Set Inversion Via Interval Analysis applied to dielectric spectroscopy

Maëlenn AUFRAY, Adrien BROCHIER and Wulff POSSART

June 19th-20th 2008 Montpellier SWIM 2008

SIVIA applied to DES

Basic Principles of DES

The dielectric is considered as a medium with relaxations for both dipoles $\varepsilon^*(\omega)$ and charge carriers $\sigma^*(\omega)$:

What is really considered in DES $\varepsilon^{*}(\omega) = \varepsilon'(\omega) - i\varepsilon''(\omega)$ $\sigma^{*}(\omega) = \sigma'(\omega) + i\sigma''(\omega)$ $\tilde{\varepsilon}'(\omega) = \varepsilon'(\omega) \text{ and } \tilde{\varepsilon}''(\omega) = \varepsilon''(\omega) + \frac{\sigma_{DC}}{\omega\varepsilon_{0}}$

- The Dielectric spectroscopy measures the dielectric properties of a medium as a function of frequency
- It is based on the interaction of an external field with the electric dipole moment of the sample

The Debye model

• Let ε_{∞} be the permittivity at the high frequency limit, ε_s be the static permittivity at low frequency, and τ be the relaxation time, then a single Debye relaxation is described by the formula:

$$arepsilon^*(\omega) = arepsilon_\infty + rac{arepsilon_{m{s}} - arepsilon_\infty}{1 + {\sf i}\,\omega au_0}$$

For a data set with *m* relaxations, let *p_j* = (Δε_j, τ_j) and *p* = (ε_∞, *p*₁,..., *p_m*). Then, the model is:

$$f(\boldsymbol{p},\omega) = \varepsilon_{\infty} + \sum_{j=1}^{m} \frac{\Delta \varepsilon_{j}}{1 + i \tau_{j} \omega}$$

Remark

The function doesn't change if the p_j are permuted. For example, if m = 2 and $p^* = (\varepsilon^*, p_1^*, p_2^*)$ is a given solution of the fitting problem, then the vector of parameters $(\varepsilon^*, p_2^*, p_1^*)$ is an equivalent solution.

Adrien BROCHIER (ASPG)

SIVIA applied to DES

Curves expected and obtained !

Real curve : epoxy monomer

material relaxation + conductivity + electrodes polarization!

That is why other models were imagined

The Debye model

$$\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + i\,\omega\tau_0}$$

- The Cole-Cole model $\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + (i \, \omega \tau_0)^{\alpha}}, \ 0 < \alpha \leq 1$
- The davidson-Cole model $\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{(1 + i\omega\tau_0)^{\beta}}, \ 0 < \beta \le 1$
- The Havriliak-Negami model $\varepsilon^*(\omega) = \varepsilon_{\infty} + \frac{\Delta \varepsilon}{(1 + (i \, \omega \tau_0)^{\alpha})^{\beta}}, \ 0 < \alpha.\beta \le 1$

 \Rightarrow Only the Debye model has a physical meaning: the other one are phenomenological

Adrien BROCHIER (ASPG)

SIVIA applied to DES

0.1

10⁻⁵ 10⁻³ 10⁻¹

10³ 10⁵

101

ω.τ

Least Square Approximation

- Choice of initial values
- Relevance of the result (local minimum, convergence, physical meaning, ...)
- Complexity of the model (non-linearity, dimension and symmetries of the parameters space,...)
- No possibility to take in account limitations (bound on the parameters)

Interval analysis

Requirements

- Simultaneous fit of real and imaginary part
- Use of Debye model (the only one model with a physical meaning)
- Guaranteed results and automatic guess of the number of relaxation

Reformulation of the problem in the setting of interval analysis

- Each measured value y_i leads to an interval $[y_i] = [y_i e_i, y_i + e_i]$ according to the measurement accuracy
- The set of *feasible parameters* is

$$\mathcal{F} = \left\{ \boldsymbol{p} \in \mathbb{R}^k | \ \forall 1 \leq i \leq n, \ f(x_i, \boldsymbol{p}) \in [y_i] \right\}$$

A D M A A A M M

Set Inversion Via Interval Analysis

- SIVIA : branch and bound algorithm → return a list of boxes (i.e. k-dimensional intervals) which approximate the set of feasible parameters
- Used together with a contractor, a procedure which decreases the size of the tested boxes.
- Very promising results, but:
 - Difficulty determining an interval for each parameter from returned list of boxes
 - Computing time and memory usage in practice

Remark

As any permutation of the parameters leaves the model invariant:

- \mathcal{F} is a non-connected set
- All the connected component of \mathcal{F} are "the same up to symmetry"

So it would be sufficient to approximate only one of the connected component of \mathcal{F} .

Adrien BROCHIER (ASPG)

SIVIA applied to DES

First modification

- Search of the bounding box of the set of feasible parameters
- Use of the convex union instead of the usual one
- The memory usage becomes almost constant
- A lot of boxes have no more to be tested: decrease of the computing time

But...

The bounding box of a non-connected set is not relevant.

- We need to select one single connected component of the feasible parameters set
- For numerical parameters, we could impose some order on the parameters, for example that *τ_i* < *τ_{i+1}*
- For interval parameters $[\tau_i] = [\tau_i^-, \tau_i^+]$, we assume that

$$\tau_i^- < \tau_{i+1}^ \tau_i^+ < \tau_{i+1}^+$$

- It's a weaker condition, but it works if the relaxations aren't too close to one another
- This also decreases the computing time by cutting off the search space

- Nice property of SIVIA : It finds something... only if there is something to find !
- In particular, if the supposed number of relaxation is too small, it return (very quickly) an empty set
- Therefore, by successives tries, the algorithm computes the smallest number of relaxations which leads to a nonempty set
- On the other hand, if the supposed number of relaxation is too big, there are too many degree of freedom: this mean that the number of relaxation determined by the algorithm should be considered as optimal

Adrien BROCHIER (ASPG)

SIVIA applied to DES

SWIM 2008 12 / 15

イロト イヨト イヨト イヨト

Some results

$$arepsilon^*(\omega) = arepsilon_\infty + \sum_j rac{\Delta arepsilon_j}{1 + \mathrm{i}\,\omega au_j} - \mathrm{i}\,rac{\sigma_{DC}}{\omega arepsilon_0}$$

The polarisation of the electrodes is represented by a very big Debye relaxation

Interval analysis methods lead to an algorithm which:

- gives a strong criterion for evaluating the optimal number of relaxations
- works well even if some relaxations are close to one another, are hidden by some noise or are partially outside of the experimental range
- leads to intervals which are directly related to the experimental errors, which is much more satisfactory than single values from a physical point of view.

consequence

This algorithm validates the Debye model

 \Rightarrow The Debye model is able to match real life experimental data

Thanks for your attention

Contact

- E-mail : maelenn.aufray@ensiacet.fr
- Web-site : http://maelenn.aufray.free.fr

4 A N