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Why this talk here today?

Interval arithmetic is an excellent tool to validated computed solutions since

it controls both data uncertainties and finite precision computing errors,

it provides a guaranteed localisation of solution sets,

it can be applied to many problems with a reasonable difficulty

but it sometimes suffers from too expensive running-time.

Validated error bounds and compensated algorithms

only focus finite precision computing errors,

provide validated but only pointwise solution,

are devoted to few algorithms (at least for the moment),

but are actually fast.

So the question I ask to experts in interval arithmetic is:

Are there parts of interval solving scenaris that can be

speed-up by validated and compensated algorithms?
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Scope and general motivation

Scope: finite precision computation

IEEE-754 floating point arithmetic, rounding to the nearest, no overflow.

Data uncertainty is not considered: floating point entries.

Motivations:

1 How to estimate the accuracy of a finite precision computation?

I A priori error analysis Wilkinson (1963) and sons

I A posteriori or dynamic error analysis Wilkinson (1971) and sons

2 How to compute validated error bounds?

I Interval arithmetic Moore-Tsunaga (≈ 1960) and sons

I Validated error bounds Rump (2005) and sons

3 How to improve and validate the accuracy of the computed result?

I Compensated algorithms Kahan-Babuska (1965) and sons

I . . . with validated error bounds.
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Menu du jour

1 Error bounds. . . illustrated with the Horner algorithm

2 Compensated algorithms to double (at least) the accuracy

3 A validated error bound to control the actual accuracy

4 Performance issues exhibit challenging overheads for running time

5 Conclusion
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How to perform these rounding error analysis?

Standard model of floating point computation:

Let a, b ∈ F, ◦ ∈ {+,−,×, /} and fl(x ◦ y) be the exact x ◦ y rounded to

the nearest floating point value at precision u.

fl(a ◦ b) = (1 + ε1)(a ◦ b) = (a ◦ b)/(1 + ε2), with |ε1|, |ε2| ≤ u.

From one local rounding error to a global error bound (while nu < 1):

n∏
i=1

(1 + εi )
±1 = 1 + θn, with |θn| ≤ γn :=

nu

1− nu
≈ nu.

From an a priori bound to a computable bound (while nu < 1):

For γ̂n = (n × u)� (1	 n × u), we have

γn ≤ (1 + u) γ̂n ≤ (1− u) γ̂n,

(1 + u)n|x | ≤ |x | � (1	 (n ⊕ 1)⊗ u).

Ph. Langlois (University of Perpignan, France) Compensated algorithms and validated bounds 20 June 2008 6 / 31



How to perform these rounding error analysis?

Standard model of floating point computation:

Let a, b ∈ F, ◦ ∈ {+,−,×, /} and fl(x ◦ y) be the exact x ◦ y rounded to

the nearest floating point value at precision u.

fl(a ◦ b) = (1 + ε1)(a ◦ b) = (a ◦ b)/(1 + ε2), with |ε1|, |ε2| ≤ u.

From one local rounding error to a global error bound (while nu < 1):

n∏
i=1

(1 + εi )
±1 = 1 + θn, with |θn| ≤ γn :=

nu

1− nu
≈ nu.

From an a priori bound to a computable bound (while nu < 1):

For γ̂n = (n × u)� (1	 n × u), we have

γn ≤ (1 + u) γ̂n ≤ (1− u) γ̂n,

(1 + u)n|x | ≤ |x | � (1	 (n ⊕ 1)⊗ u).

Ph. Langlois (University of Perpignan, France) Compensated algorithms and validated bounds 20 June 2008 6 / 31



How to perform these rounding error analysis?

Standard model of floating point computation:

Let a, b ∈ F, ◦ ∈ {+,−,×, /} and fl(x ◦ y) be the exact x ◦ y rounded to

the nearest floating point value at precision u.

fl(a ◦ b) = (1 + ε1)(a ◦ b) = (a ◦ b)/(1 + ε2), with |ε1|, |ε2| ≤ u.

From one local rounding error to a global error bound (while nu < 1):

n∏
i=1

(1 + εi )
±1 = 1 + θn, with |θn| ≤ γn :=

nu

1− nu
≈ nu.

From an a priori bound to a computable bound (while nu < 1):

For γ̂n = (n × u)� (1	 n × u), we have

γn ≤ (1 + u) γ̂n ≤ (1− u) γ̂n,

(1 + u)n|x | ≤ |x | � (1	 (n ⊕ 1)⊗ u).

Ph. Langlois (University of Perpignan, France) Compensated algorithms and validated bounds 20 June 2008 6 / 31



Mise en bouche

1 Error bounds. . . illustrated with the Horner algorithm

A priori and not validated analysis

Towards validated a priori or dynamic error bounds

2 Compensated algorithms to double (at least) the accuracy

Introducing example and error-free transformations (EFT)

Compensated Horner algorithm

3 A validated error bound to control the actual accuracy

Validated dynamic bound for CompHorner

Application to a faithfully rounded polynomial evaluation

4 Performance issues exhibit challenging overheads for running time

Overhead to more accuracy

Overhead for a validated and more accurate result

5 Conclusion
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Relative accuracy of the Horner algorithm

We consider the polynomial

p(x) =
n∑

i=0

aix
i ,

with ai ∈ F, x ∈ F

Algorithm

function r0 = Horner (p, x)

rn = an

for i = n − 1 : −1 : 0

ri = ri+1 ⊗ x ⊕ ai

end

A priori bound of the relative accuracy of the Horner algorithm:

|Horner(p, x)− p(x)|
|p(x)|

≤ γ2n︸︷︷︸
≈2nu

cond(p, x).

cond(p, x) denotes the condition number of the evaluation:

cond(p, x) =

∑
|aix

i |
|p(x)|

≥ 1.
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Accuracy . condition number of the problem × u
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Bounds for the absolute error in Horner algorithm

Find a bound B or a computable B̂ such that |Horner(p, x)− p(x)| ≤ B.

Classic bounds are pessimistic but not validated (b < B)

I A priori bound: bAP = γ2n

P
|aix

i |
I Wilkinson’s running error bound (N.J. Higham, ASNA, p.95)bbREA = uE0, from Ei =

`
Ei+1 + |bri+1|

´
|x |+ |bri |, (i = n − 1 : 0) and En = 0.

Recent validated bounds when no underflow occurs

I A validated a priori error bound: bBAP = fl
“

γ2nHorner(|p|,|x|)
1−(2n+3)u

”
I A validated running error bound: bBREA = fl

“
u

1−(3n+1)u
fl(E0)

”
Other bounds (tighter, faster) and flop counts in a joint work in progress of

Cl.-P. Jeannerod, Ph. L., N. Louvet and G.Revy.
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Validated error bounds for Horner algorithm
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Validated error bounds for Horner algorithm
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Example: compensated summation

IEEE double precision numbers: x1 = 253 − 1, x2 = 253 and x3 = −(254 − 2).

Exact sum: x1 + x2 + x3 = 1.

Classic summation

254

−1

0

253
− 1

253

−(254
− 2)

2

Relative error = 1

Compensation of the rounding errors

254

0

−1

253
− 1

253

−(254
− 2)

1

2

−1

The exact result is computed

The rounding errors are computed thanks to error-free transformations.
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Error-free transformations (EFT)

Error-Free Transformations are algorithms to compute the rounding errors

at the current working precision.

+ (x , y) = 2Sum(a, b) 6 flop Knuth (74)

such that x = a⊕ b and a + b = x + y

× (x , y) = 2Prod(a, b) 17 flop Dekker (71)

such that x = a⊗ b and a× b = x + y

with a, b, x , y ∈ F.

Algorithm (Knuth)

function [x,y] = 2Sum(a,b)

x = a⊕ b

z = x 	 a

y = (a	 (x 	 z))⊕ (b 	 z)

Compensated summation algorithms:

Kahan, Møller (1965),
Pichat (1972),
Neumaier (1974),
Priest (1992),
Ogita-Rump-Oishi (2005).
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EFT for the Horner algorithm

Consider p(x) =
∑n

i=0 aix
i of degree n, ai , x ∈ F.

Algorithm (Horner)

function r0 = Horner (p, x)

rn = an

for i = n − 1 : −1 : 0

pi = ri+1 ⊗ x % error πi ∈ F
ri = pi ⊕ ai % error σi ∈ F

end

Let us define two polynomials pπ and pσ

such that:

pπ(x) =
n−1∑
i=0

πix
i and pσ(x) =

n−1∑
i=0

σix
i
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Compensated Horner algorithm

(pπ + pσ)(x) is exactly the forward error affecting Horner (p, x).

⇒ we compute an approximate of (pπ + pσ)(x) as a correcting term.

Algorithm (Compensated Horner algorithm)

function r = CompHorner (p, x)

[ r̂ , pπ, pσ] = EFTHorner (p, x) % r̂ = Horner (p, x)

ĉ = Horner (pπ⊕pσ, x)

r = r̂⊕ ĉ

Theorem
Given p a polynomial with floating point coefficients, and x ∈ F,

|CompHorner (p, x)− p(x)|
|p(x)|

≤ u + γ2
2n︸︷︷︸

≈(2nu)2

cond(p, x).

Ph. Langlois (University of Perpignan, France) Compensated algorithms and validated bounds 20 June 2008 17 / 31



Accuracy of the result . u + condition number× u2.
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The compensated Horner algorithm is as accurate as the classic Horner

algorithm performed in twice the working precision, with a final rounding.
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Compensated algorithms

Algorithms that correct the generated rounding errors.

The rounding errors are computed at the current working precision thanks

to error-free transformations.

Compensation applies to summation, dot product, polynomial evaluation,

triangular linear system,

Existing examples: Kahan’s compensated summation (65), Priest’s doubly

compensated summation (92), Ogita-Rump-Oishi (SISC 05),

Langlois-Louvet (Arith 2007) . . .

Compensated algorithms run faster than challenger algorithms (to be

presented later)

More accuracy is available (EFT implies recursivity) and is still running fast

up to ≈ 200 bits of precision
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More accuracy without validated bound is useless

Consider a polynomial p of degree n with floating point coefficients, and x ∈ F.

Algorithm

function r = CompHorner (p, x)

[ r̂ , pπ, pσ] = EFTHorner (p, x)

ĉ = Horner (pπ⊕pσ, x)

r = r̂⊕ ĉ

A priori error bound for the compensated evaluation:

|CompHorner(p, x)− p(x)| ≤ u|p(x)|+ γ2
2n︸︷︷︸

≈(2nu)2

p̃(x).

Problem: This a priori error bound

can not be computed at running time, as |p(x)| is “unknown”;

is pessimistic compared to the actual error.
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A dynamic and validated version of CompHorner

Consider a polynomial p of degree n with floating point coefficients, and x ∈ F.

Algorithm

function r = CompHorner (p, x)

[ r̂ , pπ, pσ] = EFTHorner (p, x)

ĉ = Horner (pπ⊕pσ, x)

r = r̂⊕ ĉ % Rounding error δ = r̂ + ĉ − r ∈ F.

Since EFTHorner is as error-free transformation, we have:

|CompHorner(p, x)− p(x)|︸ ︷︷ ︸
error in the

compensated result

≤ |δ| + | ĉ − c |.︸ ︷︷ ︸
error in the

correcting term
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A dynamic and validated version of CompHorner

Consider a polynomial p of degree n with floating point coefficients, and x ∈ F.

Algorithm

function [ r , β] = CompHornerBound(p, x)

if 2(n + 1)u ≥ 1, error(’Validation impossible’), end

[ r̂ , pπ, pσ] = EFTHorner(p, x)

ĉ = Horner(pπ ⊕ pσ, x)

[ r , δ] = 2Sum( r̂ , ĉ) % Exact computation of δ

α =
(
γ̂2n−1 ⊗ Horner(|pπ ⊕ pσ|, |x |)

)
� (1− 2(n + 1)u)

β = (|δ| ⊕ α)� (1− 2u)

Theorem

Together with the compensated evaluation, CompHornerBound(p, x) computes

an a posteriori error bound β s.t.

|CompHorner(p, x)− p(x)| ≤ β.
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Sharpness of the a posteriori error bound

Evaluation of p6(x) = (1− x)6 in expanded form in the neighborhood of x = 1.

1025

1020

1015

1010

 0.992  0.994  0.996  0.998  1  1.002  1.004  1.006  1.008

Argument x

co
nd

(p
6,

 x
)

1/u

cond(p6,x)

10-34

10-33

10-32

10-31

10-30

10-29

10-28

10-27

10-26

10-25

 0.992  0.994  0.996  0.998  1  1.002  1.004  1.006  1.008

A
bs

ol
ut

e 
fo

rw
ar

d 
er

ro
r

A priori error bound
A posteriori error bound

Measured error

Ph. Langlois (University of Perpignan, France) Compensated algorithms and validated bounds 20 June 2008 23 / 31



Towards a faithfully rounded polynomial evaluation

Definition

A floating point number x̂ is said to be a faithful rounding of a real number x if

either x̂ = x ,

or x̂ is one of the two floating point neighbours of x .
x

x̂

The worst case accuracy bound for CompHorner,

|CompHorner (p, x)− p(x)|
|p(x)|

≤ u + (2nu)2cond(p, x) +O(u3)︸ ︷︷ ︸
>u

is too large for reasoning about faithful rounding.
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A sufficient condition for faithful rounding

We recall:

| ĉ − c | is the error in the computed correcting term ĉ ∈ F

r = CompHorner (p, x) is the compensated result.

Lemma

| ĉ − c | < u

2
| r | ⇒ r is a faithful rounding of p(x).

(see Lemma 2.5 in Accurate floating point summation, Rump, Ogita and Oishi, 2005)

Using this lemma, we present two results:

an a priori upper bound on cond(p, x) to ensure faithful rounding,

an a posteriori (running time) test for faithful rounding.
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An a posteriori test for faithful rounding

A bound on the error | ĉ − c | in the computed correcting term ĉ :

|c − ĉ | ≤ fl

(
γ̂2n−1Horner (|pπ ⊕ pσ|, |x |)

1− 2(n + 1)u

)
=: β

Bound satisfied when computed at running time in fp arithmetic.

Then,

β <
u

2
| r | ⇒ |c − ĉ | < u

2
| r |

⇒ r is a faithful rounding of p(x).

This is again a sufficient condition :

I if this test is satisfied, this ensure faithful rounding,

I else, the compensated may be faithfully rounded or not.
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An a posteriori condition (and an a priori one)
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Overhead to double the precision

We compare:

I CompHorner = Compensated Horner algorithm

I DDHorner = Horner algorithm + double-double (Bailey’s library)

Both provide the same output accuracy.

Practical overheads compared to the classic Horner algorithm1:
CompHorner

Horner
DDHorner

Horner
DDHorner

CompHorner

Pentium 4, 3.00 GHz GCC 4.1.1 2.8 8.6 3.0

(x87 fp unit) ICC 9.1 2.7 9.0 3.4

Athlon 64, 2.00 GHz GCC 4.1.2 3.2 8.7 2.7

Itanium 2, 1.4 GHz GCC 4.1.1 2.8 6.7 2.4

ICC 9.1 1.5 5.9 3.9

2− 4 6− 9 2− 4

CompHorner runs a least two times faster than DDHorner.

1Average ratios for polynomials of degree 5 to 200; wp = IEEE-754 double precision
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Overhead for a validated and more accurate result

Practical overheads compared to the classic Horner algorithm1:

CompHorner
Horner

DDHorner
Horner

CompHornerIsFaith
Horner

Pentium 4, 3.00 GHz GCC 4.1.1 3.42 10.6 4.41

(sse fp unit) ICC 9.1 3.09 9.35 3.96

Athlon 64, 2.00 GHz GCC 4.1.2 3.96 10.4 4.35

Itanium 2, 1.4 GHz GCC 4.1.1 3.30 8.20 4.05

ICC 9.1 1.93 9.68 2.26

∼ 2− 4 ∼ 8− 10 ∼ 2− 5

CompHorner = Compensated Horner algorithm

DDHorner = Horner algorithm + double-double (Bailey’s library)

CompHornerIsFaith = CompHorner + test for faithful rounding.

CompHorner runs a least two times faster than DDHorner.

1Average ratios for polynomials of degree 5 to 200.
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Et pour finir

Compensated Horner algorithm

I as accurate as the Horner scheme performed in doubled working precision,

I very efficient compared to the double-double alternative.

I error bound computed using basic fp arithmetic, in RTN rounding mode;

I underflow is considered in Louvet’s PhD;

I runs at most 1.5 times slower than the non validated algorithm.

Other compensated algorithms and associated validated bounds

I for summation, dot product, triangular linear system solution,

I intrinsic excellent running time performances on superscalar machines (ILP)

Are there parts of interval solving scenaris that can be

speed-up by validated and compensated algorithms?
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