Survey of Proposals for the Standardization of Interval Arithmetic

Nathalie Revol
INRIA
Univ. Lyon, LIP (CNRS-ENS Lyon-INRIA-UCBL), France
Nathalie.Revol@ens-lyon.fr

SWIM, Montpellier, 19-20 June 2008
Definition of interval arithmetic:

► definition of interval arithmetic by Moore: 1966
► modal arithmetic by Gardenes et al.: 1985
► extended interval arithmetic by Ratz: 1996
► definition based on a set point of view: Jaulin et al., 2001
► implementation using floating-point arithmetic: Hickey, Ju and van Emden, 2001
► definition based on limits: cset theory: Walster, Hansen and Pryce, 2002
Definition of interval arithmetic:

- taking into account the existence of complex results: Verdonk et al., 2005
- Fortran: in the 90s
- C++: Brönnimann, Melquiond and Pion, 2006
- hardware support: Kirchner and Kulisch, 2006
- ...
Context: IEEE P1788 for the standardization of IA

Dagstuhl, January 2008: decision to produce a standard for interval arithmetic.

Also: decision to have a standard under the auspices of IEEE.

Spring 2008: under the sponsorship of the IEEE committee for floating-point arithmetic, proposal of a **working group for the standardization of interval arithmetic**, approved by IEEE the 12 June 2008, under the number P1788.
Context: IEEE P1788 for the standardization of IA

Dagstuhl, January 2008: decision to produce a standard for interval arithmetic.

Also: decision to have a standard under the auspices of IEEE.

Spring 2008: under the sponsorship of the IEEE committee for floating-point arithmetic, proposal of a working group for the standardization of interval arithmetic, approved by IEEE the 12 June 2008, under the number P1788.

Do not hesitate to join!
Outline of this talk

Context

Historically...

Moore 1966

Extensions

Two points of view: forward and backward

Which set of numbers?

Reals, extended reals, complex numbers?

Link with FP arithmetic

Other mathematical models

Miscellaneous

Conclusion and future work
Initial definition: Moore 1966

Initial definition by Moore (1962, published in 1966):

- \([a, b] + [c, d] = [a + c, b + d]\);
- \([a, b] - [c, d] = [a - d, b - c]\);
- \([a, b] \times [c, d] = [\min(ac, ad, bc, bd), \max(ac, ad, bc, bd)]\);
- \(1 / [c, d] = [1/d, 1/c]\) if \(0 \not\in [c, d]\);
- \([a, b] / [c, d] = [a, b] \times (1/[c, d])\) if \(0 \not\in [c, d]\);
- \(f([a, b]) = \text{convex hull} (\{f(x) : x \in [a, b]\})\):
 formulas using only the endpoints when \(f\) is monotonous,
 more complicated otherwise.
Unsatisfying definition

Division is not total: \([1, 2]/[-1, 2]??\)

The system is not closed.
It is desirable that every possible combination of \(<\) operator, operands \(>\) yields a result within the system.
Extended interval arithmetic

Ratz 1996

(or maybe Kahan or Hanson in 1968)
Let x and y be two intervals.

$$x/y = \{z : y \cdot z = x, x \in x, y \in y\}.$$
Extended interval arithmetic

Division by an interval containing 0

Main concern: Newton iteration to solve $f(x) = 0$ without losing any solution.

Proposals:

- Jaulin et al.: $1/[-2, 2] = (-\infty, +\infty)$ but $[3, 4]/[0, 0] = \emptyset$;
- $[0, 1]/[0, 1] = [0, +\infty)$ since only nonnegative terms can be produced (Ratschek & Rokne 1988);
- $[1, 2]/[0, 1] = \{-\infty\} \cup [1, +\infty]$ (cset theory);
- $[0, 1]/[0, 1] = (-\infty, +\infty)$ (Ratz)
Remark: arguments outside the domain

More generally, how should $f(x)$ be handled when x is not included in the domain of f?

- return NaI (Not an Interval)? i.e. handle exceptional values such as NaI and infinities?
- intersect x with the domain of f prior to the computation, silently?
- intersect x with the domain of f prior to the computation and raise a flag?
- return the set of every possible limits $\lim_{y\to x} f(y)$ for every possible x in the domain of f (but not necessarily y)?
Outline of this talk

Context

Historically...
 Moore 1966
 Extensions

Two points of view: forward and backward

Which set of numbers?
 Reals, extended reals, complex numbers?
 Link with FP arithmetic

Other mathematical models

Miscellaneous

Conclusion and future work
Forward and backward

Wording inspired from constraint programming and forward-backward propagation.
Forward and Backward

Forward:
it corresponds to the "natural extension" à la Moore.

\[f(\mathfrak{x}) = \{ f(x) : x \in \mathfrak{x} \} \]

or

\[f(\mathfrak{x}) = \{ \lim_{x \to y} f(x) : y \in \mathfrak{x} \} \]

or

\[f(\mathfrak{x}) = \{ \lim_{x \to y} f(x) : x \in \mathfrak{x}, y \in \mathfrak{x} \} \]
Forward and Backward

Backward:

it corresponds to the philosophy of Ratz: one does not want to lose any solution.

\[f(x) = \text{convex hull}(\{ y : \exists x \in x, f^{-1}(y) = x \} \) \]

Eg.

\[\sqrt{[1, 2]} = \text{convex hull}([-\sqrt{2}, -1] \cup [1, \sqrt{2}]) = [-\sqrt{2}, \sqrt{2}]. \]

I personally prefer the wording **relations** to **backward operations**, since I would also prefer to keep the two separate parts of the answer and thus \(\sqrt{ \) is no more a function, since it returns two arguments, but it is a relation.
Outline of this talk

Context

Historically...
 Moore 1966
 Extensions

Two points of view: forward and backward

Which set of numbers?
 Reals, extended reals, complex numbers?
 Link with FP arithmetic

Other mathematical models

Miscellaneous

Conclusion and future work
With or without the infinities?

Should we work with $\mathbb{IR} = (-\infty, +\infty)$ or with $\tilde{\mathbb{IR}} = [-\infty, +\infty]$? Should the infinities be first class citizens or outlaws?
With or without the infinities?

Should we work with \(IR = (\neg \infty, +\infty) \) or with \(\bar{IR} = [-\infty, +\infty] \)?
Should the infinities be first class citizens or outlaws?

If they are first class citizens, \([0, 1]/[0, 1] = \{-\infty\} \cup [0, +\infty]\) (cset theory) becomes natural.
Complex results...

Verdonk, Vervloet, Cuyp 2005

Proposal: add flags to indicate whether there could also exist complex results, nonzero complex results...
Definition related to floating-point arithmetic

Lozinski 1973, MPFI

Implementation based on IEEE-754 floating-point arithmetic.

Point of view: also based on floating-point arithmetic:

\[f(x) = \{ f(x) \in IF : x \in x \text{ and } x \in IF \}. \]

Eg. \(\sqrt{[-1, 4]} \supset [0, 2] \cup \{ \text{NaN} \} \) and thus \(\sqrt{[-1, 4]} = \text{Nal} \) (Not an Interval).
Hickey, Ju, van Emden 2001

Definition based on the set of reals \(IR = (-\infty, +\infty) \).
Interval = closed connected set in \(IR \), ie. one of \(\emptyset \), \((-\infty, b] \), \([a, +\infty) \) or \([a, b] \) where \(a \in IR \) and \(b \in IR \).

Clever implementation using IEEE-754 floating-point arithmetic:

- infinities exist and can be handled;
- use of signed zeroes: \([0, 1]\) is represented as \([+0, 1]\)
 and thus \([0, 1]/[0, 1]\) naturally yields \([0, +\infty)\).

Idea: \([0, 1]\) contains only nonnegative numbers and is almost certainly too wide, ie. the exact result may well contain only positive numbers.
No non-standard analysis (with infinitesimally small numbers between 0 and any positive number).
Outline of this talk

Context

Historically...
 Moore 1966
 Extensions

Two points of view: forward and backward

Which set of numbers?
 Reals, extended reals, complex numbers?
 Link with FP arithmetic

Other mathematical models

Miscellaneous

Conclusion and future work
Wraparound intervals

Kulisch:
\[[3, 4] / [-2, 1] = (-\infty, -2] \cup [3, +\infty) \]
To return only one result, return \([3, -2]\).

Markov:
\([a, b] + [-a, -b] = [0, 0]\)
Algebraic structure (group instead of simply a monoid) is recovered.
Modal arithmetic

Gardenes, Mielgo and Trepat, 1985

Goldsztein 2005, Shary...

Idea: an improper interval x in an operation is interpreted as
$\{\exists x \in x : \ldots\}$.

Restriction: every \forall quantifier must appear before \exists quantifiers in
the interpretation.
Outline of this talk

Context

Historically...
 Moore 1966
 Extensions

Two points of view: forward and backward

Which set of numbers?
 Reals, extended reals, complex numbers?
 Link with FP arithmetic

Other mathematical models

Miscellaneous

Conclusion and future work
List of operations

- arithmetic operations and functions: $+, -, \times, /, \sqrt{\cdot}$, power (more tricky), elementary functions, special functions?
- set operations: \cap, \cup, convex union, \setminus
- interval operations: inf, sup, mid, width or radius...
Comparisons

At least three possible definitions:

- **certainly** $<, \leq, >, \geq$:
 \[x < y \iff \forall x \in x, \forall y \in y, x < y \]

- **possibly** $<, \leq, >, \geq$:
 \[x < y \iff \exists x \in x, \exists y \in y, x < y \]

- **Kulisch** $<, \leq, >, \geq$:
 \[x = [x, \bar{x}] < y = [y, \bar{y}] \iff x < y \text{ and } \bar{x} < \bar{y}. \]
Algebraic manipulations of expressions

Should we allow the compiler to manipulate the expressions to optimize the computational time?
Forbidden in pure IEEE-floating point mode, because the usual algebraic rules do not apply to floating-point computations.

Ibid. for interval expressions?
What about algebraic manipulations by the user (yielding different results)?
Outline of this talk

Context

Historically...
Moore 1966
Extensions

Two points of view: forward and backward

Which set of numbers?
Reals, extended reals, complex numbers?
Link with FP arithmetic

Other mathematical models

Miscellaneous

Conclusion and future work
Conclusion

Wanted: a standard where

- the system is closed, i.e. any operation between any operands results in an element of the system;
- its implementation, using floating-point arithmetic, is closed;
- everything is mathematically sound:
 - *Thou shalt not lie*: the inclusion property is valid;
- the implementation is easy and efficient (even if hardware implementation is not required, furthermore some points are language-dependent);
- it is easy to implement other mathematical models (wraparound intervals, modal arithmetic...).
Future work

The IEEE committee will have to

► complete this list
Future work

The IEEE committee will have to

- complete this list

 and you can help us!

- discuss every point, its pro and cons (using counterexamples)
Future work

The IEEE committee will have to

- complete this list
 and you can help us!
- discuss every point, its pro and cons (using counterexamples)
 and you can help us!
- agree on the most sensible choice...
Future work

The IEEE committee will have to

▸ complete this list
 and you can help us!

▸ discuss every point, its pro and cons (using counterexamples)
 and you can help us!

▸ agree on the most sensible choice...
 and then you will vote to tell us if we were right!

See you in 4 (or 6, or 8) years time, to introduce you the new standard!
To join IEEE P1788

Send me: Nathalie.Revol@ens-lyon.fr an e-mail with

- your first name and name
- your affiliation
- your complete address
- your e-mail address
- whether you plan to subscribe to the mailing list or to serve on the committee.

Serving on the committee: 3-4 meetings per year, 3 days each, alternately in Europe and North America (very probably).