Current developments in the nonlinear solver SONIC

Solver and Optimizer for Nonlinear Problems based on Interval Computation

Elke Just University of Wuppertal

June 5, 2013

Contents

About SONIC

Subdivision

Verification

Outlook

Basic facts Key concepts

Basic facts

Main contributors:

Thomas Beelitz, Bruno Lang, Elke Just, Paul Willems (Applied Computer Science, University of Wuppertal) Peer Ueberholz (Hochschule Niederrhein, University of Applied Sciences)

▶ initial goal: *efficient* and *robust* design of dynamic systems

Basic facts Key concepts

Basic facts

- ► rigorous general purpose solver for nonlinear systems
- also contains optimizer
- ▶ written in C++
- "generic" interval code provides performance and portability
 - ► supported interval libraries: C-XSC, SUN C++, filib++
- ► parallelization available (*OpenMP*, *MPI*)
- based on a branch-and-bound algorithm

Basic facts Key concepts

Subdivision strategies

- subdivision of unbounded boxes
- ► subdivision using "gaps" (caused by division)
- ► several basic strategies to choose subdivision direction
- hybrid subdivision strategy (apply subdivision scheme that seems most promising for current box)
- shift of subdivision point
- iterated subdivision

Contraction methods

► Constraint propagation (CP)

on finite unions of real intervals

Taylor refinement

- first and second order
- separately or integrated into CP

Interval Newton method

on a hierarchy of extended systems

Several preconditioners

- inverse midpoint preconditioner
- optimal linear programming preconditioners

Basic facts Key concepts

Verification

- for square systems
 - Newton
 - Miranda
 - Borsuk
 - Tests based on topological degree
- for non-square systems (with adapted information)
- computation and verification can be done separately (different methods can be tested without calculating anew)

Subdivision of unbounded boxes Shifted midpoint

Subdivide an unbounded box

Strategy:

▶ subdivide in all components with $\mathbf{x}_i = [-\infty, \infty]$

subsequently

- subdivide all half-bounded components
 - determine subdivision direction k by

$$v(\mathbf{x}_k) = \max_{i \in \{1, \dots, n\}} v(\mathbf{x}_j) \text{ with } v(\mathbf{y}) := \begin{cases} \overline{y} & \text{ for } \underline{y} = -\infty \\ -\underline{y} & \text{ for } \overline{y} = \infty \end{cases}$$

 \blacktriangleright subdivision point has to be chosen with care too

Subdivision of unbounded boxes Shifted midpoint

Algorithm 1 subdivision of an unbounded box (x, δ_1, δ_2)

if $\exists i \in \{1, \ldots, n\}$ with $\mathbf{x}_i = [-\infty, \infty]$ then subdivision direction $k := \min\{i\}$ with $\mathbf{x}_i = [-\infty, \infty]$ subdivision point $p := \delta_1$ else {only half-bounded components} determine subdivision direction k maximizing $v(\mathbf{x}_k)$ if $\inf(\mathbf{x}_k) = -\infty$ then subdivision point $p := \min\{-\delta_2, 2 \cdot \sup(\mathbf{x}_k)\}$ else subdivision point $p := \max\{\delta_2, 2 \cdot \inf(\mathbf{x}_k)\}$ end if end if

Subdivision of unbounded boxes Shifted midpoint

Subdivide an unbounded box - Parameters

Additionally, a new **stopping criterion** is introduced: $\exists i \text{ with } mig(\mathbf{x}) = \langle \mathbf{x}_i \rangle \geq \Psi_i \text{ for threshold vector } \Psi$

Many problems have a root in zero

```
\Rightarrow we chose \delta_1=0.1
```

The minimum width for the subboxes resulting from the subdivision of unbounded boxes can be shown to be $\delta_2/2$

 \Rightarrow we chose $\delta_2 = 1$

Basic idea

- reducing the cluster effect
- without increasing the overall box number
- ► ansatz (for bounded boxes only): shift midpoint p according to parameter η ∈ [0, 1]

$$\boldsymbol{p} = \underline{\boldsymbol{x}}_k + \eta \cdot \operatorname{width}\left(\mathbf{x}_k\right) \tag{1}$$

Figure: Bisection with shifted point

Numerical results

Test set with 14 problems

0.9	0.8	0.7	0.6	0.55	0.51	0.5
6.62	2.25	1.44	2.57	1.08	0.87	1.00
5.20	1.94	1.24	2.24	1.08	0.87	1.00
0.1	0.2	0.3	0.4	0.45	0.49	
8.29	2.24	1.31	5.64	1.17	96.32	
8.05	2.27	1.29	5.59	1.15	93.52	
	0.9 6.62 5.20 0.1 8.29 8.05	0.9 0.8 6.62 2.25 5.20 1.94 0.1 0.2 8.29 2.24 8.05 2.27	0.9 0.8 0.7 6.62 2.25 1.44 5.20 1.94 1.24 0.1 0.2 0.3 8.29 2.24 1.31 8.05 2.27 1.29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9 0.8 0.7 0.6 0.55 0.51 6.62 2.25 1.44 2.57 1.08 0.87 5.20 1.94 1.24 2.24 1.08 0.87 0.1 0.2 0.3 0.4 0.45 0.49 8.29 2.24 1.31 5.64 1.17 96.32 8.05 2.27 1.29 5.59 1.15 93.52

1 outlier, all other problems behave as assumed

Subdivision of unbounded boxes Shifted midpoint

Reducing the cluster effect - Other approaches

- Subdivision into 3 subboxes (at least once per direction)
 - Disadvantage: higher box number

(worst case: 3^r instead of 2^r boxes for r subdivisions of each box)

• A further (not implemented) approach:

Collecting boxes Subdividing symmetrical subfacets

Verfification

We only display the handling for square systems.

The box informations **ContainsSolutionForSubsystem** and **UniqueSolutionForSubsystem** for underdetermined systems are handled correspondingly.

Collecting boxes Subdividing symmetrical subfacets

Collecting boxes

Main goals:

► lose no information

under this constraint

- minimize number of boxes
- save smaller boxes

Algorithm 2 COLLECT BOXES (list L_s of solution boxes)

- 1: for all pairs of different solution boxes $x_{\rm sup}$ and $x_{\rm sub}$ with $x_{\rm sup}\supseteq x_{\rm sub})$ do
- 2: if $info(\mathbf{x}_{sup}) = \textit{NoInformation then}$
- 3: **if** $info(\mathbf{x}_{sub}) = NoInformation then$
- 4: delete \mathbf{x}_{sub}
- 5: **else**

8: end if

9: if
$$info(x_{sup}) = ContainsSolution$$
 then

- 10: **if** $info(\mathbf{x}_{sub}) = NoInformation$ then
- 11: delete \mathbf{x}_{sub}
- 12: end if

13: end if

Collecting boxes Subdividing symmetrical subfacets

Algorithm 2 COLLECT BOXES - CONTINUED

14:	if $info(x_{\sup}) = \mathit{UniqueSolution}$ then		
15:	if $info(\mathbf{x}_{sub}) = NoInformation$ then		
16:	delete $\mathbf{x}_{ ext{sub}}$		
17:	else		
18:	if $info(x_{\mathrm{sub}}) = \mathit{ContainsSolution}$ then		
19:	set $info(x_{\mathrm{sub}}) = \mathit{UniqueSolution}$		
20:	delete $\mathbf{x}_{ ext{sup}}$		
21:	else		
22:	if $info(x_{sub}) = UniqueSolution$ then		
23:	delete x_{sup}		
24:	end if		
25:	end if		
26:	end if		
27:	end if		
28: end for			

Collecting boxes Subdividing symmetrical subfacets

Collecting unique boxes

option for reducing the number of solution boxes

- boxes containing unique tested for intersections (may occur due to epsilon-inflation)
- intersections tested for uniqueness
- but: test for intersections is expensive
 - \Rightarrow not used in default settings

Collecting boxes Subdividing symmetrical subfacets

Symmetrical subfacets - Background

For the verification tests we consider *facets* and subfacets.

For the Borsuk test we need symmetrical subfacets.

Figure: 2-dimensional facets and subfacets for a 3-dimensional box ${\bf x}$

Collecting boxes Subdividing symmetrical subfacets

General problem

In exact arithmetic, subdivide pairs of facets/subfacet in

- the same direction
- in their midpoint
- BUT: not sufficient in numerical calculations!

Figure: Asymmetric subdivision of a facet

Collecting boxes Subdividing symmetrical subfacets

Option 1: enclosure of the midpoints

enclose the midpoints in which we subdivide

Disadvantage: *overestimation* of the subfacets grows when we subdivide more than once per direction.

Collecting boxes Subdividing symmetrical subfacets

Option 2: computing the second subfacet

- subdivide one facet/subfacet in the computed midpoint (even if inexact)
- \blacktriangleright compute an enclosure m of the midpoint of the box
- calculate (an enclosure of) the symmetric counterpart out of these two values by

$$\mathbf{x}^{i,-,l} = 2\mathbf{m} - \mathbf{x}^{i,+,l}$$

Advantage: we need to store only one subfacet out of each pair.

Work in progress Further plans and ideas

 web interface (reduced in functionality)

► translators for problems in AMPL, GAMS formulation

graphical output of solution boxes

Work in progress Further plans and ideas

Plans and ideas

- ► improve first test implementation of Taylor models
 - ► by LDB
 - inverse models
- ▶ general acceleration
 - ► focus: optimal preconditioner
- ► further research, which structures may "predict" contraction success in interval Newton method

Work in progress Further plans and ideas

Contact

For further questions or suggestions write to

just@math.uni-wuppertal.de