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Motivation: Termination Proof

Given: program of the form

while P(x) do
x ← f (x)

where

I x ∈ Rn (cf. Fn, Zn)

I f is given by an expression (e.g., (x , y) 7→ (x2 + sin y , x + 2y))

I {x | P(x)} is compact (i.e., closed, bounded)

Prove: terminates always.
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I There is no infinite sequence x1, . . . , s.t.
for all i , xi+1 = f (xi ), P(xi ) or, equivalently

I for every infinity sequence x1, . . . , s.t. for all i , xi+1 = f (xi ),
there is j s.t. ¬P(xj)
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Further Motivation: ODE

Instead of program, ODE ẋ = f (x)

Prove that it cannot stay forever in set {x | P(x)}

In other words:
Prove that it eventually always reaches set {x | ¬P(x)}.

see also Luc’s talk

Rest of talk: program termination, for ODE’s only slight changes.
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Method
Find continuous function V (x) s.t.

∀x [P(x) ⇒ V (f (x)) ≤ V (x)− ε],

for some ε > 0

Then:
I If loop would not terminate,
I then V (x) would go to −∞,
I which cannot happen since due to compactness of {x | P(x)},
{V (x) | P(x)} is bounded from below

How to find such a V (x)?

Pattern polynomial, for example:

V (a1, a2, a3, x1, x2) = a1x3
1x2 + a2x2

1 + a3x2
2

Find a (i.e., for example, a1, a2, a3) s.t.

∀x [P(x) ⇒ V (a, f (x)) ≤ V (a, x)− ε]
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How to Solve Quantified Problem

∀x [P(x) ⇒ V (a, f (x)) ≤ V (a, x)− ε]

A. Tarski (30ies): always possible in polynomial case (in theory)

But: related algorithms (e.g., quantifier elimination by cylindrical
algebraic computation) not efficient enough

Interval branch-and-bound techniques
(http://rsolver.sourceforge.net)

Goal: special method that exploits problem structure?

Which one?

V (a1, a2, a3, x1, x2) = a1x3
1x2 + a2x2

1 + a3x2
2

linear in parameters a1, a2, a3
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∀x [P(a, x) ⇒ V (a, f (x)) ≤ V (a, x)− ε]
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Reduction to Linear Programming

∀x ∈ B [V (a, f (x)) ≤ V (a, x)− ε]

Then: substitute intervals given by B for x

So from
a1xα1

1 + · · ·+ anxαn
n ≤ ε

to
I1a1 + · · ·+ Inan ≤ ε

(system of) linear inequalities with interval coefficients

Task: find a1, . . . , an s.t.
for all elements of intervals, inequality holds.

Lossless reduction to linear progr. [Rohn and Kreslová, 1994].

May lose solvability (over-approximation in interval substitution)
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Regaining Solvability/Dependence
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Regaining Solvability/Dependence

Split B into B1,B2 and

rewrite

∀x ∈ B [V (a, f (x)) ≤ V (a, x)− ε]

to
∀x ∈ B1 [V (a, f (x)) ≤ V (a, x)− ε] ∧
∀x ∈ B2 [V (a, f (x)) ≤ V (a, x)− ε]

Each box: interval linear inequality

So: system of interval linear inequalities

Iterate splitting until solved
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Example


ẋ1 = −x2

ẋ2 = −x3

ẋ3 = −x1 − 2x2 − x3 + x3
1

V (x1, x2, x3) = ax2
1 + bx2

2 + cx2
3 + dx1x2 + ex1x3 + fx2x3,

B = [−0.2, 0.2]× [−0.2, 0.2]× [−0.2, 0.2]\
(−0.1, 0.1)× (−0.1, 0.1)× (−0.1, 0.1)

V (x1, x2, x3) = x2
1 + 0.494353826851x2

2 + 0.505646173149x2
3 +

−1.0112923463x1x3 + 0.0225846925972x2x3.

11 / 19



Intermediate Summary

I loop termination/ODE leaves region

I find function V (x)

I choose pattern polynomial V (a, x), find a

I system of interval linear inequalities

I split/iterate

We could also iteration on pattern polynomial (increase degree)

12 / 19



Intermediate Summary

I loop termination/ODE leaves region

I find function V (x)

I choose pattern polynomial V (a, x), find a

I system of interval linear inequalities

I split/iterate

We could also iteration on pattern polynomial (increase degree)

12 / 19



Intermediate Summary

I loop termination/ODE leaves region

I find function V (x)

I choose pattern polynomial V (a, x), find a

I system of interval linear inequalities

I split/iterate

We could also iteration on pattern polynomial (increase degree)

12 / 19



Intermediate Summary

I loop termination/ODE leaves region

I find function V (x)

I choose pattern polynomial V (a, x), find a

I system of interval linear inequalities

I split/iterate

We could also iteration on pattern polynomial (increase degree)

12 / 19



Intermediate Summary

I loop termination/ODE leaves region

I find function V (x)

I choose pattern polynomial V (a, x), find a

I system of interval linear inequalities

I split/iterate

We could also iteration on pattern polynomial (increase degree)

12 / 19



Intermediate Summary

I loop termination/ODE leaves region

I find function V (x)

I choose pattern polynomial V (a, x), find a

I system of interval linear inequalities

I split/iterate

We could also iteration on pattern polynomial (increase degree)

12 / 19



Intermediate Summary

I loop termination/ODE leaves region

I find function V (x)

I choose pattern polynomial V (a, x), find a

I system of interval linear inequalities

I split/iterate

We could also iteration on pattern polynomial (increase degree)

12 / 19



Splitting Heuristics (joint work with Milan Hlad́ık)

Problem: blind equi-distant splitting

Goal: make system solvable with only a few splits.

That is: system of linear interval inequalities M Ia ≤ q

Not solvable, i.e., no a such that for all M ∈ M I , Ma ≤ q

Splits shrink intervals in M I , which one to shrink?
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Which Interval in M I to Shrink?

Rewrite (well known):

∀M ∈ M I Ma ≤ q

∀M ∈ [Mc −M4,Mc + M4] Ma ≤ q

∀M ∈ [−M4,M4] Ma ≤ q −Mca

M4|a| ≤ q −Mca

Choose an a close to expected solution

Evaluate both sides

Choose split that improves worst violation the most
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I Exists

I No systematic computational experiments of splitting
heuristics, yet

I Heuristics improve run-time several times

I Largest examples: dimension 6

15 / 19



Implementation

I Exists

I No systematic computational experiments of splitting
heuristics, yet

I Heuristics improve run-time several times

I Largest examples: dimension 6

15 / 19



Implementation

I Exists

I No systematic computational experiments of splitting
heuristics, yet

I Heuristics improve run-time several times

I Largest examples: dimension 6

15 / 19



Implementation

I Exists

I No systematic computational experiments of splitting
heuristics, yet

I Heuristics improve run-time several times

I Largest examples: dimension 6

15 / 19



Implementation

I Exists

I No systematic computational experiments of splitting
heuristics, yet

I Heuristics improve run-time several times

I Largest examples: dimension 6

15 / 19



General Algorithm

Find a1, . . . , ar s.t.

n∧
i=1

∀x1, . . . , xs ∈Bi . φi (a1, . . . , ar , x1, . . . xs)

where

I each Bi is a box in Rs

I each of the φ1, . . . , φm is a Boolean combination of
inequalities where

I only one of those inequalities contains a variable x1, . . . , xs and
I this one inequality contains those variables only linearly.
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Conclusion: Vision

Completely automatize Luc :-)

Automatic, verified, global analysis of dynamical system

Sub-problems:

computer programs ODEs

termination leaves region

invariant sets invariant sets

objects

V(x)

barrier

Infrastructure: solver for quantified constraints
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