The Lorenz attractor exists

Warwick Tucker

Department of Mathematics
Uppsala University
Sweden

SWIM
Brest, June 5-7, 2013
The Lorenz equations

Introduced in 1963 by Edward Lorenz as a simplified model for convection:

\[
\begin{align*}
\dot{x}_1 &= -\sigma x_1 + \sigma x_2 \\
\dot{x}_2 &= \rho x_1 - x_2 - x_1 x_3 \\
\dot{x}_3 &= -\beta x_3 + x_1 x_2,
\end{align*}
\]
The Lorenz equations
Introduced in 1963 by Edward Lorenz as a simplified model for convection:

\[
\begin{align*}
\dot{x}_1 &= -\sigma x_1 + \sigma x_2 \\
\dot{x}_2 &= \rho x_1 - x_2 - x_1 x_3 \\
\dot{x}_3 &= -\beta x_3 + x_1 x_2,
\end{align*}
\]

Classical parameters: $\sigma = 10$, $\beta = 8/3$, $\rho = 28$.
The Lorenz equations

Introduced in 1963 by Edward Lorenz as a simplified model for convection:

\[\begin{align*}
\dot{x}_1 &= -\sigma x_1 + \sigma x_2 \\
\dot{x}_2 &= \varrho x_1 - x_2 - x_1 x_3 \\
\dot{x}_3 &= -\beta x_3 + x_1 x_2,
\end{align*} \]

Classical parameters: \(\sigma = 10, \ \beta = 8/3, \ \varrho = 28. \)

Symmetry: \(S(x_1, x_2, x_3) = (-x_1, -x_2, x_3). \)
The Lorenz equations
Introduced in 1963 by Edward Lorenz as a simplified model for convection:

\[
\begin{align*}
\dot{x}_1 &= -\sigma x_1 + \sigma x_2 \\
\dot{x}_2 &= \rho x_1 - x_2 - x_1 x_3 \\
\dot{x}_3 &= -\beta x_3 + x_1 x_2,
\end{align*}
\]

Classical parameters: \(\sigma = 10, \beta = 8/3, \rho = 28\).

Symmetry: \(S(x_1, x_2, x_3) = (-x_1, -x_2, x_3)\).

Three fixed points: the origin and

\(C^\pm = (\pm \sqrt{\beta(\rho - 1)}, \pm \sqrt{\beta(\rho - 1)}, \rho - 1)\).
The Lorenz equations

Introduced in 1963 by Edward Lorenz as a simplified model for convection:

\[
\begin{align*}
\dot{x}_1 &= -\sigma x_1 + \sigma x_2 \\
\dot{x}_2 &= \rho x_1 - x_2 - x_1 x_3 \\
\dot{x}_3 &= -\beta x_3 + x_1 x_2,
\end{align*}
\]

Classical parameters: $\sigma = 10$, $\beta = 8/3$, $\rho = 28$.

Symmetry: $S(x_1, x_2, x_3) = (-x_1, -x_2, x_3)$.

Three fixed points: the origin and

\[
C^\pm = (\pm \sqrt{\beta (\rho - 1)}, \pm \sqrt{\beta (\rho - 1)}, \rho - 1).
\]

Stability: The origin is a saddle point with eigenvalues

\[
0 < -\lambda_3 < \lambda_1 < -\lambda_2.
\]

The two symmetric fixed points C^\pm are unstable spirals.
The Lorenz equations...
Thus, the stable manifold of the origin $W^s(0)$ is two-dimensional, and the unstable manifold of the origin $W^u(0)$ is one-dimensional.
The Lorenz equations...
Thus, the stable manifold of the origin $W^s(0)$ is two-dimensional, and the unstable manifold of the origin $W^u(0)$ is one-dimensional.

Constant divergence:

$$\frac{\partial \dot{x}_1}{\partial x_1} + \frac{\partial \dot{x}_2}{\partial x_2} + \frac{\partial \dot{x}_3}{\partial x_3} = -(\sigma + \beta + 1).$$

The volume of a solid at time t can be expressed as

$$V(t) = V(0)e^{-(\sigma+\beta+1)t} \approx V(0)e^{-13.7t},$$

for the classical parameter values.
The Lorenz equations...
Thus, the stable manifold of the origin $W^s(0)$ is two-dimensional, and the unstable manifold of the origin $W^u(0)$ is one-dimensional. Constant divergence:

$$\frac{\partial \dot{x}_1}{\partial x_1} + \frac{\partial \dot{x}_2}{\partial x_2} + \frac{\partial \dot{x}_3}{\partial x_3} = -(\sigma + \beta + 1).$$

The volume of a solid at time t can be expressed as

$$V(t) = V(0)e^{-(\sigma + \beta + 1)t} \approx V(0)e^{-13.7t},$$

for the classical parameter values.

Absorbing region: \mathcal{U} containing the origin.
The Lorenz equations...

Thus, the stable manifold of the origin $W^s(0)$ is two-dimensional, and the unstable manifold of the origin $W^u(0)$ is one-dimensional.

Constant divergence:

\[
\frac{\partial \dot{x}_1}{\partial x_1} + \frac{\partial \dot{x}_2}{\partial x_2} + \frac{\partial \dot{x}_3}{\partial x_3} = -(\sigma + \beta + 1).
\]

The volume of a solid at time t can be expressed as

\[
V(t) = V(0)e^{-(\sigma+\beta+1)t} \approx V(0)e^{-13.7t},
\]

for the classical parameter values.

Absorbing region: \mathcal{U} containing the origin.

Maximal invariant set:

\[
\mathcal{A} = \bigcap_{t \geq 0} \varphi(\mathcal{U}, t).
\]

\mathcal{A} must have zero volume, and $W^u(0) \subseteq \mathcal{A}$.
Lorenz observed:
The Lorenz equations

Lorenz observed:

- Attracting invariant set \mathcal{A}
Lorenz observed:

- Attracting invariant set \mathcal{A}
- Sensitive dependence on i.c.
The Lorenz equations

Lorenz observed:

- Attracting invariant set A
- Sensitive dependence on i.c.
- Fractal structure of A
Lorenz observed:

- Attracting invariant set A
- Sensitive dependence on i.c.
- Fractal structure of A
- Robustness of A
The Lorenz equations

Lorenz observed:
- Attracting invariant set A
- Sensitive dependence on i.c.
- Fractal structure of A
- Robustness of A

He observed a strange attractor!
The Lorenz equations

Lorenz observed:

- Attracting invariant set \mathcal{A}
- Sensitive dependence on i.c.
- Fractal structure of \mathcal{A}
- Robustness of \mathcal{A}

He observed a strange attractor!
The geometric model:
Introduced by Guckenheimer and Williams (1979)
The geometric model: Introduced by Guckenheimer and Williams (1979)

Return map: $R: \Sigma \setminus \Gamma \rightarrow \Sigma$.
The return plane Σ is foliated by stable leaves. Projecting along these leaves gives a 1-d function:

$$f: [-1, 1] \rightarrow [-1, 1]$$
Properties: The function $f: [-1, 1] \rightarrow [-1, 1]$ satisfies:

1. $f(-x) = -f(x)$;
2. $\lim_{x \to 0} f'(x) = +\infty$;
3. $f''(x) < 0$ on $(0, 1]$;
4. $f'(x) > \sqrt{2}$;
Properties: The function $f : [-1, 1] \to [-1, 1]$ satisfies:

[1] $f(-x) = -f(x)$;

[2] $\lim_{x \to 0} f'(x) = +\infty$;

[3] $f''(x) < 0$ on $(0, 1]$;

[4] $f'(x) > \sqrt{2}$;

The real attractor seen from above Σ.
More history:

1989 C. Robinson; M. Rychlik

Constructed *explicit* families of ODEs with geometric Lorenz attractors.

[*] Extra terms of degree 3 were needed,
[*] Arbitrarily small unfoldings,
[*] Lorenz equation *not* in the families.
More history:

1989 C. Robinson; M. Rychlik
Constructed explicit families of ODEs with geometric Lorenz attractors.
[*] Extra terms of degree 3 were needed,
[*] Arbitrarily small unfoldings,
[*] Lorenz equation not in the families.

1992 S.P. Hastings & W.C. Troy
Computer-aided proof ⇒ homoclinic orbit.
More history:

1989 C. Robinson; M. Rychlik
Constructed explicit families of ODEs with geometric Lorenz attractors.
[*] Extra terms of degree 3 were needed,
[*] Arbitrarily small unfoldings,
[*] Lorenz equation not in the families.

1992 S.P. Hastings & W.C. Troy
Computer-aided proof ⇒ homoclinic orbit.

1995 K. Mischaikow & M. Mrozek
Computer-aided proof ⇒ horseshoe.
[*] Non-classical parameter values,
[*] Objects have measure zero,
[*] Objects are not attracting.
What is a strange attractor?

We need to prove:

(1) There exists a compact $N \subset \Sigma$, such that

$$R(N \setminus \Gamma) \subset N.$$
What is a strange attractor?
We need to prove:

(1) There exists a compact $N \subset \Sigma$, such that

$$R(N \setminus \Gamma) \subset N.$$

(2) On N, there exists a cone field \mathfrak{C} such that for all $x \in N$,

$$DR(x) \cdot \mathfrak{C}(x) \subset \mathfrak{C}(R(x)).$$
What is a strange attractor?

We need to prove:

(1) There exists a compact $N \subset \Sigma$, such that

$$R(N \setminus \Gamma) \subset N.$$

(2) On N, there exists a cone field \mathcal{C} such that for all $x \in N$,

$$DR(x) \cdot \mathcal{C}(x) \subset \mathcal{C}(R(x)).$$

(3) There exists $C > 0$ and $\lambda > 1$ such that for all $v \in \mathcal{C}(x)$, $x \in N$, we have

$$|DR^n(x)v| \geq C\lambda^n|v|, \quad n \geq 0.$$
What is a strange attractor?
We need to prove:

(1) There exists a compact $N \subset \Sigma$, such that

$$R(N \setminus \Gamma) \subset N.$$

(2) On N, there exists a cone field \mathfrak{C} such that for all $x \in N$,

$$DR(x) \cdot \mathfrak{C}(x) \subset \mathfrak{C}(R(x)).$$

(3) There exists $C > 0$ and $\lambda > 1$ such that for all $v \in \mathfrak{C}(x)$, $x \in N$, we have

$$|DR^n(x)v| \geq C\lambda^n|v|, \quad n \geq 0.$$

Open conditions - Perfect for interval methods!
How do we use these results?

(1) proves the existence of an attracting set. This *could* be a single stable periodic orbit.
How do we use these results?

(1) proves the existence of an attracting set. This could be a single stable periodic orbit.

(2)+(3) rule out the possibility of just observing a stable periodic orbit.
How do we use these results?

(1) proves the existence of an attracting set. This *could* be a single stable periodic orbit.

(2)+(3) rule out the possibility of just observing a stable periodic orbit.

Strong enough expansion \Rightarrow topological transitivity.
How do we use these results?

(1) proves the existence of an attracting set. This could be a single stable periodic orbit.

(2)+(3) rule out the possibility of just observing a stable periodic orbit.

Strong enough expansion \Rightarrow topological transitivity.

R area contracting + expansion in $\mathcal{C}(x) \Rightarrow$ stable foliation.
How do we use these results?

(1) proves the existence of an attracting set. This *could* be a single stable periodic orbit.

(2)+(3) rule out the possibility of just observing a stable periodic orbit.

Strong enough expansion \Rightarrow topological transitivity.

R area contracting $+$ expansion in $C(x) \Rightarrow$ stable foliation.

Theorem: For the classical parameter values, the Lorenz equations support a robust strange attractor \mathcal{A} – the Lorenz attractor!
How do we use these results?

(1) proves the existence of an attracting set. This *could* be a single stable periodic orbit.

(2)+(3) rule out the possibility of just observing a stable periodic orbit.

Strong enough expansion \Rightarrow topological transitivity.

R area contracting + expansion in $\mathcal{C}(x) \Rightarrow$ stable foliation.

Theorem: For the classical parameter values, the Lorenz equations support a robust strange attractor \mathcal{A} – the Lorenz attractor!

By robust, we mean that a strange attractor exists in an open neighbourhood of the classical parameter values.
Strategy:

- Difficult to obtain global info about the flow. This is needed to define the Poincaré map and its derivative.
Strategy:

- Difficult to obtain global info about the flow. This is needed to define the Poincaré map and its derivative.
- Develop a rigorous numerical tool that provides us with good estimates for R and DR.
Strategy:

- Difficult to obtain global info about the flow. This is needed to define the Poincaré map and its derivative.
- Develop a rigorous numerical tool that provides us with good estimates for R and DR.
- All numerical algorithms break down near the origin.
Strategy:

- Difficult to obtain global info about the flow. This is needed to define the Poincaré map and its derivative.
- Develop a rigorous numerical tool that provides us with good estimates for R and DR.
- All numerical algorithms break down near the origin.
- Use analytic methods near the origin. Compare the flow to its linear counterpart.
Strategy:

- Difficult to obtain global info about the flow. This is needed to define the Poincaré map and its derivative.
- Develop a rigorous numerical tool that provides us with good estimates for R and DR.
- All numerical algorithms break down near the origin.
- Use analytic methods near the origin. Compare the flow to its linear counterpart.
- The linearizing process is very sensitive to changes in parameters.
Strategy:

- Difficult to obtain global info about the flow. This is needed to define the Poincaré map and its derivative.
- Develop a rigorous numerical tool that provides us with good estimates for R and DR.
- All numerical algorithms break down near the origin.
- Use analytic methods near the origin. Compare the flow to its linear counterpart.
- The linearizing process is very sensitive to changes in parameters.
- Don’t linearize, but make the flow closer to linear (normal form).
The flowing process
Let $N = \bigcup_{i=1}^{k} N_i$, and flow each initial rectangle N_i between several codimension-1 surfaces.
The flowing process

Let $N = \bigcup_{i=1}^{k} N_i$, and flow each initial rectangle N_i between several codimension-1 surfaces.

The return of N_i is given by composing several distance-d maps:

$$R(N_i) \subset \Pi^{(k(i))} \circ \cdots \circ \Pi^{(0)}(N_i).$$
The flowing process...
Use the fact that $\Pi^{(k)}$ – the “distance-d map” – often is monotone. This allows us to shrink the flow regions.
The flowing process...
Use the fact that $\Pi^{(k)}$ – the “distance-d map” – often is monotone. This allows us to shrink the flow regions.

Flowing one step (seen from above):

$P^{(k)}(N_i)$ $\xrightarrow{\Pi^{(k)}}$ $P^{(k+1)}(N_i)$
The partitioning process

Idea: Dynamically split large images into smaller rectangles, and flow them separately.
The partitioning process

Idea: Dynamically split large images into smaller rectangles, and flow them separately.

After k steps the image of $N_i \subset \Sigma$ is enclosed by the union of many smaller rectangles:

$$P^{(k)}(N_i) \subseteq \bigcup_{j=1}^{n(i,k)} Q_{i,j}^{(k)}.$$
Finding the invariant set
At the return to Σ we have information of the type

$$R(N_i) \subseteq \bigcup_{j=1}^{n(i)} Q_{i,j} \subseteq \bigcup_{j=1}^{m(i)} N_j.$$
Finding the invariant set
At the return to Σ we have information of the type

$$R(N_i) \subseteq \bigcup_{j=1}^{n(i)} Q_{i,j} \subseteq \bigcup_{j=1}^{m(i)} N_j.$$

$$R(N) \subseteq N$$
Finding the invariant set
At the return to Σ we have information of the type

$$R(N_i) \subseteq \bigcup_{j=1}^{n(i)} Q_{i,j} \subseteq \bigcup_{j=1}^{m(i)} N_j.$$

Verify the cone condition:

$$Q_{i,j} \cap N_k \neq \emptyset \Rightarrow \mathcal{E}(Q_{i,j}) \subset \mathcal{E}(N_k).$$
Local theory and normal forms

Notation:

\[x = (x_1, x_2, x_3, \ldots, x_n), \]

\[|x| = \max\{|x_i| : i = 1, 2, 3, \ldots, n\}, \]

\[\|f\|_r = \max\{|f(x)| : |x| \leq r\}. \]

\[\{u \geq |x| : |(x)f|\}_{\text{max}} = u\|f\| \]

\[\{3, 2, 1 = ? : |x|\}_{\text{max}} = |x| \]

\[\epsilon \in I_{\mu} \Rightarrow x \equiv u x \equiv u x \]

\[(\epsilon x, \epsilon x, \epsilon x) = x \]

Notation:
Local theory and normal forms

Notation:

\[x = (x_1, x_2, x_3), \quad x^n = x_1^{n_1} x_2^{n_2} x_3^{n_3}. \]

\[|x| = \max\{|x_i| : i = 1, 2, 3\}, \quad \|f\|_r = \max\{|f(x)| : |x| \leq r\}. \]

Flatness of order \(p \):

\[x^n \in \mathcal{O}^p(x_1) \cap \mathcal{O}^p(x_2, x_3) \]

if \(n \in \mathbb{U}_p \overset{\text{def}}{=} \{ n \in \mathbb{N}^3 : n_1 \geq p \text{ and } n_2 + n_3 \geq p \} \).
Local theory and normal forms

Notation:

\[x = (x_1, x_2, x_3), \quad x^n = x_1^{n_1} x_2^{n_2} x_3^{n_3}. \]

\[|x| = \max\{|x_i| : i = 1, 2, 3\}, \quad \|f\|_r = \max\{|f(x)| : |x| \leq r\}. \]

Flatness of order \(p \):

\[x^n \in \mathcal{O}^p(x_1) \cap \mathcal{O}^p(x_2, x_3) \]

if \(n \in \mathbb{U}_p \overset{\text{def}}{=} \{ n \in \mathbb{N}^3 : n_1 \geq p \text{ and } n_2 + n_3 \geq p \}. \)

Change of variables:

\[
\begin{align*}
\dot{x} &= Ax + F(x) & x = y + \phi(y) \\
\dot{y} &= Ay + G(y)
\end{align*}
\]

original Lorenz \quad \quad normal form

where \(G(y) \in \mathcal{O}^{10}(y_1) \cap \mathcal{O}^{10}(y_2, y_3). \) \(G \) is almost linear.
Local theory and normal forms...

We find $\phi(y) = \sum a_n y^n$ by a simple power series substitution:

$$L_A \phi(y) = \{F(y + \phi(y))\}_{V_{10}},$$

where $V_{10} = \mathbb{N}^3 \setminus \mathbb{U}_{10}$, and

$$L_{A,i}(a_{i,n} y^n) = (n \lambda - \lambda_i) a_{i,n} y^n.$$
Local theory and normal forms...
We find $\phi(y) = \sum a_n y^n$ by a simple power series substitution:

$$L_A \phi(y) = \{F(y + \phi(y))\}_{V_{10}},$$

where $V_{10} = N^3 \setminus U_{10}$, and

$$L_{A,i}(a_{i,n} y^n) = \text{divisor} \left((n\lambda - \lambda_i) a_{i,n} y^n \right).$$

Can we formally solve for the coefficients?
Local theory and normal forms…
We find $\phi(y) = \sum a_n y^n$ by a simple power series substitution:

$$L_A \phi(y) = \{F(y + \phi(y))\}_{\mathbb{V}_{10}},$$

where $\mathbb{V}_{10} = \mathbb{N}^3 \setminus \mathbb{U}_{10}$, and

$$L_{A,i}(a_{i,n} y^n) = \text{divisor} (n\lambda - \lambda_i) a_{i,n} y^n.$$

Can we formally solve for the coefficients?

Existence of a formal ϕ:

Lemma: Let $n \in \mathbb{V}_{10}$. Then, for $|n| \in [2, 57]$, we have $|n\lambda - \lambda_i| \geq 0.0112$. For $|n| \geq 58$, we have $|n\lambda - \lambda_i| \geq \frac{8}{3}|n|$. The proof requires the computation of the 19.386 first divisors (using interval arithmetic).
Local theory and normal forms...

We find \(\phi(y) = \sum a_n y^n \) by a simple power series substitution:

\[
L_A \phi(y) = \{F(y + \phi(y))\}_{V_0},
\]

where \(V_0 = \mathbb{N}^3 \setminus U_0 \), and

\[
L_{A,i}(a_i, ny^n) = \underbrace{\text{divisor}}_{n \lambda - \lambda_i} a_{i,n} y^n.
\]

Can we formally solve for the coefficients?

Existence of a formal \(\phi \):

Lemma: Let \(n \in V_0 \). Then, for \(|n| \in [2, 57] \), we have

\[
|n \lambda - \lambda_i| \geq 0.0112. \quad \text{For } |n| \geq 58, \text{ we have } |n \lambda - \lambda_i| \geq \frac{8}{3} |n|.
\]

The proof requires the computation of the 19.386 first divisors (using interval arithmetic).

OK, what about convergence of \(\phi \)?
Convergence of ϕ:

Majorants: Find a $\hat{F} : \mathbb{R} \to \mathbb{R}$ such that $|F_i(r, r, r)| \leq \hat{F}(r)$, and let

$$\Omega(k) = \min_{|n|=k} \min_{i} \{|n\lambda - \lambda_i| : n \in \mathbb{V}_{10}\}.$$

Then ϕ converges whenever $\Psi(r) = \sum c_k r^k$ does, where

$$c_k = \frac{1}{\Omega(k)} \left[\hat{F}(r + \sum_{j=2}^{k-1} c_j r^j) \right]_k.$$
Convergence of φ

Majorants: Find a \(\hat{F} : \mathbb{R} \to \mathbb{R} \) such that \(|F_i(r, r, r)| \leq \hat{F}(r) \), and let

\[
\Omega(k) = \min_n\min_i |n\lambda - \lambda_i| : n \in \mathbb{V}_{10}.
\]

Then \(\phi \) converges whenever \(\Psi(r) = \sum c_k r^k \) does, where

\[
c_k = \frac{1}{\Omega(k)} \left[\hat{F}(r + \sum_{j=2}^{k-1} c_j r^j) \right]_k.
\]

Proposition: The change of variables satisfies

\[
\|\phi\|_r \leq \frac{r^2}{2}, \quad r \leq 1,
\]

and the normal form satisfies

\[
\|G\|_r \leq 7 \cdot 10^{-9} \frac{r^{20}}{1 - 3r}, \quad r < \frac{1}{3}.
\]

For the proof we need the 186.576 first coefficients of \(\phi \).
In retrospect
In retrospect

- I should have been aware of the theory of interval arithmetic and validated numerics
In retrospect

- I should have been aware of the theory of interval arithmetic and validated numerics
- I am glad that I found the articles of Hastings & Troy, and Mischaikow & Mrozek. This really changed my line of thought.
In retrospect

- I should have been aware of the theory of interval arithmetic and validated numerics
- I am glad that I found the articles of Hastings & Troy, and Mischaikow & Mrozek. This really changed my line of thought.
- I am still not sure why the fixed point is such a problem
In retrospect

- I should have been aware of the theory of interval arithmetic and validated numerics.
- I am glad that I found the articles of Hastings & Troy, and Mischaikow & Mrozek. This really changed my line of thought.
- I am still not sure why the fixed point is such a problem.
- I have still not got around to implementing a general purpose partitioning process. This is a must for flowing large sets.
In retrospect

- I should have been aware of the theory of interval arithmetic and validated numerics.
- I am glad that I found the articles of Hastings & Troy, and Mischaikow & Mrozek. This really changed my line of thought.
- I am still not sure why the fixed point is such a problem.
- I have still not got around to implementing a general purpose partitioning process. This is a *must* for flowing large sets.
- I would like to redo the proof, using today’s state-of-the-art software. This should be a quite short (and fast) proof.
In retrospect

- I should have been aware of the theory of interval arithmetic and validated numerics
- I am glad that I found the articles of Hastings & Troy, and Mischaikow & Mrozek. This really changed my line of thought.
- I am still not sure why the fixed point is such a problem
- I have still not got around to implementing a general purpose partitioning process. This is a must for flowing large sets.
- I would like to redo the proof, using today’s state-of-the-art software. This should be a quite short (and fast) proof.
- I am very grateful to Jacob Palis and Lennart Carleson for suggesting this problem to me.
References

