

Experimental Validation of Interval Sliding Mode Observers for Nonlinear Systems with Bounded Measurement and Parameter Uncertainty

ISMO 000000	Optimal Input Design 00		

Contents

- Motivation
- Interval Sliding Mode Observer (ISMO)
- Lyapunov functions
- Optimal input design
- Experimental setup
- Results
- Conclusions and outlook on further work

Motivation	ISMO	Optimal Input Design		
00				

Motivation

2 ISMO

- 3 Lyapunov Functions
- Optimal Input Design

5 Experiment

6 Results

7 Conclusions

Motivation ●0	ISMO 000000	Optimal Input Design 00		

Motivation

- Characterization of nonlinear dynamic systems
- Common situation: non-measurable states and unknown or uncertain parameters

Uncertainty

- Lack of knowledge about system parameters
- Inaccurate measurements
- Manufacturing tolerances
- Simultaneous state estimation and parameter identification necessary
- State-of-the-art sliding mode techniques have to satisfy restrictive matching conditions

Motivation ○●	ISMO 000000	Optimal Input Design 00		

Interval Sliding Mode Observer

- \bullet Intervals defining tolerance bounds for parameters and measured data \rightarrow advantage: reduction of chattering
- Suitable candidates for Lyapunov functions
 - Guarantee for asymptotic stability
 - $\triangleright~$ Used for calculation of switching amplitude
- Adaptation of switching amplitude of the observer's variable structure part \rightarrow reduction of amplification of measurement noise
- Simultaneous state estimation and parameter identification
- \bullet Implementation using C++ S-functions in $\rm MATLAB$ with software library C-XSC
- Optimal input design for improved parameter estimation¹

¹Senkel, Luise; Rauh, Andreas; Aschemann, Harald: *Optimal Input Design for Online State and Parameter Estimation using Interval Sliding Mode Observers*, 52nd IEEE Conference on Decision and Control CDC 2013, Firenze, Italy, 2013. Under review.

ISMO ●00000	Optimal Input Design 00		

Motivation

- 3 Lyapunov Functions
- Optimal Input Design
- 5 Experiment

Classical Sliding Mode Observer (1)

Subdivision into two parts: continuous and variable structure

Continuous structure (model of the dynamic system)

- Assume a dynamic system $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$
- Representation by set of state equations

$$\begin{aligned} \dot{\mathbf{x}}(t) &= \mathbf{f}\left(\mathbf{x}(t), \mathbf{u}(t)\right) = \mathbf{A} \cdot \mathbf{x}(t) + \mathbf{B} \cdot \mathbf{u}(t) + \mathbf{S} \cdot \mathbf{w}\left(\mathbf{x}(t), \mathbf{u}(t)\right) \\ \mathbf{y}(t) &= \mathbf{C} \cdot \mathbf{x}(t) \end{aligned}$$

Classical Sliding Mode Observer (1)

Subdivision into two parts: continuous and variable structure

Continuous structure (model of the dynamic system)

- Assume a dynamic system $\dot{\mathbf{x}}(t) = \mathbf{f}\left(\mathbf{x}(t), \mathbf{u}(t)\right)$
- Representation by set of state equations

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left(\mathbf{x}(t), \mathbf{u}(t) \right) = \mathbf{A} \cdot \mathbf{x}(t) + \mathbf{B} \cdot \mathbf{u}(t) + \mathbf{S} \cdot \mathbf{w} \left(\mathbf{x}(t), \mathbf{u}(t) \right)$$
$$\mathbf{y}(t) = \mathbf{C} \cdot \mathbf{x}(t)$$

• $\mathbf{x}(t)$ – state vector (contains uncertain but bounded parameters)

- $old A, \, B-$ constant system and input matrices
- $\mathbf{u}(t)$ vector-valued control signal
- $\mathbf{y}(t) (\mathsf{linear})$ system output with constant matrix \mathbf{C}

 Motivation
 ISMO
 Lyapunov Functions
 Optimal Input Design
 Experiment
 Results
 Conclusions

 00
 000000
 00
 0000
 0
 0000
 0

Classical Sliding Mode Observer (1)

Subdivision into two parts: continuous and variable structure

Continuous structure (model of the dynamic system)

- Assume a dynamic system $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$
- Representation by set of state equations

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left(\mathbf{x}(t), \mathbf{u}(t) \right) = \mathbf{A} \cdot \mathbf{x}(t) + \mathbf{B} \cdot \mathbf{u}(t) + \mathbf{S} \cdot \mathbf{w} \left(\mathbf{x}(t), \mathbf{u}(t) \right)$$
$$\mathbf{y}(t) = \mathbf{C} \cdot \mathbf{x}(t)$$

- $\mathbf{S} \in \mathbb{R}^{n \times q}$ influence of a-priori unknown terms on system dynamics, condition $\|\mathbf{w}(\mathbf{x}, \mathbf{u})\| \leq \overline{\mathbf{w}}$ (fixed upper bound for the vector norm)
- $\mathbf{S} \cdot \mathbf{w} \left(\mathbf{x}(t), \mathbf{u}(t) \right)$ contains all nonlinearities

Classical Sliding Mode Observer (2)

Variable structure observer representation (used for estimation)

$$\dot{\hat{\mathbf{x}}}(t) = \underbrace{\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(t) + \hat{\mathbf{B}} \cdot \mathbf{u}(t)}_{=\hat{\mathbf{f}}(\hat{\mathbf{x}}(t), \mathbf{u}(t))} + h_s \cdot \mathbf{S} \cdot \tilde{\mathbf{e}} + \mathbf{H}_p \cdot \left(\mathbf{y}_m(t) - \hat{\mathbf{C}} \cdot \hat{\mathbf{x}}(t)\right)$$

 Motivation
 ISMO
 Lyapunov Functions
 Optimal Input Design
 Experiment
 Results
 Conclusions

 00
 000000
 00
 0000
 0
 0000
 0

Classical Sliding Mode Observer (2)

Variable structure observer representation (used for estimation)

$$\dot{\hat{\mathbf{x}}}(t) = \underbrace{\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(t) + \hat{\mathbf{B}} \cdot \mathbf{u}(t)}_{=\hat{\mathbf{f}}(\hat{\mathbf{x}}(t), \mathbf{u}(t))} + h_s \cdot \mathbf{S} \cdot \tilde{\mathbf{e}} + \mathbf{H}_p \cdot \left(\mathbf{y}_m(t) - \hat{\mathbf{C}} \cdot \hat{\mathbf{x}}(t) \right)$$

- $\hat{\mathbf{x}}$, $\hat{\mathbf{A}} = \mathbf{A}(\hat{\mathbf{x}})$, $\hat{\mathbf{B}} = \mathbf{B}(\hat{\mathbf{x}})$ and $\hat{\mathbf{C}} = \mathbf{C}(\hat{\mathbf{x}})$ corresponding state vector and matrices of observer parallel model
- h_s scaling factor \rightarrow guarantees asymptotic stability in spite of nonlinearities and uncertainties
- \mathbf{H}_p observer gain matrix
 - stabilizing error dynamics of the linear part
 - usually determined by pole assignment

• $\mathbf{y}_m(t)$ – measured system outputs

MotivationISMOLyapunov FunctionsOptimal Input DesignExperimentResultsConclusions000000000000000000000

Classical Sliding Mode Observer (2)

Variable structure observer representation (used for estimation)

$$\dot{\hat{\mathbf{x}}}(t) = \underbrace{\hat{\mathbf{A}} \cdot \hat{\mathbf{x}}(t) + \hat{\mathbf{B}} \cdot \mathbf{u}(t)}_{=\hat{\mathbf{f}}(\hat{\mathbf{x}}(t), \mathbf{u}(t))} + h_s \cdot \mathbf{S} \cdot \tilde{\mathbf{e}} + \mathbf{H}_p \cdot \left(\mathbf{y}_m(t) - \hat{\mathbf{C}} \cdot \hat{\mathbf{x}}(t) \right)$$

- Error vector $\tilde{\mathbf{e}} = \frac{\mathbf{S}^T \mathbf{P}(\mathbf{x}-\hat{\mathbf{x}})}{\|\mathbf{S}^T \mathbf{P}(\mathbf{x}-\hat{\mathbf{x}})\|}$ accounts for deviations between true and estimated system states
- Matrix **P** results from solving the Lyapunov equation $\mathbf{A}_O \cdot \mathbf{P} + \mathbf{P} \cdot \mathbf{A}_O^T + \mathbf{Q} = \mathbf{0}$ with $\mathbf{A}_O = \hat{\mathbf{A}} - \mathbf{H}_p \cdot \hat{\mathbf{C}}$
- Requirements for applicability of observer:
 - \triangleright Pair $(\hat{\mathbf{A}}, \hat{\mathbf{C}})$ is observable
 - \triangleright Unknown and nonlinear terms included in $\mathbf{S} \cdot \mathbf{w} \left(\mathbf{x}(t), \mathbf{u}(t) \right)$ are bounded

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions 00 00●000 00 0000 0 0000 0

Classical Sliding Mode Observer (3)

Adaptation of observer differential equation

- If change of sign in $\mathbf{C}\,(\mathbf{x}-\hat{\mathbf{x}}):$ term \mathbf{w} is reproduced approximately by the variable structure part of the observer
- (Matching) condition: $\mathbf{S} \cdot \mathbf{w} \approx h_s \cdot \mathbf{S} \cdot \tilde{\mathbf{e}} \approx \tilde{\mathbf{S}} \cdot h_s \cdot \operatorname{sign} \left(\mathbf{y}_m \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$, identical structure of \mathbf{S} and $\tilde{\mathbf{S}}$
- Stabilization of the error dynamics in spite of nonlinearities

$$\dot{\hat{\mathbf{x}}} = \underbrace{\hat{\mathbf{A}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{B}} \cdot \mathbf{u}}_{=\hat{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{u})} + \underbrace{\mathbf{\tilde{S}}}_{k} h_{s} \operatorname{sign} \left(\mathbf{y}_{m} - \hat{\mathbf{C}} \hat{\mathbf{x}} \right) + \mathbf{H}_{p} \left(\mathbf{y}_{m} - \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$$

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions 00 000000 00 0000 00000 0

Classical Sliding Mode Observer (3)

Adaptation of observer differential equation

- If change of sign in $C(x \hat{x})$: term w is reproduced approximately by the variable structure part of the observer
- (Matching) condition: $\mathbf{S} \cdot \mathbf{w} \approx h_s \cdot \mathbf{S} \cdot \tilde{\mathbf{e}} \approx \tilde{\mathbf{S}} \cdot h_s \cdot \operatorname{sign} \left(\mathbf{y}_m \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$, identical structure of \mathbf{S} and $\tilde{\mathbf{S}}$
- Stabilization of the error dynamics in spite of nonlinearities

$$\dot{\hat{\mathbf{x}}} = \underbrace{\hat{\mathbf{A}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{B}} \cdot \mathbf{u}}_{=\hat{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{u})} + \mathbf{\tilde{S}} h_s \operatorname{sign} \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right) + \mathbf{H}_p \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$$

Observer parallel model, locally valid and linear

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions 00 000000 00 0000 00000 0

Classical Sliding Mode Observer (3)

Adaptation of observer differential equation

- If change of sign in $C\left(x-\hat{x}\right)$: term w is reproduced approximately by the variable structure part of the observer
- (Matching) condition: $\mathbf{S} \cdot \mathbf{w} \approx h_s \cdot \mathbf{S} \cdot \tilde{\mathbf{e}} \approx \tilde{\mathbf{S}} \cdot h_s \cdot \operatorname{sign} \left(\mathbf{y}_m \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$, identical structure of \mathbf{S} and $\tilde{\mathbf{S}}$
- Stabilization of the error dynamics in spite of nonlinearities

$$\dot{\hat{\mathbf{x}}} = \underbrace{\hat{\mathbf{A}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{B}} \cdot \mathbf{u}}_{=\hat{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{u})} + \mathbf{\tilde{S}} h_s \operatorname{sign} \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right) + \mathbf{H}_p \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$$

Observer parallel model, locally valid and linear

Stabilization of system uncertainty and nonlinearity, variable structure part

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions 00 000000 00 0000 00000 0

Classical Sliding Mode Observer (3)

Adaptation of observer differential equation

- If change of sign in $C\left(x-\hat{x}\right)$: term w is reproduced approximately by the variable structure part of the observer
- (Matching) condition: $\mathbf{S} \cdot \mathbf{w} \approx h_s \cdot \mathbf{S} \cdot \tilde{\mathbf{e}} \approx \tilde{\mathbf{S}} \cdot h_s \cdot \operatorname{sign} \left(\mathbf{y}_m \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$, identical structure of \mathbf{S} and $\tilde{\mathbf{S}}$
- Stabilization of the error dynamics in spite of nonlinearities

$$\dot{\hat{\mathbf{x}}} = \underbrace{\hat{\mathbf{A}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{B}} \cdot \mathbf{u}}_{=\hat{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{u})} + \mathbf{\tilde{S}} h_s \operatorname{sign} \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right) + \mathbf{H}_p \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$$

Observer parallel model, locally valid and linear

Stabilization of system uncertainty and nonlinearity, variable structure part Switching term

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions 00 00 0000000 00 00000 0

Classical Sliding Mode Observer (3)

Adaptation of observer differential equation

- If change of sign in $\mathbf{C}\,(\mathbf{x}-\hat{\mathbf{x}}):$ term \mathbf{w} is reproduced approximately by the variable structure part of the observer
- (Matching) condition: $\mathbf{S} \cdot \mathbf{w} \approx h_s \cdot \mathbf{S} \cdot \tilde{\mathbf{e}} \approx \tilde{\mathbf{S}} \cdot h_s \cdot \operatorname{sign} \left(\mathbf{y}_m \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$, identical structure of \mathbf{S} and $\tilde{\mathbf{S}}$
- Stabilization of the error dynamics in spite of nonlinearities

$$\dot{\hat{\mathbf{x}}} = \underbrace{\hat{\mathbf{A}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{B}} \cdot \mathbf{u}}_{=\hat{\mathbf{f}}(\hat{\mathbf{x}}, \mathbf{u})} + \mathbf{\tilde{S}} h_s \operatorname{sign} \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right) + \mathbf{H}_p \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$$

Observer parallel model, locally valid and linear

Stabilization of system uncertainty and nonlinearity, variable structure part

Switching term

Observer gain matrix for linear part of the system

ISMO 000●00	Optimal Input Design 00		

Interval Sliding Mode Observer (1)

• Goal: extension of classical observer

 \Rightarrow simultaneous estimation of system states and identification of constant parameters

ISMO 000●00	Optimal Input Design 00		

Interval Sliding Mode Observer (1)

- Goal: extension of classical observer
 ⇒ simultaneous estimation of system states and identification of constant parameters
- Improved flexibility: more than just one switching amplitude (depends on number of outputs)
- Time-varying states and constant parameters are coupled

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions 00 000000 00 0000 0 0000 0

Interval Sliding Mode Observer (1)

- Goal: extension of classical observer
 ⇒ simultaneous estimation of system states and identification of constant parameters
- Improved flexibility: more than just one switching amplitude (depends on number of outputs)
- Time-varying states and constant parameters are coupled
- New observer structure to handle
 - Uncertainty (caused by a lack of knowledge about specific parameters)
 - Inaccuracies (due to inevitable design and manufacturing tolerances)
 - Unavoidable external disturbances

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions 00 000000 00 0000 0 0000 0

Interval Sliding Mode Observer (1)

- Goal: extension of classical observer
 ⇒ simultaneous estimation of system states and identification of constant parameters
- Improved flexibility: more than just one switching amplitude (depends on number of outputs)
- Time-varying states and constant parameters are coupled
- New observer structure to handle
 - Uncertainty (caused by a lack of knowledge about specific parameters)
 - Inaccuracies (due to inevitable design and manufacturing tolerances)
 - Unavoidable external disturbances
- Interval variables for
 - Uncertain parameters
 - Disturbances
 - Measurement, estimation and control errors
 - \rightarrow Range description in which true values are located

ISMO 0000●0	Optimal Input Design 00		

Interval Sliding Mode Observer (2)

Classical Sliding Mode Observer

$$\dot{\hat{\mathbf{x}}} = \hat{\mathbf{A}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{B}} \cdot \mathbf{u} + \tilde{\mathbf{S}} h_s \operatorname{sign} \left(\mathbf{y} - \hat{\mathbf{C}} \hat{\mathbf{x}} \right) + \mathbf{H}_p \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$$

 Motivation
 ISMO
 Lyapunov Functions
 Optimal Input Design
 Experiment
 Results
 Conclusions

 00
 000000
 00
 0000
 0
 0000
 0

Interval Sliding Mode Observer (2)

Classical Sliding Mode Observer

$$\dot{\hat{\mathbf{x}}} = \hat{\mathbf{A}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{B}} \cdot \mathbf{u} + \tilde{\mathbf{S}} h_s \operatorname{sign} \left(\mathbf{y} - \hat{\mathbf{C}} \hat{\mathbf{x}} \right) + \mathbf{H}_p \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$$

Interval Sliding Mode Observer: description by the set of ODEs

$$\hat{\mathbf{x}}(t) = \mathbf{A} \left(\hat{\mathbf{x}}(t) \right) \cdot \hat{\mathbf{x}}(t) + \mathbf{B} \left(\hat{\mathbf{x}}(t) \right) \cdot \mathbf{u}(t) + \mathbf{H}_p \cdot \mathbf{e}_m(t) + \mathbf{P}^+ \cdot \mathbf{C} \left(\hat{\mathbf{x}}(t) \right) \cdot \mathbf{H}_s \cdot \operatorname{sign} \left(\mathbf{e}_m(t) \right)$$

 Motivation
 ISMO
 Lyapunov Functions
 Optimal Input Design
 Experiment
 Results
 Conclusions

 00
 000000
 00
 0000
 0000
 0
 0000
 0

Interval Sliding Mode Observer (2)

Classical Sliding Mode Observer

$$\dot{\hat{\mathbf{x}}} = \hat{\mathbf{A}} \cdot \hat{\mathbf{x}} + \hat{\mathbf{B}} \cdot \mathbf{u} + \tilde{\mathbf{S}} h_s \operatorname{sign} \left(\mathbf{y} - \hat{\mathbf{C}} \hat{\mathbf{x}} \right) + \mathbf{H}_p \left(\mathbf{y}_m - \hat{\mathbf{C}} \hat{\mathbf{x}} \right)$$

Interval Sliding Mode Observer: description by the set of ODEs

$$\hat{\mathbf{x}}(t) = \mathbf{A} \left(\hat{\mathbf{x}}(t) \right) \cdot \hat{\mathbf{x}}(t) + \mathbf{B} \left(\hat{\mathbf{x}}(t) \right) \cdot \mathbf{u}(t) + \mathbf{H}_p \cdot \mathbf{e}_m(t) + \mathbf{P}^+ \cdot \mathbf{C} \left(\hat{\mathbf{x}}(t) \right) \cdot \mathbf{H}_s \cdot \operatorname{sign} \left(\mathbf{e}_m(t) \right)$$

- $\bullet\,$ Matrices A, B, and C are now no longer assumed to be constant
- Difference between measured and estimated output $\mathbf{e}_m(t) = \left(\mathbf{y}_m(t) \hat{\mathbf{C}}\left(\hat{\mathbf{x}}(t)\right) \cdot \hat{\mathbf{x}}(t)\right)$
- Switching amplitude $\mathbf{H}_{s} = \operatorname{diag}\left(\mathbf{h}_{s}\right)$
- More than just one switching amplitude (depends on number of outputs)

Interval Sliding Mode Observer (3)

- Example: system with two states; angle φ and angular velocity $\omega = \frac{d}{d}\frac{\varphi}{t}$
- Goal: location of estimated states near sliding surface $\tilde{\mathbf{x}}=\mathbf{x}-\hat{\mathbf{x}}=\mathbf{0}$

Interval Sliding Mode Observer (3)

- Example: system with two states; angle φ and angular velocity $\omega = \frac{d}{d} \frac{\varphi}{t}$
- $\bullet\,$ Goal: location of estimated states near sliding surface $\tilde{\mathbf{x}}=\mathbf{x}-\hat{\mathbf{x}}=\mathbf{0}$

ISMO 000000	Lyapunov Functions	Optimal Input Design 00		

Motivation

2 ISMO

3 Lyapunov Functions

Optimal Input Design

5 Experiment

6 Results

7 Conclusions

Lyapunov Functions: Stability Proof (1)

- Calculation of observer gain \mathbf{H}_p for quasi-linear system part as a constant matrix for a fixed operating point
- On this basis: construction of a suitable Lyapunov function
- $\bullet\,$ Goal: ensure stability by online computation of the switching amplitude \mathbf{h}_s

Lyapunov function

$$V(t) = \frac{1}{2} \mathbf{e}(t)^T \mathbf{P} \mathbf{e}(t) > 0 \text{ with } \mathbf{e}(t) = \mathbf{x}(t) - \hat{\mathbf{x}}(t), \mathbf{P} = \mathbf{P}^T$$

Time derivative of the Lyapunov function

$$\dot{V}(t) = \mathbf{e}(t)^T \mathbf{P} \dot{\mathbf{e}}(t) = (\mathbf{x}(t) - \hat{\mathbf{x}}(t))^T \mathbf{P}(\dot{\mathbf{x}}(t) - \dot{\dot{\mathbf{x}}}(t))$$

 Motivation
 ISMO
 Lyapunov Functions
 Optimal Input Design
 Experiment
 Results
 Conclusions

 00
 0000000
 00
 00000
 0
 00000
 0

Lyapunov Functions: Stability Proof (2)

Time derivative of the Lyapunov function

$$\dot{V}(t) = \mathbf{e}(t)^T \mathbf{P} \dot{\mathbf{e}}(t) = (\mathbf{x}(t) - \hat{\mathbf{x}}(t))^T \mathbf{P}(\dot{\mathbf{x}}(t) - \dot{\dot{\mathbf{x}}}(t))$$

- \bullet Stability proof is successful if $\dot{V}(t) < 0$ holds
- \bullet Evaluation of $\dot{\mathbf{x}}(t)$ and $\dot{\hat{\mathbf{x}}}(t)$ in real-time for all possible parameters and states
- Intervals for parameters, control, estimation and measurement errors included

 Motivation
 ISMO
 Lyapunov Functions
 Optimal Input Design
 Experiment
 Results
 Conclusions

 00
 000000
 00
 0000
 0
 0000
 0

Lyapunov Functions: Switching Amplitude (1)

Reformulation of the time derivative of the Lyapunov function

$$\dot{V} = \mathbf{e}^{T} \mathbf{P} \cdot \left(\mathbf{f} - \hat{\mathbf{f}} - \mathbf{H}_{p} \mathbf{e}_{m} - \mathbf{P}^{+} \mathbf{C}^{T} \mathbf{H}_{s} \cdot \operatorname{sign}(\mathbf{e}_{m}) \right)$$

$$= \underbrace{\mathbf{e}^{T} \mathbf{P} \cdot \left(\mathbf{f} - \hat{\mathbf{f}} - \mathbf{H}_{p} \mathbf{e}_{m} \right)}_{\dot{V}_{a} \in \left[\dot{V}_{a}\right]} + \mathbf{h}_{s}^{T} \cdot \underbrace{\left(-\mathbf{C} \mathbf{P} \mathbf{P}^{+} \mathbf{C}^{T} \mathbf{C} \cdot \operatorname{diag}\{\mathbf{e}\} \cdot \operatorname{sign}(\mathbf{e}) \right)}_{\dot{\mathbf{V}}_{b} = -|\mathbf{e}_{m}(t)| \in -|[\mathbf{e}_{m}(t)]|}$$

- Matrix **P** results from solving the Lyapunov equation $\mathbf{A}_O \cdot \mathbf{P} + \mathbf{P} \cdot \mathbf{A}_O^T + \mathbf{Q} = \mathbf{0}$ with $\mathbf{A}_O = \hat{\mathbf{A}} - \mathbf{H}_p \cdot \hat{\mathbf{C}}$
- Worst-case bounds for the error vector ${\bf e}$ correspond to $[{\bf e}] = [{\bf x}_c] [{\bf x}_e]$
- $\dot{\mathbf{V}}_b = -|\mathbf{e}_m(t)|$ holds with $\mathbf{e}_m = \mathbf{C} \cdot \mathbf{e}$, if \mathbf{C} describes the direct measurement of state variables

	n ISMO 000000	Lyapunov Functions	Optimal Input Design 00						
Lyapunov Functions: Switching Amplitude (2)									
Calc	ulation of t	he switching a	mplitude						
$\dot{V} =$	$\dot{V}_a + \mathbf{h}_s^T \cdot \dot{\mathbf{V}}$	$V_b = \dot{V}_a - \mathbf{h}_s^T \cdot$	$ [\mathbf{e}_m] < 0$						
\mathbf{h}_{s}	= 0 ,	[•])	$\text{if } 0 \in \left \left[\mathbf{e}_m \right] \right ^T \right $	$[\mathbf{e}_m] $					
ل Two	$\mathbf{n}_{s} \left\{ \geq \sup\left([\mathbf{e}_{m}] ^{+} \cdot \left[\dot{V}_{a} \right] \right) , \text{ else} \right.$ Two cases because of denominator of interval pseudo inverse								

$$|[\mathbf{e}_m]|^+ = \left(|[\mathbf{e}_m]|^T |[\mathbf{e}_m]|\right)^{-1} |[\mathbf{e}_m]|^T \text{ with the}$$

interval $[\mathbf{e}_m] = \mathbf{e}_m(t) + [\Delta \mathbf{y}_m] \text{ and } \mathbf{e}_m(t) = \mathbf{y}_m(t) - \hat{\mathbf{y}}_m(t)$

 $\mathbf{h}_s = \mathbf{0}$, if

• $\mathbf{0} \in [\tilde{\mathbf{x}}] = [\mathbf{x}] - [\hat{\mathbf{x}}]$ or • $0 \in |[\mathbf{e}_m]|^T |[\mathbf{e}_m]|$

 \Rightarrow Corresponds to deactivation of the variable structure part \Rightarrow Continuous part $\dot{V}_a(t)$ has to stabilize the system

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions 00 0000000 00 000000 0 00000 0

Lyapunov Functions: Switching Amplitude (3)

- Online adaptation of the switching amplitude in each discretization step $t_{\boldsymbol{k}}$
- Iterative adjustment of \mathbf{h}_s as long as $\sup\left(\left[\dot{V}(t)\right]\right) > 0$
- Guaranteed stability proof with minimum noise amplification
- Avoids instabilities that might be caused by using a finite discretization period
- Euler discretization of $\dot{V}(t)$ and observer ODEs
- Reason: less time consuming in case of nonlinear high-dimensional processes than online evaluation of $\dot{V}_a(t)$ in which **f** and $\hat{\mathbf{f}}$ have to be calculated separately

Motivation ISMO Lyapunov Functions Optimal Input Design Experiment Results Conclusions of occord of o

Lyapunov Functions: Switching Amplitude (4) If $0 \notin |[\mathbf{e}_m]|^T |[\mathbf{e}_m]|$: Overapproximation of \dot{V} by Euler discretization

$$\dot{V}(t_{k+1}) \in \left[\dot{V}(t_{k+1})\right] = \left[\mathbf{e}(t_{k+1})\right]^T \mathbf{P} \left[\dot{\mathbf{e}}(t_{k+1})\right]$$

$$\left[\mathbf{e}(t_k)\right] = \left[\mathbf{x}_c\right] - \left[\mathbf{x}_e\right] \text{ with } \left[\mathbf{x}_c\right] = \left[\left[\varphi_c\right] \quad \left[\omega_c\right]\right]^T \text{ and } \left[\mathbf{x}_e\right] = \left[\left[\varphi_e\right] \quad \left[\omega_e\right]\right]^T$$

$$\left[\mathbf{e}(t_{k+1})\right] = \left[\mathbf{x}(t_{k+1})\right] - \left[\hat{\mathbf{x}}(t_{k+1})\right] + \left[\mathbf{x}_e\right]$$

$$\left[\dot{\mathbf{e}}(t_{k+1})\right] = \frac{\left[\mathbf{e}(t_{k+1})\right] - \left[\mathbf{e}(t_k)\right]}{T}$$

$$\mathbf{x}(t_{k+1}) \in \mathbf{x}(t_k) + T \cdot \left[\dot{\mathbf{x}}(t_k)\right]$$

$$\hat{\mathbf{x}}(t_{k+1}) \in \hat{\mathbf{x}}(t_k) + T \cdot \left[\dot{\mathbf{x}}(t_k)\right]$$

- discretization errors are assumed to be small enough \Rightarrow higher order terms for calculation of $\mathbf{x}(t_{k+1})$ and $\hat{\mathbf{x}}(t_{k+1})$ omitted
- sampling time: T = 1 ms

ISMO 000000	Lyapunov Functions 000000●0	Optimal Input Design 00		

Lyapunov Functions: Switching Amplitude (5)

$$\mathbf{h}_{s} \begin{cases} = \mathbf{0} , & \text{if } 0 \in |[\mathbf{e}_{m}]|^{T} |[\mathbf{e}_{m}]|, \ \sup \begin{bmatrix} \dot{V}(t_{k+1}) \\ \dot{V}(t_{k+1}) \end{bmatrix} < 0 \\ = \text{adaptive scheme}^{2} , & \text{if } 0 \in |[\mathbf{e}_{m}]|^{T} |[\mathbf{e}_{m}]|, \ \sup \begin{bmatrix} \dot{V}(t_{k+1}) \\ \dot{V}(t_{k+1}) \end{bmatrix} > 0 \\ \ge \sup \left(|[\mathbf{e}_{m}]|^{+} \cdot \left[\dot{V}(t_{k+1}) \right] \right) , \quad \text{else} \end{cases}$$

²Heuristic for calculation of switching amplitude in such a way that \mathbf{h}_s is adapted as long as $\sup\left(\left[\dot{V}(t_{k+1})\right]\right) > 0 \rightarrow \mathbf{h}_s$ as small as possible

²Senkel, Luise; Rauh, Andreas; Aschemann, Harald: *Interval-Based Sliding Mode Observer Design for Nonlinear Systems with Bounded Measurement and Parameter Uncertainty*, IEEE Intl. Conference on Methods and Models in Automation and Robotics MMAR 2013, Miedzyzdroje, Poland, 2013. Accepted.

Lyapunov Functions: Extensions

Extension 1: Guarantee minimum convergence rate for measured quantities

$$\dot{V}(t) < -\mathbf{e}_{m}(t)^{T} \cdot \mathbf{Q} \cdot \mathbf{e}_{m}(t) < 0, \ \mathbf{Q} > 0$$

$$\mathbf{h}_{s} \begin{cases} = \mathbf{0} , & \text{if } 0 \in |[\mathbf{e}_{m}]|^{T} |[\mathbf{e}_{m}]| \\ \geq \sup \left(|[\mathbf{e}_{m}]|^{+} \cdot \left(\left[\dot{V}_{a} \right] + |[\mathbf{e}_{m}]|^{T} \mathbf{Q} |[\mathbf{e}_{m}]| \right) \right), & \text{else} \end{cases}$$

ISMO 000000	Lyapunov Functions	Optimal Input Design		

Lyapunov Functions: Extensions

Extension 1: Guarantee minimum convergence rate for measured quantities

$$\dot{V}(t) < -\mathbf{e}_{m}(t)^{T} \cdot \mathbf{Q} \cdot \mathbf{e}_{m}(t) < 0, \ \mathbf{Q} > 0$$

$$\mathbf{h}_{s} \begin{cases} = \mathbf{0} , & \text{if } 0 \in |[\mathbf{e}_{m}]|^{T} |[\mathbf{e}_{m}]| \\ \geq \sup \left(|[\mathbf{e}_{m}]|^{+} \cdot \left(\left[\dot{V}_{a} \right] + |[\mathbf{e}_{m}]|^{T} \mathbf{Q} |[\mathbf{e}_{m}]| \right) \right), & \text{else} \end{cases}$$

Extension 2: Guarantee minimum convergence rate for vector of estimated variables

$$\dot{V}(t) < -\mathbf{e}(t)^{T} \cdot \mathbf{Q} \cdot \mathbf{e}(t) < 0, \ \mathbf{Q} > 0$$

$$\mathbf{h}_{s} \begin{cases} = \mathbf{0} , & \text{if } 0 \in |[\mathbf{e}_{m}]|^{T} |[\mathbf{e}_{m}] \\ \geq \sup \left(|[\mathbf{e}_{m}]|^{+} \cdot \left(\left[\dot{V}_{a} \right] + |[\mathbf{e}]|^{T} \mathbf{Q} |[\mathbf{e}]| \right) \right), & \text{else} \end{cases}$$

ISMO	Lyapunov Functions	Optimal Input Design		
	0000000			

Lyapunov Functions: Extensions

Extension 2: Guarantee minimum convergence rate for vector of estimated variables

$$\dot{V}(t) < -\mathbf{e}(t)^{T} \cdot \mathbf{Q} \cdot \mathbf{e}(t) < 0, \ \mathbf{Q} > 0$$

$$\mathbf{h}_{s} \begin{cases} = \mathbf{0} , & \text{if } 0 \in |[\mathbf{e}_{m}]|^{T} |[\mathbf{e}_{m}] \\ \geq \sup \left(|[\mathbf{e}_{m}]|^{+} \cdot \left(\left[\dot{V}_{a} \right] + |[\mathbf{e}]|^{T} \mathbf{Q} |[\mathbf{e}]| \right) \right), & \text{else} \end{cases}$$

Extension 3: Linear weighting of the estimation errors

$$\begin{split} \dot{V}(t) &< -\mathbf{q}^T \cdot |\mathbf{e}_m| < 0, \text{ component-wise strictly positive vector } \mathbf{q} \\ \mathbf{h}_s \begin{cases} = \mathbf{0} &, & \text{if } 0 \in |[\mathbf{e}_m]|^T |[\mathbf{e}_m]| \\ \geq \sup \left(|[\mathbf{e}_m]|^+ \cdot \left[\dot{V}_a \right] \right) + \mathbf{q}^T , & \text{else} \end{cases} \end{split}$$

ISMO 000000	Optimal Input Design ●○		

Motivation

2 ISMO

3 Lyapunov Functions

Optimal Input Design

5 Experiment

6 Results

ISMO 000000	Optimal Input Design ●○		

- Goal: Improve observability of the system by a suitable excitation of the system dynamics
- Reason: Some system parameters are slowly varying (e.g. friction coefficient)
- States (angle, angular velocity etc.) vary faster than parameters
- Use of Pontryagin's Maximum Principle³ to find optimal inputs which maximize the deviation between nominal and disturbed system outputs

³Senkel, Luise; Rauh, Andreas; Aschemann, Harald: *Optimal Input Design for Online State and Parameter Estimation using Interval Sliding Mode Observers*, 52nd IEEE Conference on Decision and Control CDC 2013, Firenze, Italy, 2013. Under review.

Optimal Input Design for Trajectory Planning (2) Pontryagin's Maximum Principle

- v leads to parameterization of driving cycle in the experiment
- \tilde{u} smooth virtual input

 $u = \ddot{\varphi}_d$ actual bounded (optimal) input

Goal: Minimize J by maximization of the deviation between x_N and x_D in f_0

ISMO 000000	Optimal Input Design 00	Experiment ●000	

Motivation

2 ISMO

3 Lyapunov Functions

Optimal Input Design

5 Experiment

6 Results

 Motivation
 ISMO
 Lyapunov Functions
 Optimal Input Design
 Experiment
 Results
 Conclusions

 00
 000000
 00
 00000
 0
 00000
 0

Experimental Setup: Test Rig (1)

- Motor torque M_M , braking torque M_B
- Angular velocity of the motor ω_M
- Measured angles $\varphi_{M,m}$ as well as $\varphi_{B,m}$
- J_{rot} contains all mass moments of inertia $J_{DS,M}$, $J_{DS,B}$, J_M with respect to the driving shaft
- Braking represents a disturbance, that is identified by the observer

ISMO 000000	Optimal Input Design 00	Experiment 0●00	

Experimental Setup: Test Rig (2)

System model

• ODE
$$J_{rot} \cdot \dot{\omega}_M = M_M - M_B$$

- Motor torque (underlying control for the angle φ_M) $M_M = K_2 \cdot (\dot{\varphi}_{M,d} - \dot{\varphi}_M) + K_1 \cdot (\varphi_{M,d} - \varphi_M)$, desired angle $\varphi_{M,d}$, controller gains K_1 and K_2 (chosen by pole placement)
- Braking torque $M_B = k_{D_2} \cdot \omega_B$

• Transmission ratio
$$k = rac{\omega_M}{\omega_B}$$

ISMO 000000	Optimal Input Design 00	Experiment 00●0	

Experimental Setup: Test Rig (3)

System Model (φ_M angle of rotation of the motor shaft)

$$\mathbf{f}_{N} = \begin{bmatrix} \dot{x}_{N1} \\ \dot{x}_{N2} \end{bmatrix} = \begin{bmatrix} \dot{\varphi}_{M} \\ \dot{\omega}_{M} \end{bmatrix} = \begin{bmatrix} \omega_{M} \\ \alpha \cdot \omega_{M} + \beta \cdot M_{M} \end{bmatrix}$$

Task for Interval Sliding Mode Observer

- Estimate states φ_M and ω_M
- Identify parameters $\alpha = -\frac{k_D}{J_{rot}}$ and $\beta = \frac{1}{J_{rot}}$ with $k_D = k_{D_1} + \frac{k_{D_2}}{k}$
- Unknown parameters: velocity-proportional friction k_{D_1} and mass moment of inertia J_{rot}
- Braking resistance k_{D_2} (defined by pure feedforward control)
- Software implementation: Interface between MATLAB SIMULINK and C-XSC with Labview NI Simulation Interface Toolkit

 Motivation
 ISMO
 Lyapunov Functions
 Optimal Input Design
 Experiment
 Results
 Conclusions

 00
 000000
 00
 000●
 00000
 0

Experimental Setup: Test Rig (4)

System model (φ_M angle of rotation of the motor shaft)

$$\mathbf{f}_{N} = \begin{bmatrix} \dot{x}_{N1} \\ \dot{x}_{N2} \end{bmatrix} = \begin{bmatrix} \dot{\varphi}_{M} \\ \dot{\omega}_{M} \end{bmatrix} = \begin{bmatrix} \omega_{M} \\ \alpha \cdot \omega_{M} + \beta \cdot M_{M} \end{bmatrix}$$

Assumptions

- Static friction is assumed to be negligibly small
- Implementation using a cascaded observer⁴: 2 subsystems
 - ▶ First subsystem estimates φ_M and its derivatives \rightarrow serves as virtual generator of measurements for second subsystem
 - \blacktriangleright Second subsystem determines the parameters α and β

⁴Senkel, Luise; Rauh, Andreas; Aschemann, Harald: *Interval-Based Sliding Mode Observer Design for Nonlinear Systems with Bounded Measurement and Parameter Uncertainty*, IEEE Intl. Conference on Methods and Models in Automation and Robotics MMAR 2013, Miedzyzdroje, Poland, 2013. Accepted.

ISMO 000000	Optimal Input Design 00	Results ●0000	

Motivation

2 ISMO

- 3 Lyapunov Functions
- Optimal Input Design

5 Experiment

Conclusions

Optimal input trajectory for desired angular acceleration $\ddot{\varphi}_{M,d}$

smooth trajectory, no steps, saturation limits

Results: Parameter Identification - Simulation

nominal parameters: $\alpha = -0.2$ and $\beta = 1$

(a) Estimate $\hat{\alpha}$ with ISMO. (b) Estimate $\hat{\alpha}$ with Classical SMO. \rightarrow shorter transient phases with ISMO than with classical sliding mode observer

Results: Parameter Identification - Simulation

nominal parameters: $\alpha = -0.2$ and $\beta = 1$

(c) Estimate $\hat{\beta}$ with ISMO. (d) Estimate $\hat{\beta}$ with Classical SMO. \rightarrow shorter transient phases with ISMO than with classical sliding mode observer

Results: Parameter Identification - Experiment

- Drive cycle length:
 - $t_f = 6s$
- 100 repetitions
- 2 experiments

Nominal parameters (identified by open-loop control, step response analysis): $\alpha = -1.3667$ and $\beta = 166.6667$

Results: Parameter Identification - Experiment

- Drive cycle length: $t_f = 6s$
- 100 repetitions
- 2 experiments

ISMO detects deviations from nominal parameters \rightarrow possible reasons:

- Phases with sliding friction play major role
- Necessity for a refined control strategy of the test rig
- Thermal dependency of braking resistance k_{D_2} ?
- Delayed responding behavior of brake?

ISMO 000000	Optimal Input Design 00		Conclusions •

Motivation

2 ISMO

- 3 Lyapunov Functions
- Optimal Input Design

5 Experiment

6 Results

ISMO 000000	Optimal Input Design 00		Conclusions •

Conclusions and Outlook

Conclusion

- Interval sliding mode observer, validated in simulation and experiment
- Identify unknown system parameters, estimate state variables

Outlook on further work

- Third parameter: static friction
- Implementation of extensions for Lyapunov functions
- Closed control loop for reliable compensation of disturbances (e.g. static and sliding friction)
- Combination with linear matrix inequalities (LMIs) for quasi-linear part of the observer
- Experimental validation of interval sliding mode observer for other real-time applications

ISMO 000000	Optimal Input Design 00		

Thank you for your attention!

$$\dot{V} = \mathbf{e}^T \mathbf{P} \dot{\mathbf{e}} = \mathbf{e}^T \mathbf{P} \cdot \left(\mathbf{f} - \hat{\mathbf{f}} - \mathbf{H}_p \mathbf{e}_m - \mathbf{P}^+ \mathbf{C}^T \mathbf{H}_s \cdot \operatorname{sign}(\mathbf{e}_m) \right)$$
$$\dot{V} = \mathbf{e}^T \mathbf{P} \cdot \left(\mathbf{f} - \hat{\mathbf{f}} - \mathbf{H}_p \mathbf{e}_m \right) - \mathbf{e}^T \mathbf{P} \cdot \left(\mathbf{P}^+ \mathbf{C}^T \mathbf{H}_s \cdot \operatorname{sign}(\mathbf{e}_m) \right)$$

with $\mathbf{P}\mathbf{P}^+=\mathbf{I}$ and

$$\mathbf{e}^{T} \cdot \mathbf{C}^{T} \cdot \mathbf{H}_{s} \cdot \operatorname{sign}(\mathbf{e}_{m})$$

$$= \mathbf{e}^{T} \cdot \mathbf{C}^{T} \cdot \begin{bmatrix} h_{s,1} \cdot \operatorname{sign}(e_{m,1}) & 0 & \cdots & 0 \\ 0 & h_{s,2} \cdot \operatorname{sign}(e_{m,2}) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & h_{s,n} \cdot \operatorname{sign}(e_{m,n}) \end{bmatrix}$$

$$= \mathbf{h}_{s}^{T} \cdot \mathbf{C} \cdot \mathbf{C}^{T} \cdot \mathbf{C} \cdot \operatorname{diag}(\mathbf{e}) \cdot \operatorname{sign}(\mathbf{e})$$
follows to
$$\dot{V} = \underbrace{\mathbf{e}^{T} \mathbf{P} \cdot \left(\mathbf{f} - \hat{\mathbf{f}} - \mathbf{H}_{p} \mathbf{e}_{m}\right)}_{\dot{V}_{a} \in [\dot{V}_{a}]} + \mathbf{h}_{s}^{T} \cdot \underbrace{\left(-\mathbf{CPP^{+}C^{T}C \cdot \operatorname{diag}\{\mathbf{e}\} \cdot \operatorname{sign}(\mathbf{e})\right)}_{\dot{V}_{b} = -|\mathbf{e}_{m}(t)| \in -|[\mathbf{e}_{m}(t)]|}$$

Structure diagram of the guaranteed stabilizing parameterization of the variable-structure observer with a generalization according to $|[\mathbf{e}_m]|^* := \left(\left[\delta; \sup\left(|[\mathbf{e}_m]|^T |[\mathbf{e}_m]|\right)\right]\right)^{-1} \cdot |[\mathbf{e}_m]|^T$ with $[\epsilon] = [-\epsilon; \epsilon]$, $\epsilon > 0$ and $\delta > 0$

Structure of the Cascaded Observer

Estimation of states: angle, angular velocity, angular acceleration, third derivative of angular, model error of subsystem 1

Structure of the Cascaded Observer

- Goal: Improve observability of the system by a suitable excitation of the dynamics
- Reason: Some system parameters are slowly varying (e.g. friction coefficient)
- States (angle, angular velocity etc.) vary faster than parameters

- Goal: Improve observability of the system by a suitable excitation of the dynamics
- Reason: Some system parameters are slowly varying (e.g. friction coefficient)
- States (angle, angular velocity etc.) vary faster than parameters

Pontryagin's Maximum Principle

- Goal: Improve observability of the system by a suitable excitation of the dynamics
- Reason: Some system parameters are slowly varying (e.g. friction coefficient)
- States (angle, angular velocity etc.) vary faster than parameters

Pontryagin's Maximum Principle

- System of ODEs $\dot{\boldsymbol{\eta}} = \begin{bmatrix} \dot{\mathbf{x}}_N & \dot{\mathbf{x}}_D & \dot{\hat{u}} \end{bmatrix}^T = \begin{bmatrix} \mathbf{f}_N^T (\mathbf{x}_N, u) & \mathbf{f}_D^T (\mathbf{x}_D, u) & v \end{bmatrix}^T$
- State vector of a system \mathbf{f}_N with nominal parameters and states \mathbf{x}_N
- State vector of a system \mathbf{f}_D with disturbed parameters and states \mathbf{x}_D
- dim $\{\mathbf{x}_N\} = dim\{\mathbf{x}_D\}$
- Integrator $\dot{\hat{u}}=v$ guarantees smooth, bounded control inputs $u=\bar{u}\cdot {\rm tanh}(\tilde{u})$

Pontryagin's Maximum Principle

- Cost function $J = \int f_0 dt$
- Integrand $f_0 = \frac{1}{\left(x_{N1} x_{D1}\right)^2 + 1} + \gamma_1 \cdot u^2 \gamma_2 \cdot \left(\tanh\left(\frac{x_{N2}}{\epsilon}\right) 1\right)$
- Hamiltonian $H=-f_0+\pmb{\xi}^T\cdot \dot{\pmb{\eta}}$ to be minimized over the interval $t\in[0\ ;\ t_f]$
- Co-state vector $\boldsymbol{\xi}$
- Slope parameter $\epsilon > 0$
- Penalty terms γ_1 (weighting factor for the system input) as well as γ_2 (preventing the velocity from being negative)

Optimal Input Design for Trajectory Planning⁴

Pontryagin's Maximum Principle

- Setting the derivative $\frac{\partial H}{\partial v}=0$, leads to the optimal input v^*
- canonical equations \mathbf{g}_{ca} with the optimal input v^* are then defined as $\mathbf{g}_{ca} \left(v^* \right) = \left[\dot{\boldsymbol{\eta}}^T , - \left(\frac{\partial H}{\partial \boldsymbol{\eta}} \right)^T \Big|_{(v=v^*)} \right]^T =: \left[\dot{\boldsymbol{\eta}}^T , \dot{\boldsymbol{\xi}}^T \right]^T$
- Initial and terminal conditions $oldsymbol{\eta}(0)$, $\mathbf{x}_N(t_f)$ and $ilde{u}(t_f)$
- Free terminal conditions $\mathbf{x}_D(t_f)$
- \bullet Solving set of canonical equations by ${\rm MATLAB}$ algorithm bvp4c
- Resulting input trajectory u

⁴Senkel, Luise; Rauh, Andreas; Aschemann, Harald: *Optimal Input Design for Online State and Parameter Estimation using Interval Sliding Mode Observers*, 52nd IEEE Conference on Decision and Control CDC 2013, Firenze, Italy, 2013. Under review.