
Level Sets and Controls in a Two
Pursuers One Evader Differential Game

S.A. Ganebny, S.S. Kumkov, S. Le Ménec, and V.S. Patsko

Abstract This study deals with a problem of pursuit-evasion with two pur-
suers and one evader having linear dynamics. The pursuers try to minimize
the final miss (an ideal situation is to get exact capture), the evader counter-
acts them. Results of numerical construction of level sets (Lebesgue sets) of
the value function are given. A feedback method for producing optimal con-
trol is suggested. The paper includes also numerical simulations of optimal
motions of the objects in different situations.

1 Introduction

Nowadays, group pursuit-evasion games (several pursuers and/or several
evaders) are studied intensively: [2, 5, 6, 10, 16]. From a general point of view,
often, a group pursuit-evasion game (without any hierarchy among players)
can be treated as an antagonistic differential game, where all pursuers are
joined into a player, whose objective is to minimize some functional, and,
similarly, all evaders are joined into another player, who is the opponent to
the first one. The theory of differential games gives an existence theorem for
the value function of such a game. But, usually, any more concrete results
(for example, concerning effective constructing the value function) cannot be
obtained. This is due to high dimension of the state vector of the correspond-
ing game. Just these reasons can explain why group pursuit-evasion games
are very difficult and are investigated usually by means of specific methods
and under very strict assumptions.

In this study, we investigate a pursuit-evasion game with two pursuers
and one evader. Such a model formulation arises during analysis of a problem,
where two aircrafts (or missiles) intercept another one in the horizontal plane.
The peculiarity of the game explored in this work is that solvability sets (the
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sets wherefrom the interception can be guaranteed with miss, which is not
greater than some given value) and optimal feedback controls can be build
numerically in a one-to-one antagonistic game, where the pursuers are joined
into one useful control. Such an investigation is the aim of this study.

2 Formulation of Problem

We consider a game in the plane. Let us assume that initial closing velocities
are parallel and quite large and control accelerations affect only lateral com-
ponents of object velocities. Thus, one can suppose that instants of passages
of the evader by each of the pursuers are fixed. Below, we call them termi-
nation instants and denote by Tf1 and Tf2, respectively. We consider both
the cases of equal and different termination instants. The players’ controls
define the lateral deviations of the evader from the first and second pursuers
at the termination instants. Minimum of absolute values of these deviations
is called the resulting miss. The objective of the pursuers is minimization
of the resulting miss, the evader maximizes it. The pursuers generate their
controls by a coordinated effort (from one control center).

In Fig. 1, one can see one possible initial location of the pursuers and
evader, when they move towards each other. Also, the evader can move from
both pursuers, or from one of them, but towards another one. Below, we
consider lateral motions only, so all these cases are studied uniformly.

In the relative linearized system, the dynamics is the following (see [11,
12]):

ÿ1 = −aP1 + aE , ÿ2 = −aP2 + aE ,
ȧP1 = (AP1u1 − aP1)/lP1, ȧP2 = (AP2u2 − aP2)/lP2,
ȧE = (AEv − aE)/lE .

(1)

Here, y1 and y2 are the current lateral deviations of the evader from the first
and second pursuers; aP1, aP2, aE are the lateral accelerations of the pursuers
and evader; u1, u2, v are the players’ controls; AP1, AP2, AE are the maximal
values of the accelerations; lP1, lP2, lE are the time constants describing
the inertiality of servomechanisms. So, aP1, aP2, aE are the physical lateral
accelerations, and u1, u2, v are respective command controls.

Fig. 1 Schematic initial positions of the pursuers and evader
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The controls have bounded absolute values:

|u1| ≤ 1, |u2| ≤ 1, |v| ≤ 1. (2)

The linearized dynamics of the objects in the problem under consideration
is typical (see, for example, [15]).

Consider new coordinates x1 and x2, which are the values of y1 and y2
forecasted to the corresponding termination instants Tf1 and Tf2 under zero
players’ controls. One has

xi = yi + ẏiτi − aPil2Pih(τi/lPi) + aEl
2
Eh(τi/lE), i = 1, 2. (3)

Here, xi and yi depend on t, and

τi = Tfi − t, h(α) = e−α + α− 1.

We have xi(Tfi) = yi(Tfi).
Passing to a new dynamics in “equivalent” coordinates x1 and x2 (see [11,

12]), we obtain:

ẋ1 = −AP1lP1h(τ1/lP1)u1 +AElEh(τ1/lE)v,
ẋ2 = −AP2lP2h(τ2/lP2)u2 +AElEh(τ2/lE)v.

(4)

Join both pursuers P1 and P2 into one player, which will be called the
first player. The evader E is the second player. The first player governs the
controls u1 and u2; the second one governs the control v. We introduce the
following payoff functional:

ϕ
(
x1(Tf1), x2(Tf2)

)
= min

(∣∣x1(Tf1)
∣∣, ∣∣x2(Tf2)

∣∣), (5)

which is minimized by the first player and maximized by the second one.
Thus, we get a standard antagonistic game with dynamics (4) and payoff
functional (5). This game has the value function V (t, x), where x = (x1, x2).
Each level set

Wc =
{

(t, x) : V (t, x) ≤ c
}

of the value function coincides with the maximal stable bridge (see [8, 9]);
also called capture zone (see [7]); or capture bassin (see [1, 3]) built from the
target set

Mc =
{

(t, x) : t = Tf1, |x1| ≤ c; t = Tf2, |x2| ≤ c
}
.

The set Wc can be treated as the solvability set for the pursuit-evasion game
with the result c.

When c = 0, we have the situation of the exact capture. The exact capture
implies equality to zero of at least one of yi at the instant Tfi, i = 1, 2.

The works [11, 12] consider only cases with exact capture and pursuers
“stronger” than the evader. The latter means that the parameters APi, AE
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Fig. 2 Different variants of the stable bridges evolution in an individual game

and lPi, lE (i = 1, 2) are such that the maximal stable bridges in the indi-
vidual games (P1 vs. E and P2 vs. E) grow monotonically in the backward
time.

Considering individual games of each pursuer vs. the evader, one can in-
troduce parameters [14] µi = APi/AE and εi = lE/lPi. They and only they
define the structure of the maximal stable bridges in the individual games.
Namely, depending on values of µi and µiεi, there are 4 cases of the bridge
evolution (see Fig. 2):
• expansion in the backward time (a strong pursuer);
• contraction in the backward time (a weaker pursuer);
• expansion of the bridge until some backward time instant and further

contraction;
• contraction of the bridge until some backward time instant and further

expansion (if the bridge still has not broken).
Respectively, given combinations of pursuers’ capabilities and individual
games durations (equal/different), there are significant number of variants
for the problem with two pursuers and one evader. The case of two strong
pursuers is considered below. The solutions of the other cases are presented
in [4].

The main objective of this study is to construct the sets Wc for typical
cases of the game under consideration. The difficulty of the problem is that
time sections Wc(t) of these sets are non-convex. Constructions are made
by means of an algorithm for constructing maximal stable bridges worked
out by the authors for problems with two-dimensional state variable. The
algorithm is similar to the one used in [13]. Another objective is to build
optimal feedback controls of the first player (that is, of the pursuers P1
and P2) and the second one (the evader E).
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3 Strong Pursuers, Equal Termination Instants

Add dynamics (4) by a “cross-like” target set

Mc = {|x1| ≤ c} ∪ {|x2| ≤ c}, c ≥ 0,

at the instant Tf = Tf1 = Tf2. Then we get a standard linear differential
game with fixed termination instant and non-convex target set. The col-
lection {Wc} of maximal stable bridges describes the value function of the
game (4) with payoff functional (5).

For the considered case of two stronger pursuers, choose the following
parameters:

AP1 = 2, AP2 = 3, AE = 1,
lP1 = 1/2, lP2 = 1/0.857, lE = 1,
Tf1 = Tf2 = 6.

1. Structure of maximal stable bridges. Fig. 3 shows results of con-
structing the set W = W0 (that is, with c = 0). In the figure, one can see
several time sections W (t) of this set. The bridge has a quite simple structure.
At the initial instant τ = 0 of the backward time (when t = 6), its section
coincides with the target set M0, which is the union of two coordinate axes.
Further, at the instants t = 4, 2, 0, the cross thickens, and two triangles
are added to it. The widths of the vertical and horizontal parts of the cross
correspond to sizes of the maximal stable bridges in the individual games
with the first and second pursuers. These triangles are located in the II and
IV quadrants (where the signs of x1 and x2 are different, in other words,
when the evader is between the pursuers) give the zone where the capture is
possible only under collective actions of both pursuers (trying to avoid one
of the pursuer, the evader is captured by another one).

These additional triangles have a simple explanation from the point of
view of problem (1). Their hypotenuses have slope equal to 45◦, that is,
are described by the equation |x1| + |x2| = const. The instant τ , when the
hypotenuse reaches a point (x1, x2), corresponds to the instant, when the
pursuers cover together the distance |x1(0)|+ |x2(0)|, which is between them
at the initial instant t = 0. Therefore, at this instant, both pursuers come
to the same point. Since the evader was initially between the pursuers, it is
captured at this instant.

The set W built in the coordinates of system (4) coincides with the de-
scription of the solvability set obtained analytically in [11, 12]. The solvability
set for system (1) is defined as follows: if in the current position of system (1)
at the instant t, the forecasted coordinates x1, x2 are inside the time sec-
tion W (t), then under the controls u1, u2 the motion is guided to the target
set M0; otherwise, if the forecasted coordinates are outside the set W (t), then
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Fig. 3 Two strong pursuers, equal termination instants: time sections of the
bridge W

Fig. 4 Two strong pursuers, equal termination instants: level sets of the value func-
tion, t = 2
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there is an evader’s control v, which deviates system (4) from the target set,
therefore, there is no exact capture in original system (1).

Time sectionsWc(t) of other bridgesWc, c > 0, have shape similar toW (t).
In Fig. 4, one can see the sections Wc(t) at t = 2 (τ = 4) for a collection {Wc}
corresponding to some serie of values of the parameter c. For other instants t,
the structure of the sectionsWc(t) is similar. The setsWc(t) describe the value
function x→ V (t, x).

2. Feedback control of the first player. The first player governs two
controls u1 and u2. Velocity component of system (4) depending on u1 is
horizontal, and the component depending on u2 is vertical. If to analyze the
structure of sections Wc(t) at some instant t, one can conclude that at any
horizontal line, a minimum of the value function x → V (t, x) is attained at
some interval including x1 = 0. It follows from this that for optimal feedback
control it is necessary to take u01(t, x) = 1 if x1 > 0, and u01(t, x) = −1 if
x1 < 0. Thus, the vertical axis is a switching line for the control u1. In the
axis, the optimal control can be taken arbitrary under constraint |u1| ≤ 1. In
the same way, at any vertical line, the minimum of the function x→ V (t, x)
is attained in some segment including x2 = 0. Take u02(t, x) = 1 if x2 > 0, and
u02(t, x) = −1 if x2 < 0. The switching line for the control u2 is the horizontal
axis. In the axis, the choice of the control is also arbitrary under condition
|u2| ≤ 1.

The switching lines (the coordinate axes) at any t divide the plane x1, x2
into 4 cells. In each of these cells, the optimal control of the first player is
constant.

The vector control
(
u01(t, x), u02(t, x)

)
is applied in a discrete scheme (see [8,

9]) with some time step ∆: a chosen control is kept constant during a time
step ∆. Then, on the basis of the new position, a new control is chosen, etc.
When ∆→ 0, this control guarantees to the first player a result not greater
than V (t0, x0) for any initial position (t0, x0).

3. Feedback control of the second player. Now, let us describe the
optimal control of the second player. The vectogram of the second player
in system (4) is a segment parallel to the diagonal of I and III quadrants.
Using the sets Wc(t) at some instant t, let us analyze the change of the
function x→ V (t, x) along the lines parallel to this diagonal. Consider some
of these line such that it passes through the II quadrant. One can see that
local minima are attained at points, where the line crosses the axes Ox1
and Ox2, and a local maximum is in the segment, where the line coincides
with the boundary of some level set of the value function. The situation is
similar for lines passing through the IV quadrant.

As the switching lines for the second player’s control v, let us take three
lines: the axes Ox1 and Ox2, and a slope line Π(t), which consists of two semi-
lines passing through middles of the diagonal parts of the level sets boundaries
in the II and IV quadrants. In the considered case in the switching line, the
control v can take arbitrary values such that |v| ≤ 1. Inside each of 6 cells,
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to which the plane is separated by the switching lines, the control is taken
either v = +1, or v = −1 that one pulls the system towards the points of
maximum. Applying this control in a discrete scheme with time step ∆, the
second player guarantees with ∆ → 0 the result not less than V (t0, x0) for
any initial position (t0, x0).

Note. Since W (t) 6= ∅, then the global minimum of the function x →
V (t, x) is attained at any x ∈ W (t) and equal 0. Thus, when the position
(t, x) of the system is such that x ∈ W (t), the players can choose, generally
speaking, any controls under their constraints. If x /∈W (t), the choices should
be made according to the described above rules based on the switching lines.

4. Optimal motions. In Fig. 5, one can see results of optimal motion sim-
ulations. This figure contains time sections W (t) (thin solid lines; the same
sections as in Fig. 3), switching lines Π(0) at the initial instant and Π(6) at
the termination instant of the direct time (dotted lines), and two trajectories
for two different initial positions: ξI(t) (thick solid line) and ξII(t) (dashed
line). The motion ξI(t) starts from the point x01 = 40, x02 = −25 (marked
by a round), which is inside the initial section W (0) of the set W . So, the
evader is captured: the endpoint of the motion (also marked by a round) is
at the origin. The initial point of the motion ξII(t) has coordinates x01 = 25,
x02 = −50 (marked by a star). This position is outside the section W (0), and

Fig. 5 Two strong pursuers, equal termination instants: result of optimal motion
simulation
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Fig. 6 Two strong pursuers, equal termination instants: trajectories in the original
space

the evader escapes from the exact capture: the endpoint of the motion (also
marked by a star) has non-zero coordinates.

Fig. 6 gives the trajectories of the objects in the original space. Values
of longitudinal components of the velocities are taken such that the evader
moves towards the pursuers. For all simulations here and below, we take

y01 = −x01, y02 = −x02, ẏ01 = ẏ02 = 0, a0P1 = a0P2 = a0E = 0.

Solid lines correspond to the first case, when the evader is successfully
captured (at the termination instant, the positions of both pursuers are the
same as the position of the evader). Dashed lines show the case, when the
evader escapes: at the termination instant no one of the pursuers superposes
with the evader. In this case, one can see as the evader aims itself to the
middle between the terminal positions of the pursuers (this guarantees the
maximum of the payoff functional ϕ).

4 Conclusion

Presence of two pursuers acting together and minimizing the miss from the
evader leads to non-convexity of time sections of the value function, when the
situation is considered as a standard antagonistic differential game, where
both pursuers are joined into one player. In the paper, results of numerical
study of this problem are given for some variants of the parameters. Com-
plementary results and more variants of the parameters are described in [4].
The structure of the solution depends on the presence or absence of dynamic
advantage of one or both pursuers over the evader. Optimal feedback control
methods of the pursuers and evader are built by preliminary construction
and processing of level (Lebesgue) sets of the value function (maximal sta-
ble bridges) for some quite fine grid of values of the payoff. Switching lines
obtained for each scalar component of controls depend on time, and only
they, not the level sets, are used for generating controls. Optimal controls
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are produced at any current instant depending on the location of the state
point respectively to the switching lines at this instant. Accurate proof of the
suggested optimal control method needs for some additional study.
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