
Resolution of nonlinear interval
problems

using symbolic interval arithmetic

Luc Jaulin and Gilles Chabert

ENSIETA, Brest

jeudi 19 juin 2008

SWIM08, Montpellier



1 Interval problem



Interval optimization

min
[x]∈IRn

f ([x])

where f : IRn→ R and IRn is the set of boxes in Rn.



Interval inequality

Characterize the set

S = {[x] ∈ IRn, f ([x]) ≤ 0} ,
where f : IRn→ Rp.



Interval inclusion

Characterize the set

S = {[x] ∈ IRn, [x] ⊂ [f ] ([x])}
where [f ] : IRn→ IR

n.



Quantified interval inequalities

Characterize the set

S = {[x] ∈ IRn,∃[y] ∈ IRp, f ([x], [y]) ≤ 0}
where f : IRn × IRp→ Rm.



2 Boundarification

An interval constraint is a function from IR
n to {0, 1}. An

example of interval constraint is

C ([x]) : [x1] ⊂ [x2],
where [x] = [x1]× [x2].



An interval constraint is monotonic if

[x] ⊂ [y]⇒ (C ([x])⇒ C ([y])) .

For instance C([x])
def
= (0 ∈ [x]) is monotonic.



Define the intervalization function i as follows

i :






R2n → IR
n






x−1
x+1...
x−n
x+n






→ [x] =






[
x−1 , x

+
1

]

...[
x−n , x+n

]




 if ∀i, x−i ≤ x+i

[x] = ∅ otherwise



An interval constraint C ([x]) from IR
n to {0, 1} is equiv-

alent to a constraint C on their bounds:

C :






R2n → IR
n → {0, 1}




x−1
x+1...
x−n
x+n






︸ ︷︷ ︸
x

i→






[
x−1 , x

+
1

]

...[
x−n , x+n

]






︸ ︷︷ ︸
[x]

C→ C ([x])



From an expression of C ([x]) we can get an expression for

C (x).

The procedure to get such an expression is called bound-

arification.

For instance the boundarification of

C ([x])
def
= ([x1] ⊂ [x2] and [x] = ∅)

is

C






x−1
x+1
x−2
x+2





:






x−1 ≥ x−2 and

x+1 ≤ x+2 and

x−1 ≤ x+1 and

x−2 ≤ x+2

.



The boundarification can be made easier using symbolic

interval arithmetic.



3 Symbolic-intervals



A term is a word (a finite sequence of elements of the

alphabet {a, b, . . . , Y, Z,+,−, /, ∗, ), (, . . . }) which can

be obtained by the following rules

′a′, . . .′ z′,′A′, . . .′Z′ ∈ S
A ∈ S,B ∈ S ⇒ AB ∈ S
A ∈ S,B ∈ S ⇒ A+ B ∈ S
A ∈ S,B ∈ S ⇒ A ∗ B ∈ S
A ∈ S ⇒ sin (A) ∈ S

. . .



For instance

sin("aaa")+cos("bbb")

is a term.



A symbolic interval is a couple [A,B] of terms. We define

the following operations or functions for symbolic intervals.

[A,B] + [C,D] = [A+ C,B +D]
[A,B]− [C,D] = [A−D,B − C]
[A,B] ∗ [C,D] =

[min (A ∗ C,A ∗ D,B ∗ C,B ∗ D)
,max (A ∗ C, . . . )]

[A,B]2 =
[max(0, sign (A ∗ B)min

(
A2,B2

)

,max
(
A2,B2

)
]

exp ([A,B]) = [exp (A) , exp (B)] .
1/ [A,B] =

[min (1/B,∞∗A ∗ B)
,max (1/A,−∞ ∗A ∗ B)]

[A,B] ∩ [C,D] = [max (A, C) ,min (B,D)]
[A,B] ⊔ [C,D] [min (A, C) ,max (B,D)]
w ([A,B]) = B −A



For instance ,

exp ([aaa,bbb]− [ccc,aaa]) = exp ([aaa− aaa , bbb− ccc])
= [exp(aaa− aaa), exp(bbb− ccc)



Define the following relations on symbolic intervals

([A,B] = [C,D]) = (A− C = 0 and B −D = 0)
([A,B] ⊂ [C,D]) = (A− C ≥ 0 and D − B ≥ 0)

For instance

([aaa , bbb]= [ccc , ddd]) = (aaa = ccc and bbb=ddd)

Another example is the following

(
[a, b] ⊂ [a, b]2

)
=






a−max(0, sign(a.b) ∗min(a2, b2) ≥ 0
and
max(a2, b2)− b ≥ 0

.



4 Implementation

struct sint

{

AnsiString lb;

AnsiString ub;

};



void plus(sint& r,sint& a,sint& b)

{

r.lb=a.lb+"+"+b.lb;

r.ub=a.ub+"+"+b.ub;

}



void moins(sint& r,sint& a,sint& b)

{

r.lb=a.lb+"-("+b.ub+")";

r.ub=a.ub+"-("+b.lb+")";

}

void moins(sint& r,sint& a,AnsiString b)

{

r.lb=a.lb+"-"+b;

r.ub=a.ub+"-"+b;

}

void moins(sint& r,AnsiString a, sint& b)

{

r.lb=a+"-"+b.ub;

r.ub=a+"-"+b.lb;

}



void mult(sint& r,sint& a,sint& b)

{

AnsiString z11="("+a.lb+")*("+b.lb+")";

AnsiString z12="("+a.lb+")*("+b.ub+")";

AnsiString z21="("+a.ub+")*("+b.lb+")";

AnsiString z22="("+a.ub+")*("+b.ub+")";

AnsiString z =z11+","+z12+","+z21+","+z22;

r.lb="min("+z+")";

r.ub="max("+z+")";

}



void exp(sint& r,sint& a)

{

r.lb="exp("+a.lb+")";

r.ub="exp("+a.ub+")";

}



void sqr(sint& r,sint& a)

{ AnsiString z1="sqr("+a.lb+")";

AnsiString z2="sqr("+a.ub+")";

AnsiString z3="sign("+a.lb+"*"+a.ub+")*min("+z1+","+z

r.lb="max(0,"+z3+")";

r.ub="max("+z1+","+z2+")";

}

void sqrt(sint& r,sint& a)

{ r.lb="sqrt("+a.lb+")";

r.ub="sqrt("+a.ub+")";

}



void inv(sint& r,sint& a)

{

AnsiString z1="1/("+a.ub+")";

AnsiString z2="1/("+a.lb+")";

AnsiString z3="+oo*("+a.lb+"*"+a.ub+")";

AnsiString z4="-"+z3+"";

r.lb="min("+z1+","+z3+")";

r.ub="max("+z2+","+z4+")";

}



void div(sint& R,AnsiString a, sint& B)

{

sint Z1;

inv(Z1,B);

mult(R,a,Z1);

}



void inter(sint& r,sint& a,sint& b)

{

r.lb="max("+a.lb+","+b.lb+")";

r.ub="min("+a.ub+","+b.ub+")";

}

AnsiString subset(sint& a,sint& b)

{

return a.lb+"-("+b.lb+") in [0,+oo] \n"
+ b.ub+"-("+a.ub+") in [0,+oo]";

}



5 Experimental design



Example

Tomorrow, we will make an experiment with a moving ob-

ject.

Its speed will be measured using a speed sensor with an

accuracy less that ±1ms−1.
Its weight will be measured with an accuracy less than

0.1kg.

We are interested by its kinenic energy E = 1
2mv

2.

We will use the interval formula [E] = 1
2 [m] . [v]

2.

Question : With which accuracy will we be able to measure

E ?



Formalism

Quantities xi will be measured with an accuracy can be

bounded a priori.

The quantity y of interest satisfies y = f(x1, . . . , xn).

An interval for [y] will be obtained using a known interval

function [f ].

Question : With which accuracy will we be able to measure

y ?



Interval analysis makes it possible to build an interval func-

tion

[f ] :

{
IR
n → IR

[x] → [y] = [f ] ([x])

that computes an enclosure for y.



Assuming that x will be measured with an accuracy less

that w̄, the worst-case uncertainty for [y] is

max
[x]∈IRn
w([x])≤w̄

w ([f ] (x))



Example

A boundarification of the following interval optimization

problem

max
[x]∈IR
w([x])≤1

w
(
exp

(
[x]− [x]2

))

is

max
b−a∈[0,1]

eb−max(0,sign(ab).min(a
2,b2)) − ea−(max(a2,b2)

The maximum is inside [3.324807; 3.324808] and the global

optimizer satisfies

(a∗, b∗) ∈ [0.547, 0.548]× [1.547, 1.548].
i.e., the interval optimizer is an interval [a∗, b∗] which sat-

isfies the previous relation.



The figure shows the set

S =
{
[x] ∈ IR, w([x] ≤ 1 and w

(
exp

(
[x]− [x]2

))
> 1

}
.

inside the box [−2, 2]× [−2, 2].



6 Comparing two inclusion functions

Consider the two following inclusion functions

[f ] ([x]) = [x] ∗ ([x]− 1)
[g] ([x]) = [x]2 − [x].

We would like to know for which intervals [x], [f ] is more

accurate than [g].



We have

[f ] ([x]) = [a, b] ∗ ([a, b]− 1)
= [a, b] ∗ [a− 1, b− 1]
= [min (a (a− 1) , b (a− 1) , a (b− 1) , b (b− 1)) ,

max (a (a− 1) , b (a− 1) , a (b− 1) , b (b− 1))]



Moreover

[g] ([x]) = [a, b]2 − [a, b]
=

[
max(0, sign (a.b)min

(
a2, b2

)
),max

(
a2, b2

)]

−[a, b]
= [max(0, sign (a.b)min

(
a2, b2

)
− b

,max
(
a2, b2

)
− a]



Thus

[f ] ([x]) ⊂ [g] ([x])

⇔






min (a (a− 1) , b (a− 1) , a (b− 1) , b (b− 1))
−max(0, sign (a.b)min

(
a2, b2

)
) + b ≥ 0

max
(
a2, b2

)
− a−

max(a (a− 1) , b (a− 1) , a (b− 1) , b (b− 1)) ≥ 0



• If [x] = [1, 2]

[f ] ([x]) = [1, 2] ∗ ([1, 2]− 1) = [0, 2]
[g] ([x]) = [1, 2]2 − [1, 2] = [−1, 3]

We have [f ] ([x]) ⊂ [g] ([x]) .

• If [x] = [−2,−1],

[f ] ([x]) = [−2,−1] ∗ ([−2,−1]− 1) = [2, 6]
[g] ([x]) = [−2,−1]2 − [−2,−1] = [2, 6]

We have [f ] ([x]) ⊂ [g] ([x]) but we are not able to

prove it.

• If [x] = [−1, 1],

[f ] ([x]) = [−1, 1] ∗ ([−1, 1]− 1) = [−2, 2]
[g] ([x]) = [−1, 1]2 − [−1, 1] = [−1, 2]

we have [f ] ([x]) ⊂ [g] ([x]) .



In red [f ] is more accurate that [g]

In blue [f ] is not more accurate that [g]

In yellow, we don’t know.

The frame box is [−2, 2]× [−2, 2].



7 Analysis of the Newton operator

Consider the equation f(x) = 0 with f(x) = ex − 1.

The interval Newton operator is defined by

N ([x]) = x0 −
f (x0)

[f ′]([x])
,

where x0 is any point in [x]. Here, we shall take x0 = x
−

and thus

N ([x]) = x− −
f
(
x−
)

[f ′]([x])
. = x− − ex

− − 1
exp ([x−, x+])



The Newton operator is contracting if

N ([x]) ⊂ [x].
The interval Newton set is the set of all [x] such that N
is contracting.



If we set [x] = [a, b], we get

N ([a, b]) = a− a− 1
exp ([a, b])

A boundarification of the relation N ([a, b]) ⊂ [a, b] yields





a−max
(
ea−1
eb
, e
a−1
ea

)
− a ≥ 0

b− a+min
(
ea−1
eb
, e
a−1
ea

)
≥ 0

b− a ≥ 0



Set of all intervals such that the interval Newton operator

is contracting

The frame box is [−2, 2]× [−2, 2].



8 Proving global consistency

8.1 Motivation

Consider the angle constraint
(
x2
y2

)

=

(
cos θ − sin θ
sin θ cos θ

)(
x1
y1

)

.

The corresponding optimal contractor C∗ is defined by





IR
5 → IR

5

[x] →











x1
y1
x2
y2
θ





∈ [x],

{
x2 = x1 cos θ − y1 sin θ
y2 = x1 sin θ + y1 cos θ








Conjecture: Consider the set of constraints
{
x2 = x1 cos θ − y1 sin θ
y2 = x1 sin θ + y1 cos θ

If we add the following redundant constraints





x1 = x2 cos θ + y2 sin θ
y1 = −x2 sin θ + y2 cos θ
x21 + y

2
1 = x22 + y

2
2

tan θ = x1y2−y1x2
x1x2+y1y2

A hull consistency algorithm with input [x] will to converge

toward C∗ ([x]).



With Xavier Baguenard, we tried to prove it by hand, but

we failed.

Question : Can we automatically prove this conjecture

with interval methods ?



8.2 Example

Consider a simpler constraint given by

x2 − x = 0



A hull consistency contractor for this constraint amounts

to iterate the two statements

[x] = [x] ∩ [x]2

[x] = [x] ∩
√
[x]

from an initial interval [x] until a steady interval is reached.



The resulting contractor is said optimal if it always converge

to the smallest box which encloses all solutions that belongs

to [x].

Question: Is the hull contractor optimal ?



Step 1. Compute all solutions of the equation x2−x = 0.
With an interval method (with bisections), we get that we

have exactly two solutions

x1 ≃ 0 and x2 ≃ 1
Thus any safe contractor has at least 3 steady boxes (those

corresponding to [0, 0], [1, 1], [0, 1]).



Step 2. Since the hull contractor will converge the biggest

box inside [x](0) which satisfies

[x] ⊂ [x]2

[x] ⊂
√
[x].

The interval CSP translates into the following bound-CSP

a−max(0, sign(a.b).min(a2, b2) ≥ 0
max(a2, b2)− b ≥ 0

min(a−√a,
√
b− b) ≥ 0

b− a ≥ 0



This bound-CSP has three solutions enclosed by

[0.999999999, 1]× [0.999999999, 1]
[0, 3.10−39]× [0, 3.10−39]
[0, 3.10−39]× [0.999999999, 1]

A unicicity test concludes that each of the three boxes

contains a unique solution.

Thus, we know that we have exactly three steady boxes.



Thus, we have proven that the hull contractor is optimal.


