(gl

L)

Enhancing numerical constraint
propagation using multiple inclusion
representations

Xuan-Ha VU
Djamila Sam-Haroud
Boi Faltings

Artificial Intelligence Laboratory (LIA)
Swiss Federal Institute of Technology in Lausanne (EPFL)

- June, 19t 2008 -

(il
L Outline
p B3

= Problem statement<

= Numerical constraint propagation on DAGs
using a single inclusion representation

= Using multiple inclusions on DAGs
=« The CIRD algorithm

x Some experiments
s Conclusions

06/10/08 EPFL/IC/LIA

(gl

L lProblem Formulation
- i

T
= A numerical constraint satisfaction problem (NCSP):
N=(V,D,Cj
= V= (X,...,X,): @ sequence of variables
= D=(,....,D,): a sequence of domains of respective variables
discrete: A= ({1,..., 10}, {1,..., 10})
continuous: A = ([1, 10], [1, 10))

« C={C,...,C_}: aset of constraints, each is a relation on a
subsequence of variables

by enumeration: X ={{(1, 2), (2, 1)}, {(1, 2), (2, 4),..., (5, 10)}
by expressions or rules: X = {x+y=3,2x -y = 0}
= A solution of M a tuple (a,,...,a,) 0 D, X%..x D, such
that (a,,...,a) O C foralli=1,...,m

= xy)=(1,2)

06/10/08 EPFL/IC/LIA

G
L Solution Methods
el i

= A complete method: can find every solution (w.r.t. a
reasonable tolerance)

= A rigorous method: a complete method dealing with
rounding errors.

= Work at LIA: rigorous methods to compute the
solution sets of numerical CSPs (NCSPs) of the form

(X2 —2xy + Jy=0 — equality
< 4X + 3xy + 2\/§ <9 —— inequality

1=x<3 continuous variables
y[[1,9] continuous domains (connected sets)

06/10/08 EPFL/IC/LIA

P
. L ISolution Representation

=1 I
QOuter Approximation S O Inner Approximation S 0O S

v 4 yA

\g (X, y) = O/%

y)<0
é f(xy)=0 ‘ f(x y)<0

X

/

isolated solutions continuum of solutions

06/10/08 EPFL/IC/LIA

G
. L lBranch-and-Prune

Constraint Propagation

algorithm BnP(n)
||- omain reduction.

Prune(l);
Y
. into equivalent CSPs.
for1=1tokdo >= -
BnP(); 5
end)

end

06/10/08 EPFL/IC/LIA 6

(gl

L IInclusion representation
- _

1
s Conservative enclosure of the solution set of a

constraints system
= Can be built using:
= Interval arithmetic
= Affine arithmetic (standard, Kolev, Messine, ...)

= Linear relaxations
= etc..

||- used for pruning

06/10/08

(Gl
L IExample (1/2)

N Moore et al., 1959

06/10/08 EPFL/IC/LIA

00000000

G
L IInterval Arithmetic
- -

s Aclosed interval x=[a,b] : xOXx « a<x<bh.

= Interval arithmetic is an arithmetic that is defined on the set
of intervals rather than real numbers.

= Interval arithmetic’s operations:

= Allow to compute elementary operations based on the bounds
of intervals, e.g., x=[a,b],y=[c,d = x+y=[a+c, b+d].

= The inclusion property: f(x) O f(x)

= The range of a real function is included in the value of its
interval form.

= Rounded interval arithmetic: use outward rounding controls
= Allow rigorous enclosures of the ranges of real functions.
= A simple example: 1/30[!1+3!, t1+31] =[0.33...33, 0.33...34]

06/10/08 EPFL/IC/LIA 10

G
5 L ‘Afﬁne arithmetic
=

s Xin[13]=>X=2+¢y, & in[-1, 1]

s Conversely, X=5+2¢ =>Xin[3, 7]

06/10/08

(G
L Affine Arithmetic (1/2)
B

1
s Affine form x =X, + X, & + ... +X &, (length n)
. X real coefficients
« £0[-1, 1]: noise variables

= Affine operations z= ax + by + ¢
= Z=(ax, + by, +c) + X(ax + by)g
= Non-affine operations
n 2= 1(X,y) =F(&,...5) =Lt 48t . TLET Zowbnew
= zisof lengthn+1 fais linear error bound

= The inclusion property:
= OxOAM:f(x) O{z="1(x) |Ug O [-1, 1]}
= Rounding controls in floating-point arithmetic

= Absolute rounding errors are added to the new term z_ £ ..,
= Also allow rigorous enclosures of the ranges of real functions

06/10/08 EPFL/IC/LIA 12

(il
L Affine Arithmetic (2/2)
e

= Multiplication (two variants):
= Xo¥o+ 0.2y, + 2(XoY; + YoX)& + (0.2 Vil + 2 &
]lXI yjl) gnew
complexity O(n?), tight enclosure [Kolev 2001,
Messine 1999]

@ Xy =Xo¥o+ 0.52%Y; + (XY, + Yox)& + (XX Zlyil -
OSlZX, yi D gnew
complexity O(n), but less tight than @ [Kolev 2002]

06/10/08 EPFL/IC/LIA 13

(Gl
L IRevised Affine Arithmetic (1/2)
L

=
= Multiplication :
= XoYo+ 0.22X Y, + 2(X¥; + Yo%) & + (0.82P Vil + 2 4% YiI) &rew
complexity O(n?), tight enclosure [Kolev 2001, Messine 1999]

O Xy =XYoo+ 0.22X Y + Z(XY: + Vo) § + (| 2ZIyil = 0.52% Vi) &ew
complexity O(n), but less tight than @ [Kolev 2002]

= [Vu2004] : the following form has the same number of real
operations than @, but is as tight as
XY = X¥o+ 0.22X Y, + 2(XY; +YoX)§ + (x| Zlyil = 0.5216 Vil) &rew

06/10/08 EPFL/IC/LIA 14

('R evised
L Affine Arithmetic (2/2)
= I

.

fa_
= Moreover : i

s X=X &+ .. HXE H X +el-1, 1] - (can be replaced with,, u])
= The length will not increase during long-running computations

= [Vu 2004] proposed a constructive theorem and a
new generic procedure to rigorously compute
Chebyshev affine approximations (f2 = z,,) for
monotonously continuously differentiable functions f

= It needs a weaker condition than the original (f is twice
continuously differentiable, f* has the same sign),

= It can be applied to elementary functions (e.g., X3, sqrtx, In x),

= Affine approximations can be obtained for factorable functions
by a recursive composition of elementary functions.

06/10/08 EPFL/IC/LIA 15

(il
L Outline
p B3

= Numerical Constraint Propagation on
Dags using a single inclusion
representation (Interval arithmetic) <

= Using multiple inclusion representations on
DAGS
=« The CIRD algorithm

s Some experiments
s Conclusions

06/10/08 EPFL/IC/LIA

16

(Gl
L IDAG Representation
L

.
By Schichl & Neumaier, 2004

N

An NCSP

2

+

| &
&
<

IN

(@)

N
P-4
+
W
>
<<
+
N
<
[|

9
- — _— domains constraint range G
vais]

06/10/08 EPFL/IC/LIA 17

(gl

L IInterval Constraint Propagation
L -

= Forward Evaluation: FE(N,,*)]
= from N,=N;* N,,

= COMPUtE Ty, =Ty, N (X*Y),

n thus 1y, :=[-, +0] n [1, 27] =[1, 27]

By Benhamou et g/, 1999

= Backward Propagation: BP,
the approximate projection of a
node relation on each child
= from N, =4N, + 3N, + 2N,,
= write N, = (N, — 4N, — 2N.)/3,
s thus 1, =1, N (T — 4Ty — 2T5)/3
=[1, 27]n [-9, 3] =[1, 3]

06/10/08 EPFL/IC/LIA 18

Mt/ ®~-orward-Backward Propagation on
L PAGS
- _

Recursive Forward Evaluation Forward-Backward Propagation (FBPD)

X JN:i(3)

N,(3
[1,3] [1, 3] AR

3

[1,9] [1, 3] 1, 3]
SQR JN3(2) 4(2) SQRT)N5(2)

06/10/08 EPFL/IC/LIA 19

QG
L Outline

-

= Using multiple inclusion representations
on DAGs <

=« The CIRD algorithm
s Some experiments
s Conclusions

06/10/08 EPFL/IC/LIA

- (f
ain idea
ead

Attaching to each node of the DAG redundant
inclusion representations in order to get tighter
evaluation of its range.

06/10/08

(Gl
L Why combining inclusions?
I —

affine arithmetic
Stolfi et al., 1993

a solution of
f(X) 7 9(x)

/ Moore et al., 1959

Answer:

to get better effects
of domain reduction

safe linear programming (Neumaier & Shcherbina, 2004)

06/10/08 EPFL/IC/LIA 22

(' ®The CIRD Algorithm:
L building blocks
|

ST

= Data associated to each node Ni:
= A set of inclusion representations (R(N;))
= A range (interval) (t(N,))

s Node Evaluation:

= Evaluates the range of the node with respect to each inclusion
representation

= Node Pruning:

= Inclusion Constraints Systems éICS): the set of redundant
constraints that can be inferrea from an inclusion
representation

= Pruning Constraint Systems (PCS): all the ICS related to a node
+ the ICS of its children

06/10/08

P
- L IIIIustrative example: CIRD]ai]

ANCSP
2-2xy + 4y =0
<4x+ 3Xxy + 2\/?5
1< x<3
1<sy<?9

set of inclusion representations
T ={l, A}

1) intervall arithmetic

B A revised affine arithmetic éG

06/10/08 EPFL/IC/LIA 24

A\
» L INode Evaluation

| S
GEenenralizationreitiemnyand
, EVvelliaern

T(N) =I(N)) = A(N))= [, +=], i=3,4,5
T(Ny) =1(N)) =[1,3] ,A(N;)=2+¢,
T(N,) =1(N,) =[1,9] ,A(N,)=5+t45¢&,
I(Ng) = I(Ny) * 1 (N)

= [1,27]

T(N,) = T (Ny) n p(I(Ny)
=1, 27]

A(Ng) = A(Ny) * A(N)
=10 + % + 8¢, + 4[-1, 1]
T(N,) = t(Ny) n P(A(N)
= [1, 27]
U : interval evaluation of the inclusior
06/10/08 representation

(Gl
. L lInclusion Constraint Systems (ICS)
_

- £ & i {l(m:n, 27]

A(N, = 10 + 5, + 8¢, + 4[-1, 1]
(N, = [1, 27]

= | CS(A(N4)1 T(N4)):
Cu 10 + 5, + 8¢, + 46y, = Vi
J w vy, O[1, 27]

= (&, & &4) O[], 1P

06/10/08 EPFL/IC/LIA 26

(G
L Pruning Constraint Systems (PCS)
L‘ -

PES(IN=220) =allNncllsion constiaint systems at N=and s children

= PCS(N,, {1}): less informative
{' Wy + Mg + s = Vg

s | v, 01, 3], v, O [1, 27],
o | vy 01, 3], vy, 09, 9.

= PCS(N,, {A}): more informative |, 4,

((m [AVyy + Vg + Qs = Vs

= |V U [1, 3] vy, O [1, 27],

= | Vs U [1, 3], vz O 9, 9],
= 2+& =V,

< 10 + &, + 8¢, + 45, = Vyas

2.125 +¢&, + 0.125% ¢ = Vs,

s 42.25 + 1€ + 26¢, + 12.25%,; = V7,

= (&, & §u s &7) U [-1, 1P

06/10/08 EPFL/IC/LIA 27

)
G
LT
)
©
@
i o
)
O
(®)
)
et
e
©)
()

I Cr L
L IThe CIRD algorithm — main steps
=1 D

L

Intialization Phase:
= Initial recursive node evaluation

= Initialization of two Waiting Lists : L, the list of nodes waiting for evaluation, and L, the
list of nodes waiting for pruning

Propagation Phase: repeat until both L. and L, become empty or the limit, if any, on the number
of iterations is reached:

Get the next node N according to some strategy:
= From L, first (pruning-first strategy) until it becomes empty
= From one of the two (in a rotationnal way)
if N was taken from Le, perform Node Evaluation on N
= If this returns an empty set, the algorithm terminates with an infeasible status.
= If tLhe changes of 1(N) is considered enough, put each parent (if any) of N in Leand put N
in Lp
else perform Node pruning : use dedicated pruning techniques on the PCSs related to N, to
generate a new range for N
= If this process returns an empty set, the algorithm terminates with an infeasible status
= else update the ranges of the related nodes

= For each of these nodes, M, if the changes of 1(M) is considered enough, put each parent
(if any) of Min Leand putMin L,

06/10/08

P
. L .Node Range Updates

06/10/08

Prune PCS(N-, {A}) using LP,

we get

m (g =-16=-1
«= optional: v, =1, v\, =1, ...

Leaf Update: update only the

leaves
X=2+&=1
y=5+4,=1

Child Update: update only the
children like in the backward
propagation

The combination of them
Update all nodes with reduced
auxiliary variables (¢.)

Update only descendants

EPFL/IC/LIA 29

L
L The CIRD algorithm
L

=
For a formal presentation of the algorithm,
see:

« Rigorous Solution Techniques for Numerical
Constraint Satisfaction Problems »

Thesis # 3155, 2005

Author: Xuan-Ha Vu

Swiss Federal Institute of Technology, Lausanne
http://liawww.epfl.ch/Publications/Archive/vxhthesis.pdf

06/10/08

(il
L Test cases
. B3

= T1 : 8 easy problems with isolated solutions
= [2: 4 average problems with isolated solutions
= [3: 8 hard problems with isolated solutions

s T4: 7 easy problems with continuum of
solutions

= T5: 8 hard problems with continuum of
solutions

06/10/08

G
L Test criteria
el .

= Relative time ratio : running time

s Relative cluster ratio : number of boxes in the
output

= Relative iteration ratio : number of splits

= Relative reduction ratio : (V / D) (v = volume of the
output, D= volume of the original domain, d = dimension of the
problem)

m Inner volume ratio (ratio of the volume of inner boxes to
the volume of output boxes)

06/10/08

(gl

B L JExperiments — General Techniques
=

NCSPs with isolated solutions continuums of solutions
timeout 10h, < 106 splits 106 splits without timeout
100.00 93.
W HC4
90.00 0 BOX

m HC4
[1BOX
[CIRD[ai]

2000 O CIRDYai]

31.42

]
T
HC4 200 2233 7 4.68
27100 /

7 1.00 /
Test case T2 Test case T4

Test case T3 . . .
FUARING time ratios Testcase 15
06/10/08 EPFL/IC/LIA 33

HC4

BO

X

BOX 10.0

0.0

CIRD[ai]
Test case T1

(gl

=

.Experiments — Summary
3

NCSPs with isolated solutions continuum of solutions
100 — W HC4 70 m HC4
90 _ 0/ BOX [0 BOX
- 0 CIRDJai] 60 [CIRDJai]
80
]
. i
. e
20) IATA)
10 — HC4 = g - HC4
4.26 4.05¢
Relative _ CIRDJ[ai] Relative CIRD[ai]
Time Ratio Relatlye Relative Time Inner Relative .
Reduction ol Relative Ratio Volume Relative
Ratio uster : Ratio Cluster)
Ratio Iterat.lon Ratio lteration
Ratio Ratio
06/10/08 EPFL/IC/LIA

34

(Gl
L lExperiments — Other Techniques
e

Some other preliminary comparisons:

= CIRDJ[ai] = 30 times faster than Kolev’s technique (A2) for the
benchmark in [Kolev, 2002]

= a mathematical technique using affine arithmetic,
= Without guaranteed rigor, require some posterior assumptions;

= CIRD and A2 should be collaborative rather than competitive:
the reduction rule in A2 can be used in place of LP in CIRD[ai].

= CIRDJ[ai] = 10-40 times faster than Quad for two benchmarks in
[Lebbah et a/.,, Aug 2003, Nov 2003]

= a linear relaxation based filtering technique with guaranteed rigor.

= CIRD and Quad should be collaborative rather than
competitive:

Quad can be used in CIRD to tackle the quadratic form [Messine 1999]
and power operations x".

06/10/08 EPFL/IC/LIA 35

(gl
L Conclusion
el .

= CIRD is intended to be a generic scheme for
combining multiple inclusion techniques in
numerical constraint propagation:

= users can devise their own combination strategies,
depending on the set of inclusion representations

s We studied CIRD[ai], an instance of the
CIRD scheme combining revised affine
arithmetic with interval arithmetic

= Some potential

06/10/08 EPFL/IC/LIA 36

(gl

L Currently on the agenda
I —

= Replacement of linear programming by less costly
domain reduction techniques

= Integration of Kolev generalized affine arithmetic

= Integration of linear relaxation techniques (eg.
[Borradaile & Van Hentenryck 2004]

= Investigate the integration of higher-order inclusion
techniques (convexification)

= Comparison with other approaches [Granvilliers &
Benhamou 2006]

06/10/08

(gl

00000000

