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n Interaction discrete 
     + continuous dynamics

n Safety-critical 
     embedded systems

n Networked 
     autonomous systems

Hybrid Cyber-Physical Systems



nVerification
l Numerical proof 
l Falsification via counter-example

Hybrid Cyber-Physical Systems



nModelling → hybrid automaton (Alur, et al. 1995)
l Non-linear continuous dynamics 
l Bounded uncertainty

Continuous dynamics

Discrete dynamics

l

x ∈ Inv(l)

l′

x′ ∈ Inv(l′)

e : g(x) ≥ 0

ẋ′ ∈ Flow(l′, x′)

x′ = r(e, x)

ẋ ∈ Flow(l, x)

x ∈ Init(l)

Hybrid Cyber-Physical Systems



nVerification
lModelling : 
lProperty specification : 

lVerification algorithm : 
lHybrid / Continuous reachability 

l

x ∈ Inv(l)

l′

x′ ∈ Inv(l′)

e : g(x) ≥ 0

ẋ′ ∈ Flow(l′, x′)

x′ = r(e, x)

ẋ ∈ Flow(l, x)

x ∈ Init(l)

Hybrid Cyber-Physical Systems

Forbidden
Target



n Hybrid reachability analysis 

lVerification
lSynthesis
lSet-theoretic estimation

Hybrid Cyber-Physical Systems

Forbidden
Target



nContinuous reachability 

l Set integration
l Interval Taylor methods
l Bracketing enclosures 

Hybrid Cyber-Physical Systems



nContinuous reachability 

l Set integration
l Interval Taylor methods
l Bracketing enclosures 

Hybrid Cyber-Physical Systems



nHybrid reachability
l Continuous reachability
l Guard conditions, jumps & resets

Hybrid Cyber-Physical Systems



n Verification : 
l Reachability of a forbidden area

Verification of Hybrid Systems

Forbidden



lAircraft trafic control  [Tomlin, et al.] 

disturbance  

Reachable
sets  

Time  

Collision possible !

Verification of Hybrid Systems



Verification 

nBounded Model Checking 
lCan the system reach an unsafe state 

within  k (discrete or continuous) transition steps ?
lCheck satisfiability of a SAT Mod ODE formula
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n SAT mod ODE
lModel:    init               "  definition of variables.

               trans[k,k+1] "  transition dynamics.
lProperty: prop
lSAT solvers check the following formulas: 

      init ∧ ¬prop
      init ∧ trans[0,1] ∧ ¬prop
      init ∧ trans[0,1] ∧ trans[1,2] ∧ ¬prop
      init ∧ trans[0,1] ∧ trans[1,2] ∧ trans[2,3] ∧ ¬prop ... 

lIf one formula is satisfiable "  Property is violated !

Verification 



n Example : 2-tanks system

Verification 



n Example : 2-tanks system

Verification 



E non reachable from D. [Eggers, Ramdani, Nedialkov, Fränzle, 2011]
iSAT-ODE: Proof in  260s CPU 2.4 GHz AMD Opteron 

Verification 



Region stability

nProof: a trajectory starting in A, 
stays in A during

nSAT mod ODE formula
Target : 
Non reached at 
or left A during 

n If UNSAT, reccurrence, 
time-invariance, infinite time property.

[Podelski et Wagner, 2007] [Eggers, Ramdani, Nedialkov, Fränzle, 2011]  



[Eggers, Ramdani, Nedialkov, Fränzle, 2011] 
iSAT-ODE: proof in 150s CPU 2.4 GHz AMD Opteron 

Region stability
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Nonlinear Set Integration

n Guaranteed set integration with Taylor methods
l(Moore,66) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

Interval Taylor Methods

Guaranteed set integration with Taylor methods
(Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

ẋ(t) = f (x,p, t), t0 ≤ t ≤ tN , x(t0) ∈ [x0] , p ∈ [p]

Time grid → t0 < t1 < t2 < · · · < tN

[xj ] [xj+1]

actual solution x!

a priori [x̃j ]

Proof of existence

Yield a priori solution [x̃j ] : ∀τ ∈ [tj , tj+1] x(τ) ∈ [x̃j ]
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Real arithmetic operations are extended to intervals
(Moore, 1966). Consider an operator ◦ ∈ {+;−; ∗; =} and
[a], [b] two intervals, then

[a] ◦ [b] = {x ◦ y | x∈ [a]; y∈ [b]}: (2)

The width of an interval [a] is de!ned by w(a) = "a− a,
and its midpoint by m(a) = ( "a+ a)=2.
An interval vector is a vector with interval components,

the set of n-dimensional real interval vectors is denoted by
IRn. An interval matrix is a matrix with interval components.
The set of n×m real interval matrices is denoted by IRn×m.
The widthw(:) of an interval vector (or of an interval matrix)
is the maximum of the widths of its interval components.
The midpoint m(:) of an interval matrix (resp. an interval
vector) is a matrix (resp. a vector) composed of the midpoint
of its interval components.
Classical operations for interval vectors (resp. interval

matrices) are direct extensions of the same operations for
punctual vectors (resp. punctual matrices) (for more details,
see: Moore, 1966; Neumaier, 1990; Jaulin et al., 2001).
Let f :Rn → Rm, the range of the function f over an

interval vector [a] is given by

f([a]) = {f(x) | x∈ [a]}: (3)

The interval function [f] from IRn to IRm is an inclusion
function for f if

∀[a]∈ IRn; f([a]) ⊆ [f]([a]): (4)

An inclusion function of f can be obtained by replacing
each occurrence of a real variable by its corresponding in-
terval and by replacing each standard function by its interval
evaluation. Such a function is called the natural inclusion
function. In practice the inclusion function is not unique, it
depends on how f is written.
For the sake of brevity, the same notation will be used for

the ranges of the used functions and their inclusion functions.

4. Validated integration of ordinary di!erential equations
using Taylor expansions

Consider the following equation:

ẋ = f(x(t)); x(t0)∈ [x0]; (5)

where the function f is assumed to be at least k-times con-
tinuously di#erentiable in a domain D ⊆ Rn. Interval arith-
metic is used to compute guaranteed bounds for the solution
of (5) at the sampling times {t1; t2; : : : ; tN}. The most e#ec-
tive methods to solve such a problem are based on Taylor
expansions (for more details see Moore, 1966; Nedialkov
et al., 1999; Rihm, 1994). These methods consist in two
parts: they !rst verify existence and uniqueness of the so-
lution using the !xed point theorem and the Picard–Lin-
del$of operator (Moore, 1966; Rihm, 1994) and compute an a
priori enclosure [x̃j] such that x(t)∈ [x̃j] for all t ∈ [tj; tj+1].

In the second part, the solution of (5) at tj+1 is computed
using a Taylor expansion, where [x̃j] is used to compute the
remainder term (Berz, Makino, & Hoefkens, 2001; Moore,
1966; Nedialkov et al., 1999; Rihm, 1994).
Moore (1966) uses the Picard–Lindel$of operator in order

to derive a formula for computing the a priori set [x̃j]:

[x̃j] = [xj] + [0; h]f([xj]); (6)

where h denotes the integration step (h= tj+1 − tj).
In practice, the set computed by (6) will often fail to

contain the true solution (Nedialkov, 1999); consequently,
the classical technique used consists in in%ating [x̃j] until
it veri!es the following inclusion (Nedialkov, Jackson, &
Pryce, 2001):

[xj] + [0; h]f([x̃j]) ⊆ [x̃j]: (7)

This method is summarized in the following algorithm.

Algorithm. enclosure (in: [xj], !, out: [x̃j])

[x̃j] = [xj];

while ([xj] + [0; h]f([x̃j]) ⊆ [x̃j])

[x̃j] = in%ate ([x̃j]; !) (with !¿ 0):

The in%ate function for an interval vector [x] =
([x1; "x1]; : : : ; [xN ; "xN ])T consists in in%ating all its compo-
nents, as follows:

([(1− !)x1; (1 + !) "x1]; : : : ; [(1− !)xN ; (1 + !) "xN ])T: (8)

The accuracy of the computed set [x̃j] depends on the coef-
!cient !.
If the set [x̃j] satis!es inclusion (7), then the inclusion

x(t)∈ [x̃j] holds for all t ∈ [tj; tj+1] and the true solution xj+1
of the ordinary di#erential equation (5) at tj+1 is contained,
in a guaranteed way, in the interval vector [xj+1] given by
the following Taylor expansion:

[xj+1] = [xj] +
k−1∑

i=1

hif [i]([xj]) + hk f [k]([x̃j]) (9)

(see Moore, 1966; Rihm, 1994; Nedialkov et al., 1999).
In Eq. (9), k denotes the order of the Taylor expansion

and the coe&cients f [i] are the Taylor coe&cients of the
solution x(t) which are recursively obtained by

f [1] = f ; f [i] =
1
i
@f [i−1]

@x
f ; i¿ 2: (10)

Because one has to proceed with the in%ation of the set
[x̃j], the size of the latter might become quite large before
inclusion (7) is satis!ed. The pessimism thus introduced
by the large width of the set can be reduced by using a
high-order k for the Taylor expansion in expression (9), the
remainder being proportional to 1=(k!). Even though, when
using (9) to solve (5), the width of the solution always
increases even for high orders. To solve such a drawback,
Rihm (1994) proposes to evaluate (9) through the following



Existence et unicité de la solution
Algorithme (Moore, 66)(Lohner, 94)

a priori enclosure (entrée : [xj ], h, � ; sortie : [x̃j ])

1. Initialisation : [x̃j ] := [xj ] + [0, h] f ([xj ]) ;

2. tant que ([xj ] + [0, h] f ([x̃j ]) ⇤⇥ [x̃j ])

[x̃j ] := [x̃j ] + [��,�] |[x̃j ]|
h := h/2

fin

An E�ective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an

ODE, Nedialko S. Nedialkov, Kenneth R. Jackson, and John D. Pryce, Reliable Computing 7(6) :449 - 465, 2001.
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Analytical solution for [x](t), t ∈ [tj , tj+1]
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Les coe�cients de Taylor

f [1] = x(1) = f
f [2] = 1

2x
(2) = 1

2
df
dx f

f [i ] = 1
i!x

(i) = 1
i

df [i�1]

dx f, i � 2
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Interval Taylor Methods

Guaranteed set integration with Taylor methods
(Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

ẋ(t) = f (x,p, t), t0 ≤ t ≤ tN , x(t0) ∈ [x0] , p ∈ [p]

Mean-value approach

[x](t) ∈
{

v(t) + A(t)r(t) | v(t) ∈ [v](t), r(t) ∈ [r](t)
}

.
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n Guaranteed set integration with Taylor methods
l(Moore,66) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

lComplexity
l Work per step is of polynomial complexity

l Computing Taylor coefficients → o(k2)
l Linear algebra                         → o(n3)

lIn practice : Obtaining Taylor coefficients ...
l FADBAD++   (www.fadbad.com)

 Flexible Automatic differentiation using templates 
 and operator overloading in C++

Nonlinear Set Integration

http://www.fadbad.com
http://www.fadbad.com




n Comparison theorems for differential inequalities

l Müller’s existence theorem (1936)

l Bracketing systems
l (Ramdani, et al., IEEE Trans. Automatic Control 2009)

If

solution exists

Nonlinear Set Integration



n Comparison theorems for differential inequalities 
lBracketing systems

maximal solution

minimal solution

Nonlinear Set Integration

time

state
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Müller’s theorem



then

n Bracketing systems
l Dynamics of ...

.

Nonlinear Set Integration



then

n Bracketing systems
l Dynamics of ...

.

Nonlinear Set Integration



n Comparison theorems for differential inequalities

l Müller’s existence theorem (1936)

l Bracketing systems : coupled EDOs

Nonlinear Set Integration

If

solution exists



Exemple
Modèle de biologie moléculaire (Mitogen-Activated Protein Kinase cascades)

Système non linéaire incertain

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

ẋ1 = � v2x1
k2+x1

+ v0u + v1

ẋ2 = v6(ytot�x2�x3)
k6+(ytot�x2�x3)

� v3x1x2
k3+x2

ẋ3 = v4x1(ytot�x2�x3)
k4+(ytot�x2�x3)

� v5x3
k5+x3

ẋ4 = v10(ztot�x4�x5)
k10+(ztot�x4�x5)

� v7x3x4
k7+x4

ẋ5 = v8x3(ztot�x4�x5)
k8+(ztot�x4�x5)

� v9x5
k9+x5

u = gx5

Trouver les systèmes englobants et utiliser le théorème de Müller ?
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nBracketing systems

Nonlinear Set Integration
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ẋ2 =
v6(ytot�x2�x3)

k6+(ytot�x2�x3)
� v3x1x2

k3+x2
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Modèle de biologie moléculaire (Mitogen-Activated Protein Kinase cascades)

Enveloppe du tube de trajectoire

 0

 50

 100

 150

 200

 250

 300

 0  500  1000  1500  2000  2500  3000

x
2

temps (s)

Enveloppe du tube de trajectoire

Exemple
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l (Ramdani, et al., IEEE Trans. Automatic Control 2009)

q = 0

ẋ ∈ f([x], [p1], [p2], t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

[g̃1]j > 0 ∧ [g̃2]j < 0

[g̃1]j < 0 ∧ [g̃2]j > 0

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

ẋ = f (x, p1, p2
, t)

q = 1

ẋ = f (x, p
1
, p2, t)

ẋ = f (x, p
1
, p2, t)

q = 3

ẋ = f(x, p1, p2
, t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

[g̃1]j < 0 ∧ [g̃2]j < 0

[g̃1]j > 0 ∧ [g̃2]j > 0

q = 4

q = 2

ẋ = f (x, p
1
, p

2
, t)

ẋ = f (x, p1, p2, t)

ẋ = f (x, p
1
, p

2
, t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j
ẋ = f(x, p1, p2, t)

Nonlinear Set Integration



n Nonlinear hybridization
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Nonlinear hybridization approach to reachability Example

Uncertain nonlinear system from bio-reactors
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n Monotone order-preserving systems
lMüller, Kamke, Krasnoselskii, Hirsch, Smith, Angeli and Sontag.

lPreserve ordering on initial conditions.

Nonlinear hybridization with order preserving dynamical systems Order preserving monotone dynamical systems

Order preserving monotone dynamical systems
(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Definition : Order preserving monotone dynamical system

x(t0) ≺ y(t0) ⇒ ∀t ! t0 x(t) ≺ y(t) ≺∈ {<,≤,≥, >}

Example






















x1(t0) ≤ y1(t0)
x2(t0) ≥ y2(t0)
x3(t0) < y3(t0)
x4(t0) > y4(t0)

....























⇒ ∀t > t0,























x1(t) ≤ y1(t)
x2(t) ≥ y2(t)
x3(t) < y3(t)
x4(t) > y4(t)

....
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Order preserving monotone dynamical systems
(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Monotonicity w.r.t orthant cone of Rn

if ∃D = diag [(−1)ε1 , ..., [(−1)εn ], εi ∈ {0, 1}

s.t x(t, x0, t0) and y(t, y0, t0) satisfy

Dy0 ≥ Dx0 ⇒ Dy(t, y0, t0) ≥ Dx(t, x0, t0) ∀t ≥ t0.

N.Ramdani (PRISME) Nonlinear Reachability 49 / 89

nMonotone order-preserving systems
l Graphical test : monotone wrt orthant cones (Kunze & Siegel, 1999)
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Order preserving monotone dynamical systems
(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Monotonicity w.r.t orthant cone of Rn

if ∃D = diag [(−1)ε1 , ..., [(−1)εn ], εi ∈ {0, 1}

s.t x(t, x0, t0) and y(t, y0, t0) satisfy

Dy0 ≥ Dx0 ⇒ Dy(t, y0, t0) ≥ Dx(t, x0, t0) ∀t ≥ t0.
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Fig. 2. Incidence graph for system (52). It exhibits no negative cycles. System (52) is monotone with respect to the orthant S⇤ = {⇤ixi ⌅ 0}, ⇤ =
(1, �1, 1, �1, 1).

It is clear that our bounding approach successfully computes an over-approximation for the reachable set. Furthermore, it
is easy to see that since parameter components appear only once in the algebraic expressions of (52), the bounding systems
are feasible. Then, the enclosures obtained using our method are tight (up to the accuracy of the guaranteed numerical
integration method used).

5.2. Reachability of an uncertain nonlinear monotone system using our hybrid bounding approach

Consider the thermal model of a material sample submitted to a multi-harmonic signal [47]. State vector x ⌃ R13 stands
for temperature and t denotes time. The state equation is as follows:

⇧
���������������������⌥

���������������������⌃

ẋ1 = �1

⇤

x2 � 2x1 + u0 +
 

l=1...5

ul sin(2l�1⌃0t + ⇧l)

⌅

ẋ2 = 2�1

�
x1 �
�
1 + ⌅1

⌅2

⇥
x2 + ⌅1

⌅2
x3
⇥

ẋ3 = 2(p0 + p1x3)
�
x4 � x3 + p2

⇥2

⌅2
(x2 � x3)

⇥

ẋi = (p0 + p1xi)(xi+1 � 2xi + xi�1) i = 4, . . . , 9

ẋ10 = 2(p0 + p1x10)
�
x9 � x10 + p2

⇥2

⌅2
(x11 � x10)

⇥

ẋ11 = 2�2

�
x12 �
�
1 + ⌅3

⌅2

⇥
x11 + ⌅3

⌅2
x10
⇥

ẋ12 = �3(x13 � 2x12 + x11)

ẋ13 = 2�3

�
x12 �
�
1 + ⌅3

⌅4

⇥
x13 + ⌅3

⌅4
u0

⇥
.

(53)

Parameter vector p = [p0 p1 p2]T is taken in the set p = [0.7, 1.23] s�1 ⇥ [0.01, 0.015] s�1 K�1 ⇥ [0.23, 0.64]mW�1 K
and initial state vector domain is taken as x0i = [90, 110] ⇤C.

The other parameters are assumed known; they take the following values: �1 = 5.44 s�1, �2 = �3 = 5.7 s�1,
u0 = 100 ⇤C, u1 = 10.14 ⇤C, u2 = 13.84 ⇤C, u3 = 17.4 ⇤C, u4 = 23.87 ⇤C, u5 = 30.81 ⇤C, ⌃0 = 0.00314 Hz,
⇧1 = 1.225, ⇧2 = 1.103, ⇧3 = 0.836, ⇧4 = 0.470, ⇧5 = 0.269, ⌅1/⌅2 = 0.1777, ⌅3/⌅4 = 0.0003, ⌅3/⌅2 = 0.0910,
⇥2/⌅2 = 2.2857 Wm�1 K�1.

Whenoneuses interval Hermite–Obreshkov serieswith variable step control as implemented in theVNODE software [28]
directly on the uncertain system (53), the computed enclosures blow up after one or two time steps (in fact VNODE software
stops), as long as parameter vector p is taken uncertain, even with very small uncertainty.

Since system (53) is cooperative, we can use the hybrid bracketing technique introduced in Section 4. To build the
automaton (51) characterizing the upper bounding systems for (53), we need to study the signs of the partial derivatives
(� fi/�pk). Note that parameters p0, p1 and p2 appear in f3 and f10, and parameters p0 and p1 appear in fi, i = 4 . . . 9. In
addition, the signs of the partial derivatives (� fi/�p0) and (� fi/�p1) are similar. Hence, we have to monitor the sign of
only 10 partial derivatives: (� fi/�p0), i = 3, . . . , 10, and (� fi⇧/�p2), i⇧ = 3 and i⇧ = 10. Now, according to the sign of
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Fig. 1. Time history of the x2 component of the reachable set of (52) with no parametric uncertainty. The curve labelled 3% corresponds to 3% uncertainty
on initial state vector, whereas the one labelled 4% corresponds to 4% uncertainty on initial state vector. Both curves are obtained with ITM (3%: CPU
time = 22.44 s PIV 2 GHz). Without parametric uncertainty, ITM diverges as soon as the size of the domain for initial state vector is larger than 3%.

10. -switching- := true
11. ⇤i := �

i 
(p), (i ⌅ I ), {i = 1, . . . , n}

12. endif
13. else %I = ⌃
14. q⇤ ⇥ Read mode number %q⇤ ofm-type
15. if (q⇤ ⇧= q), then
16. -switching- := true
17. ⇤i := �

i
(p), {i = 1, . . . , n}

18. endif

5. Applications

5.1. Reachability of an uncertain nonlinear monotone system using comparison principles

This example is taken frommolecular system biology. Consider a nonlinear dynamical model, which describes Mitogen-
Activated Protein Kinase cascades [45]

�
⌅⌅⌅⇤

⌅⌅⌅⇥

ẋ1 = �(v2x1)/(k2 + x1) + v0gx5 + v1
ẋ2 = (v6(ytot � x2 � x3))/(k6 + (ytot � x2 � x3)) � (v3x1x2)/(k3 + x2)
ẋ3 = (v4x1(ytot � x2 � x3))/(k4 + (ytot � x2 � x3)) � (v5x3)/(k5 + x3)
ẋ4 = (v10(ztot � x4 � x5))/(k10 + (ztot � x4 � x5)) � (v7x3x4)/(k7 + x4)
ẋ5 = (v8x3(ztot � x4 � x5))/(k8 + (ztot � x4 � x5)) � (v9x5)/(k9 + x5)

(52)

When ITM is used directly on system (52), the size of the enclosures blows up rapidly if a very small uncertainty (0.01%)
is considered for parameter vector or if relative uncertainty on initial state vector is larger than 3%, as shown in Fig. 1.

We will now show how to compute the reachable set using Theorem 2. The incidence graph obtained as indicated in
Section 2 is depicted in Fig. 2; it exhibits no negative cycles. According to Proposition 1, system (52) is monotone with
respect to the orthant S⇥ where ⇥ = (1, �1, 1, �1, 1). Using a change of coordinate z = Diag(⇥)x, it can be converted to a
cooperative system, and Theorem 2 applies.

Let us consider uncertainty on parameter and initial state vectors: x1 = [20, 170], x2 = [0, 100], x3 = [1000, 1200],
x4 = [0, 10], x5 = [250, 300], v0 = [0.0015, 0.0016], v1 = [0.09, 0.1], v2 = [1.2, 1.3], v3 = v4 = [0.064, 0.065],
v5 = v6 = v9 = v10 = [5, 5.1], v7 = v8 = [0.06, 0.07], ytot = [1200, 1201], ztot = [300, 301], k2 = [200, 201],
k3 = k4 = k5 = k6 = [1200, 1201], k7 = k8 = k9 = k10 = [300, 301]. Interval Hermite–Obreshkov method with variable
time step as implemented in the open source VNODE software [46] is used for solving the initial value problems for the
bracketing systems obtained using the comparison principles detailed in Section 3. Fig. 3 plots the time history of the x2
component of the reachable set as obtained in both cases where parametric uncertainty is taken or not taken into account.

nMonotone order-preserving systems
l Graphical test : monotone wrt orthant cones (Kunze & Siegel, 1999)
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n Nonlinear hybridization & Monotone systems
l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2010)

q = 0

ẋ ∈ f([x], [p1], [p2], t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

[g̃1]j > 0 ∧ [g̃2]j < 0

[g̃1]j < 0 ∧ [g̃2]j > 0

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

ẋ = f (x, p1, p2
, t)

q = 1

ẋ = f (x, p
1
, p2, t)

ẋ = f (x, p
1
, p2, t)

q = 3

ẋ = f(x, p1, p2
, t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

[g̃1]j < 0 ∧ [g̃2]j < 0

[g̃1]j > 0 ∧ [g̃2]j > 0

q = 4

q = 2

ẋ = f (x, p
1
, p

2
, t)

ẋ = f (x, p1, p2, t)

ẋ = f (x, p
1
, p

2
, t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j
ẋ = f(x, p1, p2, t)
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l Non-coupled bracketing systems
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Fig. 5. Zoom on the switching sequence for the hybrid automaton which drives the upper bounding system for (53), around t = 60 s.
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Fig. 6. Switching sequence for the hybrid automaton which drives the lower bounding system for (53).

Since parameter pk appears in several fi, the enclosures obtained for the reachable set are not tight, as already discussed
in Section 3.3. This fact is emphasized in Fig. 7, where one can see typical state trajectories obtained with extreme values
for p and starting from x or x. It is clear that the enclosures derived by our hybrid bounding method are not reached by any
of these trial trajectories. Note however, that the overestimation is not induced by our hybrid bounding approach, but by
Rules 1 and 2 used for deriving the bracketing systems for each mode.

6. Conclusion

In this paper we have addressed the issue of computing the reachable set for uncertain nonlinear continuous monotone
dynamical systems.Wehave shown that for these types of systems, the hybrid bounding approach developed in our previous
work can be improved in the sense that upper and lower component-wise bounds can be computed separately. A pleasant
consequence is that mode switching need not use whole solution sets and is thus more efficient. Along the lines of our
previous work, we have re-formulated our hybrid bounding approach and also proposed an improved rule for obtaining
the bracketing systems. Our new method handles successfully nonlinear, non-autonomous, monotone systems even in the
presence of large uncertainty in both initial state and parameter vectors.

The rule used for obtaining the bounding systems works component-wise, therefore, these systems are generally not
feasible. This leads to over-approximations in the computed reachable sets. This issue should be addressed to improve the
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Fig. 3. Time history of the x2 component of the reachable set of (52) as obtained with Theorem 2, with an initial domain for state vector of size 100%. The
curve labelled ‘no uncertainty’ corresponds to no uncertainty in the parameter vector (CPU time= 38.26 s PIV 2GHz) and the one labelled ‘with uncertainty’
corresponds to the presence of uncertainty in the parameter vector (CPU time = 38.58 s PIV 2 GHz).
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Fig. 4. Switching sequence for the hybrid automaton which drives the upper bounding system for (53).

the latter, i.e. using functions �i⇧(.) defined in Rule 2, the upper bounding systems are obtained by replacing parameter
components in each algebraic expression of fi� either by their upper or by lower bound, form-typemodes, or by using whole
parameter uncertainty domain, for s-type modes. Since there are 10 partial derivatives to monitor and 3 possible values for
the parameter components (lower bound / upper bound / whole uncertainty interval), the set Q of discrete modes contains
310 elements, and we merely use a word of ternary digits of length 10, to number the modes. Note however, that not all of
them may be activated.

Fig. 4 shows the switching sequence for the hybrid automaton which derives the upper component-wise bounds of the
reachable set of (53), as generated by algorithm Hybrid-Upper-Bounding. Some modes are active on very short time
intervals. Fig. 5 magnifies the switching sequence around t = 60 s. In fact, such modes are s-type modes which are usually
active only over one or two integration time intervals.

The automatonwhich derives the lower component-wise bounds is obtained in a similarmanner. The switching sequence
for this automaton is shown in Fig. 6.

Note that both initial state vector and parameter vector are taken uncertain with large uncertainties. Fig. 7 shows the
time history of the x12 component of the reachable set. Obviously, even for very large parameter boxes the hybrid bracketing
method successfully computes the reachable set.
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IOLAVABE 

n generates on-the-fly hybrid bracketing systems,
i.e. tries to re-start bracketing system when 
monotonicity changes

n uses subordinate local optimization 
to compute signs of partial derivatives on subranges 
to improve bracketing
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nTypical results: Taylor methods vs Bracketing systems
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n harmonizes bracketing and direct enclosures, 
i.e. synchronizes time step, 

n often intersects enclosures and reinitializes methods

IOLAVABE 



n stores Taylor coefficients to recompute «refined» 
enclosures at intermediate steps.

IOLAVABE 



n detects independent group of ODEs

n detects when flow invariants are being left

IOLAVABE 



n can contract pre- & post-box using 
forward and backward deductions

IOLAVABE 



n algorithm's parameters are exposed to the outside

n parsers for ODEs and flow invariants 
offer string interface

IOLAVABE 





n IOLAVABE : 
the iSAT-ODE layer around VNODE-LP and 
bracketing enclosures

n gives a high-level interface for generating enclosures 
of ODE constraints

n Source code available for not-for-profit civilian 
scientific research : try it ! 
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