Interval arithmetic
and numerical reproducibility issues

Nathalie Revol1 Philippe Théveny2

1INRIA – LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)
2ENS Lyon – LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

SWIM – June 2013
Schedule

1. the Bad
2. the Good
3. the Ugly
Floating-point computations

Numerical results may be different when the **same** computation is performed twice.

- on the same machine
- on different machines

round-off errors or bug?
Software engineering problem

Q: how to verify program?

A: require the same bit-to-bit result (*reproducibility*)
Why is reproducibility not guaranteed?

Lack of specification in programming languages

```c
float a, b, c, d, x;
x = a + b + c + d;
```

C does not specify the precision of intermediate calculations
Why is reproducibility not guaranteed?

Lack of specification in programming languages

\[
\text{real :: a, b, c, d, x;}
\]
\[
x = a + b + c + d;
\]

FORTRAN does not specify the order of evaluation
Multithreaded programs

Floating-point addition/multiplication are non-associative

\[+ \]

Non-deterministic scheduling

\[= \]

multithreaded reductions (+/*) may yield different results
How to enforce numerical reproducibility?

solution 1 Require correct rounding

▶ provided by IEEE-754 compliant processors for arithmetic operations
▶ hard to obtain and expensive for compound expressions
solution 2 Use specific algorithms

Example: reproducible sums (Demmel and Nguyen 2013), sum the following data in 6 decimal digits precision

\[
\begin{array}{c|c|c|c}
1.23456 \times 10^7 & 1234 & 5600 & 0000 \\
+9.87654 \times 10^1 & +0000 & +0098 & +7654 \\
-1.00001 \times 10^5 & -0010 & -0001 & -0000 \\
+1.21215 \times 10^7 & +1212 & +1500 & +0000 \\
-4.44444 \times 10^2 & -0000 & -0444 & -4440 \\
+3.33333 \times 10^5 & +0033 & +3333 & +0000 \\
\hline
\Sigma & 2479 & 10086 & 3210
\end{array}
\]

We have \(\Sigma \approx 2479 \times 10^4 \) with no guarantee about accuracy.
How to enforce numerical reproducibility?

solution 3 Serialize reductions Intel MKL CNR
 - calls to Intel MKL occur in a single executable
 - input and output arrays in function calls are properly aligned
 - the number of computational threads used by the library does not change in the run

cost: run-time +100%
Verified computing

Interval computations
 - take round-off errors into account
 - are subject to overestimation
Q: how to verify program?
A: compute an interval result
 the result must
 1. intersect the expected result
 2. have a small enough width
Certified results

we compute \(\langle \hat{m}, \hat{r} \rangle \)
we know that

\[x \in \langle \hat{m}, \hat{r} \rangle \]

or

\[y \subset \langle \hat{m}, \hat{r} \rangle \]

Is \(x > 0 \)? or \(y > 0 \)?

\[
\langle -10, 1 \rangle \quad \langle 4, 1 \rangle
\]

\[
\langle 1, 5 \rangle \quad \langle 1, 5 \rangle
\]
Different results on different runs

Compatible results

run1 says “I don’t know”
run2 says “Yes!”

Why?
Different intermediate precisions

machine 2 uses more precision for intermediate calculation
try to add some iterative refinement steps
Different order of operations

SIMD identical alignment and vector length

multithread indeterminism

- reductions depend on scheduling
- list insertions depend on timing

Solution: log and replay
Different results on different runs

Incompatible results

run1 says “No!
run2 says “Yes!”

bug!

\[r = -m \]
\[r = m \]
Inclusion property is not satisfied

Compilers do not respect rounding modes other than default
GCC Bug #34678 (2008)

```c
void interval_div (double *left, double *right,
                 double x, double y) {
    #pragma STDC FENV_ACCESS ON
    fesetround (FE_DOWNWARD);
    *left = x / y;
    fesetround (FE_UPWARD);
    *right = x / y;
}
```
Inclusion property is not satisfied

math libraries do not respect rounding modes other than default example (Rump 1999):

Input: \(A = [A, \bar{A}], B = [B, \bar{B}] \)

Output: \(C \supseteq A \cdot B \)

1. \(\langle M_A, R_A \rangle \leftarrow \text{InfsupToMidrad}(A) \)
2. \(\langle M_B, R_B \rangle \leftarrow \text{InfsupToMidrad}(B) \)
3. \(R_C \leftarrow \text{RU}(|M_A| \cdot R_B + R_A \cdot (|M_B| + R_B)) \)
4. \(\bar{C} \leftarrow \text{RU}(M_A \cdot M_B + R_C) \)
5. \(\underline{C} \leftarrow \text{RD}(M_A \cdot M_B - R_C) \)
6. return \([\underline{C}, \bar{C}] \)
Inclusion property is not satisfied

thread managers do not respect rounding modes
from OpenMP API Version 4.0 - RC 1 - November 2012:
“This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003. The following features are not supported:
 ▶ IEEE Arithmetic issues covered in Fortran 2003 Section 14
 ▶ ...”
Order of operation matters

Theorem (Rump 2012)

Let $A \in \mathbb{F}^{m \times k}$ and $B \in \mathbb{F}^{k \times n}$ with $2(k + 2)u \leq 1$ be given, and let $C = \text{RN}(A \times B)$ and $\Gamma = \text{RN}(|A| \times |B|)$. Here C may be computed in any order, and we assume that Γ is computed in the same order. Then

$$ |\text{RN}(A \times B) - A \times B| \leq \text{RN} \left(\frac{k + 2}{2} \text{ulp}(\Gamma) + \frac{1}{2} u^{-1} \eta \right) $$
Conclusion

Any good reason to require bit-to-bit identity with a who-knows-to-what-accuracy approximation? Any real difficulty in implementing a compiler that respect the changes of rounding mode?