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Aeroelastic problem: aircraft wing oscillations 

•Aeroelastic problems represent a 

mutual interaction between the 

aerodynamics and structure of an 

aerospace vehicle. 

 

•Aeroelastic systems are inherently 

nonlinear and these nonlinearities can 

lead to pathologies such as limit-cycle 

oscillations  

 

 

  

•Excessive vibrations (flutter) in 

aeroelastic systems can lead to 

catastrophic structural failures 
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Flutter suppression via feedback control 
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Geometric view on the vibration suppression 

problem 

• During vibrations, the 

system goes along a 

closed curve in the 

system state-space – it is 

a limit cycle 

 

•Our goal is to destroy all 

limit cycles in the system 

state-space and force all 

trajectories to be attracted 

by the origin 

Controller action 
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Experimental apparatus at Texas A&M University 
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Controller based on nonlinear dynamic inversion: 

unconstrained case 

•Very popular method in the aerospace industry 

 

•Nice linear system with predefined stability and performance characteristics 

 

•Cancellation of nonlinearity cannot be exact, therefore control law should  

incorporate some robustness properties 
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Experimental facts: sometimes system is 

stabilized in non-zero trim conditions 

Stable equilibrium: 

-5 deg in pitch angle ! 

•The equilibria cannot be found by extensive numerical simulation 

 on a computer 

 

•The particular source of the problem was not clear (attributed to dry friction) 


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Control constraints lead to unexpected nonlinear 

dynamics in the closed-loop system 
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Linear system is not valid  
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•Could control constraints lead to unzero equilibria in the system ? 

 

•Can we always find these equilibria in the system model ? 
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Equilibria analysis in a plane:  

two-dimensional system of equations 
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•Treat each of two equations as  

a two-dimensional function  

 

•Draw zero level contours 

 

•Their intersection gives us an  

equilibrium 

V=18 m/s 

Saturated 

region 

Linear 

region 
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Suspicious behaviour of the contour curves 

•Zero curves for both equations 

are very close to each other 

 

•There is no actual intersection  

between them 

•Could a small perturbation in the  

system provoke their intersection ? 
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Structural stability 

•The notion of structural stability was first introduced by Andronov and 

Pontryagin in 1937 

 

•Informally, we say that a system is structurally stable if small variations 

in the model does not change qualitatively the set of trajectories originating 

from all initial conditions in the state space 

 

•It is possible to define bifurcations in both smooth and non-smooth 

systems via the structural stability concept 

 

•Real-life applications of the concept are rare: Pai et al., 1995 (power 

systems); Kaslik and Balint, 2007 (aerospace reentry vehicle); Sumida et 

al., 2007 (clinical study). The paper of Sumida noted that even any 

numerical degree of the structural stability was not defined previously. 
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Indication of structural instability in our system 

V=22 m/s 
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How to automatize structural instability detection ? 

• We tried to apply MATLAB-INTLAB-based  methods but with no 

success – because of heavy overestimation every small interval 

extension of the system contains zero ! 

 

• Instead, we switched to different approach – first, represent system 

as piecewise-linear and then apply interval methods 

 

• We do not want to find point solutions – instead, we are looking for a 

collection of boxes which indicate regions of structural instability 

 

• Somehow, the drawback of interval analysis is its advantage in our 

case 
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Piecewise-linearization 

1x

2x 3x

• State-space is divided into cubes 

• Every cube is splitted into simplices 

• For every simplex, derive linear functions as a solution of linear equations:  
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Piecewise-linearization: trust region method 

• State-space is divided into cubes 

 

• For every cube, we linearize around center point  

 

• We assume that linearization “works well” inside the cube 
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Linear functions over a cube 

Intersection is possible No intersection
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Piecewise-linear algorithm 

• Check if cube contains all linear functions 

• Try to find their intersection as a solution of linear system 

• Check if this solution is inside the cube 

• If not, or there is no solution, mark the cube as “suspicious” 
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Piecewise-linear identification of structural instability: 

large grid 
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Piecewise-linear identification of structural instability: 

smaller grid 
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Artificial perturbation of the system 

DuxAgxCxBxA

dx

xdg
xgxgxfxf





)()(

)(
,)(),()()( 21mod


























)(

)(
)(

2

1

2221

1211

xf

xf

ghg

ghg
Gxxg





),( 21 ii gg

Let us introduce some hypothetical (linear) unmodeled dynamics: 
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Numerical example: artificial stable equilibrium 
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Numerical bifurcation analysis  

of the closed-loop nonlinear system 

•We use MATLAB-based toolbox MATCONT for the bifurcation 

analysis of the closed-loop limit cycles 

 

•A bifurcation of a nonlinear system is a qualitative change in its 

dynamics produced by varying parameters – for example, change 

of number of cycles and equlilibria in the system 

 

•The controller is designed using linear-quadratic criterion and 

ONE ACTUATOR, saturation is considered 

 

• During bifurcation analysis, we change only one parameter –  

maximum control amplitude 

 

•MATCONT works only with smooth systems – therefore we 

smoothed saturation function 

See Yu.A. Kuznetsov, Elements of applied bifurcation theory,  

Springer 1995-2004 
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Numerical results 

The numerical continuation with various V from 11 to 30 m/s reveals that 

the saddle-node (or fold) bifurcation occurs at some umax between 15 and 

16 degrees. The bifurcation scenario implies the collision and 

disappearance of two limit cycles, the stable one and the unstable one. 
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Bifurcation diagram for V= 25 m/s 

Being initially stable at 

small umax, the closed-

loop limit cycle first 

loses its stability after 

the torus birth via the 

Neimark-Sacker 

bifurcation and then, 

after the second 

Neimark-Sacker  

bifurcation, regains 

stability in a very short 

range of umax before its 

final disappearance 
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Conclusions 

• Random attractors appearance in experiments is explained from the 

theoretical viewpoint 

 

• Simple numerical method for structural instability detection is 

proposed based on piecewise-linearization 

 

• The proposed method can help in feedback design for flutter 

suppression 

 

• See paper of my colleagues with application of piecewise-linear 

analysis to more realistic model:  

 

Kolesnikov, E. and Goman, M., Analysis of Aircraft Nonlinear 

Dynamics Using Non-Gradient Based Numerical Methods and 

Attainable Equilibrium Sets, AIAA Atmospheric Flight Mechanics 

Conference, No. AIAA-2012-4406, August 2012 


