Introduction to classification Stable mappings of the plane and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Computing the Apparent Contour Conjecture and conclusion

Classification of mappings from \mathbb{R}^2 to \mathbb{R}^2

Nicolas Delanoue - Sébastien Lagrange

SWIM 2013 - Small Workshop on Intervals Methods - Brest http://www.ensta-bretagne.fr/swim13/

Outline

- Introduction to classification
 - Objects, Equivalence, Invariants
 - Discretization Portrait of a map
- 2 Stable mappings of the plane and their singularities
 - Stable maps
 - Withney theorem Normal forms
 - Compact simply connected with boundary
- 3 Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 .
- 4 Computing the Apparent Contour
- 6 Conjecture and conclusion

Objects

The set of square matrices of order n (denoted by \mathcal{M}_n)

Objects

The set of square matrices of order n (denoted by \mathcal{M}_n)

Equivalence

We can defined an equivalence relation \sim between elements of \mathcal{M}_n with

$$A \sim B \Leftrightarrow \exists P \in GL, A = PBP^{-1}$$

Objects

The set of square matrices of order n (denoted by \mathcal{M}_n)

Equivalence

We can defined an equivalence relation \sim between elements of \mathcal{M}_n with

$$A \sim B \Leftrightarrow \exists P \in GL, A = PBP^{-1}$$

Invariant

The set of eigenvalues is an invariant because

$$A \sim B \Rightarrow sp(A) = sp(B)$$

Invariant

The set of eigenvalues is not a strong enough invariant since

$$\exists A, B \in \mathcal{M}_n, A \not\sim B \text{ and } sp(A) = sp(B)$$

Invariant

The set of eigenvalues is not a strong enough invariant since

$$\exists A, B \in \mathcal{M}_n, A \not\sim B \text{ and } sp(A) = sp(B)$$

Example

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

Stable mappings of the plane and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Computing the Apparent Contour Conjecture and conclusion

Invariant

The set of eigenvalues is not a strong enough invariant since

$$\exists A, B \in \mathcal{M}_n, A \nsim B \text{ and } sp(A) = sp(B)$$

Example

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

A really strong invariant

Let us call by J the Jordan method, we have

$$A \sim B \Leftrightarrow J(A) = J(B)$$

Objects Equivalence

Invariants

Square matrices $A \sim B \Leftrightarrow \exists P \in GL, A = PBP^{-1}$ Eigenvalues,

Objects Equivalence Invariants

Square matrices $A \sim B \Leftrightarrow \exists P \in GL, A = PBP^{-1}$ Eigenvalues, Jordanisation

Objects	Equivalence	Invariants
Square matrices	$A \sim B \Leftrightarrow \exists P \in GL, A = PBP^{-1}$	Eigenvalues, Jordanisation

Real bilinear $A \sim B \Leftrightarrow \exists U, V \in SO, A = UBV$ forms

Singularvalues

-	Objects	Equivalence	Invariants
	Square matrices	$A \sim B \Leftrightarrow \exists P \in GL, A = PBP^{-1}$	Eigenvalues, Jordanisation
	Real bilinear forms	$A \sim B \Leftrightarrow \exists U, V \in SO, A = UBV$	Singularvalues
	_		

Smooth maps

 $f \sim f'$ if there exist diffeomorphic changes of variables (g, h) on X and Y such that $f = g \circ f' \circ h$

Global picture

One wants a global "picture" of the map which does not depend on a choice of system of coordinates neither on the configuration space nor on the working space.

Global picture

One wants a global "picture" of the map which does not depend on a choice of system of coordinates neither on the configuration space nor on the working space.

Definition - Equivalence

Let f and f' be two smooth maps. Then $f \sim f'$ if there exists diffeomorphisms $g: X \to X'$ and $h: Y' \to Y$ such that the diagram

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow g & & \uparrow h \\
X' & \xrightarrow{f'} & Y'
\end{array}$$

commutes.

Example

$$\mathbb{R} \xrightarrow{2x+6} \mathbb{R}$$

$$\downarrow g \qquad \uparrow h$$

$$\mathbb{R} \xrightarrow{x+1} \mathbb{R}$$

Example

$$\mathbb{R} \xrightarrow{2x+6} \mathbb{R}$$

$$\downarrow x+2 \qquad \uparrow 2y$$

$$\mathbb{R} \xrightarrow{x+1} \mathbb{R}$$

Examples

$$f_1(x) = x^2$$
, $f_2(x) = ax^2 + bx + c$, $a \neq 0$

$$f_1 \sim f_2$$

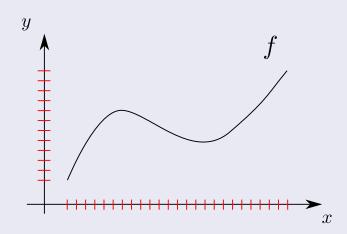
$$f_1(x) = x^2 + 1$$
, $f_2(x) = x + 1$,

$$f_1 \not\sim f_2$$

Stable mappings of the plane and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Computing the Apparent Contour Conjecture and conclusion

Objects, Equivalence, Invariants The one dimentional case

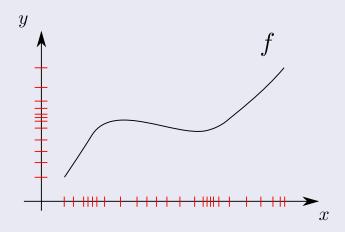
Examples



Stable mappings of the plane and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Computing the Apparent Contour Conjecture and conclusion

Objects, Equivalence, Invariants The one dimentional case

Examples



Proposition

Suppose that $f \sim f'$ with

$$\begin{array}{ccc} x_1 & \xrightarrow{f} & y_1 \\ \downarrow g & & \uparrow h \\ x_2 & \xrightarrow{f'} & y_2 \end{array}$$

then $f^{-1}(\{y_1\})$ is homeomorphic to $f'^{-1}(\{y_2\})$.

Proposition

Suppose that $f \sim f'$ with

$$\begin{array}{ccc} x_1 & \xrightarrow{f} & y_1 \\ \downarrow g & & \uparrow h \\ x_2 & \xrightarrow{f'} & y_2 \end{array}$$

then rank $df_{x_1} = \operatorname{rank} df'_{x_2}$.

Proof

Chain rule, $df = dh \cdot df' \cdot dg$

Definition

Let us defined by S_f the set of critical points of f:

$$S_f = \{x \in X \mid df(x) \text{ is singular } \}.$$

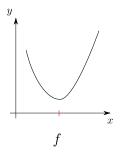
Corollary

$$f \sim f' \Rightarrow S_f \simeq S_{f'}$$

where \simeq means homeomorphic.

i.e. the topology of the critical points set is an invariant.

This is not a strong enough invariant, there exists smooth maps $f,f':[0,1]\to [0,1]$ such that $S_f\simeq S_{f'}$ and $f\not\sim f'.$



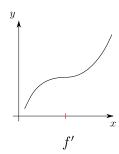
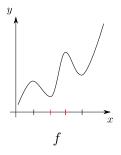


FIGURE: Singularity theory.

This is not a strong enough invariant, there exists smooth maps $f,f':[0,1]\to [0,1]$ such that $S_f\simeq S_{f'}$ and $f\not\sim f'.$



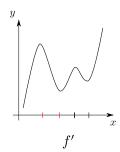
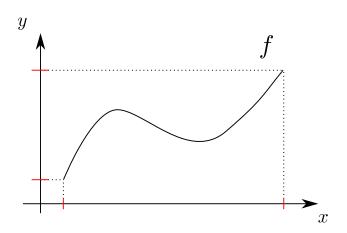
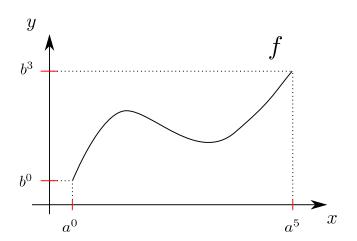
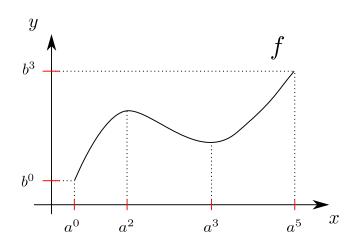
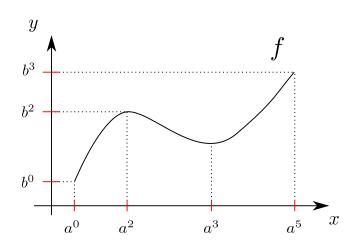


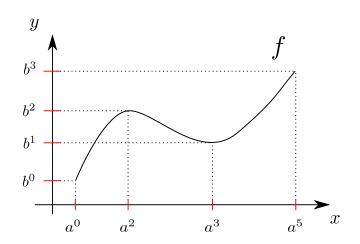
FIGURE: Topology of X.

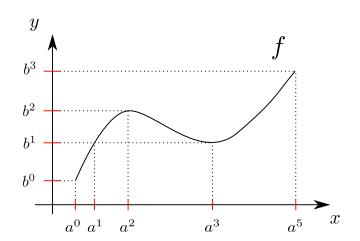


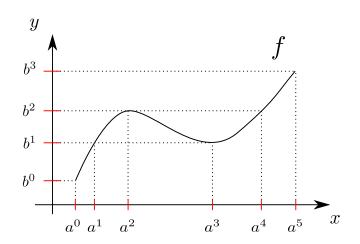


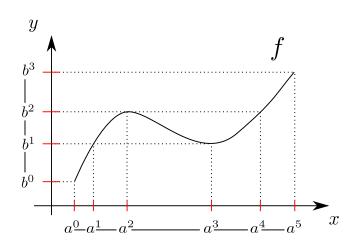










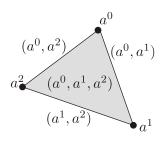


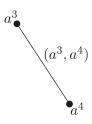
Definition - Abstract simplicial complex

Let $\mathcal N$ be a finite set of symbols $\{(a^0),(a^1),\ldots,(a^n)\}$ An abstract simplicial complex $\mathcal K$ is a subset of the powerset of $\mathcal N$ satisfying : $\sigma\in\mathcal K\Rightarrow \forall\sigma_0\subset\sigma,\sigma_0\in\mathcal K$

$$\mathcal{K} = \{(a^0), (a^1), (a^2), (a^3), (a^4), \\ (a^0, a^1), (a^1, a^2), (a^0, a^2), (a^3, a^4), \\ (a^0, a^1, a^2)\}$$

This will be denoted by $a^0a^1a^2 + a^3a^4$





Definition

Given abstract simplicial complexes \mathcal{K} and \mathcal{L} , a simplicial map $F:\mathcal{K}^0\to\mathcal{L}^0$ is a map with the following property :

$$(a^0, a^1, \ldots, a^n) \in \mathcal{K} \Rightarrow (F(a^0), F(a^1), \ldots, F(a^n)) \in \mathcal{L}.$$

Example - Simplicial map

$$\mathcal{K} = a_0 a_1 + a_1 a_2 + a_2 a_3, \quad \mathcal{L} = b_0 b_1 + b_1 b_2$$

$$F : a^{0} \mapsto b^{0}$$

$$a^{1} \mapsto b^{1}$$

$$a^{2} \mapsto b^{2}$$

$$a^{3} \mapsto b^{1}$$

Example - NOT a Simplicial map

$$\mathcal{K} = a_0 a_1 + a_1 a_2 + a_2 a_3, \quad \mathcal{L} = b_0 b_1 + b_1 b_2$$

$$F : a^{0} \mapsto b^{0}$$

$$a^{1} \mapsto b^{1}$$

$$a^{2} \mapsto b^{2}$$

$$a^{3} \mapsto b^{0}$$

Example - Simplicial map

$$\mathcal{K} = a_0 a_1 a_2 + a_1 a_2 a_3, \quad \mathcal{L} = b_0 b_1 b_2$$

$$\begin{array}{cccc} F & : & a^0 & \mapsto b^0 \\ & a^1 & \mapsto b^1 \\ & a^2 & \mapsto b^2 \\ & a^3 & \mapsto b^0 \end{array}$$

e mappings of the plane and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 .

Computing the Apparent Contour Conjecture and conclusion

Objects, Equivalence, Invariants The one dimentional case Discretization - Portrait of a map

Definition

Let f and f' be continous maps. Then f and f' are topologically conjugate if there exists homeomorphism $g:X\to X'$ and $h:Y\to Y'$ such that the diagram

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow g & & \uparrow h \\
X' & \xrightarrow{f'} & Y'
\end{array}$$

commutes.

Proposition

$$f \sim f' \Rightarrow f \sim_0 f'$$

Objects, Equivalence, Invariants The one dimentional case Discretization - Portrait of a map

Definition

Let f be a smooth map and F a simplicial map, F is a *portrait* of f if

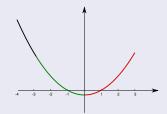
$$f \sim_0 F$$

Example - Simplicial map

The simplicial map

$$b^0$$
 b^1 b

is a portrait of $[-4,3] \ni x \mapsto x^2 - 1 \in \mathbb{R}$



Introduction Stable maps Withney theorem - Normal forms Compact simply connected with boundary

Proposition

For every closed subset A of \mathbb{R}^n , there exists a smooth real valued function f such that

$$A = f^{-1}(\{0\})$$

Introduction Stable maps Withney theorem - Normal forms Compact simply connected with boundary

Proposition

For every closed subset A of \mathbb{R}^n , there exists a smooth real valued function f such that

$$A = f^{-1}(\{0\})$$

We are not going to consider all cases . . .

Let f be a smooth map, f is *stable* if their exists a nbrd N_f such that

$$\forall f' \in N_f, f' \sim f$$

Examples

- $g: x \mapsto x^2$ is stable,
- ② $f_0: x \mapsto x^3$ is not stable, since with $f_{\epsilon}: x \mapsto x(x^2 \epsilon)$,

$$\epsilon \neq 0 \Rightarrow f_{\epsilon} \not\sim f_0$$
.

Withney theorem

Let X and Y be 2-dimentional manifolds and f be generic. The critical point set S_f is a regular curve. With $p \in S_f$, one has

$$T_pS_f \oplus \ker df_p = T_pX \text{ or } T_pS_f = \ker df_p$$

Geometric representation

Geometric representation

 $T_p S_p = \ker df_p : \operatorname{cusp point}$

Geometric representation

 $T_p S_p = \ker df_p : \operatorname{cusp point}$

Normal forms

① If $T_pS_f \oplus \ker df_p = T_pX$, then there exists a nbrd N_p such that

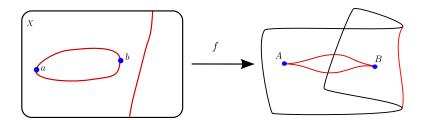
$$f|N_p\sim(x,y)\mapsto(x,y^2).$$

2 If $T_pS_f = \ker df_p$, then there exists a nbrd N_p such that

$$f|N_p \sim (x, y) \mapsto (x, xy + y^3).$$

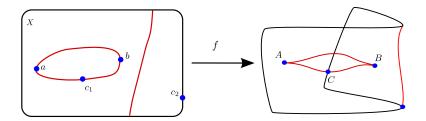
Let f a smooth map from $X \to \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X . The apparent contour of f is

$$f(S_f \cup \partial X)$$



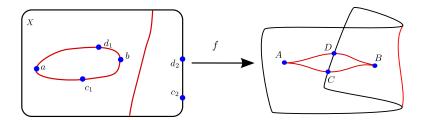
Let f a smooth map from $X \to \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X . The apparent contour of f is

$$f(S_f \cup \partial X)$$



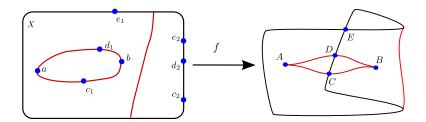
Let f a smooth map from $X \to \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X . The apparent contour of f is

$$f(S_f \cup \partial X)$$



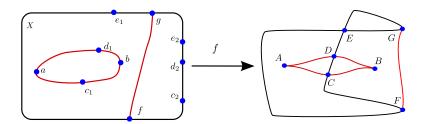
Let f a smooth map from $X \to \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X . The apparent contour of f is

$$f(S_f \cup \partial X)$$



Let f a smooth map from $X \to \mathbb{R}^2$ with X a simply connected compact subset of \mathbb{R}^2 with smooth boundary ∂X . The apparent contour of f is

$$f(S_f \cup \partial X)$$



Theorem (Global properties of generic maps)

Let X be a compact simply connected domain of \mathbb{R}^2 with $\partial X = \Gamma^{-1}(\{0\})$. A generic smooth map f from X to \mathbb{R}^2 has the following properties :

• S_f is regular curve. Moreover, elements of S are folds and cusp. The set of cusp is discrete.

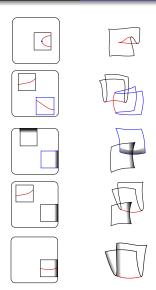
- 3 singular points do not have the same image,
- **1** 2 singular points having the same image are folds points and they have normal crossing.

- **5** 3 boundary points do not have the same image,
- 6 2 boundary points having the same image cross normally.

- **3** different points belonging to $S_f \cup \partial X$ do not have the same image,
- If a point on the singularity curve and a boundary have the same image, the singular point is a fold and they have normal crossing.

- if the singularity curve intersects the boundary, then this point is a fold,
- moreover tangents to the singularity curve and boundary curve are different.

Cusp Fold - Fold Boundary - Boundary Boundary - Fold



Cusp Fold - Fold Boundary - Boundary Boundary - Fold

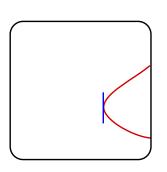
Proposition

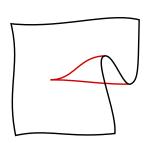
Let f be a smooth generic map from X to \mathbb{R}^2 , let us denote by c the map defined by :

$$\begin{array}{cccc}
c & : & X & \to & \mathbb{R}^2 \\
& p & \mapsto & df_p \xi_p
\end{array} \tag{1}$$

where ξ is the vector field defined by $\xi_p = \begin{pmatrix} \partial_2 \det df_p \\ -\partial_1 \det df_p \end{pmatrix}$. If c(p) = 0 and dc_p is invertible then p is a simple cusp. This sufficient condition is locally necessary.

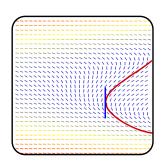
Cusp Fold - Fold Boundary - Boundary Boundary - Fold

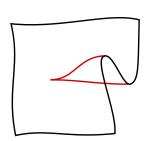




Interval Newton method

$$c : X \to \mathbb{R}^2 p \mapsto df_p \xi_p$$
 (2)





Interval Newton method

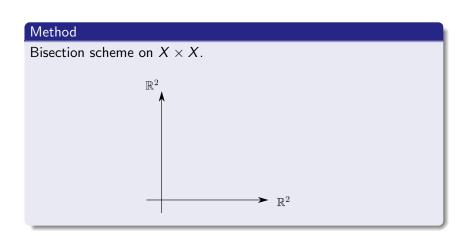
$$c : X \to \mathbb{R}^2 p \mapsto df_p \xi_p$$
 (3)

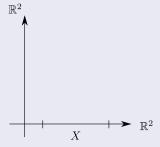
2 different folds

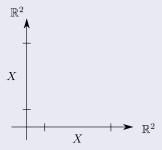
$$S^{\Delta 2} = \{(x_1, x_2) \in S \times S - \Delta(S) \mid f(x_1) = f(x_2)\}/\simeq$$

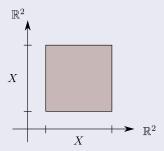
where \simeq is the relation defined by $(x_1, x_2) \simeq (x'_1, x'_2) \Leftrightarrow (x_1, x_2) = (x'_2, x'_1).$

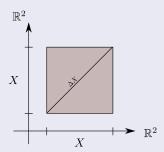
Method

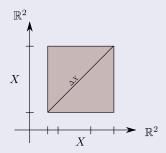


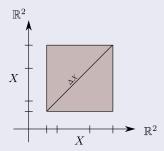


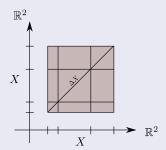


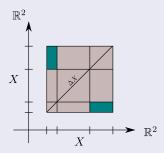






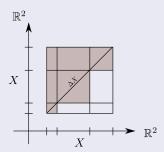






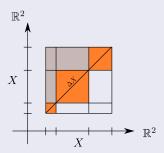
Method

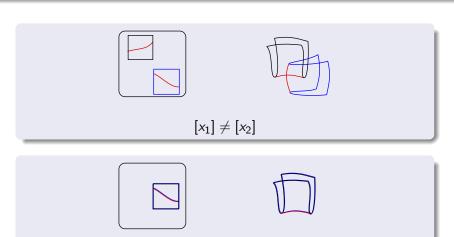
Bisection scheme on $X \times X$.



Method

Bisection scheme on $X \times X$.





 $[x_1] = [x_2]$

Let us define the map folds by

$$\begin{array}{cccc} \textit{folds} & : & X \times X & \rightarrow & \mathbb{R}^4 \\ & \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} & \mapsto & \begin{pmatrix} \det df(x_1, y_1) \\ \det df(x_2, y_2) \\ f_1(x_1, y_1) - f_1(x_2, y_2) \\ f_2(x_1, y_1) - f_2(x_2, y_2) \end{pmatrix}$$

One has

$$S^{\Delta 2} = folds^{-1}(\{0\}) - \Delta S/\simeq$$
.

For any (α, α) in ΔS , the d folds is conjugate to

$$\begin{pmatrix}
a & b & 0 & 0 \\
0 & 0 & a & b \\
a_{11} & a_{12} & a_{11} & a_{12} \\
a_{21} & a_{22} & a_{21} & a_{22}
\end{pmatrix}$$

which is not invertible since $\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \det df(\alpha) = 0$. In other words, as any box of the form $[x_1] \times [x_1]$ contains ΔS , the interval Newton method will fail.

One needs a method to prove that $f|S \cap [x_1]$ is an embedding.

One needs a method to prove that $f|S \cap [x_1]$ is an embedding.

$$[x_1] = [x_2]$$

One needs a method to prove that $f|S \cap [x_1]$ is an embedding.

$$[x_1] = [x_2]$$

Not in this case ...

Corollary

Let $f: X \to \mathbb{R}^2$ be a smooth map and X a compact subset of \mathbb{R}^2 .

Let $\Gamma: X \to \mathbb{R}$ be a submersion such that the curve

$$S = \{x \in X \mid \Gamma(x) = 0\}$$
 is contractible. If

$$\forall J \in \widetilde{d}f(X) \cdot \left(egin{array}{c} \partial_2 \Gamma(X) \ -\partial_1 \Gamma(X) \end{array}
ight), \mathsf{rank}\, J = 1$$

then f|S is an embedding.

The last condition is not satisfiable if $[x_1]$ contains a cusp ...

Proposition '

Suppose that there exists a unique simple cusp p_0 in the interior of X. Let $\alpha \in \mathbb{R}^{2*}$, s.t. $\alpha \cdot \operatorname{Im} df_{p_0} = 0$, and ξ a non vanashing vector field such that $\forall p \in S, \xi_p \in T_p S$ (S contractible).

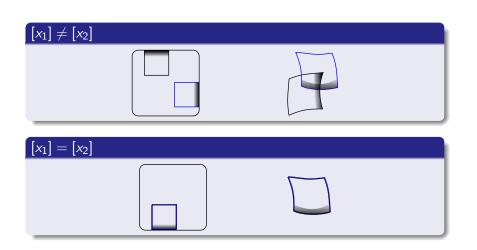
If $g = \sum \alpha_i \xi^3 f_i : X \to \mathbb{R}$ is a nonvanishing function then f|S is injective. This condition is locally necessary.

Here the vector field ξ is seen as the derivation of $\mathcal{C}^{\infty}(X)$ defined by

$$\xi = \sum \xi_i \frac{\partial}{\partial x_i}.$$

$$\partial X^{\Delta 2} = \{(x_1, x_2) \in \partial X \times \partial X - \Delta(\partial X) \mid f(x_1) = f(x_2)\}/\simeq$$

Cusp Fold - Fold Boundary - Boundary Boundary - Fold



Let us define the map boundaries by

boundaries :
$$X \times X$$
 \rightarrow \mathbb{R}^4

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} \Gamma(x_1, y_1) \\ \Gamma(x_2, y_2) \\ f_1(x_1, y_1) - f_1(x_2, y_2) \\ f_2(x_1, y_1) - f_2(x_2, y_2) \end{pmatrix}$$

One has

$$\partial X^{\Delta 2} = boundaries^{-1}(\{0\}) - \Delta \partial X/\simeq$$
.

Cusp Fold - Fold Boundary - Boundary Boundary - Fold

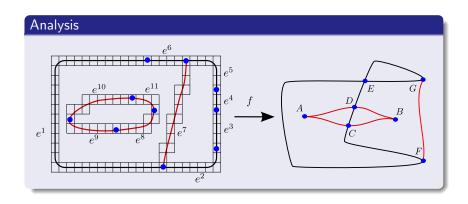
$$BF = \{(x_1, x_2) \in \partial X \times S \mid f(x_1) = f(x_2)\}\$$

$$[x_1] \neq [x_2]$$

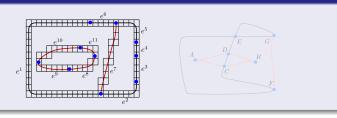
$$egin{array}{ccc} X imes X &
ightarrow & \mathbb{R}^4 \ \left(egin{array}{c} x_1 \ y_1 \end{array}
ight), \left(egin{array}{c} x_2 \ y_2 \end{array}
ight) &
ightarrow & \left(egin{array}{c} \det df \left(x_1, y_1
ight) \ \gamma \left(x_2, y_2
ight) \ f_1 \left(x_1, y_1
ight) - f_1 \left(x_2, y_2
ight) \ f_2 \left(x_1, y_1
ight) - f_2 \left(x_2, y_2
ight) \end{array}
ight)$$

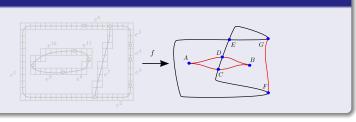
$$[x_1] = [x_2]$$

$$\left(egin{array}{ccc} X &
ightarrow & \mathbb{R}^2 \ \left(egin{array}{c} x_1 \ y_1 \end{array}
ight) & \mapsto & \left(egin{array}{c} \det df(x_1,y_1) \ \gamma(x_1,y_1) \end{array}
ight) \end{array}$$



Synthesis

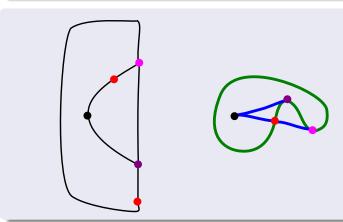


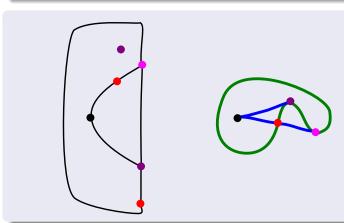


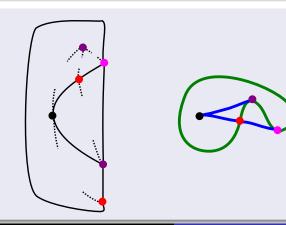
Introduction to classification Stable mappings of the plane and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Computing the Apparent Contour Conjecture and conclusion

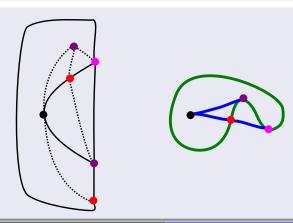
Theorem.

For every portrait F of f, the 1-skeleton of ImF contains a subgraph that is an expansion of \mathcal{X}/f .









Introduction to classification Stable mappings of the plane and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Computing the Apparent Contour Conjecture and conclusion

Source code is available on my webpage.

Introduction to classification Stable mappings of the plane and their singularities Interval analysis and mappings from \mathbb{R}^2 to \mathbb{R}^2 . Computing the Apparent Contour Conjecture and conclusion

Source code is available on my webpage.

Merci pour votre attention.