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1 Interval problem



Interval optimization

min f ([x])

[x]€IR"™
where f :IR"™ — R and IR" is the set of boxes in R".



Interval inequality

Characterize the set

S = {[x] € IR", f ([x]) < 0},
where f : TR"™ — RP.



Interval inclusion

Characterize the set

S = {[x] € IR", [x] C [f] ([x])}
where [f] : IR™ — TR".



Quantified interval inequalities

Characterize the set

S = {[x] € IR", d[y] € IRP, f ([x], [y]) < 0}
where f : TR"™ x IRP — R™.



2 Boundarification

An interval constraint is a function from IR" to {0, 1}. An

example of interval constraint is

C([x]) : [z1] C [=2],

where [x] = [z1] X [x2].



An interval constraint is monotonic if

x] C Iyl = (C([x]) = C(ly]) -

For instance C([x]) def (0 € [x]) is monotonic.



Define the intervalization function 2 as follows

( R2n

(o)

-
)

— IR"™
2l
o = _
Ty, Ty

[x] = 0 otherwise

if Vi, z, < a:j



An interval constraint C ([x]) from IR" to {0, 1} is equiv-

alent to a constraint C on their bounds:
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From an expression of C'([x]) we can get an expression for
C(%).

The procedure to get such an expression is called bound-
arification.

For instance the boundarification of

C ([x]) ¥ ([21] C [22] and [x] # 0)
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The boundarification can be made easier using symbolic
interval arithmetic.



3 Symbolic-intervals



A term is a word (a finite sequence of elements of the
alphabet {a,b,...,Y, Z, +,—,/,%,),(,...}) which can
be obtained by the following rules

ol I TA T2 e S
AeS,BeS=ABcS
AeS,BeS=A+BeS
AeS,BeS=AxBecS
AeS=sin(Ad)eS



For instance
sin("aaa")+cos("bbb")

IS a term.



A symbolic interval is a couple [A, B] of terms. We define
the following operations or functions for symbolic intervals.

AB]+[C,D] = [A+C,B+D)

A7B _[C7D] — [A_D7B_C]

e _ [min(AxC,A«xD,BxC,B*D)
ABI«[CD] = T ak(AxC,. . )]

A B [max(0, sign (\A * ) min (Az, B2>

, max (.A2, B2>]
exp([A,B]) = [TXP_ («(41)/, gxp (B)J]él- 5

1/ 1A, B] - , max (1,/./4, —oo *x A * B)]
[A,B]N[C,D] = [max(A,C),min(B,D)]

[A, B] LU [C, D] [min (A, C), max (B, D)]

w ([A, B]) = B—-A



For instance |,

exp ([aaa,bbb] — [ccc,aaa]) = exp([aaa — aaa , bbb — ccc])
[exp(aaa — aaa), exp(bbb — ccc)



Define the following relations on symbolic intervals

([A,B]=[C,D]) = (A—C=0and B—D =0)
([A,B]c[C,D]) = (A—C>0and D—B >0)

For instance

([aaa , bbb] =[ccc, ddd]) = (aaa = ccc and bbb=ddd)
Another example is the following

a — max(0, sign(a.b) * min(a?,b%) >0
([a, b] C |a, b]2) = ¢ and :
max(a?, b%) — b >0



4 Implementation

struct sint

{
AnsiString 1b;
AnsiString ub;

};



void plus(sint& r,sint& a,sint& b)
{

r.lb=a.lb+"+"+b.1lb;
r.ub=a.ub+"+"+b.ub;

}



void moins(sint& r,sint& a,sint& b)

{
r.lb=a.lb+"-("+b.ub+")";
r.ub=a.ub+"-("+b.1lb+")";
+

void moins(sint& r,sint& a,AnsiString b)

{
r.lb=a.lb+"-"+b;
r.ub=a.ub+"-"+b;

}

void moins(sint& r,AnsiString a, sint& b)
{

r.lb=a+"-"+b.ub;

r.ub=a+"-"+b.1lb;

}



void mult(sint& r,sint& a,sint& b)

{

AnsiString z11="("+a.lb+")*("+b.1lb+")";
AnsiString z12="("+a.lb+")*("+b.ub+")";
AnsiString z21="("+a.ub+")*("+b.1lb+")";
AnsiString z22="("+a.ub+")*("+b.ub+")";
AnsiString z =z11+","+z12+","+z21+","+222;
r.1b="min("+z+")";

r.ub="max("+z+")";

}



void exp(sint& r,sint& a)

{
r.lb="exp("+a.lb+")";
r.ub="exp("+a.ub+")";

}



void sqr(sint& r,sint& a)

{ AnsiString z1="sqr("+a.lb+")";

AnsiString z2="sqr("+a.ub+")";

AnsiString z3="sign("+a.lb+"*"+a.ub+")*min("+z1+","+z
r.1lb="max(0,"+z3+")";

r.ub="max ("+z1+","+z2+")";

}

void sqrt(sint& r,sint& a)
{ r.1b="sqrt("+a.lb+")";
r.ub="sqrt("+a.ub+")";

}



void inv(sint& r,sint& a)

{

AnsiString z1="1/("+a.ub+")";
AnsiString z2="1/("+a.lb+")";
AnsiString z3="+oox("+a.lb+"*x"+a.ub+")";
AnsiString z4="-"+z3+"";
r.1b="min("+z1+","+z3+")";

r.ub="max ("+z2+","+z4+")";

}



void div(sint& R,AnsiString a, sint& B)
{

sint Z7Z1;

inv(Z1,B);

mult(R,a,Z1);

}



void inter(sint& r,sint& a,sint& b)

{
r.1lb="max("+a.lb+","+b.1lb+")";
T-Ub="min("+a.ub+","+b.ub+”)";

}

AnsiString subset(sint& a,sint& b)
{

return a.lb+"-("+b.1b+") in [0,+o00] \n"
+ b.ub+"-("+a.ub+") in [0,+o00]";

}



5 Experimental design



Example

Tomorrow, we will make an experiment with a moving ob-

ject.

Its speed will be measured using a speed sensor with an
accuracy less that +1ms1.

lts weight will be measured with an accuracy less than
0.1kg.

We are interested by its kinenic energy F/ = %mvz.

We will use the interval formula [E] = % [m] . [v]?.

Question : With which accuracy will we be able to measure
E?



Formalism

Quantities x; will be measured with an accuracy can be

bounded a priori.
The quantity y of interest satisfies y = f(x1,...,Zn).
An interval for [y] will be obtained using a known interval

function [f].

Question : With which accuracy will we be able to measure

y ?



Interval analysis makes it possible to build an interval func-
tion
1] IR" — IR
| { x] — [yl =[/1([x])

that computes an enclosure for y.



Assuming that x will be measured with an accuracy less
that w, the worst-case uncertainty for [y] is

max w ([f] (x))

[x]€IR™
w([x])<w



Example

A boundarification of the following interval optimization

problem
2
max, w (e ([e] — 1))
w([z])<1
IS
max eb—maa:(O,sign(ab).min(az,b2)) _ ea—(maa:(az,bz)
b—a€c[0,1]

The maximum is inside [3.324807; 3.324808] and the global
optimizer satisfies

(a*,b*) € [0.547,0.548] x [1.547,1.548].

i.e., the interval optimizer is an interval [a*, b*] which sat-
isfies the previous relation.



The figure shows the set

S = {[:c] € IR, w([z] <1 and w (exp ([x] — [a:]2>> > 1}.
inside the box [—2,2] x [-2,2].




6 Comparing two inclusion functions

Consider the two following inclusion functions

[fI(=]) = [=] * ([«] = 1)
9] ([z]) = [2]® —[2].

We would like to know for which intervals [x], [f] is more
accurate than [g].



We have

[f1([z]) = [a,b] *([a,b] —1)
= [a,b]*x[a—1,b— 1]

= [min(a(a—1),b(a—1),a(b—1),b(b—1)),

max (a(a —1),b(a —1),a(b—1),b(b—1))]




Moreover

91 ([z]) = [a,8]° — [a, ]

[max(O, sign (a.b) min (az, b2)), max (a2, b2)}
—[CL, b]

[max(0, sign (a.b) min (a2, b2> —b

, max (az, b2> — a]



Thus

LF1(l=]) € [g] ([])
min(a(a—1),b(a—1),a(b—1),b(b—1))
o ) max(0, sign (a.b) min (az, bz)) +b >0

max (az, b2) —a—

max(a(a—1),b(a—1),a(b—-1),b(b—1)) >0




o If [z] = [1,2]

f1(=]) = [1,2]*([1,2] —1) =0, 2]
9] ([]) [1,2]* — [1,2] = [-1,3]

We have [f] ([z]) C [g] ([z])-

o If [x] =[-2,—-1],
f1(=z]) = [=2,-1]*([-2,-1] = 1) = [2, 6]
gl ([z]) = [-2,-1]° = [-2,-1] = [2,6]

We have [f]([x]) C [g] (Jx]) but we are not able to
prove it.

o If ] = [~1,1],
[fl1(z]) = [-1,1] = ([-1,1] = 1) = [-2,2]
g1 ([z]) = [-1,1]° —[-1,1] =[-1,2]
we have [f] ([z]) Z [g] ([=]).



In red [f] is more accurate that [g]

In blue [f] is not more accurate that [g]

In yellow, we don't know.
The frame box is [—2,2] X [-2, 2].



7 Analysis of the Newton operator

Consider the equation f(x) = 0 with f(z) = e* — 1.

The interval Newton operator is defined by

1 — o (20)
M= 20 = { gy

where xq is any point in [z]. Here, we shall take zg = =~
and thus

f($_> - e? —1
[F1([]) exp ([z~, z7])

N ([]) = 2 -

i



The Newton operator is contracting if

N ([z]) C [x].

The interval Newton set is the set of all [x] such that N
Is contracting.



If we set [z] = [a, b], we get

a—1

exp ([a, b])
A boundarification of the relation N ([a, b]) C [a, ] yields

N([a,b]) = a -
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Set of all intervals such that the interval Newton operator
Is contracting

The frame box is [—2,2] X [-2, 2].



8 Proving global consistency

8.1 Motivation

Consider the angle constraint

o \ [ cosf —sinb x1
yo» | | sinf cosf y1 |

The corresponding optimal contractor C* is defined by

(IR> — IR°
(1)
Y1 -
\ x9 = x1c0sf —yisinf
[X] — Wiy S [X]a{ Yo = ZElSin9+y1COSQ
Y2
\ \ 7 )




Conjecture: Consider the set of constraints

xo = x1c0sf — yisinb
Yo = x1Sin6 + yq1 cosb

If we add the following redundant constraints

"

1 = xpcosf + yssinb
Y1 = —xpsinf + ypcosb
< 2 2 2 2
1ty = 2+
tan O _ Z1Y2—Y1%2
\ T1T2TY1Y2

A hull consistency algorithm with input [x] will to converge
toward C* ([x]).



With Xavier Baguenard, we tried to prove it by hand, but
we failed.

Question : Can we automatically prove this conjecture
with interval methods ?



8.2 Example

Consider a simpler constraint given by

- —x =0



A hull consistency contractor for this constraint amounts
to iterate the two statements

2] = [z] N [2]?

] = [2]N\/[a]

from an initial interval [z] until a steady interval is reached.



The resulting contractor is said optimal if it always converge
to the smallest box which encloses all solutions that belongs

to [x].

Question: Is the hull contractor optimal ?



2 _1x=0.

Step 1. Compute all solutions of the equation x
With an interval method (with bisections), we get that we

have exactly two solutions
r1 X~ 0 and o X~ 1

Thus any safe contractor has at least 3 steady boxes (those
corresponding to [0, 0], [1, 1], [0, 1]).



Step 2. Since the hull contractor will converge the biggest
box inside [x](0) which satisfies

] C [

2] < \lal.

The interval CSP translates into the following bound-CSP

a — max(0, sign(a.b).min(a?, b?)
max(a?, b%) — b

min(a — /a, Vb — b)

b—a

VIV IV IV
oo o



This bound-CSP has three solutions enclosed by

0.999999999, 1] x [0.999999999, 1]
0,3.10737] x [0,3.10737]
0,3.10737] x [0.999999999, 1]

A unicicity test concludes that each of the three boxes
contains a unique solution.

Thus, we know that we have exactly three steady boxes.



Thus, we have proven that the hull contractor is optimal.



