

Influence of uncertainties on ultrasonic localization systems

J-P. Merlet COPRIN Project team

INRIA

Joint work with ETH Zurich

R2 receives the sound signal at time t_2

R1 receives the sound signal at time t_1

- d_i : distance between robot and receiver R_i
- c: sound velocity

- d_i : distance between robot and receiver R_i
- c: sound velocity

$$TDOA = \frac{d_1 - d_2}{c}$$

- d_i : distance between robot and receiver R_i
- c: sound velocity

$$TDOA = \frac{d_1 - d_2}{c}$$

TDOA is measured, robot location such that $d_1 - d_2$ has a fixed value

- d_i : distance between robot and receiver R_i
- c: sound velocity

$$TDOA = \frac{d_1 - d_2}{c}$$

TDOA is measured, robot location such that $d_1 - d_2$ has a fixed value

 \Rightarrow robot is on a hyperbola having R_1, R_2 as focal points

3 receivers: robot is at the intersection of 2 hyperbola

• the sound signal is not a ping

• the sound signal is a distribution with frequency f

- the sound signal is a distribution with frequency f
- emitter location has a probability distribution

- the sound signal is a distribution with frequency f
- emitter location has a probability distribution
- this probability distribution is dependent upon:

- the sound signal is a distribution with frequency f
- emitter location has a probability distribution
- this probability distribution is dependent upon:
 - sound velocity c

- the sound signal is a distribution with frequency f
- emitter location has a probability distribution
- this probability distribution is dependent upon:
 - sound velocity c
 - TDOA

- the sound signal is a distribution with frequency f
- emitter location has a probability distribution
- this probability distribution is dependent upon:
 - sound velocity c
 - TDOA
 - ultrasound frequency f

Revert the problem: $R_i \rightarrow$ emitters, robot \rightarrow receiver

compute the TDOA for two emitters

- compute the TDOA for two emitters
- R_i emits waves fronts with TDOA as time shift

- compute the TDOA for two emitters
- R_i emits waves fronts with TDOA as time shift
- waves front interfere

- compute the TDOA for two emitters
- R_i emits waves fronts with TDOA as time shift
- waves front interfere
- constructive interference occurs at real robot location

Revert the problem: $R_i \rightarrow$ emitters, robot \rightarrow receiver

- compute the TDOA for two emitters
- R_i emits waves fronts with TDOA as time shift
- waves front interfere
- constructive interference occurs at real robot location

↓ larger signal

Revert the problem: $R_i \rightarrow$ emitters, robot \rightarrow receiver

- compute the TDOA for two emitters
- R_i emits waves fronts with TDOA as time shift
- waves front interfere
- constructive interference occurs at real robot location

larger signal

• detection if signal is larger than a given threshold

 d'_j : distance between P and R_j

 d'_i : distance between P and R_j

signal amplitude at P for receivers R_i, R_j : A_{ij}

 d'_i : distance between P and R_j

signal amplitude at P for receivers R_i, R_j : A_{ij}

$$A_{ij} = \sqrt{2\cos(2\pi \frac{f}{c}(d_i - d'_i - d_j + d'_j)) + 2}$$

Computing the signal

 d'_i : distance between P and R_j

signal amplitude at P for receivers R_i, R_j : A_{ij}

$$A_{ij} = \sqrt{2\cos(2\pi \frac{f}{c}(d_i - d'_i - d_j + d'_j)) + 2}$$

maximal signal: 2

If for all pairs of receiver A_{ij} > threshold: detection

If for all pairs of receiver A_{ij} > threshold: detection

the possible robot location is a region

If for all pairs of receiver A_{ij} > threshold: detection

the possible robot location is a region

• c varies with temperature T

- c varies with temperature T
 - in water, $c = 1404.3 + 4.7T 0.04T^2$

- c varies with temperature T
 - in water, $c = 1404.3 + 4.7T 0.04T^2$
- *f* is not known exactly

- c varies with temperature T
 - in water, $c = 1404.3 + 4.7T 0.04T^2$
- *f* is not known exactly
- possible error on the measurement of TDOA (neglected)

- c varies with temperature T
 - in water, $c = 1404.3 + 4.7T 0.04T^2$
- *f* is not known exactly
- possible error on the measurement of TDOA (neglected)

effect on the localization ?

• detection if $A_{ij} > \epsilon$

- detection if $A_{ij} > \epsilon$
- \mathcal{B}_1 : 2D-box including all detected points

- detection if $A_{ij} > \epsilon$
- \mathcal{B}_1 : 2D-box including all detected points
- \mathcal{L} : list of n boxes, initially $\mathcal{L} = \{\mathcal{B}_1\}$

- detection if $A_{ij} > \epsilon$
- \mathcal{B}_1 : 2D-box including all detected points
- \mathcal{L} : list of n boxes, initially $\mathcal{L} = \{\mathcal{B}_1\}$
- \mathcal{S} : 4D-box, $\{\mathcal{B}_k, f, c\}$

- detection if $A_{ij} > \epsilon$
- \mathcal{B}_1 : 2D-box including all detected points
- \mathcal{L} : list of n boxes, initially $\mathcal{L} = \{\mathcal{B}_1\}$
- S: 4D-box, $\{\mathcal{B}_k, f, c\}$
- \mathcal{M} : list of m 4D-boxes, initially $\mathcal{M} = \{\mathcal{S}_1\}$

Algorithm $Find(\mathcal{B}, \mathcal{L}, n)$

for k = 1 to $n \ \mathrm{do}$

end for

Algorithm Find($\mathcal{B}, \mathcal{L}, n$) for k = 1 to n do compute all $F_{ij} = A_{ij}(\mathcal{B}_k)$ end for

Algorithm Find($\mathcal{B}, \mathcal{L}, n$) for k = 1 to n do compute all $F_{ij} = A_{ij}(\mathcal{B}_k)$ if $\exists i, j$ such that $\overline{F_{ij}} < \epsilon$ then next end if end for

Algorithm Find($\mathcal{B}, \mathcal{L}, n$) for k = 1 to n do compute all $F_{ij} = A_{ij}(\mathcal{B}_k)$ if $\exists i, j$ such that $\overline{F_{ij}} < \epsilon$ then next end if if $\forall i, j \ \underline{F} > \epsilon$ then store \mathcal{B}_k as solution, next end if end if end for


```
Algorithm Find(\mathcal{B}, \mathcal{L}, n)
for k = 1 to n do
    compute all F_{ij} = A_{ij}(\mathcal{B}_k)
    if \exists i, j such that \overline{F_{ij}} < \epsilon then
       next
    end if
    if \forall i, j \underline{F} > \epsilon then
       store \mathcal{B}_k as solution, next
    end if
    if Diam(\mathcal{B}_k) < \mu then
       neglect \mathcal{B}_k, next
    end if
end for
```



```
Algorithm Find(\mathcal{B}, \mathcal{L}, n)
for k = 1 to n do
   compute all F_{ij} = A_{ij}(\mathcal{B}_k)
   if \exists i, j such that \overline{F_{ij}} < \epsilon then
       next
   end if
   if \forall i, j \underline{F} > \epsilon then
       store \mathcal{B}_k as solution, next
   end if
    if Diam(\mathcal{B}_k) < \mu then
       neglect \mathcal{B}_k, next
   end if
   bisect \mathcal{B}_k, store the result in \mathcal{L}, n = n + 2
end for
```



```
Algorithm Find(\mathcal{B}, \mathcal{L}, n)
for k = 1 to n do
    compute all F_{ij} = A_{ij}(\mathcal{B}_k)
    if \exists i, j such that \overline{F_{ij}} < \epsilon then
       next
    end if
    if \forall i, j \underline{F} > \epsilon then
       store \mathcal{B}_k as solution, next
    end if
    if Diam(\mathcal{B}_k) < \mu then
       neglect \mathcal{B}_k, next
    end if
    bisect \mathcal{B}_k, store the result in \mathcal{L}, n = n + 2
end for
```

Loop($\mathcal{S}, \mathcal{M}, l$): same algorithm than Find but

- maximum of *l* bisection
- returns 1 if all S boxes have been processed, 0 otherwise


```
Algorithm Find(\mathcal{B}, \mathcal{L}, n)
for k = 1 to n do
    compute all F_{ij} = A_{ij}(\mathcal{B}_k)
    if \exists i, j such that \overline{F_{ij}} < \epsilon then
       next
    end if
    if \forall i, j \underline{F} > \epsilon then
       store \mathcal{B}_k as solution
       next
    end if
    if Loop(\mathcal{S}, \mathcal{M}, 100)=1 then
       store \mathcal{B}_k as solution, next
    end if
    if Diam(\mathcal{B}_k) < \mu then
       neglect \mathcal{B}_k, next
    end if
    bisect \mathcal{B}_k, store the result in \mathcal{L}, n = n + 2
```


• c in [1465,1496] m/s (\pm 5 degrees variation)

- c in [1465,1496] m/s (\pm 5 degrees variation)
- *f* in [295,305] kHz

- c in [1465,1496] m/s (\pm 5 degrees variation)
- *f* in [295,305] kHz

No uncertainty, with uncertainties

• two receivers in an exactly known location

- two receivers in an exactly known location
- a given workspace ${\mathcal W}$ for the robot

- two receivers in an exactly known location
- a given workspace $\ensuremath{\mathcal{W}}$ for the robot
- given uncertainties on f, c

- two receivers in an exactly known location
- a given workspace ${\mathcal W}$ for the robot
- given uncertainties on f, c
- a maximal localization error α

- two receivers in an exactly known location
- a given workspace $\ensuremath{\mathcal{W}}$ for the robot
- given uncertainties on f, c
- a maximal localization error α

Find possible location of R_3 so that:

- for all robot location in ${\mathcal W}$ localization error is $<\alpha$

- two receivers in an exactly known location
- a given workspace $\ensuremath{\mathcal{W}}$ for the robot
- given uncertainties on f, c
- a maximal localization error α
- Find possible location of R_3 so that:
 - for all robot location in ${\cal W}$ localization error is $<\alpha$
 - allowing to manage uncertainties on the location of R_3

. – p.13/1

If circle centered at P, radius α has no detectable points

 \Rightarrow localization error at *P* is < α

. – p.14/1

• Upper loop: box with x, y (coordinates of R_3)

- Upper loop: box with x, y (coordinates of R_3)
- Inner loop: box with

- Upper loop: box with x, y (coordinates of R_3)
- Inner loop: box with

- Upper loop: box with x, y (coordinates of R_3)
- Inner loop: box with
 - *f*, *c*
 - x_P, y_P : coordinates of P in \mathcal{W}

- Upper loop: box with x, y (coordinates of R_3)
- Inner loop: box with
 - *f*, *c*
 - x_P, y_P : coordinates of P in \mathcal{W}
 - θ : angle on the circle centered at P, radius α

- Upper loop: box with x, y (coordinates of R_3)
- Inner loop: box with
 - *f*, *c*
 - x_P, y_P : coordinates of P in \mathcal{W}
 - θ : angle on the circle centered at P, radius α

computationally expensive

Algorithm 1: check only specific points of ${\cal W}$

Algorithm 1: check only specific points of ${\cal W}$

result is an over-approximation of the possible region for R_3

 \downarrow

Algorithm 1: check only specific points of \mathcal{W} \Downarrow result is an over-approximation of the possible region for R_3 -0.1 -0.11 -0.12 -0.13 -0.14 _ -0.15 -0.16 -0.17 _ -0.18 _ -0.19 _ -0.20 0.13 0.08 0.03 0.180.200

Algorithm 1: check only specific points of ${\cal W}$

result is an over-approximation of the possible region for R_3

 \downarrow

computationaly expensive: 20 hours on 17 computers

Algorithm 2:

- select a possible location for R₃ within the result of Algorithm 1
- choose a positioning accuracy for R_3
- check the whole workspace for accuracy

Algorithm 2:

- select a possible location for R₃ within the result of Algorithm 1
- choose a positioning accuracy for R_3
- check the whole workspace for accuracy

location 0.123 \pm 0.0005, -0.123 \pm 0.005 is valid

Analysis

more realistic localization (inner and outer approximation)

Analysis

more realistic localization (inner and outer approximation)

Synthesis

• design for given performances of the system

Analysis

more realistic localization (inner and outer approximation)

Synthesis

• design for given performances of the system

Prospective

Analysis

more realistic localization (inner and outer approximation)

Synthesis

• design for given performances of the system

Prospective

• better signal model (reflection, ...)

Analysis

more realistic localization (inner and outer approximation)

Synthesis

• design for given performances of the system

Prospective

- better signal model (reflection, ...)
- inaccuracies on the location of R_1, R_2

