On Continuation Methods for Non-Linear Multi-Objective Optimization

Benjamin Martin Alexandre Goldsztejn
Laurent Granvilliers Christophe Jermann

University of Nantes — LINA, UMR CNRS 6241

SWIM 2013
Small Workshop on Interval Methods
Brest, 5 - 7 June 2013
1 Introduction

2 State of the Art
 - Scalarizing Methods
 - Parametric Optimization
 - Continuation Methods

3 Bi-Objective Constrained Certified Continuation Method
 - Parallelotope-based Certified Continuation
 - Handling Inequality Constraints
 - Experiments

4 Conclusion
1 Introduction

2 State of the Art
 • Scalarizing Methods
 • Parametric Optimization
 • Continuation Methods

3 Bi-Objective Constrained Certified Continuation Method
 • Parallelotope-based Certified Continuation
 • Handling Inequality Constraints
 • Experiments

4 Conclusion
Non-Linear Multi-Objective Optimization

\[\min f(x) = (f_1(x), \ldots, f_k(x)) \]
\[x \in X \subseteq \mathbb{R}^n \]
\[\min f(x) = (f_1(x), \ldots, f_k(x)) \]
\[x \in X \subseteq \mathbb{R}^n \]
Non-Linear Multi-Objective Optimization

\[f_1, \ldots, f_k : x \in X \subseteq \mathbb{R}^n \rightarrow f(X) \]

- \(X^* \) set of non-dominated solutions: Pareto solutions (plain lines)
- \(f(X^*) \) set of non-dominated outcomes: Pareto set (plain lines)
Non-Linear Multi-Objective Optimization

General Non-Linear Multi-Objective Optimization (NLMOO) problem:

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g(x) \leq 0 \\
& \quad h(x) = 0 \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

(1)

Let \(X = \{ x \in \mathbb{R}^n \mid g(x) \leq 0, h(x) = 0 \} \).

- Objective functions: \(f : \mathbb{R}^n \rightarrow \mathbb{R}^k \),
- Inequality constraints: \(g : \mathbb{R}^n \rightarrow \mathbb{R}^p \),
- Equality constraints: \(h : \mathbb{R}^n \rightarrow \mathbb{R}^q \).

Functions may be non-linear.
What is continuation?

Unformal definition

Local approximation/coverage of a manifold of solutions.
What is continuation?

Unformal definition

Local approximation/coverage of a manifold of solutions.

- Local mean the use of local informations/observations,
- Solutions: of a system of equations, an optimization problem, ...; inducing (implicit) parameters,
- In NLMOO, when regular:
 - Two objectives \rightarrow Manifold of dimension 1 (curves of solutions),
 - Three objectives \rightarrow Manifold of dimension 2 (surfaces of solutions),
 - ...
Continuation in Non-Linear Multi-Objective Optimization

X^* manifold of non-dominated solutions (plain lines)

$f(X^*)$ manifold of non-dominated outcomes (plain lines)
1 Introduction

2 State of the Art
 • Scalarizing Methods
 • Parametric Optimization
 • Continuation Methods

3 Bi-Objective Constrained Certified Continuation Method
 • Parallelotope-based Certified Continuation
 • Handling Inequality Constraints
 • Experiments

4 Conclusion
1. Introduction

2. State of the Art
 - Scalarizing Methods
 - Parametric Optimization
 - Continuation Methods

3. Bi-Objective Constrained Certified Continuation Method
 - Parallelotope-based Certified Continuation
 - Handling Inequality Constraints
 - Experiments

4. Conclusion
Scalarizing Methods

Non-Linear Multi-Objective Optimization problem

\[
\begin{align*}
\min & \quad f(x) = (f_1(x), \ldots, f_k(x)) \\
\text{s.t} & \quad g(x) \leq 0 \\
& \quad h(x) = 0
\end{align*}
\]

Scalarizing

\[
\begin{align*}
\min & \quad \hat{f}(x, v) \\
\text{s.t} & \quad \hat{g}(x, v) \leq 0 \\
& \quad \hat{h}(x, v) = 0 \\
& \quad g(x) \leq 0 \\
& \quad h(x) = 0
\end{align*}
\]

Sequence of Mono-objective problems, \(v \in \{v_1, v_2, \ldots \} \)
Scalarizing Methods: Examples

- Weighted Sum:
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- ϵ-Constraint:
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- Normal Boundary Intersection:
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- Normal Constraint:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu \lambda + dt$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu \lambda \geq 0$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 \[
 \text{Minimize } \lambda f_1(x) + (1 - \lambda) f_2(x)
 \]

- **\(\epsilon \)-Constraint:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } f_1(x) \leq \epsilon
 \]

- **Normal Boundary Intersection:**
 \[
 \text{Maximize } t, \text{ s.t. } f(x) = \mu_\lambda + dt, \\
 \mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1. \text{ Vector } d \text{ normal to the utopia plane}
 \]

- **Normal Constraint:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } d^T f(x) - d^T \mu_\lambda \geq 0, \\
 \mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \text{ and } d = \hat{y}^1 - \hat{y}^2
 \]
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$
 \[\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \]
 Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$
 \[\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \] and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- Weighted Sum: Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$
- ϵ-Constraint: Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$
- Normal Boundary Intersection: Maximize t, s.t. $f(x) = \mu_\lambda + dt$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane
- Normal Constraint: Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- Weighted Sum:
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- ϵ-Constraint:
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- Normal Boundary Intersection:
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- Normal Constraint:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection**
 [Das and Dennis, 1998]:
 Maximize t, s.t. $f(x) = \mu \lambda + dt$, $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu \lambda \geq 0$, $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 \[
 \text{Minimize } \lambda f_1(x) + (1 - \lambda) f_2(x)
 \]

- **\(\epsilon\)-Constraint:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } f_1(x) \leq \epsilon
 \]

- **Normal Boundary Intersection** [Das and Dennis, 1998]:
 \[
 \text{Maximize } t, \text{ s.t. } f(x) = \mu \lambda + dt,
 \mu \lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1. \text{ Vector } d \text{ normal to the utopia plane}
 \]

- **Normal Constraint:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } d^T f(x) - d^T \mu \lambda \geq 0,
 \mu \lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \text{ and } d = \hat{y}^1 - \hat{y}^2
 \]
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **\(\epsilon\)-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection**
 [Das and Dennis, 1998]:
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- Weighted Sum:
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- ϵ-Constraint:
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- Normal Boundary Intersection
 [Das and Dennis, 1998]:
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- Normal Constraint:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection**
 [Das and Dennis, 1998]:
 Maximize t, s.t. $f(x) = \mu \lambda + dt$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu \lambda \geq 0$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection**
 [Das and Dennis, 1998]:
 Maximize t, s.t. $f(x) = \mu \lambda + dt$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu \lambda \geq 0$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 \[
 \text{Minimize } \lambda f_1(x) + (1 - \lambda)f_2(x)
 \]

- **\(\epsilon\)-Constraint:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } f_1(x) \leq \epsilon
 \]

- **Normal Boundary Intersection**
 [Das and Dennis, 1998]:
 \[
 \text{Maximize } t, \text{ s.t. } f(x) = \mu_{\lambda} + dt,
 \mu_{\lambda} = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1. \text{ Vector } d \text{ normal to the utopia plane}
 \]

- **Normal Constraint:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } d^T f(x) - d^T \mu_{\lambda} \geq 0,
 \mu_{\lambda} = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1 \text{ and } d = \hat{y}^1 - \hat{y}^2
 \]
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection**
 [Das and Dennis, 1998]:
 Maximize t, s.t. $f(x) = \mu_{\lambda} + dt$,
 $\mu_{\lambda} = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_{\lambda} \geq 0$,
 $\mu_{\lambda} = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- Weighted Sum:
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- ϵ-Constraint:
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- Normal Boundary Intersection
 [Das and Dennis, 1998]:
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- Normal Constraint:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$,
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- Weighted Sum:
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- ϵ-Constraint:
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- Normal Boundary Intersection
 [Das and Dennis, 1998]:
 Maximize t, s.t. $f(x) = \mu \lambda + dt$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- Normal Constraint:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu \lambda \geq 0$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- Weighted Sum:
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- ϵ-Constraint:
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- Normal Boundary Intersection:
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- Normal Constraint [Messac et al., 2003]:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- Weighted Sum:
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- ϵ-Constraint:
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- Normal Boundary Intersection:
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- Normal Constraint [Messac et al., 2003]:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu \lambda + dt$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint [Messac et al., 2003]:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu \lambda \geq 0$,
 $\mu \lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 \[
 \text{Minimize } \lambda f_1(x) + (1 - \lambda) f_2(x)
 \]

- **\(\epsilon\)-Constraint:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } f_1(x) \leq \epsilon
 \]

- **Normal Boundary Intersection:**
 \[
 \text{Maximize } t, \text{ s.t. } f(x) = \mu_\lambda + dt,
 \]
 \[
 \mu_\lambda = \lambda \hat{y}_2 + (1 - \lambda) \hat{y}_1.\text{ Vector } d \text{ normal to the utopia plane}
 \]

- **Normal Constraint [Messac et al., 2003]:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } d^T f(x) - d^T \mu_\lambda \geq 0,
 \]
 \[
 \mu_\lambda = \lambda \hat{y}_2 + (1 - \lambda) \hat{y}_1 \text{ and } d = \hat{y}_1 - \hat{y}_2
 \]
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint** [Messac et al., 2003]:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 \[
 \text{Minimize } \lambda f_1(x) + (1 - \lambda) f_2(x)
 \]

- **\(\epsilon\)-Constraint:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } f_1(x) \leq \epsilon
 \]

- **Normal Boundary Intersection:**
 \[
 \text{Maximize } t, \text{ s.t. } f(x) = \mu_\lambda + dt, \quad \mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1.
 \]
 Vector \(d\) normal to the utopia plane

- **Normal Constraint [Messac et al., 2003]:**
 \[
 \text{Minimize } f_2(x), \text{ s.t. } d^T f(x) - d^T \mu_\lambda \geq 0, \quad \mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \text{ and } d = \hat{y}^1 - \hat{y}^2
 \]
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize \(\lambda f_1(x) + (1 - \lambda) f_2(x) \)

- **\(\epsilon \)-Constraint:**
 Minimize \(f_2(x) \), s.t. \(f_1(x) \leq \epsilon \)

- **Normal Boundary Intersection:**
 Maximize \(t \), s.t. \(f(x) = \mu_\lambda + dt \),
 \(\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \). Vector \(d \) normal to the utopia plane

- **Normal Constraint [Messac et al., 2003]:**
 Minimize \(f_2(x) \), s.t. \(d^T f(x) - d^T \mu_\lambda \geq 0 \),
 \(\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \) and \(d = \hat{y}^1 - \hat{y}^2 \)
Scalarizing Methods: Examples

- Weighted Sum:
 Minimize \(\lambda f_1(x) + (1 - \lambda) f_2(x) \)

- \(\epsilon \)-Constraint:
 Minimize \(f_2(x) \), s.t. \(f_1(x) \leq \epsilon \)

- Normal Boundary Intersection:
 Maximize \(t \), s.t. \(f(x) = \mu_\lambda + dt \),
 \[\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \]
 Vector \(d \) normal to the utopia plane

- Normal Constraint [Messac et al., 2003]:
 Minimize \(f_2(x) \), s.t. \(d^T f(x) - d^T \mu_\lambda \geq 0 \),
 \[\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \] and \(d = \hat{y}^1 - \hat{y}^2 \)
 Scalarizing Methods: Examples

- Weighted Sum:
 Minimize $\lambda f_1(x) + (1 - \lambda)f_2(x)$

- ϵ-Constraint:
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- Normal Boundary Intersection:
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$. Vector d normal to the utopia plane

- Normal Constraint [Messac et al., 2003]:
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$
 $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda)\hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

- **Weighted Sum:**
 Minimize $\lambda f_1(x) + (1 - \lambda) f_2(x)$

- **ϵ-Constraint:**
 Minimize $f_2(x)$, s.t. $f_1(x) \leq \epsilon$

- **Normal Boundary Intersection:**
 Maximize t, s.t. $f(x) = \mu_\lambda + dt$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$. Vector d normal to the utopia plane

- **Normal Constraint [Messac et al., 2003]:**
 Minimize $f_2(x)$, s.t. $d^T f(x) - d^T \mu_\lambda \geq 0$, $\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1$ and $d = \hat{y}^1 - \hat{y}^2$
Scalarizing Methods: Examples

\[
\begin{bmatrix}
\min & f(x) \\
\text{s.t} & g(x) \leq 0 \\
& h(x) = 0 \\
\end{bmatrix}
\]

Scalarizing

\[
\begin{bmatrix}
\min & \hat{f}(x, v) \\
\text{s.t} & \hat{g}(x, v) \leq 0 \\
& \hat{h}(x, v) = 0 \\
\end{bmatrix}
\]

- **Weighted Sum:**
 Minimize \(\lambda f_1(x) + (1 - \lambda) f_2(x) \)

- **\(\epsilon \)-Constraint:**
 Minimize \(f_2(x) \), s.t. \(f_1(x) \leq \epsilon \)

- **Normal Boundary Intersection:**
 Maximize \(t \), s.t. \(f(x) = \mu_\lambda + dt \), \(\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \). Vector \(d \) normal to the utopia plane

- **Normal Constraint:**
 Minimize \(f_2(x) \), s.t. \(d^T f(x) - d^T \mu_\lambda \geq 0 \), \(\mu_\lambda = \lambda \hat{y}^2 + (1 - \lambda) \hat{y}^1 \) and \(d = \hat{y}^1 - \hat{y}^2 \)
1 Introduction

2 State of the Art
 - Scalarizing Methods
 - Parametric Optimization
 - Continuation Methods

3 Bi-Objective Constrained Certified Continuation Method
 - Parallelotope-based Certified Continuation
 - Handling Inequality Constraints
 - Experiments

4 Conclusion
Parametric Optimization problem:

\[
\begin{bmatrix}
\text{min} & f(x, v) \\
\text{s.c} & h(x, v) = 0 \\
& g(x, v) \leq 0 \\
& x \in \mathbb{R}^n
\end{bmatrix}
\]

\(f : \mathbb{R}^{n+m} \to \mathbb{R}\) and \(v \in V \subseteq \mathbb{R}^m\) vector of parameters.

Continuation is natural in such applications:

- Parameters are explicit.
- Use of local informations interesting.
- Optimal solutions are usually computed as solutions to first order optimality conditions.
First order conditions:

\[
\nabla_x f(x, v) \lambda + \nabla_x g(x, v) r + \nabla_x h(x, v) s = 0 \\
(\forall i = 1, \ldots, p) \ g_i(x, v) r_i = 0 \\
(\forall i = 1, \ldots, q) \ h_i(x, v) = 0 \\
\lambda^T \lambda + r^T r + s^T s - 1 = 0
\]

With \(x \in X \subseteq \mathbb{R}^n, v \in \mathbb{R}^m, \lambda \in \mathbb{R}_+, r \in \mathbb{R}_+^p \) and \(s \in \mathbb{R}^q \).

System of \(n + m + 1 + p + q \) variables with \(n + p + q + 1 \) equations: \(m \)-dimensional manifold of solutions.
State of the art

Literature on Parametric Optimization:
- Singularity detections [Lundberg and Poore, 1993].
- Multi-Parametric [Domínguez et al., 2010].

Towards Multi-Objective Optimization:
- Tackling Multi(Bi)-Objective optimization [Rakowska et al., 1993].
State of the art

First order optimality conditions:
Parametric problem based on Weighted Sum

\[\nabla_x f_1(x) \lambda_1 + \nabla_x f_2(x) \lambda_2 + \nabla_x g(x) r + \nabla_x h(x) s = 0 \]
\[(\forall i = 1, \ldots, p) \ g_i(x) r_i = 0 \]
\[(\forall i = 1, \ldots, q) \ h_i(x) = 0 \]
\[\lambda^T \lambda + r^T r + s^T s - 1 = 0 \]

NLMOO first order conditions

\[\nabla f_1(x) \lambda_1 + \nabla f_2(x) \lambda_2 + \nabla g(x) r + \nabla h(x) s = 0 \]
\[(\forall i = 1, \ldots, p) \ g_i(x) r_i = 0 \]
\[(\forall i = 1, \ldots, q) \ h_i(x) = 0 \]
\[\lambda^T \lambda + r^T r + s^T s - 1 = 0 \]
1 Introduction

2 State of the Art
 - Scalarizing Methods
 - Parametric Optimization
 - Continuation Methods

3 Bi-Objective Constrained Certified Continuation Method
 - Parallelotope-based Certified Continuation
 - Handling Inequality Constraints
 - Experiments

4 Conclusion
Continuation methods and applications

Continuation methods used to solve underconstrained systems of equations.

General problem

\[F(x) = 0, \quad F : \mathbb{R}^{n+m} \rightarrow \mathbb{R}^n \]

Solutions form a \(m \)-dimensional manifold.

Appears in:

- Study of parameters in differential equations;
- Homotopy for solving polynomial systems;
- Non-Linear Optimization (interior-point methods, parametric optimization);
- . . .
Continuation methods example: Predictor/Corrector
NLMOO hybridized with Continuation Methods

Continuation methods:

- For first order conditions of NLMOO [Hillermeier, 2001].

Applications in Metaheuristics:

- Curve-based Genetic Algorithm [Harada et al., 2007]
- PSO and continuation [Schütze et al., 2008]
- Steepest Descent (HCS) as continuation [Schütze et al., 2009]

Applications in Global methods:

- Recovering algorithm [Schütze et al., 2005]
- Bi-objective method inspired by NBI [Pereyra, 2009, Pereyra et al., 2013]
Summary

⊕ Continuation methods + NLMOO promising,
⊕ Help for both metaheuristics and global algorithms,
Summary

- Continuation methods + NLMOO promising,
- Help for both metaheuristics and global algorithms,
- Few actually consider inequality constraints,
- Few gives certification of the continuity.
 - False representation of the manifold.
 - Loss of solutions.

Certification can be (numerically) achieved:

- Smale \(\alpha \)-theory or Kantorovich theorem $$\Rightarrow$$ maximal step
- Interval Analysis and parametric Interval Newton operators

Goal

Towards a certified and rigorous continuation method for (inequality) constrained NLMOO.

Here, restricted to the Bi-Objective case.
Summary
Summary

⊕ Continuation methods + NLMOO promising,
⊕ Help for both metaheuristics and global algorithms,
⊕ Few actually consider inequality constraints,
⊕ Few gives certification of the continuity.

Certification can be (numerically) achieved:

• Smale α-theory or Kantorovich theorem \rightarrow maximal step
 [Beltrán and Leykin, 2012, Faudot and Michelucci, 2007],
• Interval Analysis and parametric Interval Newton operators
 [Kearfott and Xing, 1994, Martin et al., 2012].

Goal

Towards a certified and rigorous continuation method for (inequality)
constrained NLMOO.

Here, restricted to the Bi-Objective case.
Introduction

State of the Art
- Scalarizing Methods
- Parametric Optimization
- Continuation Methods

Bi-Objective Constrained Certified Continuation Method
- Parallelotope-based Certified Continuation
- Handling Inequality Constraints
- Experiments

Conclusion
1. Introduction

2. State of the Art
 - Scalarizing Methods
 - Parametric Optimization
 - Continuation Methods

3. Bi-Objective Constrained Certified Continuation Method
 - Parallelotope-based Certified Continuation
 - Handling Inequality Constraints
 - Experiments

4. Conclusion
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton
 [Goldsztejn and Granvilliers, 2010]
 - Used in Constraint Programming,
 - Based on interval analysis,
 - Spouse the shape of the manifold.

- ParCont: Parallelotope-based Continuation
 [Martin et al., 2012]

- Singularities
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton
 [Goldsztejn and Granvilliers, 2010]
- ParCont: Parallelotope-based Continuation
 [Martin et al., 2012]
 - Equivalent PC method,
 - Builds locally new parallelotopes along the manifold,
 - Connects two consecutive parallelotopes.
- Singularities
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton
 [Goldsztejn and Granvilliers, 2010]
- ParCont: Parallelotope-based Continuation
 [Martin et al., 2012]
 - Equivalent PC method,
 - Builds locally new parallelotopes along the manifold,
 - Connects two consecutive parallelotopes.
- Singularities
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton
 [Goldsztein and Granvilliers, 2010]
- ParCont: Parallelotope-based Continuation
 [Martin et al., 2012]
 - Equivalent PC method,
 - Builds locally new parallelotopes along the manifold,
 - Connects two consecutive parallelotopes.
- Singularities
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton
 [Goldsztejn and Granvilliers, 2010]

- ParCont: Parallelotope-based Continuation
 [Martin et al., 2012]
 - Equivalent PC method,
 - Builds locally new parallelotopes along the manifold,
 - Connects two consecutive parallelotopes.

- Singularities
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton
 [Goldsztejn and Granvilliers, 2010]

- ParCont: Parallelotope-based Continuation
 [Martin et al., 2012]
 - Equivalent PC method,
 - Builds locally new parallelotopes along the manifold,
 - Connects two consecutive parallelotopes.

- Singularities
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton [Goldsztejn and Granvilliers, 2010]
- ParCont: Parallelotope-based Continuation [Martin et al., 2012]

- Singularities
 - Can not certify singularities.
Bi-Objective Constrained Certified Continuation Method

Parallelotope-based Certified Continuation

ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton [Goldsztejn and Granvilliers, 2010]
- ParCont: Parallelotope-based Continuation [Martin et al., 2012]

Singularities
- Can not certify singularities.
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton [Goldsztejn and Granvilliers, 2010]
- ParCont: Parallelotope-based Continuation [Martin et al., 2012]

Singularities
- Can not certify singularities.
ParCont: Certified Continuation with Parallelotopes

- Parallelotopes and parametric Interval Newton
 [Goldsztejn and Granvilliers, 2010]
- ParCont: Parallelotope-based Continuation
 [Martin et al., 2012]

Singularities
- Can not certify singularities.
1 Introduction

2 State of the Art
 - Scalarizing Methods
 - Parametric Optimization
 - Continuation Methods

3 Bi-Objective Constrained Certified Continuation Method
 - Parallelotope-based Certified Continuation
 - Handling Inequality Constraints
 - Experiments

4 Conclusion
Optimality conditions

Let the system of first order optimality conditions:

\[
\nabla f_1(x) \lambda_1 + \nabla f_2(x) \lambda_2 + \nabla g(x) r + \nabla h(x) s = 0
\]

\[
(\forall i = 1, \ldots, p) \ g_i(x) r_i = 0
\]

\[
(\forall i = 1, \ldots, q) \ h_i(x) = 0
\]

\[
\lambda^T \lambda + r^T r + s^T s - 1 = 0
\]
Optimality conditions

Let the system of first order optimality conditions:

\[
\nabla f_1(x)\lambda_1 + \nabla f_2(x)\lambda_2 + \nabla g(x)r + \nabla h(x)s = 0
\]

\[
(\forall i = 1, \ldots, p)\ g_i(x)r_i = 0
\]

\[
(\forall i = 1, \ldots, q)\ h_i(x) = 0
\]

\[
\lambda^T\lambda + r^Tr + s^Ts - 1 = 0
\]

Singularity when there exists \(i \) with \(r_i = 0 \) and \(g_i(x) = 0 \): change in the set of active constraints.

Problem

ParCont can not handle inequality constraints.

Towards a certified active set management strategy
Dealing with inequalities [Rakowska et al., 1993]

Definition

Let $\bar{A} \subseteq \{1, 2, \ldots, p\}$ be the set of active constraints at a feasible solution x. Let \bar{g} and \bar{r} be the induced inequality vector and weights.

To deal with singularities from change in the active constraint set:

- Solve the system:

$$
\nabla f_1(x)\lambda_1 + \nabla f_2(x)\lambda_2 + \nabla \bar{g}(x)\bar{r} + \nabla h(x)s = 0
$$

$$(\forall i \in \bar{A}) \quad g_i(x) = 0
$$

$$(\forall i = 1, \ldots, q) \quad h(x) = 0
$$

$$
\lambda^T\lambda + r^T r + s^T s - 1 = 0
$$

- Change the set \bar{A} when activating/disactivating a constraint.
Detecting change in the active set

Example:
- Detection of a possible activation ($g_i(x) = 0$),
- Certify the activation: Interval Newton,
- Change \bar{A}, isolate the activation, orient the continuation ($r_i > 0$),
- Restart the Continuation.
Detecting change in the active set

Example:

- Detection of a possible activation \((g_i(x) = 0)\),
- **Certify the activation:** Interval Newton,
- Change \(\bar{A}\), isolate the activation, orient the continuation \((r_i > 0)\),
- Restart the Continuation.
Detecting change in the active set

Example:
- Detection of a possible activation ($g_i(x) = 0$),
- Certify the activation: Interval Newton,
- Change \bar{A}, isolate the activation, orient the continuation ($r_i > 0$),
- Restart the Continuation.

\[\bar{A} = \{i\} \]
Detecting change in the active set

Example:
- Detection of a possible activation \((g_i(x) = 0)\),
- Certify the activation: Interval Newton,
- Change \(\bar{A}\), isolate the activation, orient the continuation \((r_i > 0)\),
- Restart the Continuation.
Detecting change in the active set

Example:

- Detection of a possible activation \(g_i(x) = 0 \),
- Certify the activation: Interval Newton,
- Change \(\bar{A} \), isolate the activation, orient the continuation \(r_i > 0 \),
- Restart the Continuation.
1 Introduction

2 State of the Art
 - Scalarizing Methods
 - Parametric Optimization
 - Continuation Methods

3 Bi-Objective Constrained Certified Continuation Method
 - Parallelotope-based Certified Continuation
 - Handling Inequality Constraints
 - Experiments

4 Conclusion
ParCont is implemented in C++, with:

- RealPaver API [Granvilliers and Benhamou, 2006],
- Gaol interval arithmetic library [Goualard, 2006],
- Lapack linear algebra library [Anderson et al., 1999],
- Crlibm verified rounding library.

Towards using Certified Continuation as a post-process of a metaheuristic (NSGAII [Deb et al., 2002]):

- As suggested in [Harada et al., 2007].
- Certify local optimality (and feasibility),
- Comparison of the efforts of the two methods.
CTP1 [Deb et al., 2001]: Standard bi-objective problem with 2 variables.

\[
\begin{align*}
\min \quad & f_1(x) = x_1 \\
\min \quad & f_2(x) = (1 + x_2) \exp(-x_1/(1 + x_2)) \\
\text{s.t} \quad & g_1(x) = 1 - f_2(x)/(0.858 \exp(-0.541f_1(x))) \leq 0 \\
& g_2(x) = 1 - f_2(x)/(0.728 \exp(-0.295f_1(x))) \leq 0 \\
& x_1, x_2 \leq 1 \\
& x_1, x_2 \geq 0
\end{align*}
\]

Start ParCont at \(f_2^* \).
Experiments

NSGAII:
- Computation time: 0.25 s,
- Population size: 200,
- Generation: 100.

ParCont:
- Computation time: 0.0925 s,
- 57 parallelotopes,
- 7 Active set changes.
Tanaka [Tanaka et al., 1995]: Bi-objective problem with 2 variables.

\[
\begin{align*}
\min & \quad f_1(x) = x_1 \\
\min & \quad f_2(x) = x_2 \\
\text{s.t} & \quad g_1(x) = -x_1^2 - x_2^2 + 1 + 0.1 \cos(16 \arctan(x_1/x_2)) \leq 0 \\
& \quad g_2(x) = 2x_1^2 + 2x_2^2 - 1 \leq 0 \\
& \quad x_1, x_2 \leq \pi \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

Disconnected Pareto-front. ParCont started at:

\[
\begin{align*}
x^A &= \begin{pmatrix} 0.042 \\ 1.038 \end{pmatrix}, \\
x^B &= \begin{pmatrix} 0.586 \\ 0.774 \end{pmatrix}, \\
x^C &= \begin{pmatrix} 1.039 \\ 0.043 \end{pmatrix}
\end{align*}
\]
Experiments

NSGAII:
- Computation time: 0.6 s,
- Population size: 200,
- Generation: 300.

ParCont:
- Computation time: 0.46 s,
- 534 parallelotopes.

\[
\begin{align*}
\min f_1(x) &= x_1 + \frac{2}{n} \sum_{i=2}^{n} (x_i - 0.8x_1 \cos(6\pi x_1 + \frac{i\pi}{n}))^2 \\
\min f_2(x) &= 1 - x_1^2 + \frac{2}{n} \sum_{i=2}^{n} (x_i - 0.8x_1 \sin(6\pi x_1 + \frac{i\pi}{n}))^2 \\
\text{s.t} & \quad x_1 \leq 1 \\
& \quad x_1 \geq 0 \\
& \quad x_i \leq 1, \; i = 2, \ldots, n \\
& \quad x_i \geq -1, \; i = 2, \ldots, n
\end{align*}
\]

ParCont start at f_2^* with $n = 10$.

Experiments

Projection on \((x_1, x_2, x_3)\)

NSGAII
ParCont
Experiments

- **NSGAII:**
 - Computation time: 1.3 s,
 - Population size: 200,
 - Generation: 400.

- **ParCont:**
 - Computation time: 11.2 s,
 - 2315 paralleloptopes.
Summary

Informations:
- Each step of ParCont has $O(n^3)$ time complexity,
- Compared to non-certified methods, it has to use a smaller step length.

Pros and Cons:
- ParCont ables to produce certified enclosures of Pareto-optimal solutions,
- Local optimality is proven for each enclosure,
- Use only local informations.
- Required twice continuously differentiable objectives and constraints,
- Some singularities not handled,
- Limited to 1-dimensional manifolds (bi-objective problems).
1 Introduction

2 State of the Art
 • Scalarizing Methods
 • Parametric Optimization
 • Continuation Methods

3 Bi-Objective Constrained Certified Continuation Method
 • Parallelotope-based Certified Continuation
 • Handling Inequality Constraints
 • Experiments

4 Conclusion
Summary

We have seen that:

- Many state of art approaches attempt to parameterize Pareto-Optimal solutions,
- Continuation methods and NLMOO promising in different applications,
- A certified continuation method ParCont for bi-objective problems, dealing with change in active set of constraints, is proposed.

Next?

- Integration of ParCont in a global method: only one point per connected components is required,
Conclusion

Summary

We have seen that:

- Many state of art approaches attempt to parameterize Pareto-Optimal solutions,
- Continuation methods and NLMOO promising in different applications,
- A certified continuation method ParCont for bi-objective problems, dealing with change in active set of constraints, is proposed.

Next?

- Integration of ParCont in a global method: only one point per connected components is required,
- Adaptation of ParCont to 3-Objectives.
On Continuation Methods for Non-Linear Multi-Objective Optimization

Benjamin MARTIN, Alexandre GOLDSZTEJN, Laurent GRANVILLIERS and Christophe JERMANN
University of Nantes — LINA, UMR CNRS 6241

{firstname}.{lastname}@univ-nantes.fr

SWIM 2013
Small Workshop on Interval Methods
Brest, 5 - 7 June 2013

A new framework for sharp and efficient resolution of NCSP with manifolds of solutions.

Constraints 15, 190–212.

GAOL 3.1.1: Not Just Another Interval Arithmetic Library.
Laboratoire d'Informatique de Nantes-Atlantique 4.0 edition.

Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques.

Uniform sampling of local pareto-optimal solution curves by pareto path following and its applications in multi-objective GA.
In Proceedings of the 9th annual conference on Genetic and evolutionary computation GECCO ’07 pp. 813–820, ACM, New York, NY, USA.

The normalized normal constraint method for generating the Pareto frontier.

Structural and Multidisciplinary Optimization 25, 86–98.

Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems.

Equispaced Pareto front construction for constrained bi-objective optimization.
Mathematical and Computer Modelling 57, 2122–2131.

An active set algorithm for tracing parametrized optima.
Structural optimization 3, 29–44.

Multi-objective control-structure optimization via homotopy methods.
SIAM Journal on Optimization 3, 654–667.

A non-linear programming continuation strategy for one parameter
design optimization problems.
In Proceedings of ASME Design Automation Conference, Montreal, Quebec, Canada pp. 77–89.

On Continuation Methods for the Numerical Treatment of
Multi-Objective Optimization Problems.
In Practical Approaches to Multi-Objective Optimization, (Branke, J., Deb, K., Miettinen, K. and Steuer, R. E., eds), number 04461 in
Dagstuhl Seminar Proceedings Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany.

[Schütze et al., 2009] Schütze, O., Lara, A. and Coello Coello, C. A.
(2009).
