+1, (14)

6
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x1

x2

Figure 5: Backward reach set of the Van der Pol system. The frame box is
[−3, 3]×2

with Zforw
0 = X0. This sequence corresponds to what we call the Eulerian filter.

The principle is illustrated by Figures 6,7 8 and 9. For simplicity, Forw (f , X)
and Back (f , X) are denoted by Forw (X) and Back (X).

Define the set Zback
k of all states x(t) inside Xk that have visited X0, X1, . . . , Xk−1

in the past and will visit Xk+1, . . . , Xℓ in the future. We have

Zback
k = Back

(
Zback
k+1

)
∩ Zforw

k , (15)

with Zback
ℓ = Zforw

ℓ . The will be called the Eulerian smoother. The Eulerian
smoother is illustrated by Figures 1011

As illustrated by Figure 12, the set of trajectories that started inside X0 and
visited the sets X1, X2, . . . , Xℓ−1sequentially, and that ended in Xℓ can thus be
enclosed by

Forw
(
Zback
0

)
∩ Back

(
Zback
ℓ

)
. (16)

Example 1. Define three sets X0, X1, X2 and assume that we want to find
the set of trajectories that started inside X0 and visited the set X1 and then
finally reached the set X2. This problem corresponds to an Eulerian state esti-
mation problem where J = {(0, 1) , (1, 2)}, which means that t0 ≤ t1 ≤ t2. We

7

79



80



81



82



[a]

x1

x2

[b]

[c]

Figure 13: Feasible states associated to the Eulerian state estimation problem
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Introduction

State estimation of dynamic systems requires to model the uncertainty
on the initial state values, disturbances on the dynamics and errors on
the measurements. In probabilistic approaches [1], the initial state
is modelled as a random vector and the disturbances and errors as
stochastic processes with a priori pdf. The resulting state estima-
tion is thus associated with a posterior probabilistic density. In set-
membership approaches [2], the uncertainty is accounted for by con-
sidering that the values are unknown but belong to predefined sets in
suitable state space, often described as bounds on the component val-
ues. Estimation in this context aims at defining the membership set
where the state is guaranteed to belong. Definition of the bounds is
usually simpler than determining a priori pdf but the determination
of the guaranteed estimated state space boundaries may prove tedious
for non-linear dynamics or observation models.

As the exact determination of the membership set for non linear
models is difficult to obtain on-line, various approximation techniques
have been suggested. Among them, Box Particle Filter (BPF, [3])
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consists in a combination of Particle Filtering which is efficient for non
linear estimation and Interval Analysis techniques which allow prop-
agation of bounds. Instead of drawing a stochastic cloud of weighted
possible states, as a classic particle filter does, the initial state set is
represented as the unions of intervals resulting from a regular paving.
Each box of the paving is then dynamically propagated. The measure-
ment box is a n-dimensional box centered on the vector of measure-
ments. Consistency between the measurement box and each predicted
observation box results in a potential contraction of each box of the
paving. A weight linked with the consistency is associated to each con-
tracted box and represents its likelihood to contain the actual state.

BPF proves to be robust to dynamics and observation non-linearity
while remaining computationally efficient for on-line estimation in em-
bedded contexts. However, it can prove pessimistic and inaccurate
when used with ambiguous measurements (i.e. when one measurement
value can be related to several state values). Therefore, the authors
have proposed a refined version of the BPF called Box Regularized
Particle Filter [4].

An accurate posterior pdf evaluation from the Box

Particles set

The BPF aims to estimate a bounded set guaranteed to contain the
actual state to be estimated, defined as the union of the N ∈ N∗
boxes. In addition, it provides an estimated posterior density function
p(Xk|Mk) of state Xk given measurements from time 1 to time kMk =
{m1, ...,mk}. It is defined as:

p(Xk|Mk) =
N∑

i=1

wi
kU[Xi

k]

where U[Xi
k]

refers to a uniform pdf whose support is the ith box particle

[Xi
k] at time k and wi

k refers to the associated likelihood of each box
to contain the actual state given the measurements. The consistency
of each particle with measurement mk is evaluated through its weight
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wi
k. A complete probabilistic description of the BPF can be found in

[3].
In order to keep a consistent set of Box Particles, a resampling step

makes it possible to replace inconsistent Box Particles with subdivi-
sions of consistent ones. The BPF can then iteratively converge to a set
containing the actual state Xk. However, the resulting evaluation of
the posterior pdf p(Xk|Mk) is rough. In [4], the authors have derived a
Kernel smoothing technique inspired from Kernel Estimation (see [5],
[6]) to refine the pdf evaluation. To this end, at each resampling step,
the posterior pdf is rewritten as:

p(Xk|Mk) ≈
N∑

i=1

wi
kKh(Xk −Ci

k)

where Kh is a bounded smooth kernel used to shift each Box Particle
support around its center Ci

k. More details about the so-called Box
Regularized Particle Filter (BRPF) can be found in [4].

Main results

Figure 1: Kernel smoothing leads to reduce jaggedness of the posterior density

The BRPF algorithm has been applied to terrain navigation and
proved far more accurate than the initial BPF. It has also been im-
plemented on an FPGA chip and demonstrated its ability to tackle
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real-time requirements on low computational ability devices. Fig-
ure 1 shows the posterior pdf before and after Kernel smoothing.

Figure 2: Localization error (m) for an
aircraft performing terrain navigation. Black:
BPF, Red: BRPF.

An efficient way to define a
state estimate is computing the
empirical expectancy of the pos-
terior pdf: X̂k = E [p(Xk|Mk)].
In order to evaluate the accuracy
gain of the BRPF, a Root Mean
Square Error (RMSE) over a hun-
dred Monte-Carlo runs has been
computed. The RMSE is defined
by:

RMSEk =
√

1
NMC

∑NMC

j=1 ‖X̂k − Xk‖2,
where NMC is the number of runs
and k ∈ N the time-step index (each
run is denoted by index j ∈ N). The
BRPF results in a significantly lower
RMSE than the BPF. More details
about the problem configuration can be found in [4].
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Introduction

The Quantified Set Inversion (QSI) algorithm is a set inversion algo-
rithm based on Modal Interval Analysis (MIA) that allows the char-
acterization of AE-solution set of a parametric non-linear system - i.e,
quantified real constraint (QRC) problem. However, the original QSI
algorithm is limited to the resolution of a subset of QRC problems
where existentially quantified variables are not shared between equal-
ity constraints. This work presents an extended version of the QSI
algorithm that overcomes some of these limitations. In addition, a
user-friendly Matlab toolbox including a MIA arithmetic; an efficient
implementation of an algorithm for performing efficient MIA compu-
tations (f ∗ algorithm); and the QSI algorithm is introduced. Due to
the high popularity of Matlab in the scientific and engineering commu-
nities, the presented toolbox is expected to promote the use of MIA.
Finally, several examples of utilization of the Matlab toolbox and an
application to control engineering are presented.
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Introduction

Interval analysis is a tool that can be used to propagate interval un-
certainties. To each variable x of R is associated a closed interval
[x] = [x, x] ∈ IR such that [x, x] = {x|x ≤ x ≤ x, x, x ∈ R}, where
x = inf ([x]) and x = sup ([x]) may be referred as the infimum and
supremum. Interval methods can be extended to any type of lattice
(L,≤) which is a partially ordered set. This is the case of the set of ma-
trices which is a lattice, where the order relation has to be understood
componentwise. An interval matrix [A] ∈ IRm×n forms a sub-lattice

that may be written as
(
[a]ij

)
, where i = 1, · · · ,m and j = 1, · · · , n.

In the literature, the localization problem is classically formal-
ized as a Constraint Satisfaction Problem (CSP) (Jaulin et al. [1];
Araya [2]). A CSP consists of set of variables V = {x1, . . . , xn} along
with set of constraints or equations E = {c1, . . . , cn} over interval
domains{[x1], . . . , [xn]}.

When dealing with groups of robots (or swarm) the localization
involves the estimation of the pose of a group of robots R1,R2, . . . , Rn

that are linked by a set of constraints. In this case, the constraints that
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are involved can be represented by matrix equations. The ith row and
the jth column of a given matrix variable represents a link between the
robots Ri and Rj. In this context, the variable are not anymore scalar,
but is a matrix. As such, the constraints involve matrix operations such
as addition, multiplication, inverse, determinant, trace, eigenvalues etc.

This paper mainly deals with construction of matrix contractors
with respect to constraints that are met in robot localization. More
specifically, we will consider azimuth and distance matrices that are
generally involved. Section 2 introduces the notion of matrix contrac-
tors. Section 3 deals with the localization of group of robots using
matrix contractors. A test-case will be presented to evaluate the effi-
ciency of the proposed contractors.

Matrix contractors

Definition 1 (Contractor)Chabert and Jaulin [3]. A (classical) con-
tractor associated with a set X ⊂ Rn is a lattice order preserving
operator

C : IRn → IRn

where, IRn be the set of intervals of Rn (or boxes for short). The
following should hold for all boxes [x] ∈ IRn:

• Contraction: C([x]) ⊂ [x],

• Completeness: C([x]) ∩ X = [x] ∩ X
Often, the set X is a set which corresponds to some equations or con-
straints. According to Knaster–Tarski theorem (Tarski [4]), if C is
monotonic, then C ◦ C ◦ · · · ◦ C([x]) will converge to the largest fixed
point [a] of C included in [x]. In the case where the components of x
correspond to components of some matrices then the contractor will
be called a matrix contractor.

Example 1. Consider the constraint ”S is a symmetric matrix”
where S is a n × n matrix. Define S the set of all n × n symmetric
matrices. The minimal contractor Csym associated with S

Csym ([S]) = [S] ∩ [S]T.
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where [S]∈ IRn×n . For instance

Csym

(
[1, 3] [2, 4]

[−1, 3] [−1, 1]

)
=

(
[1, 3] [2, 3]
[2, 3] [−1, 1]

)

Example 2. Consider the matrix constraint ”A + B = C” where
A,B,C are n×n matrices. Define S the set of all (A,B,C) such that
A + B = C. The minimal contractor Cplus associated with S

Cplus




[A]
[B]
[C]


 =




[C] − [B]
[C] − [A]
[A] + [B]


 .

The minimality of the contractor is a consequence of the fact the con-
straint ”A + B = C” can be decomposed into a scalar form and
that no dependencies exist between the entries of the matrices in the
scalar decomposition. A minimal contractor CP associated with the
constraint ”P ∈ Rm×m is a positive semi-definite matrix” has been
proposed in Jaulin and Henrion [5] based on the convexity of the
constraint. Further, an eigenvalue contractor Cλ associated with the
constraint ”S ∈ Rn×n is symmetric with eigenvalues {λ1, . . . , λn}” has
been proposed in Hlad́ık and Jaulin [6].

Localization of group of robots

This section presents the localization of group of robots subject to
matrix constraints in terms of azimuth angles along with distances
between the robots. Generally, localization consists of finding the pose
of some robots (xi, yi, θi)

T ,i ∈ {1, 2, . . . } as illustrated in Figure 1,
where (xi, yi) is the position of the ith robot and θi is its orientation.

93



Figure 1: Pose of three robots on a planar section

Localization may be absolute or relative. The absolute localization
deals with estimation of instantaneous poses (xi, yi, θi)

T of the robots.
In case of group of underwater robots, the absolute localization is not
possible due to the lack of absolute landmarks. As such, the localiza-
tion should be relative. Then, the geometrical parameters viz. azimuth
and distance may be used to represent the geometry of the group. No
absolute frame nor a fixed robot is needed in this representation.

Azimuth matrix. An azimuth matrix associated with n robots
is the matrix of azimuth angles αij between ith robot and jth robot for
i, j = 1, 2, . . . , n. It can be written as

A =




0 α12 · · · α1n

α21 0 . . . ...
... . . . . . . α1 (n−1)

αn1 · · · α(n−1) 1 0




By convention, we have taken that αii = 0. The azimuth angles are
expressed with respect to the North as depicted in Figure 2.
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Figure 2: Azimuth angles for three robots on a planar section

In practice, the north is obtained using a compass which is uncer-
tain and all angles are collected via goniometric sensors (like cameras
or microphones) are not accurate. This uncertainty can be represented
under the form of an interval matrix.

[A] =




0 [α12] · · · [α1n ]

[α21] 0 . . . ...
... . . . . . .

[
α1 (n−1)

]

[αn1 ] · · ·
[
α(n−1) 1

]
0


 .

We define the following constraint

α
2π
= β ⇔ cos(α − β) = 1

Using the IBEX, an optimal contractor for this relation can easily be
built.

To build an azimuth contractor Caz([A]) consistent with the con-
straint ”A is an azimuth matrix”, we consider the following implication

azimuth (A) ⇒





αij − αji
2π
= π

(αij − αik) + (αki − αkj) + (αjk − αji)
2π
= π

(αij − αjk)
2π
= (αik − αij) + (αkj − αki)

∀i, j i ̸= j

∀i, j, k i ̸= j ̸= k

∀i, j, k i ̸= j ̸= k
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Now, the distance matrix associated with n robots is given by D =
([d] ij) for i, j = 1, 2, . . . , n . To build distance contractor consistent
with the constraint ”D is a distance matrix”, we consider the following:

distance(D) ⇒
{

dij = dji ∀i, j

dij ≤ dik + dkj ∀i, j, k

Moreover, we may build the following mixed constraint

distance−azimuth(D,A) ⇒ sin(αik−αij)dij = sin(αki−αkj)dkj ∀i, j, k i ̸= j ̸= k

Example 5. Let us consider the azimuth matrix with respect to five
robots:

[A] =




0 [2, 2.1] [−2.8, 3] [2.5, 3.3] − [2.2, 2.3]
[5.2, 5.3] 0 − [2, 2.1] [3.1, 3.2] − [1.5, 1.6]
[0.1, 0.2] [1, 1.1] 0 − [2.6, 2.7] − [1.4, 1.5]
[5.5, 6.5] [6.2, 6.3] [0.5, 0.6] 0 − [1, 1.4]
[0.8, 0.9] [1.5, 1.6] [1.7, 1.8] [1.7, 2.1] 0




The contracted azimuth matrix using matrix contractors up to the
fixed point is




0 [2.05, 2.1] − [2.94, 3] [2.5, 3.3] − [2.24, 2.3]
[5.2, 5.24] 0 − [2.1, 2.04] [3.1, 3.15] − [1.54, 1.6]
[0.14, 0.2] [1.04, 1.1] 0 − [2.6, 2.64] − [1.4, 1.44]
[5.6, 6.4] [6.2, 6.3] [0.5, 0.54] 0 − [1.04, 1.45]
[0.84, 0.9] [1.54, 1.6] [1.7, 1.74] [1.74, 2.1] 0



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Introduction

Underwater navigation is essential for Autonomous Underwater Vehi-
cles (AUVs) to perform their mission. In some scenarios, the AUVs
are part of a larger system, namely an acoustic underwater network,
where the cooperation of multiple nodes and vehicles can be exploited
to enhance the localisation capability of each node. In this context,
acoustic messages can be effectively exchanged in the network to ob-
tain range measurements [1, 2]. However, acoustic communication is
low bandwidth [3](as low as tens or hundreds bits per second). Reduc-
ing the overhead introduced by the ranging strategy is therefore really
important. This paper investigates an original method to efficiently
encode localisation specific messages in a controlled way which can be
adapted to the mission profile. The proposed method enables there-
fore to obtain a good compromise between the required bandwidth and
localisation accuracy.
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Ranging

In general, measuring the distance between two nodes breaks down
to measuring the sound velocity in water (cs) and the time-of-flight
(TOF) of the acoustic messages. Figure 1 shows a two-way message
exchange between node i and node j. The absolute times of emission
and reception of the messages are denoted t1, .., t4. In the example,

Figure 1: Measuring the two-way TOF between nodes i and j

in order for Node i to compute the TOF, Node j has to include in its
response either the timings t2, t3 or their relative difference δi,j = t3−t2.
In this paper we assume that δi,j is being transmitted. The TOF can
be then computed at Node i as (t4 − t1 − δi,j)/2. Finally, the range is
obtained using this formula:

ri,j = cs
(t4 − t1 − δi,j)

2
. (1)

Reducing the overhead: encoding the delta

The objective of this paper is to effectively reduce the amount of bits
used to encode delta while maintaining a sufficient localisation accu-
racy, according to the mission profile. We denote by hi,j the encoded
time value to be sent, u the selected unit of time and n the number
of bits used to encode the delta. The value hi,j is obtained using the
following formula:

hi,j = [
δi,j
u

+
1

2
] (mod 2n), (2)
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where [x] is the integer value of the variable x. On the receiving side,
the ranging equation 1 can be rewritten as

∃p ∈ N,∃w ∈ [
−1

2
,
1

2
], ri,j = cs

(t4 − t1 − hi,j ∗ u− p ∗ u ∗ 2n − u ∗ w)

2
,

(3)
where the quantization error w and the modulo quotient p are unknown
to the receiver. Because of the quantisation, the range is measured
with a resolution of ε = u∗cs

2 [m]. Since p is unknown, the range is also
measured with an ambiguity of a = ε ∗ 2n[m]. As an example, using
n = 5[bits] to encode each delta value and considering an ambiguity
of a = 500[m], the resolution of the range is ε ≈ 16[m] which can be
acceptable depending on the mission. Using the proposed encoding
scheme, the parameters a and ε and n can be adapted to the mission
requirements. When accurate ranging is possible, a lower value of
ambiguity can be used (lowering n). Alternatively, if the AUV does
not require high precision localisation, a low resolution of range can be
used (again lowering n).

Localisation

In this section we show that even after encoding the deltas in an am-
biguous way, they can still be used for AUV localisation. Figure 2
shows experimental results from the COLLAB NGAS14 sea trial with
the proposed encoding applied in post-processing. The ambiguity was
set to 500[m]. The localisation is performed using interval methods, as
seen in [4,5], as they are suitable for non linear problems with multiple
solutions. The result shows indeed multiple possible non overlapping
solutions. Since usually underwater vehicles know their position when
the mission starts (e.g. GPS fix on the surface), having non overlap-
ping solutions allows the vehicle to correctly track the true position
during the mission or until the next fix. The ambiguity therefore does
not affect position tracking and the mobile vehicle is able to distinguish
between the true solution and the ghost solutions.
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Figure 2: Localisation results: The squares show the actual position
of the localised node while the bold circles are baseline node positions.
The set of possible positions compatible with most of the measurements
is coloured in red. The left image shows the result after 2 measure-
ments. The right image shows the result after several measurements.
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Comparison between Particle Filter and Interval Analysis for

Wind Farm Targets Detection by Multistatic Radar System

Overview:

Wind farms cover large areas of land or sea, with large wind turbines structures that can

reach up to 180m height, particularly in offshore environments. These installations can affect

nearby  radar  systems  including  civilian  radar,  such  as  Air  Traffic  Control  (ATC),  marine,

coastal, weather radars as well as defence installations. The radar’s ability to detect, and

position targets accurately might be degraded. The negative impact is caused by the high

Radar Cross Section (RCS) from the turbine structure and/or the Doppler shift created by the

turbine blades. Those impact factors make the wind turbine a complex target to accurately

detect.  Therefore,  an  alternative  approach  of  radar  system  such  as  multistatic  radar  is

considered  to  maximize  on  the  advantages  of  multiple  sensors  and  design  flexibility  to

improve turbines detectability.

Range-Only target detection approach is often considered to achieve flexibility in design and

reduction in cost and complexity of the radar system. However, this approach may require

advanced signal processing techniques to effectively associate measurements from multiple

sensors  to  estimate  targets  positions.  This  issue  proved  to  be  more  challenging  for  the

complex  detection  environment  of  a  wind  farm  due  to  the  increase  in  number  of

measurements from the complex radar scattering of each turbine.

The basic principles of multistatic radar are extended to use advanced target detection and

tracking methods for multiple sensors to allow the use of multistatic radar in high target

densities. The approaches used include, Interval Analysis (IA) and/or the statistical approach

of Particle Filter (PF).  To critically evaluate these techniques a computer simulation tool for

Multistatic radar system was developed during the course of this research. The model was

used  alongside  integrated  wind  farm  model  which  computes  the  radar  returns  from

individual turbines.  This made it feasible to model the impact of wind farms and compare

different multistatic radar processing techniques in this complex radar environment. 
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Comparison of IA vs. PF:

The comparison between PF and IA was performed according to three criterions: real targets

detection rate, false targets detection rate and detection accuracy. These criterions were

tested based on the two categories; performance analysis for multiple targets detection, and

performance  analysis  for  the  detection  of  a  5x5  wind  farm  formation.  The  comparison

results for each criterion were consistent for the two categories for both PF and IA.  

Real targets detection rate:

The  real  target  detection  performance  of  the  PF  was  relatively  low.  The  technique  of

multiple results analysis for ghost elimination and the approach of particle nomination were

the reason for low detection rate. The fluctuation in PF results because of the variance in

particle placement for each run made it difficult to analyse multiple results with generic rule

for matching detections without eliminating real targets detection. There was a need for

trade-off between reducing the number of ghost targets and increasing the number of real

targets detection.

IA  showed  high  detection  rate  of  real  targets.  This  result  was  due  to  the  process  of

measurements association within this approach. IA considers all range measurements of a

bistatic  pair  as  one  group  set  and  associates  all  group  sets  by  finding  all  possible

intersections among them. Therefore, real targets positions are more likely to be included

within the estimated results by the intersection process. However, this does not guarantee

all targets will be detected for every scenario as shown in the results which indicated that on

average 90% of the real targets were detected. IA can lose a target when multiple targets fall

within the same range resolution or during the process of  ghost detections elimination.

Unlike PF, results of IA are consistent for every detection run of the same target and sensors

layout but results  from different subgroups of  sensors can shift slightly according to the

change  in  range  resolution between sensors.  This  shift in  results  will  cause a  mismatch

between  multiple  detection  results  and  the  intersection  will  be  disregarded  as  ghost

detection.
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Ghost targets detection rate:

IA showed higher ghost detection rate than PF. The same reason for having high percentage

of real target detection applies for this result. That is, solving for every possible intersection

among measurements is likely to produce more ghost targets. Alternatively, the low number

in ghost detection of PF is due to the iterative process of particles sampling and the multiple

results  analysis  technique.  Particle  sampling  eliminates  ghost  detection  by  relocating

particles from the position of false estimation to locations where a real target is more likely

to exist.  

Detection Accuracy:

The accuracy of the PF was calculated based on the distance between target’s real position

and the nominated particle within the same range cell. If multiple particles were nominated,

then the closest particle is considered.

The detection results from the IA approach were represented in interval of a rectangular

shapes in X and Y dimensions. All possible combinations of x and y coordinates within that

interval vector are valid as an estimated position for that target. Therefore, the detection

accuracy is equal to the diagonal distance of the interval vector that includes real target

position.

The interval method accuracy level was low because of the post detection processing on

interval vectors, whereby the process of merging adjacent vectors and/or combining nearby

vectors will increase the diagonal distances of interval vectors. PF shows better detection

accuracy  because  the  nominated  particle  can  be  no  farther  than  the  system  range

resolution. 

Results from the comparison between PF and IA: 

This  section  showcase  the  comparison  between  IA  and  PF  performance  according  to

detection results of 5x5 wind farm across 30 consecutive time steps. The results from each

approach are shown according to the three comparison criterions mentioned before.

104



IA approach achieved high percentage of real target estimation throughout the detection

window of  30 time steps, in contrast to PF low percentage around  50% as shown in the

percentage bar chart of figure 1.

High percentages in real targets detection of the IA approach were due to accounting for all

possible measurements intersections between all bistatic pairs. On the other hand, the low

numbers  in  real  targets  detection of  PF were down to non-accurate  particle  placement,

sampling process or ghost targets elimination technique.

Figure 1: Percentage of real targets detection of IA and PF of a 5x5 wind farm.

The comparison between the two approaches based on number of ghost detection shows

higher count of ghost targets detected by the IA than PF throughout all the time steps as

shown in figure 2. The plot was produced according to the count of ghost detection at each

time step individually without the tracking history log for ghost targets elimination. In the

case of IA the appearance of ghost targets was due to solving for every possible intersection

among measurements which is bound to produce more ghost targets. Alternatively, the low

number  in  ghost  detection  of  PF  is  due  to  particles  sampling  iterative  process.  Particle

sampling  eliminates  ghost  detection  by  relocating  particles  from  the  false  estimation

position to locations where more potential estimation of a real target exists.

105



Figure 2: Number of false targets detection of IA and PF from a 5x5 wind farm.

The estimated target accuracy in PF is higher than IA, according to figure 3 and 4. Despite

the complex detection scenario, the last step of PF is to nominate single particle for each

range cell. Therefore, the estimated position will represent single position within the limits

of  that  range  cell  resolution.  In  contrast,  IA  post  detection  processing  of  merging  and

combining intervals can result into extended accuracy range. Figure 5 combines the average

values of accuracy from the late two plots in figure 3 and 4 for further illustration of the

difference in the detection accuracy between the two methods.  

Figure 3: PF accuracy of maximum, Average and minimum detection accuracy.
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Figure 4: IA accuracy of maximum, Average and minimum detection accuracy.

Figure 5: Comparison between PF and IA detection accuracy
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Introduction

In previous studies [1, 2] we have shown how multi–state Cellular Au-
tomata (CA) can be used for image segmentation. Our main aim is to
segment features of semantic interest out of simple greyscale images,
with a long–term goal of applying CA to the segmentation of medical
data. We do this by imagining each pixel as an agent having to decide
its membership to a particular geographic region, and changing its own
value according to the values of its surrounding neighbours.

Comparisons of intervals

Our CA update rule relies heavily on comparisons of pixel values such
as if x<y then... When x and y are intervals, the comparison gets
tricky because of potential interval overlap.

Whilst for scalars there are only three elementary comparison op-
erators (<, = and >), there are as many as 18 well–defined relative
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positions for intervals (see Figure 1). It is not evident how to name
these, nor how to map them over the three scalar comparisons. Chiri-
aev and Walster [3] refer to ‘certainly relations’ and ‘possibly relations.’

Figure 1: Encoding of 18 relative positions of intervals. Scalar relations
of the four pairs of end points are listed in a fixed sequence.

CA rule based on interval components

Intervals can be used conveniently to classify pixels in an image into
semanticly meaningful regions. Instead of scalar greyscale values, each
pixel in an image can be represented as a range of greyscale values
within [0, 255]. A CA can then be run over the set of pixels using a
rule which requires at every iteration step for a pixel to use information
from its Moore neighbourhood (3 × 3 or 5 × 5). It compares its own
range to its neighbours’ range, and decides how to change its range
either to match or to distance itself from regions in its neighbourhood.

In order to compare intervals, we overload the usual operators. For
example, based on the 18 meaningful relations in Figure 1, we can
regroup the comparisons in the following way:

<[ ] <<<<,<<<=, <<<>,<<=>,<=>>,<<==,==>>

=[ ] <==>,<<>>,<><>,====

>[ ] <>>>,<>=>,<=<>,=>=>,<=<=,=>>>,>>>>
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Interval M = [M,M ] which belongs to the current pixel in one iter-
ation is adjusted according to the update rule in the following iteration:

• CS is the interval closest in value to M where CS <[ ] M

• CG is the interval closest in value to M where CG >[ ] M

• FS is the interval furthest in value to M where FS <[ ] M

• FG is the interval furthest in value to M where FG >[ ] M

In order to measure how far in value two intervals x = [x, x],y =
[y, y] are, we use the Hausdorff distance dH(x,y) = max(|x−y|, |x−y|).
If, for example, we denote dC = dH(C,M), then we can define update
rules for the interval associated with each pixel. One of the simplest
update rules for the close intervals can be defined thus:

if dCS < dCG then
M = min(CS,M)

M = max(CS,M)
else

M = min(CG,M)

M = max(CG,M)

Any such rule constrains the greyscale range for each pixel to a
set of discrete integer values. In the generic case, there would be no
such overall requirement: it is easy to envisage a model whereby the
greyscale range can become a true range over a real continuum. Indeed,
one such model features within our future projects.

Results

We have obtained promising results using the above rule on synthetic
images with an appropriate amount of noise, as well as on conventional
real–world images. Initial experiments were carried out on a dozen
images from the Berkeley Segmentation Dataset [4], which usefully
provides the corresponding ground–truth human segmentations.

Figure 2 illustrates in left columns the raw data, and in right
columns the corresponding machine segmentation generated after 30 it-
erations of our interval–based algorithm. The interval pixels obtained

110



after the final iteration were thresholded with a method similar to
Otsu’s [5], where greyscale values are split according to the peaks in
the image hystogram, thus generating semantically interesting regions
in the image. The methods can be improved further by using conven-
tional pre– and post–processing steps. We have intentionally applied
the CA in the absence of any conventional filtering methods so as to
highlight the viability of the CA–based segmentations.

Figure 2: Raw data and corresponding machine segmentations ob-
tained after 30 iterations, with tresholding.
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Introduction

In recent years, the development of laser scanner technologies has al-
lowed us to gather real-world information from a three dimensional
perspective; this is, by means of point clouds.

This work is focused on the characterisation of basic geometrical shapes
such as lines, circles, planes, spheres, and cylinders immersed in a point
cloud. Such shapes, specially cylinders and planes may represent ob-
jects such as vessels or containers. The automated characterisation of
shapes is, among other applications, required for blue print retrieval
particularly in cases where the access is limited or the environment is
hazardous.

In this work, the information is retrieved using the structured-light
scanner Kinect, whose measurement’s statistical error distribution is
not adequately defined by the inventors. Due to this, interval meth-
ods results to be the appropriate tool since the only requirement to
guarantee the parameter detection is that the error is bounded.

Shape Detection using Interval Methods

The determination of the parameter vector p of a function f(p,y), be-
ing y a set of measurements with known uncertainty can be approached
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using interval analysis. Such a problem can be characterised as follows
[1,2]:

P =
⋂

i={1...m}
Pi (1a)

Pi = {p ∈ Rnp,∃[y] ∈ [y]i | f(p,y) = 0} (1b)

being p the parameter vector, [y]i ∈ Rny is the ith measurement box
and f is the model function. In this manner, Eq. 1b represents the pos-
terior1 parameter vector Pi that satisfies f at the [y]i measurement box.

In order to counteract the effect of outliers acquired during the data
gathering process, a relaxation procedure is implemented [1]. Let us
consider the boxes [x]1 . . . [x]m ∈ Rn. The q-relaxed intersection can
be expressed as follows:

[x]{q} =

{q}⋂

i=1...m

[x]i (2)

which represents the set of all x ∈ Rn belonging to all [x]i’s except q at
most. In a similar fashion, expression 1a can be redefined as follows:

P{q} =

{q}⋂

i={1...m}
Pi (3)

Case Studies

2D Line

Using the Hessian normal form, a two-dimensional line can be deter-
mined by the set PL such that nTyi = d, being n = {nx, ny}T a unit
vector pointing from the origin to the line, and d ≥ 0 the distance

1In this context, the word posterior refers to the parameter vector obtained after taking into
consideration the model constraint f(p,y) = 0.
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from the origin to the line. The determination of the parameter vec-
tor pL = {nx, ny, d}T can be cast as a constraint satisfaction problem
(CSP) as follows:

HL :

{
(nT · yi − d = 0, yi ∈ [y]i)
||n|| = 1

(4)

where || · || is the vector norm and · the dot product. Using HL, the
parameter vector pL can be characterised using SIVIA.
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Figure 1: Two-dimensional line fitted using interval analysis.
The total number of points is m = 1000 with ±1 cm of
noise and 40% of outliers. The true parameter vector is
pL = {−0.3162, 0.9487, 2.0}. The result obtained was [pL] =
{[−0.3475,−0.2856], [0.9296, 0.9678], [1.9716, 2.0273]}. The red line
represents the model at mid([pL]).

2D Circle

The parameter vector for a 2D circle defined as pC = {p1, p2, p3} rep-
resents the x and y coordinates of the centre of the circle and its radius
respectively. The determination of pC can be cast as a CSP as follows

HC : fC(pC ,yi) = 0, yi ∈ [y]i (5a)

fC(pC ,y) = (y1 − p1)2 + (y2 − p2)2 − p23 (5b)
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Figure 2: Two-dimensional circle fitted using interval analysis with
different amount of descriptive inliers. The percentage represents the
portion of the circle perimeter covered by the inliers. The true param-
eters are pC = [0.4, 0.8, 0.2] with m = 500 points, ±1 cm of noise and
40% of outliers. The red circle represents the model at mid([pC]).

Planes

A plane can be interpreted as an extension of the Hessian form of a
line. In other words, the contractor presented in Eq. 4 can be used
to determine the parameter vector pP = {nx, ny, nz, d}, which in this
case, includes the component over the Z axis of the direction vector.

Sphere

Following the approach used with the 2D circle and its CSP expressed
in Eq. 5a, a sphere can be characterised as follows:

HS : fS(pS,yi) = 0, yi ∈ [y]i (6a)

fS(pS,y) = (y1 − p1)2 + (y2 − p2)2 + (y3 − p3)2 − p24 (6b)

where pS = {p1, p2, p3, p4} is the parameter vector representing the
spatial coordinates of the centre of the sphere and its radius respec-
tively.
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(a) 20% of outliers. (b) 40% of outliers.

Figure 3: Synthetic data used for plane detection. The true parameter
vector is pP = [0.3333, 0.6667, 0.6667, 1.0] with m = 900 points and
±1 cm of noise. The grid plane represents the model at mid([p]P ).

(a) One third of sphere data. (b) Model detected.

Figure 4: Data sets used for sphere detection. For (a)–(d), the true
parameters are pS = [0.5, 1.0, 1.5, 0.3] with m = 1000 points, ±1 cm
of noise and 30% of outliers. For (e)–(f), m = 2069, the noise was
estimated to be±3 mm and ε = 0.01. The grid sphere model represents
the model at mid([pS]).
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Cylinder

A circular cylinder can be defined geometrically by its radius r, a vec-
tor v = {vx, vy, vz} that defines the direction of its central axis and a
pivot point c = (cx, cy, cz) lying on v. These parameters integrate the
parameter vector [pW ] = {v, c, r}.

Considering the geometrical relations between the measurements [y]i
and the parameters that define the cylinder, it is possible to determine
[pW ] by establishing the following constraint satisfaction problem:

HW :

{
r = ||v×(yi−c)||

||v|| , yi ∈ [y]i
v · c = 0

(7)

Although this procedure may lead to successful results, determining
[pW ] is highly computationally expensive because the SIVIA algorithm
would be required to perform bisections along the seven dimensions of
[pW ]; this are the elements of [pW ] which are vx, vy, vz, cx, cy, cz and
r. Due to this, a dimensionality reduction in the parameter vector is
conducted. Details about this procedure will be provided during the
workshop.
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(a) Original and projected data
over the plane defined by the
cylinder axis.

(b) Cylindrical model detected

Figure 5: Synthetic data used for cylinder detection. The set is com-
posed by m = 1000 points, ±1 cm of noise and 20% of outliers. In
(b), the blued dot represents mid([c]) and the red arrow represents the
direction vector v. The cylindrical grid model represents the model
with parameters pW = mid([pW ]).
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Introduction

Before a system is put into operation and eventually diagnosed, diag-
nosability analysis is an important stage. Diagnosability indeed guar-
antees that the sensored values delivered by the available instrumen-
tation can be processed into an appropriate set of symptoms allowing
to discriminate a reasonable set of faulty situations.

A fault is considered as an additional parameter that impacts the
behavior of some components of the system. Its effects may be lin-
ear or non-linear. Functional diagnosability, introduced in [1], and
extended to set-membership (SM) functional diagnosability in [2] was
analyzed through parameter identifiability. In the proposed work, SM-
functional diagnosability is assessed from the linear independence of
SM-functional fault signatures, which results in a much more direct
test.

The system is assumed to be represented by the following model :

Γ

{
ẋ(t) = g(x(t), u(t), f, p), x(t0) = x0,
y(t) = h(x(t), u(t), f, p), (1)

where x(t) ∈ Rn and y(t) ∈ Rm denote the state variables and the
outputs respectively. u(t) is the input vector. The function g is real
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and analytic on an open set of Rn. p denotes the parameter vector
belonging to a connected set P ∈ UP , where UP is an open set of Rp.

The fault vector f ∈ Re belongs to a connected set F ⊆ FSY S,
where FSY S is the exhaustive set defining the fault domain. Y (P, F, u)
denotes the set of outputs, solution of Γ with the input u, the param-
eter vector P and the fault vector F . Considering a connected set of
faults F ⊆ FSY S, let us denote by Fj the vector derived from F by
setting all the components equal to zero except the jth component.
Fj, called a “bounded fault’, is a connected set describing a faulty sit-
uation characterized by the occurence of a fault whose magnitude is
assumed to belong to the bounded set Fj.

Definitions and role of analytical redundancy rela-
tions

Using elimination theory, some differential polynomials or analytical
redundancy relations (ARR) linking system inputs, outputs and their
derivatives can be obtained. The use of ARRs makes possible to detect,
isolate, and estimate the characteristics of a fault acting on the system.
Specific ARRs indexed by i = 1, ...,m can be obtained [1] :

wi(y, u, f, p) = m0,i(y, u, p)−
∑ni

k=1 γ
i
k(f, p)mk,i(y, u)

= w0,i(y, u, p)− w1,i(y, u, f, p)
(2)

where (γik(f, p))1≤k≤ni
are rational in f and p, γiv 6= γiw (v 6= w) and

(mk,i(y, u))1≤k≤ni
are differential polynomials with respect to y and u.

w0,i(y, u, p) is equal to m0,i(y, u, p), hence the first part of the poly-
nomial does not contain components of f . It corresponds to the resid-
ual computation form whereas w1,i(y, u, f, p) is known as the resid-
ual internal form. Let us notice that (2) can as well be interpreted
for bounded faults (vector F ) and uncertain but bounded parameters
(vector P ).

One may be interested in distinguishing types of faults, indepen-
dently of their magnitude. For instance, it may be important to detect
a leakage on a pipe but the amount of derived flow may not be relevant.
Hence the notion of SM-functional diagnosability that comes through
the notion of SM-functional signature.
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Definition 1. The SM-functional signature of a bounded fault Fj is a
function FSigSM(Fj) which associates to Fj the interval vector:

(w1,i(Y (P, u), u, Fj, P ))i=1,...,m.

FSig
(i)
SM(Fj) denotes the ith component of FSigSM(Fj) and corre-

sponds to an interval function. FSig
(i)
SM(Fj) consists in a set of trajec-

tories generated in the presence of Fj and can be viewed as a tube of
trajectories on the time interval [t0, T ].

To distinguish the two tubes of trajectories generated by two dif-
ferent bounded faults, we propose the following definitions. The first
one refers to weak SM-functional diagnosability and permits an in-
tersection of the two tubes on a time subinterval whereas the second
one refers to strong SM-functional diagnosability and requires the two
tubes to be totally disjoint on [t0, T ].

Definition 2. Two bounded faults Fj and Fk are SM-functionally dis-
criminable if FSigSM(Fj) and FSigSM(Fk) are distinct, which includes
the two following cases:

• there exists at least one index i∗ ∈ {1, ...,m} and a time inter-

val [t1, t2] ⊆ [t0, T ] such that for all t ∈ [t1, t2], FSig
(i∗)
SM(F1) ∩

FSig
(i∗)
SM(F2) 6= ∅ and FSig

(i∗)
SM(F1) 6⊆ FSig

(i∗)
SM(F2) or FSig

(i∗)
SM(F2) 6⊆

FSig
(i∗)
SM(F1), in which case Fj and Fk are said to be weakly SM-

functionally discriminable.

• there exists an index i∗ ∈ {1, ...,m} and a time interval [t1, t2]

such that for all t ∈ [t1, t2], FSig
(i∗)
SM(F1) ∩ FSig(i∗)

SM(F2) = ∅, in
which case Fj and Fk are said to be strongly SM-functionally
discriminable.

Definition 3. The model Γ given by (1) is weakly (resp. strongly) SM-
functionally diagnosable for FSY S if any two bounded faults Fj, Fk ⊆
FSY S are weakly (resp. strongly) SM-functionally discriminable.

Analysis of SM-functional diagnosability

To analyse SM-functional diagnosability, a criterion testing the linear
independence of SM-functional fault signatures is proposed.
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Definition 4. Rewriting FSi,j := FSig
(i)
SM(Fj), the SM-signature ma-

trix is defined as MSig = (FSi,j)1≤i≤m, 1≤j≤e. Define also the extended
following matrix for the case i = 1:

WMSig =




FS1,1 FS1,2 . . . FS1,e

FS ′1,1 FS ′2,2 . . . FS ′1,e
...

...
...

...

FS
(e−1)
1,1 FS

(e−1)
1,2 . . . FS

(e−1)
1,e


 . (3)

Proposition 1. 1. Consider the case i = 1 – If det(WMSig) 6≡ 0,
then the faults of the set FSY S = {F1, . . . , Fe} are discriminable,
as well as any subset of faults within this set 1.

2. Consider the case i = m > 1 and assume that m ≤ e – If the
minor MI,J of order α, 2 ≤ α ≤ m, of MSig is not zero then the
faults in the set {Fj, j ∈ J} ⊂ FSY S are discriminable, as well as
any subset of faults within this set.

Note that Proposition 1 gives conditions on the rank of the interval
matrices. Proofs are omitted due to lack of space.

Conclusion

A new approach to test the concept of SM-functional diagnosability is
proposed. It leads to a test based on the rank of an interval matrix
formed from the SM-functional signatures of the faults.
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Introduction

Safety critical systems are of high importance in various domains (e.g.
automated driving, aviation, battery management systems, medical
devices). Because a failure in a safety critical system can have severe
implications high safety integrity levels have to be met, i.e. the sys-
tem always has to work correctly. Recent developments use interval
arithmetic to assess properties of safety critical systems. There is a
wide range of theory for state observers [14, 8, 3, 7], identification [10]
and simulation [9, 4, 5]. Approaches that use interval arithmetic in the
diagnosis setting are given by [12, 13, 2, 6]. Those methods are aiming
on the guaranteed detection of failures. The provided frameworks will
never create false positives (type I errors, “false alarms”). As they are
using classical interval arithmetic their solutions are minimum outer
inclusions of the real solution. It is widely known that this calculation
method produces so called spurious solutions that are included in the
solution interval but are actually no solution of the genuine problem
[1]. There might be false negatives as those methods cannot differenti-
ate between real and spurious solutions. Erroneous behaviour can thus
be hidden in the spurious solution set.

The authors proposed a new method for the diagnosis of dynamical
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systems based on input and output measurement data at the IFAC
World Congress 2017 [11]. The proposed verification method uses a
system specification in which the system behaviour is defined by its
dynamic parameters. The method uses the notation of Kaucher inter-
val arithmetic to handle inevitable measurement noise. Known sensor
properties are used to set up the interval inclusion of distorted mea-
surement that is guaranteed to include the true value. The introduced
method can be extended to handle unsharp requirements, e.g. due to
limited knowledge or wide tolerances. These can be modelled directly
in the specification using the proposed interval notation. The Kaucher
interval arithmetic calculation and noise handling lead to mathemati-
cally guaranteed results which represents a new quality of the verdicts
compared to existing methods in the literature.
This paper summarizes the main ideas of the proposed procedure and
shows several examples calculated by the new method.
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Introduction

Modern control systems are developed taking into account the demand
for reliability, safety and fault tolerance. Consequently, it is necessary
to design control systems which are capable of tolerating potential
faults. A closed-loop control system which can tolerate component
malfunctions, while maintaining desirable performance and stability
properties is said to be a fault tolerant control system [7].

Viability theory develops mathematical and algorithmic methods
for investigating the adaptation to viability constraints of evolutions
governed by complex systems under uncertainty [1]. Viability is a the-
ory that until now has mostly used in safety verification in control
systems [5]. Viability theory has also been found useful in areas differ-
ent from automatic control as e.g. economics [3] or biology [2]. This
theory provides some concepts that are actually more general than
what is used in set and set-invariance theory. Viability kernel is an
accepted tool for safety verification. However, the problem with this
theory is how to compute the different sets involved. Nowadays, sev-
eral algorithms have been proposed that can approximate these sets
effectively. Some of these algorithms are surveyed [5]. Finding the
viability theory concepts that can be used in fault tolerance evaluation
is a major contribution of this paper. This paper will also try to relate
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these concepts with set-based concepts introduced to address the ad-
missibility evaluation defined in [6] in the context of Model Predictive
Control (MPC).

Faults will cause changes in the set of feasible solutions. This causes
that the set of admissible solutions for the control objective could be
empty. Therefore, the admissibility of the control law facing faults can
be determined knowing the feasible solution set. One of the aim of this
paper is to provide methods to compute this set and the evaluate the
admissibility of the control law.

This paper will focus on the fault tolerant evaluation of a given
fault configuration, considering a nonlinear predictive control law with
constraints. The method proposed in this paper is not of analytical but
of computational nature. It follows the idea proposed by [6]. Faults can
cause changes in the constraints related to the control signals (inputs),
which modifies the set of feasible solutions of the MPC controller. This
can cause the set of admissible solutions for a given control objective
to be empty. An algorithm based on viability theory concepts will be
provided to evaluate the admissibility of the control law for a given
fault configuration.

Fault-tolerance assessment using viability
theory

Let us denote the sequence variables over the time horizon N

x̃ = (xk)
N
0 = (x0, x1, ..., xN),

ũ = (uk)
N−1
0 = (u0, u1, ..., uN−1).

Thus, in the case of a model predictive control law, the triple
〈O,C, U〉 is defined by

O : min
ũ

J(x̃, ũ) (1)
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subject to

C :




xk+1 = f (x (k) , u (k))
uk ∈ U k ∈ [0, N − 1] ⊂ N
xk ∈ X k ∈ [0, N ] ⊂ N

(2)

where

U
∆
= {u ∈ Rm |umin ≤ u ≤ umax} (3)

X
∆
= {x ∈ Rn |xmin ≤ x ≤ xmax} , (4)

The control law belongs to the set U and it is obtained using the
receding horizon philosophy [4]. This technique consists on taking only
the first value from the sequence ũ computed at each time instant by
solving the previous optimization problem. The initial states x0 are
updated from measurements or state estimation.

Definition 1. [Feasible solution set] The feasible solution set of
the MPC problem (3)-(4) is given by

Ω =
{
x̃, ũ| (x (k + 1) = f (x (k) , u (k)))N−1

0

}

The subset Ω gives the input and state sets compatible with system
constraints which originate the set of predictive states.

Definition 2 (Feasible control objective set). The feasible control
objective set is given by

ΓΩ = {J (x̃, ũ) ∈ R| (x̃, ũ) ∈ Ω}

and corresponds to the set of all values of J obtained from feasible
solutions.

Consider the system with fault as:

x (k + 1) = f (x (k) , u (k) , θf) (5)

In this case, feasible solution set Ω converts to Ωf and feasible control
objective set ΓΩ converts to ΓΩf

.
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Definition 3 (Admissible solution set). Given the following subsets

• Ωf , defined as the feasible solution set

• ΓΨ, defined as the admissible control objective set,

the admissible solution set is given by

Ψ = {x̃, ũ ∈ Ωf |J (x̃, ũ) ∈ ΓΨ}

and corresponds to the feasible solution subset that produces control
objectives in ΓΨ. If Ψ = ∅, then the system (5) is not fault tolerant.

Based on the viability concepts introduced in [1], it can be readily
deduced that there are some similarities that allow us to use viability
theory in fault tolerance evaluation. Actually, an equivalency between
feasible solution set and viability kernel can be considered

V iabS (K) ≡ Ω

Note that for finding both of them, constraints of the system is con-
sidered. But in the viability kernel definition, there is an extra limi-
tation that the system must have at least one evolution that remains
in the set. This is close to the concept of Lyapanov theory for stabil-
ity. Therefore, viability kernel is more reliable to provide safe areas of
work for the system. It can be deduced that if reference of the system
is inside viability kernel, it is achievable. Actually, there is a control
signal that can bring the system to reference.

The equivalence between viability kernel and feasible solution set
leads us to relate the capture basin with the set of admissible perfor-
mance

CaptS (K,C) ≡ ΓΩ

In the definition of capture basin, the target C can be regarded as
objective J that must be reached. It means that if there is a limited
time to achieve the target after fault occurs while the states of the
system must be in the capture basin.
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Note that in definition of viability kernel and capture basin, despite
feasible solution set and feasible control objective set, there is no direct
mention regarding the control signal. Therefore, regulation map can
be used as complementary concept to deal with the control signal.

Algorithm

Now, after finding those equivalency, fault-tolerance evaluation that
is proposed in [6] can be addressed by viability theory concepts. The
admissibility evaluation starts obtaining the viability kernel viabS (K)
given a set of initial states K0 and the system dynamics. This proce-
dure is described in the Appendix.

After finding viability kernel based on constraints of states and
inputs, the capture basin can be obtained. In this manner, it is possible
to consider viability kernel or a part of the set (based on steady state
or a predefined objective trajectory) as target to find capture basin.

Given a fault in the system, the admissible solution set can be
obtained from the above algorithms using revised system dynamics
and constraints. In this manner, the new viability kernel can define
the set of admissible states of the system after fault occurs. Therefore,
it is possible to investigate if the reference is achievable or not.

On the other hand, finding capture basin with new dynamics al-
lows to determine in at least how many steps the system can reach the
target. The target can be considered as small set near steady state
inside viability kernel or a small set around a predefined trajectory.
Algorithm 1 shows the procedure for admissibility evaluation using vi-
ability theory concepts. In the final version of the paper, the algorithm
will be tested using a mobile robot.
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Algorithm 1 Fault-tolerance evaluation using viability theory
find V iabS(K)
if the reference xref is inside V iabS(K) then
xref is achievable

else
xref is not achievable

end if
find CaptS(K,C) of a target C inside V iabS(K)
if the target C is achievable in finite time T then

system is fault tolerant
else

system is not fault tolerant
end if

MINECO and FEDER through the project CICYT HARCRICS (ref.
DPI2014- 58104-R).
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Introduction

Robots are often employed for tasks that consists in covering an given
area, like survey missions, search and rescue, or other tasks such as
lawn-mowing.

In practice, the robot trajectory is known with an uncertainty,
which means the zone that has been actually covered during the mis-
sion is also uncertain. Assessing the coverage of the mission is an
important task [1], to ensure there will be no untreated zone.

Interval analysis can be employed to compute an upper and lower
bound of the zone covered during a mission [2,3]. We show how in the
case of translation independent covered domains, Minkowski difference
of sets can be employed to improve computation of the explored zone.

Problem statement

Zone covering by a mobile robot can be modeled as follows Let us
consider a mobile robot equipped with actuators and sensors. The
robot is classically represented by the following state equations





ẋ(t) = f (x(t),u(t))
y(t) = g (x(t)) ,
M =

⋃
tV(x(t))

(1)
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where x denotes the robot’s state vector (e.g. position, velocity...), u
is the input vector (to robot actuation) and y is the observation vector
(measurements from the navigation sensors). The robot’s evolution is
modeled by the function f and g is the observation function. V is the
set-valued function that returns the zone which is in the robot’s field
of view, i.e the visible zone. The covered zone M is the union of all
visible zones during the whole mission.

Visible zone is defined by a visibility predicate V (z,x(t)) that indi-
cates if the point z is in the range of the sensor for the given the robot
state x(t):

V (t) =
{
z ∈ R2 : V (z,x(t))

}
. (2)

Assuming bounded-error knowledge of u and y, i.e u(t) ∈ [u](t)
and y(t) ∈ [y](t), let us define the set of admissible trajectories

T = {x : R→ Rn | ∀t, ẋ(t) ∈ f(x(t), [u](t)), g(x(t)) ∈ [y](t)}.

Ideally, M can be bracketed between the guaranteed covered zone
(also called clear zone)

M∀ =
{
z ∈ R2 | ∀x ∈ T , ∃t, V (z,x(t))

}
, (3)

and the possibly covered zone (also called non-dark zone)

M∃ =
{
z ∈ R2 | ∃x ∈ T , ∃t, V (z,x(t))

}
. (4)

M∃\M∀ is called the penumbra (the zone which is not known to have
been covered or not due to uncertainty).
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Approach

A fast approach to compute an inner approximation of M∀ and an
outer approximation of M∃ has been presented in [2]. It consists in
first contracting the tube [x](t) with the constraints of Eq. 1. Then,
the covered zone interval is obtained as the union of visible zone in-
tervals, using a set-inversion method, and symbolic interval arithmetic
to efficiently deal with the penumbra. However, since it only consider
visible zones at each time independently, trajectory smoothness infor-
mation is lost, which leads to a very pessimistic characterization of
the covered zone. An improved approach to deal with line scanning
sensors, like laser or side-scan sonar, is presented in [3].

Using Minkowski difference in the translation invariant case

In most scenarios, the space to cover is a subspace corresponding to
several components of the robot state (e.g latitude and longitude co-
ordinates). Moreover, since the sensor is attached to the robot body,
there is a tight relation between translation of the robot and transla-
tion of the visible zone.

Let’s split the robot state vector components in two parts such that
x = (xa,xb)

T , where xa corresponds to the part of the robot state that
coincides with the sensed space. The visibility predicate is said to be
translation invariant if

∀a ∈ Rp, V (z + a,x +

(
a

0n−p

)
) = V (z,x). (5)

In other words, a translation in the robot state results in the same
translation of the visible zone:

V(x +

(
a

0n−p

)
) = taV(x). (6)

Now, let’s find a set of trajectories T ∗ and a domain A ⊂ Rq

such that T ⊂ T [], where T [] is the set of trajectories generated from
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translations with a vector (a,0n−p)T , a ∈ A of the trajectories in T ∗:

T [] = {x∗(·) +

(
a

0n−p

)
, x∗(·) ∈ T ∗, a ∈ A}.

From (6) and (3), if the visibility predicate is translation invariant,
the guaranteed covered zone for the set of trajectories T [] is given by

M∀T [] = M∀T ∗ 	−A,

where 	 denotes the Minkowski difference of two sets. And since T ⊂
T [], we have M∀ ⊃ M∀T [], which means M∀T [] can be used as a lower
bound of the guaranteed covered zone.

Practical implementation consists in first computing an inner sub-
paving of the guaranteed covered zone with T ∗. If T ∗ can be well
approximated by a tube, the existing fast method will have less pes-
simism than with the full trajectory set. The obtained domain is then
eroded with −A to get an inner approximation of the guaranteed zone.
Choosing A as a box enables very fast computation.

Results and comparison with previous methods will be presented
on different test-cases.
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Introduction

This paper proposes a new approach, interval Simultaneous Localiza-
tion and Mapping (i-SLAM), which addresses the robotic mapping
problem in the context of interval methods, where the robot sensor
noise is assumed bounded. With no prior knowledge about the noise
distribution or its probability density function, we derive and present
necessary conditions to guarantee the map convergence even in the
presence of nonlinear observation and motion models.

Concept

To describe the SLAM problem mathematically, consider the robot
pose sk at timestep k, and the landmark position mi, where i ∈
{1, . . . , nl} and nl is the number of observed landmarks. The robot
motion and observation models are defined as follows, respectively:

sk = h (sk−1,uk) + qk, (1)

zi,k = g (mi, sk) + ri,k, (2)
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where h and g are generally nonlinear functions, and qk and ri,k rep-
resent the additive noises associated with the motion and observation,
respectively.

Assume that the robot motion uncertainty qk in (1) is bounded by
a box [q] such that ∀k > 0,qk ∈ [q], and let observation model noise
in (2) be bounded such that rk ∈ [r]. Then, the SLAM problem can
be seen as a constraint satisfaction problem (CSP) where the set of
variables are the SLAM unknown parameters and they are contained
in the vector x as follows:

x =
[
mT

1 . . . mT
nl

sT0 . . . sTnf

]T
, (3)

where nf is the number of timesteps. Note that uk and zi,k are vector
values obtained from the sensors. The constraints that govern the
variables in x are derived directly from the robot motion model and
the observation model as follows:

sk − h (sk−1,uk) ∈ [q] , (4)

zi,k − g (mi, sk) ∈ [r] , (5)

for all i ∈ {1, . . . , nl}, and k ∈ {1, . . . , nf}.
The interval SLAM (i-SLAM) is an algorithm that solves the SLAM

problem using interval methods. Contractors are examples of interval
methods that are capable of solving nonlinear CSPs with large number
of variables.

Define the measurement space to include all observations and con-
trol inputs, e.g. zi,k and uk for all i ∈ {1, . . . , nl}, and k ∈ {1, . . . , nf}.
Also define the parameter space to include all unknown SLAM vari-
ables in x as shown in (3). Then, provided that there is a bijective
map [1] from the parameter space to measurement space, at the limit,
the solution obtained by contractor is comparable to that obtained by
SIVIA algorithm [2], with a considerable reduction in computational
cost. From a practical point of view, the bijection assumption from the
parameter space to the measurement space is expected to hold true at
the limit especially when the robot traverses a cyclic environment with
distinct landmarks [3]. Thus, using contractors is sufficient to solve,
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in polynomial time [2], the SLAM problem in the presence of a large
number of observations.

Algorithm 1 summarizes the i-SLAM procedure for known data
association, where Unf

and Znf
are the sets of all control inputs and

all observations, respectively.

Algorithm 1 i-SLAM with known data association
1: function i-SLAM([x] , Unf

, Znf
, [q] , [r])

2: while [x] is not fixed-point do
3: for all k ∈ {1, . . . , nf} do
4: for all i ∈ {1, . . . , nl} do
5: [y1]← [q] ∩ ([sk]− [h] ([sk−1] ,uk))
6: [sk]← [sk] ∩ ([h] ([sk−1] ,uk) + [y1])
7: [sk−1]← [sk−1] ∩

([
h−1
sk−1

]
([sk]− [y1] ,uk)

)

8: [y2]← [r] ∩ (zi,k − [g] ([mi] , [sk]))
9: [mi]← [mi] ∩

([
g−1mi

]
(zi,k − [y2] , [sk])

)

10: [sk]← [sk] ∩
([
g−1sk

]
(zi,k − [y2] , [mi])

)

11: return [x]
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Introduction

One of the most important issues in control is determining the stability
of a system. Since the 1960’s, Lyapunov-based methods have been
developed to determine the stability of linear and nonlinear systems.
However, when the system is nonlinear, and the initial condition is not
known exactly, or when some uncertainties occur, stability analysis
is challenging, and no reliable methods have been developed. In this
paper, we propose a new method to bracket a capture tube. Then we
will show how this method can be applied for computing an inner and
outer approximation of the Viability Kernel.

In this paper, we consider the characterisation of invariant sets for
nonlinear and continuous systems of the form ẋ = f(x). In the lit-
erature, there are two classes of methods to compute invariant sets.
The first class of methods uses the concept of guaranteed integration
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[1]. Starting from an initial box [x](0), guaranteed integration meth-
ods compute a box-valued function [x](t) or tube, which contain all
true trajectories of the nonlinear system. The second class of meth-
ods is based on Lyapunov theory and do not require any integration.
These methods approximate the dynamics of a system using an energy
function [2] that is decreasing with time. Both classes of methods have
some drawbacks which make them difficult or even impossible to apply
for any nonlinear system. In case of guaranteed integration methods
the main drawbacks are a) the interval integration is too conserva-
tive; b) because is too conservative the initial box must be divided
into many small boxes increasing in this way the computational time;
hence these methods cannot be used in case of higher dimensional sys-
tems; c) after the interval integration is difficult to obtain the invariant
set which contains all intermediate steps. On the other hand, in case
of Lyapunov methods, the main drawback is that we have to know
a-priori a Lyapunov function which is only possible for a small class of
systems.

Basic properties

In this paper, we propose a novel method to compute the invariant
sets. Moreover, we are able to compute an outer and an inner ap-
proximation of the invariant set which will bracket in this way the real
invariant set. The proposed method is a mixed method in the sense
that it is a combination of trajectory propagation using a simple Euler
method and interval-based methods. In this way, we can avoid the
main drawbacks of guaranteed integration and use trajectory propa-
gation instead. However, the trajectory propagation using Euler is
not guaranteed, and we will combine it with interval-based methods
in order to compute the inner and outer approximation of the invari-
ant set. The proposed method is in discrete time and consists of a
prediction-correction algorithm at every time instant. The prediction
step consists on trajectory propagation using Euler, and the correction
step is based on interval methods which provide a guaranteed method
to compute the invariant set. In this way, the proposed method avoids
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guaranteed integration which is susceptible to wrapping effect [3], but
we use trajectory propagation based on Euler method to compute an
initial guess for a Lyapunov function. The initial guess is then cor-
rected using interval-based methods in order to obtain the inner and
outer approximation for the invariant set.

Capture tubes and cross out condition

We define the capture tube for all the states starting from an initial set
D0. A tube G is an interval of trajectories and it can be represented
using inequalities:

G(t) = {x,g(x, t) ≤ 0} (1)

A tube is said to be a capture tube if the fact that x(t) ∈ G(t)
implies that x(t+ t1) ∈ G(t+ t1)for all t1 > 0. The following theorem
[4] will be used to find an arbitrary small capture tube for the solution
set of our dynamical system.

Theorem 1. (Capture Tubes) Consider a tube G(t) = {x,g(x, t) ≤
0} where g : Rn × R→ Rm If the cross out condition:





∂gi
∂x

(x, t).f(x) +
∂gi
∂t

(x, t) ≥ 0

gi(x, t) = 0

g(x, t) ≤ 0

(2)

is inconsistent for all x, all t > 0, and all i ∈ {1, ...,m} then G(t) is a
capture tube for the time-dependent system ẋ = f(x, t).

Because our dynamical system is time invariant, the capture tube
will also be defined as time invariant:

G : {x,g(x) ≤ 0} (3)

As it can be seen from the above theorem, in order to find the
capture tube for the solution set of the dynamical system starting from
D0 we have to find a function g(x) for which the cross out condition
is inconsistent.
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Capture tube estimation using trajectory propagation

This method is fast and easy to use, but it only gives us an inner ap-
proximation of the solution set and we want to find an outer guaranteed
approximation. While some guaranteed methods for finding this outer
enclosure exist, they all suffer from the well-known wrapping effect
which leads to instability. We will use trajectory propagation as an
initial guess for the Lyapunov function. This initial guess can be used
to construct the function g(x) which defines the capture tube. There
are many methods than can interpolate a data set consisting of vertices
using some function. But one critical requirement for our method is
that the conditions of the capture tube theorem have to be fulfilled.
One of the most general and promising methods to generate interpo-
lating functions is to use RBF (radial basis function) networks. The
main advantage of this approach is that the cross out condition can be
included in the training process. We can then use the resulting RBF
network function to define the capture tube. There are some draw-
backs though:

• The training process can be slow and it can converge to local min-
ima’s.

• Depending on the complexity of the dynamical system a big num-
ber of RBF’s might be required.

• Interval methods do not cope well with multiple occurrences of
the variables. RBF networks rely on having a big number of basis
functions which means multiple occurrences cannot be avoided.

Another approach is to approximate the capture tube using hyper-
planes:

gi(x) = Ni × x + di, i ∈ {1, ...,m} (4)

Ni - hyperplane normal;
di - distance from hyperplane to origin;
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m - total number of hyperplanes defining the capture tube;

This is the method used in this paper. In 2D space the hyperplanes
are segments, in 3D are triangles, in 4D are prisms and so on. In this
way, in our approach, we are only interested to compute the boundary
of the capture tube and not on the inside of the tube.

Main results

Case study I:Computing an outer and inner approximation for in-
variant sets

Capture tube generated for a 2D dynamical system System
Equations (pendulum)

{
ẋ1 = x2

ẋ2 = −sin(x1)− 0.65x2
(5)

Initial box:[0.6, 0.8]× [0.4, 0.6] The capture tube was computed for 6s.
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Figure 1: Box evolution in a 2D system

Capture tube generated for a 3D dynamical system System
equations: 




ẋ1 = −x2x3 + 1

ẋ2 = x1x3 − x2
ẋ3 = x23(1− x3)

(6)

Initial box:[0.6, 0.8]× [0.4, 0.6] With red we represented the point used
as initial condition for the trajectories propagation. They are on the
sides of the initial cube where the trajectories are crossing the cube
from inside to outside.
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Figure 2: Initial Box for the 3D system

Figure 3: Tube computation
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The figures below, show the inner and outter approximation of the
capture tube from different perspectives.

Figure 4: Different persepctives of the inner and outter approximation
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Figure 5: Different persepctives of the inner and outter approximation

Figure 6: Different persepctives of the inner and outter approximation
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Figure 7: Different persepctives of the inner and outter approximation

Figure 8: Different persepctives of the inner and outter approximation
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Figure 9: Cross Section to see the inner and outter approximations

Figure 10: Different persepctives of the inner and outter approximation

151



Figure 11: Zoom on some triangles at a particular time instance

Case study II:Computing an outer and inner approximation for a
Viability kernel
This example is given for “Car on the hill” system proposed in [5]. The
initial set K and with red are the segments which need to be adjusted
such that to have at least one control which keeps the system inside
K.
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Figure 12: Vector field at the border for the first iteration

Figure 13: The segments are adjusted iteratively
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Figure 14: Viability Kernel obtained with the vector field

Figure 15: Boxes at the border of the Viability Kernel
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Introduction

Viability theory [1] is a promising area of research for the design of
reliable control systems in the presence of uncertainties and faults. In
this work, following the ideas presented in [2], we propose a method
to compute the inner and outer approximation of the viability kernel
using interval analysis and guaranteed integration techniques.

Basic properties

Following the notation in [1] we will consider a dynamic system S
defined by

ẋ(t) = f(x(t), u(t))

u(t) ∈ U
(1)

where x(t) ∈ Rn, U is a compact subset of Rm, u ∈ U = u : R+ 7−→ U,
f : Rn×U 7−→ Rn being f a continuous and locally Lipschitzian func-
tion bounded in Rn×U and ϕ is the flow map of S that computes the
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reached state ϕ(t, x0, u) given an initial state x0 = x(t) and a control
function u(t).

Then, the viability kernel [1] in [2] is defined as
Definition 1 Let S a system defined by Eq. (1) and let K ⊆ Rn be a
compact set. The viability kernel of K under S, is the set V iabS(K)
of initial states x ∈ K from which at least one evolution does not leave
K for all t ≥ 0. We have

V iabS(K) = {x0 ∈ K|∃u ∈ U ,∀t ≥ 0, ϕ(t, x, u) ∈ K},
with the purpose of computing an inner approximation of the viability
kernel using interval analysis we propose:

Proposition 1. Given a system S defined by Eq. (1), an unknown
initial state x0 bounded by a box [x0] (i.e. x0 ∈ [x0]), an interval time
horizon tH and a control vector u in the time horizon tH ; the evolution
of the state x of the system S can be bounded by a tube TS([x0], t, u)
such that

ϕ(t, x0, u) ∈ TS([x0], t, u) ∀x0 ∈ [x0] ∀t ∈ [0, tH ].

This Tube can be computed by discretizing Eq. (1) and using guaran-
teed integration techniques.

Proposition 2. From the Tube TS([x0], t, u) a boundary set BS([x0], tH , u)
can be obtained, by using the final points of the tube at tH (i.e. TS([x0], tH , u)).

The Tube TS([x0], t, u) and the Boundary BS([x0], tH , u) satisfy the
following conditions:

ϕ(t, x0, u) ∩ TS([x0], t, u) = ∅, (2)

ϕ(t, x0, u) ∩ BS([x0], tH , u) 6= ∅. (3)

For a R2 system this can be depicted as the line segment between
the two final points of the tube in Figure 1
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Figure 1: Integration Tube.

Proposition 3. Given that the set Vinner is non-convex, if there exists
a set V′ ⊂ K generated by the tube TS([x], tH , u) and the set Vinner,
then the set V′ ⊂ Vinner.

Proof. Lets suppose:

ϕ(t, x, u) ∩ (Vinner ∪ TS([x], t, u)) = ∅, ∀x ∈ V′ (4)

Taking into account the properties of the system and proposition 2,
∀x ∈ V′

ϕ(t, x, u) ∩ Vinner 6= ∅, , (5)

or ϕ(t, x, u) ∩ TS([x], t, u)) 6= ∅, , (6)

or ϕ(t, x, u) ∩ V′ 6= ∅. (7)
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Where Eq. (5) and Eq. (6) contradicts Eq. (4), Eq. (7) states the
posibility of an equilibrium point inside the set V′. Therefore, V′ ⊂
Vinner. Figure 2 depicts a graphical illustration for proposition 3 in a
R2 system. �

Figure 2: Case defined in Proposition 3.

Main results

Given an initial inner approximation of the viability kernel Vinner, the
tube TS([x0], t, u) and its boundary set BS([x0], tH , u) defined in pre-
vious Section can be used to compute an inner approximation of the
viability kernel V iabS(K) by means of algorithm 1 that follows the
ideas proposed in [2]. Figures 4 and 3 depict the two different cases
presented in algorithm 1.
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Algorithm 1 Computation of an inner approximation of V iabS(K)
Require: S,U ,K, tH and initial set Vinner

1: H = ∅ and S = K \ Vinner

2: while S 6= ∅ do
3: for [xi] ∈ S do
4: Choose u ∈ U
5: if TS([xi], tH , u) ⊆ K and BS([xi], tH , u) ⊆ Vinner then
6: Vinner := Vinner ∪ [xi], S := S \ [xi]
7: Compute VT = (TS([xi], tH , u) ∩ S)inner
8: Vinner := Vinner ∪ VT , S := S \ VT

9: end if
10: end for
11: Bisect boxes of S
12: end while
13: return Vinner and H
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Figure 3: Box evolving towards the Viable Set
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Figure 4: Box evolving towards the Non Viable Set
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