

Subsquares Approach - Simple Scheme for Solving OILS

Jaroslav Horáček Subsquares approach for OILS

- Basic notation
- An interval linear system and its solution
- General subsquares approach
- Naive algorithm
- Sequential algorithm
- Numerical results
- Conclusion

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

- A, b indicate an interval matrix and vector respectively
- *A*, *b* indicate a point real matrix and vector respectively
- $A = [\underline{A}, \overline{A}]$, where \underline{A} is called *lower bound* and \overline{A} is called *upper bound*
- Also $\mathbf{A} = \langle A_c, A_{\Delta} \rangle$, where A_c is *midpoint matrix* and A_{Δ} is *radius matrix*

伺 とくき とくき とう

Definition

Ax = b, where

- $\mathbf{A} \in \mathbb{IR}^{m \times n}$ (interval matrix)
- $\boldsymbol{b} \in \mathbb{IR}^{m \times 1}$ (interval vector)
- IR is the set of all real closed intervals

・ 同 ト ・ ヨ ト ・ ヨ ト …

Overdetermined interval linear system

Definition

Ax = b with more equations than variables.

 From now on the word "system" means overdetermined system.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Definition

The solution set of Ax = b is

$$\Sigma = \{ x \mid Ax = b \text{ for some } A \in \mathbf{A}, b \in \mathbf{b} \}.$$

That is not the least squares approach!

ヘロン 人間 とくほ とくほ とう

3

- Computing tight *n*-dimensional box containing the solution set (*hull*).
 → NP-hard
- Computing "nice" *n*-dimensional box containing the tight box (*enclosure*).
 → OUR GOAL

We call it solving a system.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Jaroslav Horáček Subsquares approach for OILS

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Idea 1

There is plenty of algorithms for solving square systems.

ヘロト 人間 とくほとく ほとう

= 990

Idea 1

There is plenty of algorithms for solving square systems.

Idea 2

The solution set of an OILS is contained in any square subsystem (*subsquare*).

ヘロン 人間 とくほ とくほ とう

3

Idea 1

There is plenty of algorithms for solving square systems.

Idea 2

The solution set of an OILS is contained in any square subsystem (*subsquare*).

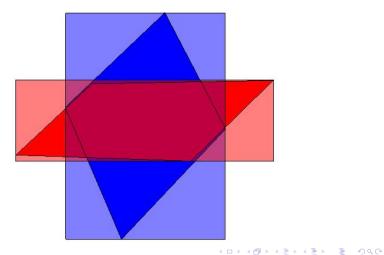
Idea 3

Given some enclosure. Next subsquare can possibly shave it rapidly.

ヘロト ヘアト ヘビト ヘビト

Example

Let us take a randomly generated OILS Ax = b, where


$$\boldsymbol{A} = \begin{bmatrix} \begin{bmatrix} & -0.8, & 0.2 & \end{bmatrix} & \begin{bmatrix} & -20.1, & -19.5 & \end{bmatrix} \\ \begin{bmatrix} & -15.6, & -15.2 & \end{bmatrix} & \begin{bmatrix} & 14.8, & 16.7 & \end{bmatrix} \\ \begin{bmatrix} & 18.8, & 20.1 & \end{bmatrix} & \begin{bmatrix} & 8.1, & 9.5 & \end{bmatrix} \end{bmatrix},$$
$$\boldsymbol{b} = \begin{bmatrix} \begin{bmatrix} & 292.1, & 292.7 & \end{bmatrix} \\ \begin{bmatrix} & -361.9, & -361.1 & \end{bmatrix} \\ \begin{bmatrix} & 28.4, & 30.3 & \end{bmatrix} \end{bmatrix}.$$

- $A_{\{1,2\}}x = b_{\{1,2\}}$ denotes subsquare formed by 1st and 2nd equation of Ax = b.
- Let us take a look at relation of $A_{\{1,2\}}x = b_{\{1,2\}}$ and $A_{\{2,3\}}x = b_{\{2,3\}}...$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Various subsquares

•
$$A_{\{1,2\}}x = b_{\{1,2\}}$$

• $A_{\{2,3\}}x = b_{\{2,3\}}$

Jaroslav Horáček Subsquares approach for OILS

Algorithm

- **()** Select certain amount of square subsystems of Ax = b
- Solve these subsystems and get together the enclosures

Method using this scheme will be called *Subsquare method*.

ヘロン 人間 とくほ とくほ とう

Simple algorithm

Simple algorithm

- **1** start with enclosure $\mathbf{x} = [-\infty, \infty]^n$
- while not (terminal condition) do 3 and 4
- choose a random subsquare and compute its enclosure
 *x*_{subsq}

Simple, but ...

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

if we solve all (many) subsquares!

W – sum of interval widths of a vector V – interval volume by vector subsq – simple subsquares method hull – hull computed by linear programming ver – verifylss from INTLAB 6

av - average

system	$\operatorname{av}\left(\frac{\operatorname{W}(\boldsymbol{x}_{subsq})}{\operatorname{W}(\boldsymbol{x}_{hull})}\right)$	$\operatorname{av}\left(\frac{\operatorname{V}(\boldsymbol{x}_{subsq})}{\operatorname{V}(\boldsymbol{x}_{hull})}\right)$	$\operatorname{av}\left(\frac{\operatorname{W}(\boldsymbol{x}_{ver})}{\operatorname{W}(\boldsymbol{x}_{hull})}\right)$	$\operatorname{av}\left(\frac{\operatorname{V}(\boldsymbol{x}_{ver})}{\operatorname{V}(\boldsymbol{x}_{hull})}\right)$
5×3	1.0014	1.0043	1.1759	1.6502
9×5	1.0028	1.0140	1.1906	2.3831
13×7	1.0044	1.0316	1.2034	3.6733
15×9	1.0061	1.0565	1.1720	4.2902
25×21	1.0227	1.6060	1.0833	5.4266
30×29	1.0524	5.8330	1.0987	51.0466

個人 くほん くほん

Suitable systems for this method

- Number of subsquares is $\binom{m}{n}$
- But for some systems it is not too many

Moreover ...

if empty intersection in some iteration occurs!

rad - radius of interval coefficients of system

system	rad = 0.01	rad = 0.001	rad = 0.0001
15×10	2.1	2.0	2.0
25×21	2.2	2.0	2.0
35 imes 23	2.2	2.0	2.0
50×35	2.4	2.0	2.0
73×55	2.9	2.1	2.0
100×87	7.1	2.1	2.0

Table shows number of iterations of simple algorithm needed to reveal unsolvability of a system.

We would like some improvement

Jaroslav Horáček Subsquares approach for OILS

프 🕨 🗆 프

- When selecting subsquares randomly, they usually overlap
- We can think of overlaps as a "meeting points" of square subsystems
- We can use it to propagate a partial result of computation over one subsquare into computations over other subsquares
- ⇒ Gauss-Seidel iteration

(雪) (ヨ) (ヨ)

Solving each system

 Enclosure of some subsquare or from some different algorithm

$$\mathbf{x}_{i}^{(k)} = \frac{1}{\mathbf{A}_{ii}} \Big[\mathbf{b}_{i} - (\mathbf{A}_{i1}\mathbf{x}_{1}^{(k)} + \ldots + \mathbf{A}_{i(i-1)}\mathbf{x}_{i-1}^{(k)} + \\ + \mathbf{A}_{i(i+1)}\mathbf{x}_{i+1}^{(k-1)} + \ldots + \mathbf{A}_{in}\mathbf{x}_{n}^{(k-1)}) \Big] \cap \mathbf{x}_{i}^{(k-1)}(GS)$$

- In k-th iteration we provide k-th GS iteration step for all systems.
- We use preconditioning with midpoint systems

・ 同 ト ・ ヨ ト ・ ヨ ト …

We state some desirable properties of a new algorithm inspired with four unfavorable features of the simple algorithm:

ヨト イヨト

We state some desirable properties of a new algorithm inspired with four unfavorable features of the simple algorithm:

Idea 1

We do not want to solve too many subsquares.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

We state some desirable properties of a new algorithm inspired with four unfavorable features of the simple algorithm:

Idea 1

We do not want to solve too many subsquares.

Idea 2

We want to cover the whole overdetermined system by subsystems.

・ 同 ト ・ ヨ ト ・ ヨ ト

We state some desirable properties of a new algorithm inspired with four unfavorable features of the simple algorithm:

Idea 1

We do not want to solve too many subsquares.

Idea 2

We want to cover the whole overdetermined system by subsystems.

Idea 3

The overlap of subsquares is not too low, not too high.

イロト イポト イヨト イヨト

We state some desirable properties of a new algorithm inspired with four unfavorable features of the simple algorithm:

Idea 1

We do not want to solve too many subsquares.

Idea 2

We want to cover the whole overdetermined system by subsystems.

Idea 3

The overlap of subsquares is not too low, not too high.

Idea 4

We take subsquares that shave the resulting enclosure as much as possible.

- About 1 & 2 Both can be solved by covering the system step by step using some overlap parameter
- About 3 Open question, about n/3 is experimentally good
- About 4 Open question, yet randomness serve us well

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

First and last system is handled separately.

Selecting subsquares

- Divide equations into two sets Covered and Waiting
- Choose random (n overlap) equations from Waiting
- Choose random (overlap) equations from Covered
- We have a new subsquare, update Covered and Waiting
- Sepeat 2-4 until *Waiting* is not empty

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Well, my brother was always the bright one. I always felt rather dim by comparison...

Numerical testing 1

Sharpening enclosures produced by verifylss in INTLAB 6

system	overlap	rad	$\operatorname{av}\left(\frac{\mathrm{W}(\boldsymbol{x}_{subsq})}{\mathrm{W}(\boldsymbol{x}_{ver})}\right)$	$\operatorname{av}\left(\operatorname{best} \frac{\operatorname{W}(\boldsymbol{x}_{subsq})}{\operatorname{W}(\boldsymbol{x}_{ver})}\right)$	t_{ver}	t_{subsq}
15×10	3	0.1	0.99	0.94	0.006	0.06
15×10	3	0.25	0.97	0.86	0.007	0.07
15×10	3	0.35	0.93	0.79	0.008	0.09
15×10	3	0.5	0.87	0.66	0.01	0.12
25×13	5	0.1	0.99	0.98	0.006	0.09
25×13	5	0.25	0.99	0.94	0.007	0.12
25×13	5	0.35	0.98	0.92	0.008	0.14
25×13	5	0.5	0.94	0.79	0.012	0.20
37×20	7	0.1	0.99	0.98	0.008	0.11
37×20	7	0.25	0.99	0.95	0.011	0.19
37×20	7	0.35	0.97	0.90	0.015	0.29
37×20	7	0.5	0.87	0.38	0.016	0.72
50×35	11	0.1	0.99	0.98	0.014	0.16
50×35	11	0.25	0.97	0.84	0.023	0.51

・ 同 ト ・ ヨ ト ・ ヨ ト …

When midpoint system is solvable, we get better results.

system	overlap	rad	av. rat	best av. rat
15×10	3	0.1	0.98	0.89
15×10	3	0.25	0.85	0.59
15×10	3	0.35	0.76	0.40
25×13	5	0.1	0.99	0.96
25×13	5	0.25	0.93	0.74
25×13	5	0.35	0.76	0.33
37×20	7	0.1	0.99	0.97
37×20	7	0.25	0.89	0.34
50×35	11	0.1	0.98	0.82

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Simple idea of scheme
- Can be used when enclosure is needed to be shaved
- Both methods detect unsolvability
- Simple method easily parallelized
- So can be the second method
- Open problems: choosing systems, overlap, effective parallelitazion

(雪) (ヨ) (ヨ)

Thank you very much for your attention...

通 とくほ とくほ とう

ъ