Interval arithmetic and numerical reproducibility issues

Nathalie Revol¹ Philippe Théveny²

¹INRIA – LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

²ENS Lyon – LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

SWIM – June 2013

・ロト・日本・モート モー うへぐ

Schedule

- 1. the Bad
- ${\small 2.} \ the \ Good$
- 3. the Ugly

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Numerical results may be different when the **same** computation is performed twice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- on the same machine
- on different machines

round-off errors or bug?

Software engineering problem

- Q: how to verify program?
- A: require the same bit-to-bit result (reproducibility)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why is reproducibility not guaranteed?

Lack of specification in programming languages

float a, b, c, d, x; x = a + b + c + d;

C does not specify the precision of intermediate calculations

Why is reproducibility not guaranteed?

Lack of specification in programming languages

FORTRAN does not specify the order of evaluation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multithreaded programs

Floating-point addition/multiplication are non-associative +Non-deterministic scheduling =multithreaded reductions (+/*) may yield different results

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How to enforce numerical reproducibility?

solution 1 Require correct rounding

 provided by IEEE-754 compliant processors for arithmetic operations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

hard to obtain and expensive for compound expressions

How to enforce numerical reproducibility?

We have $\Sigma\approx 2479\times 10^4$ with no guarantee about accuracy

How to enforce numerical reproducibility?

solution 3 Serialize reductions Intel MKL CNR

- calls to Intel MKL occur in a single executable
- input and output arrays in function calls are properly aligned
- the number of computational threads used by the library does not change in the run

cost: run-time +100%

Verified computing

Interval computations

take round-off errors into account

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

are subject to overestimation

Software engineering problem

- Q: how to verify program?
- A: compute an interval result the result must
 - 1. intersect the expected result

2. have a small enough width

Certified results

we compute $\langle \hat{m}, \hat{r} \rangle$ we know that

$$x \in \langle \hat{m}, \hat{r} \rangle$$

or

I

$$\mathbf{y} \subset \langle \hat{m}, \hat{r}
angle$$
s $x > 0$? or $\mathbf{y} > 0$?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Different results on different runs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Different intermediate precisions

machine 2 uses more precision for intermediate calculation try to add some iterative refinement steps

(ロ)、(型)、(E)、(E)、 E) の(の)

Different order of operations

SIMD identical alignment and vector length multithread indeterminism

- reductions depend on scheduling
- list insertions depend on timing

Solution : log and replay

Different results on different runs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Inclusion property is not satisfied

Compilers do not respect rounding modes other than default GCC Bug #34678 (2008)

Inclusion property is not satisfied

math libraries do not respect rounding modes other than default example (Rump 1999):

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Input:
$$\mathbf{A} = [\underline{A}, \overline{A}], \mathbf{B} = [\underline{B}, \overline{B}]$$

Output: $\mathbf{C} \supseteq \mathbf{A} \cdot \mathbf{B}$
1: $\langle M_{\mathbf{A}}, R_{\mathbf{A}} \rangle \leftarrow \text{InfsupToMidrad}(\mathbf{A})$
2: $\langle M_{\mathbf{B}}, R_{\mathbf{B}} \rangle \leftarrow \text{InfsupToMidrad}(\mathbf{B})$
3: $R_{\mathbf{C}} \leftarrow \text{RU}(|M_{\mathbf{A}}| \cdot R_{\mathbf{B}} + R_{\mathbf{A}} \cdot (|M_{\mathbf{B}}| + R_{\mathbf{B}}))$
4: $\overline{C} \leftarrow \text{RU}(M_{\mathbf{A}} \cdot M_{\mathbf{B}} + R_{\mathbf{C}})$
5: $\underline{C} \leftarrow \text{RD}(M_{\mathbf{A}} \cdot M_{\mathbf{B}} - R_{\mathbf{C}})$
6: return $[C, \overline{C}]$

thread managers do not respect rounding modes from OpenMP API Version 4.0 - RC 1 - November 2012: "This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003. The following features are not supported:

▶ IEEE Arithmetic issues covered in Fortran 2003 Section 14

▶ ..."

Order of operation matters

Theorem (Rump 2012)

Let $A \in \mathbb{F}^{m \times k}$ and $B \in \mathbb{F}^{k \times n}$ with $2(k+2)u \leq 1$ be given, and let $C = \operatorname{RN}(A \times B)$ and $\Gamma = \operatorname{RN}(|A| \times |B|)$. Here C may be computed in any order, and we assume that Γ is computed in the same order. Then

$$|\operatorname{RN}(A \times B) - A \times B| \le \operatorname{RN}\left(\frac{k+2}{2}\operatorname{ulp}(\Gamma) + \frac{1}{2}u^{-1}\eta\right)$$

Conclusion

Any good reason to require bit-to-bit identity with a who-knows-to-what-accuracy approximation? Any real difficulty in implementing a compiler that respect the changes of rounding mode?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ