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Context

Context

DEMAR : Artificial movement and gait restoration (project-team)

Safety
few sensors ⇒ No feedback , No control loop.
Validation on humanoid robots.
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Modeling

Modeling

Fig.: 2D model of paraplegian patient under FES

We modelize the patient as a serial chain with 6 degrees of freedom in the
saittal plane.
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Modeling

modeling

Forward recurrency ( i =1 to N) Given q, q̇, q̈,X0, Ẋ0, Ẍ0

Xi = f1(Xi−1, qi )

Ẋi = f2(Ẋi−1, qi , q̇i )

Ẍi = f3(Ẍi−1, qi , q̇i , q̈i )

(1)

With
Xi = [xi , yi , θi ]

T (2)
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Modeling

modeling

Backward recuurency : (i = N to 0)

Fi = g(Fi+1, qi , q̇i , q̈i ,Xi , Ẋi , Ẍi ) (1)

With
Fi = [Fxi ,Fyi , Γi ]

T (2)
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Path planning problem

Path planning problem

A motion is defined through the vector P

The path planning problem is to find the best P that :

min
∫ T
0 F (P, t)dt

∀i , ∀t ∈ [t0, tN ] gi (P, t) ≤ 0

∀j hj(P) = 0

(3)

Semi-Infinite Programming [Hettich and Kortanek(1993)]
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Path planning problem

Path planning problem

Set of equality constraints :

∀j hj(P) = 0 (4)

Used to define the motion.
Usually this constraints must be satisfied for discrete instants
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Path planning problem

Path planning problem

Set of inequality constraints :

∀i , ∀t ∈ [t0, tN ] gi (P, t) ≤ 0 (5)

joint position, velocity and torque
balance (ZMP [Vukobratović and Borovac(2004)])

This constraints must be satisfied over whole motion duration

We present a new method to deal with the inequality constraints.
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Path planning problem

Usual Discretization ⇒ Time-point Discretization

The algorithms cannot deal with continuous functions.

The constraint functions must be discretized.
We change

∀i ,∀t ∈ [t0, tN ] gi (P, t) ≤ 0 (6)

Into
∀i , ∀tk ∈ {t0, t1, ..., tN−1, tN} gi (P, tk) ≤ 0 (7)

Continuous time interval ⇒ Set of discrete time-point (grid)

[Reemtsen(1998)] presents how to compute and adapt {t0, t1, ..., tN−1, tN}
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Path planning problem

Usual Discretization : Illustration of constraint violation

Fig.: Representation of ZMP(t)
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Path planning problem

Usual Discretization : Illustration of constraint violation

Fig.: Representation of ZMP(t)

We take 10 points to evaluate the constraint function
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Path planning problem

Usual Discretization : Illustration of constraint violation

Fig.: Representation of ZMP(t)

The points satisfy the constraint whereas the continuous function violate it
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Path planning problem

Usual Discretization : Illustration of constraint violation

(a) t = 0s (b) t = 0.2s (c) t = 0.4s (d) t = 0.6s

Fig.: Motion optimized with a time-point discretization
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Safe path planning

Safe path planning : Definition

Safe path planning is a path planning algorithm that uses

the same algorithms that usual path planning,
safe discretization.
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Safe path planning

Safe discretization ⇒ Time-interval Discretization

∀i , ∀t ∈ [t0, tN ] gi (P, t) ≤ 0 (8)

[t0, tN ] = [t0, t1] ∪ [t1, t2] ∪ . . . ∪ [tN−1, tN ] (9)

∀i ,∀j ∈ {1, 2, ..N} max
∀τ∈[tj−1,tj ]

gi (P, τ) ≤ 0 (10)

Continuous time interval ⇒ Set of time-interval

The safe discretization is done through Interval Analysis.
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Safe path planning

Safe discretization : illustration

Fig.: Representation of ZMP(t)
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Safe path planning

Safe discretization : illustration

Fig.: Representation of ZMP(t)

Split into 10 time-intervals
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Safe path planning

Safe discretization : illustration

Fig.: Representation of ZMP(t)

Compute the extrema through interval analysis
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Safe path planning

Safe discretization : illustration

Fig.: Representation of ZMP(t)

Return the values to the algorithm
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Safe path planning

Safe discretization : illustration

Fig.: Representation of ZMP(t)

The ZMP constraint is never violates ⇒ the robot keeps its balance
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Safe path planning

Safe discretization : illustration

Fig.: Representation of ZMP(t)

Some Methods from Interval Analysis allow to get better computation
[Hansen and Walster(2004)]

Lengagne, Ramdani, Fraisse safe path planning SWIM 2008 14 / 19



Safe path planning

Safe discretization : Illustration

(a) t = 0s (b) t = 0.2s (c) t = 0.4s (d) t = 0.6s

Fig.: Motion optimized with a time-interval discretization
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Results

Results : model for path planning

We did path planning :

with a 2D model in the sagittal plane of the lower limbs of HOAP-3
considering 6 dof
to achieve a step of 7 cm
minimizing the motion duration.
using C-FSQP
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Results

Results

usual path planning safe path planning
number of

time-point/interval
discretization

20 18

computation time 18 min 45s 55 min
Motion Duration 0.35 s 0.44s

Number of iteration
of the algorithm

1510 232

Tab.: Comparison of usual and safe path planning.
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Ongoing works & Conclusion

Ongoing works & Conclusion

Ongoing works :

improving interval computation
computation of the gradient of the constraint with respect to P
creation of the Guaranteed Discretization Library
http://www.lirmm.fr/~lengagne/GDL/

Conclusion
Safe path planning is a new method wich :

uses the same algorithm than usual path planning,
ensures the validity of the constraints for whole the motion duration,
can be generalized

from one dimension (time) to N dimensions
to more complex systems : 3D.
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