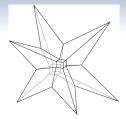
Improving Newton Existence Test SWIM 2013

clement.aubry@ecole-navale.fr

June 5-7, 2013

Naval Academy Research Institute, CC600, 29240 Brest

Armées France.



O Brouwer Fixed-Point Theorem

2 Newton Test for Existence and Uniqueness

Interval Newton Test

4 Improvements

5 Uniqueness Operator

Outline

Brouwer Fixed-Point Theorem

2 Newton Test for Existence and Uniqueness

Interval Newton Test

Improvements

5 Uniqueness Onerator

Theorem (Euclidean space)

Every continuous function from a closed ball of an Euclidean space to itself has a fixed point.

Explanations - Anecdote

- 1D piece of string
- 2D sheet of paper
- 3D cup of cofee

1 24

Outline

Newton Test for Existence and Uniqueness Definition Explanations Problem 1 – Jacobian invertibility

Interval Newton Test

improvements

Oniqueness Operator

Newton Test for Existence and Uniqueness

Definition

Consider a smooth function $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^n$ and $[\mathbf{x}] \in \mathbb{R}^n$. Denote by $\mathbf{J}_{\mathbf{f}}$ is Jacobian Matrix.

Definition (Newton test, Moore [Moore, 1979])

The Newton operator is defined by

$$\mathcal{N}\left(\mathbf{f}, \left[\mathbf{J}_{\mathbf{f}}\right], \left[\mathbf{x}\right]\right) = \widehat{\mathbf{x}} - \left[\mathbf{J}_{\mathbf{f}}\right]^{-1}\left(\left[\mathbf{x}\right]\right) \cdot \mathbf{f}\left(\widehat{\mathbf{x}}\right) \tag{1}$$

If $\mathcal{N}([\mathbf{x}]) \subset [\mathbf{x}]$ then $[\mathbf{x}]$ contains a <u>unique</u> zero \mathbf{x}^* of \mathbf{f} . It is also in $\mathcal{N}([\mathbf{x}])$.

Interval Newton Test

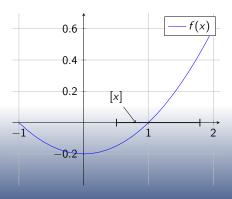
Improvements

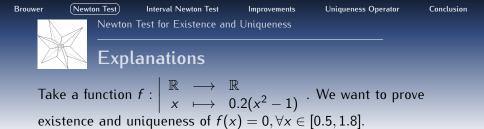
Newton Test for Existence and Uniqueness

Explanations

Take a function $f: \begin{vmatrix} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 0.2(x^2 - 1) \end{vmatrix}$. We want to prove existence and uniqueness of $f(x) = 0, \forall x \in [0.5, 1.8]$.

 Choose an initial domain for [x]





- Choose an initial domain for [x]
- Evaluate slopes over [x]

(Newton Test) II

Interval Newton Test

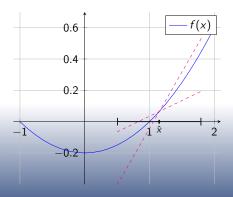
Improvements

Newton Test for Existence and Uniqueness

Explanations

Take a function $f: \begin{vmatrix} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 0.2(x^2 - 1) \end{vmatrix}$. We want to prove existence and uniqueness of $f(x) = 0, \forall x \in [0.5, 1.8]$.

- Choose an initial domain for [x]
- Evaluate slopes over [x]
- Center slopes on x̂



(Newton Test) II

Interval Newton Test

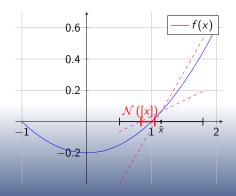
Improvements

Newton Test for Existence and Uniqueness

Explanations

Take a function $f: \begin{vmatrix} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & 0.2(x^2 - 1) \end{vmatrix}$. We want to prove existence and uniqueness of $f(x) = 0, \forall x \in [0.5, 1.8]$.

- Choose an initial domain for [x]
- Evaluate slopes over [x]
- Center slopes on x̂
- Intersection gives us N([x])



(Newton Test)

Interval Newton Test

Newton Test for Existence and Uniqueness

Improvements

Uniqueness Operator

Conclusion

Problem 1 - Jacobian invertibility

Interval Newton Test

Outline

Brouwer Fixed-Point Theorem

2 Newton Test for Existence and Uniqueness

Interval Newton Test

Definition Example Problem 2 - Bad initial box

4 improvements

Oniqueness Operator

An uncertain function **f** could be described in several ways:

① As a tube:
$$\mathbf{f} \in [\mathbf{f}]$$
 with $[\mathbf{f}] \stackrel{\Delta}{=} [\mathbf{f}^-, \mathbf{f}^+]$

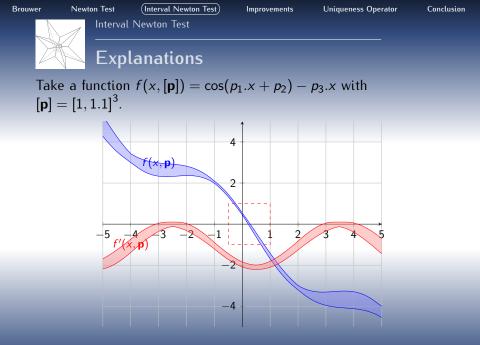
② As a parametrized function: $\mathbf{f} \in [\mathbf{f}]$ with $[\mathbf{f}] = \{\varphi(\mathbf{p}, \mathbf{x}), \mathbf{p} \in [\mathbf{p}]\}$

If $J_f \in [J_f]$, we define:

Definition (Interval Newton Test)

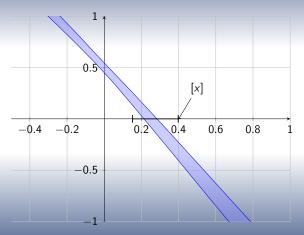
$$\mathcal{N}\left(\left[\mathbf{f}\right], \left[\mathbf{J}_{\mathbf{f}}\right], \left[\mathbf{x}\right]\right) = \widehat{\mathbf{x}} - \left[\mathbf{J}_{\mathbf{f}}\right]^{-1}\left(\left[\mathbf{x}\right]\right) \cdot \left[\mathbf{f}\right]\left(\widehat{\mathbf{x}}\right)$$
(2)

$$\mathcal{N}\left(\left[\mathbf{x}\right]\right) = \widehat{\mathbf{x}} - \Sigma\left(\left[\mathbf{J}_{\mathbf{f}}\right]\left(\left[\mathbf{x}\right]\right), \left[\mathbf{f}\right]\left(\widehat{\mathbf{x}}\right)\right) \tag{3}$$

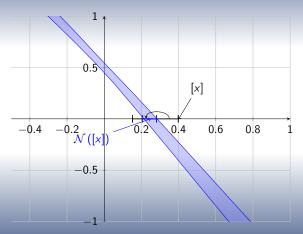


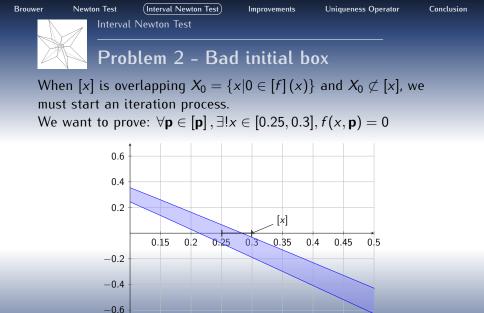
N-inflation 11 / 24

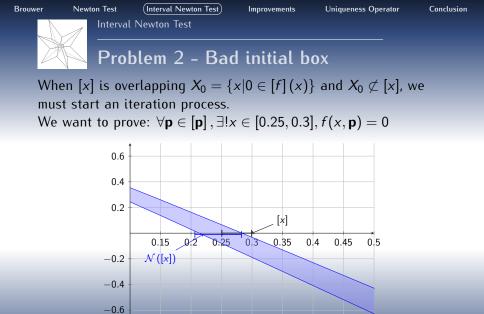


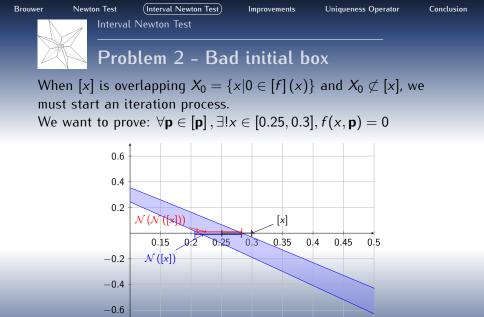


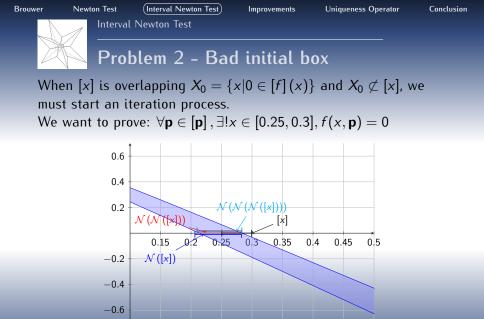












Improvements

Outline

Brouwer Fixed-Point Theorem

2 Newton Test for Existence and Uniqueness

Interval Newton Test

Improvements *E*-inflation
N-inflation

Outpriss Operator

Results and Conclusion

Definition

For a real interval [x]

$$[x] \circ \mathcal{E} = \begin{cases} [x] + w([x]) \cdot [-\mathcal{E}, +\mathcal{E}] & \text{for } w([x]) \neq 0\\ [x] + [-\eta, +\eta] & \text{otherwise} \end{cases}$$
(4)

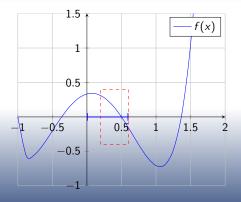
where η represents the smallest representable machine number and $\mathcal E$ the inflation coefficient.

Rump, S. M. (1980). Kleine fehlerschranken bei matrixproblemen. Dissertation,Universität Karlsruhe.

•
$$f(x) = \frac{(4x^3 - 6x + 1)(\sqrt{x+1})}{3 - x}$$

•
$$f(x) = \frac{(4x^3 - 6x + 1)(\sqrt{x+1})}{3-x}$$

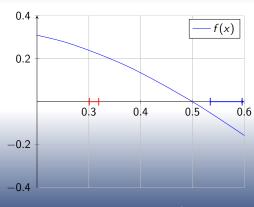
•
$$\mathcal{N}([0; 0.6]) = [-\infty, +\infty]$$



•
$$f(x) = \frac{(4x^3 - 6x + 1)(\sqrt{x+1})}{3-x}$$

•
$$\mathcal{N}([0; 0.6]) = [-\infty, +\infty]$$

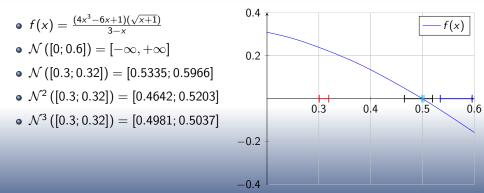
• $\mathcal{N}([0.3; 0.32]) = [0.5335; 0.5966]$



• $f(x) = \frac{(4x^3 - 6x + 1)(\sqrt{x+1})}{3 - x}$ • $\mathcal{N}([0; 0.6]) = [-\infty, +\infty]$ • $\mathcal{N}([0.3; 0.32]) = [0.5335; 0.5966]$ • $\mathcal{N}^2([0.3; 0.32]) = [0.4642; 0.5203]$ -0.2 -0.4

f(x)

0.6



•
$$f(x) = \frac{(4x^3 - 6x + 1)(\sqrt{x+1})}{3 - x}$$

• $\mathcal{N}([0; 0.6]) = [-\infty, +\infty]$
• $\mathcal{N}([0.3; 0.32]) = [0.5335; 0.5966]$
• $\mathcal{N}^2([0.3; 0.32]) = [0.4642; 0.5203]$
• $\mathcal{N}^3([0.3; 0.32]) = [0.4981; 0.5037]$
• $\frac{\mathcal{N}^3([0.3; 0.32]) \subset \mathcal{N}^2([0.3; 0.32])}{-0.2}$
-0.4

•
$$f(x) = \frac{(4x^3 - 6x + 1)(\sqrt{x+1})}{3-x}$$

• Similar when $f \in [f], \dot{f} \in [\dot{f}]$

Outline

Brouwer Fixed-Point Theorem

2 Newton Test for Existence and Uniqueness

Interval Newton Test

Improvements

5 Uniqueness Operator Definition Proposition



$$\mathcal{N}([\mathbf{x}]) \subset [\mathbf{x}] \Rightarrow \exists ! \mathbf{x}^* \in [\mathbf{x}], \mathcal{N}(\{\mathbf{x}^*\}) = \{\mathbf{x}^*\}$$
(5)

Proposition ([Delanoue, 2006])

If an operator \mathcal{N} is a uniqueness operator. So does \mathcal{N}^k , with $\mathcal{N}^k = \mathcal{N} \circ \mathcal{N} \circ \dots \circ \mathcal{N}$.

Delanoue, N. (2006). *Algorithmes numériques pour l'analyse topologique.* PhD dissertation, Université d'Angers, Angers, France.

Definition (N-Kleene)

$$I \cap \mathcal{N} \cap \mathcal{N}^2 \cap \dots \cap \mathcal{N}^\infty = \mathcal{N}^* \tag{6}$$

- If \mathcal{N} is a uniqueness operator for a box [x], so does \mathcal{N}^* .
- \mathcal{N}^* is more efficient than \mathcal{N} .

Outline

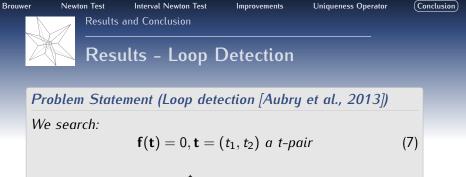
Brouwer Fixed-Point Theorem

2 Newton Test for Existence and Uniqueness

Interval Newton Test

Improvements

3 Uniqueness Operator



With
$$\mathbf{f}(\mathbf{t}) = \int_{t_1}^{t_2} \mathbf{v}(\tau) d\tau$$

 $\mathbf{v} \in [\mathbf{v}] \Rightarrow \mathbf{f} \in [\mathbf{f}]$
 $\mathbf{J}_{\mathbf{f}} = (-\mathbf{v}(t_1) \ \mathbf{v}(t_2)) \in (-[\mathbf{v}](t_1) \ [\mathbf{v}](t_2))$

2 equations, 2 unknown, parameter in infinite dimension.

Aubry, C., Desmare, R., and Jaulin, L. (2013). Loop detection of mobile robots using interval analysis. *Automatica*, 49(2):463–470.

Demo Loop Detection and N-inflation.

Results

- Decrease probability of Jacobian non-invertibility.
- Strategy: local research of a uniqueness box.
- Better automation of uniqueness tests.

To go further

- Perform benchmarking.
- Test with different solver in Newton operator definition.

Thanks for your attention. Questions?