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Common Subexpressions Elimination (CSE)

The symbolic form of the equations is crucial for
interval-based solving techniques.
CSE is an important feature in optimization of code.
CSE consists in replacing common subexpressions
(CS) by auxiliary variables.
For example:
a = b * c + g
d = b * c * d

It may be worth (in performance) transforming the code to:
tmp = b * c
a = tmp + g
d = tmp * d
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Common Subexpressions Elimination (CSE)

In interval analysis, Schichl and Neumaier proposed a
unique DAG to represent a system of equations.
It is thought that the gain in CPU time due to common
subexpressions is only due to a reduction of the
number of operations.
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Contributions

State when CSE may be useful to improve the
performance of interval solvers (bringing a better
contraction/filtering).
An algorithm (I-CSE) that generates a new system of
equations.

I-CSE replace CSs only if it may improve the
contraction/filtering of solvers.
I-CSE is able to find all the maximal CS including so-called
conflictive CSs that overlap.
I-CSE is not intrusive.
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HC4 Algorithm

Filtering algorithm (similar to AC3) used in interval
solvers. Handles the constraints individually with a
procedure HC4-revise.
The system is represented as a set of binary trees.
HC4-revise works in two 2 phases: forward or
evaluation phase and backward or narrowing
phase.
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HC4 Algorithm

Example of HC4-revise: (x + y + z)2 + 3(x + z) = 30
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Over-estimation in HC4 caused by CSs

Example: The sum x + z is shared by two constraints A and B.
A := ... ∗ (x + z)3 + ... = 0 B := ... + x + z = 0

Observation
The contraction obtained by narrowing an expression (n1) is in
general lost in the next evaluation of the same expression (n2).
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Over-estimation in HC4 caused by CSs

Example: The sum x + z is shared by two constraints A and B.
A := ... ∗ (x + z)3 + ... = 0 B := ... + x + z = 0

Observation
Adding the new constraint (n1 = n2) the contraction is not lost.
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Over-estimation in HC4 caused by CSs

Example: HC4-revise in the new system
A := ... ∗ v3 + ... = 0 B := ... + v = 0

Solution
Replace n1 and n2 by a common variable v , and add a new constraint
v = x + z.
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Some properties

Proposition 1

HC4 obtains a better or equivalent filtering in a system modified by
CSE.

Proposition 2 and 3

x2 x3 sin cos log exp + ×
Useful X X X X X

Useless X X X

Proposition 4

The lost ∆ of a binary sum x + y can be estimated.
∆ ≤ 2×min(Diam(x), Diam(y)).
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The I-CSE Algorithm

The novelty of I-CSE lies in the way additive and
multiplicative CSs are taken into account.
I-CSE manages conflictive subexpressions.
Algorithm divided into 4 steps.
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Step 1: DAG Generation

Every equation in the system is represented by an
n-ary tree.
The trees are compacted into a DAG, merging
together equivalent subtrees.
Standard bottom-up procedure.
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The I-CSE Algorithm

Initial System:

x2 + y + (y + x2 + y3 − 1)3 + x3 = 2
(y3 + x2)× (x2 + cos(y)) + 14

x2 + cos(y)
= 8
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The I-CSE Algorithm

Step 1: DAG Generation

Observations
Equivalent nodes are merged together.
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Step 2: Pairwise Intersection

Nodes corresponding to n-ary sums (resp.
multiplications) are intersected pairwise, creating
intersection nodes.
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The I-CSE Algorithm

Step 2: Pairwise intersection of nodes

Observations

+(x2, y, node2, x3,−2)1 ∩+(y, x2, y3,−1)4 = +(y, x2)
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The I-CSE Algorithm

Step 2: Pairwise intersection of nodes

Observations

+(x2, y, node2, x3,−2)1 ∩+(y, x2, y3,−1)4 = +(y, x2)1.4
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The I-CSE Algorithm

Step 2: Pairwise intersection of nodes

Observations
The set of intersection nodes correspond to all the maximal CSs
between every pair of expressions.
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Step 3: Integrating CSs into the DAG

The CSs are integrated into the DAG
CSs of a node sharing terms are called conflictive.
To attach conflictive CSs it is necessary to create
redundant nodes.
For example:
n4 := y + x2 + y3 − 1
n1.4 := y + x2

n10 := x2 + y3

n4 := n1.4 + y3 − 1
n4B := y + n10 − 1
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The I-CSE Algorithm

Step 3: Integrating intersection nodes (CSs) into the DAG

Observations
A redundant node is generated (4B) to attach coflictive CSs.
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The I-CSE Algorithm

Step 3: Integrating intersection nodes (CSs) into the DAG

Observations
An equal node is generated to incorporate redundant nodes into the
DAG.
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Step 4: Generation of the new system

It is possible to use directly the DAG obtained at step
3 (Vu et al.). But it implies modifying the propagation
algorithm.
To continue using classical algorithms, I-CSE
generates a new system.

Useful CSs and equal nodes generate new variables and
equations.
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The I-CSE Algorithm

Step 4: Generation of the new system

Observations
The new equations are generated.
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Step 4: Generation of the new system

The new generated system is:

v2 + v3
5 + x3 − 2 = 0

v3 × v4 + 14
v4

− 8 = 0

v1 = x2

v2 = y + v1

v3 = v1 + y3

v4 = v1 + cos(y)

v5 = v2 + y3 − 1
v5 = −1 + y + v3
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Implementation of I-CSE

I-CSE has been implemented using Mathematica.
Two variants that find fewer CSs: I-CSE-B and
I-CSE-NC.
Solving algorithms have been developed in Ibex
library (C++).
Branch and prune process.
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Selected Benchmarks

Benchmark I-CSE-B ICSE-NC I-CSE Benchmark I-CSE-B ICSE-NC I-CSE
#s N #cs #cs #cs #rc #s N #cs #cs #cs #rc

6body 5 6 2 3 3 0 Kin1 16 6 13 13 19 3
Bellido 8 9 0 1 1 0 Pramanik 2 8 0 15 15 0
Brown-7 3 7 3 7 21 24 Prolog 0 21 0 7 7 0
Brown-7* 3 7 3 1 1 0 Rose 16 3 5 5 5 0
Brown-30 2 30 26 53 435 783 Trigexp1-30 1 30 29 29 29 0
BroyBand-20 1 20 22 37 97 73 Trigexp1-50 1 50 49 49 49 0
BroyBand-100 1 100 102 119 479 473 Trigexp2-11 0 11 15 15 15 0
Caprasse 18 4 6 7 11 2 Trigexp2-19 0 19 27 27 27 0
Design 1 9 3 3 3 0 Trigonom-5 2 5 7 9 20 14
Dis-Integral-6 1 6 4 6 18 9 Trigonom-5* 2 5 7 6 6 0
Dis-Integral-20 3 20 18 34 207 171 Trigonom-10 24 10 15 15 26 15
Eco9 16 8 0 3 7 1 Trigonom-10* 24 10 15 12 12 0
EqCombustion 4 5 7 8 11 1 Yamamura-8 7 8 5 10 36 48
ExtendWood-4 3 4 2 2 2 0 Yamamura-8* 7 8 5 1 1 0
Geneig 10 6 11 14 14 0 Yamamura-10 9 12 7 14 55 79
Hayes 1 8 9 8 8 0 Yamamura-10* 9 12 7 1 1 0
I5 30 10 3 4 10 5 Yamamura-12 9 12 9 18 78 119
Katsura-19 5 20 81 81 81 0 Yamamura-12* 9 12 9 1 1 0
Katsura-20 7 21 90 90 90 0 Yamamura-16 9 16 13 26 136 224
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Results I-CSE

I-CSE time < 1 second.
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Results with HC4 and Interval Newton

Benchmark TIME in second TIME(Osys) / TIME #Boxes
Osys ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Osys ICSE-NC I-CSE

EqCombustion >3600 26.1 0.35 0.14 >137 >10000 >25000 >1e+08 3967 1095
Rose >3600 500 101 101 >7.2 >35 >35 >3e+07 865099 865099
Hayes 141 51.9 15.7 15.7 2.7 9 9 550489 44563 44563
6-body 0.22 0.07 0.07 0.07 3.1 3.1 3.1 4985 495 495
Design 176 65.2 63.2 63.2 2.7 2.8 2.8 425153 122851 122851
I5 >3600 >3600 1534 1565 ? >2.3 >2.3 >3e+07 7e+06 7e+06
Geneig 3323 2910 2722 2722 1.14 1.22 1.22 7e+08 4e+08 4e+08
Kin1 8.52 8.32 8.32 8.01 1.02 1.02 1.06 905 909 905
Pramanik 89.3 92.1 84.9 84.9 0.97 1.05 1.05 487255 378879 378879
Bellido 15.7 15.9 15.6 15.6 0.99 1.01 1.01 29759 29319 29319
Eco9 23.9 23.9 24 24.1 1.00 1.00 0.99 126047 117075 110885
Caprasse 1.56 1.81 1.68 2.16 0.86 0.93 0.72 8521 7793 7491
Brown-7* 500 350 0.01 0.01 1.42 49500 49500 6e+06 95 95
Dis-Integral-6 201 0.46 1.3 0.03 437 155 6700 653035 4157 47
ExtendWood-4 29.9 0.03 0.03 0.03 997 997 997 422705 353 353
Brown-7 500 350 30.7 1.49 1.42 16.1 332 6e+06 258601 3681
Trigexp2-11 1118 208 56.2 56.2 5.38 19.9 19.9 1e+06 316049 316049
Yamamura-8* 13 13.3 0.75 0.75 0.98 17.3 17.3 29615 2161 2161
Broy-Banded-20 778 759 261 58.1 1.03 2.98 13.4 172959 46761 12623
Trigonometric-5* 15.8 12.3 1.49 1.49 1.28 10.6 10.6 10531 1503 1503
Trigonometric-5 15.8 12.3 8.94 6.97 1.28 1.77 2.27 10531 7369 5307
Yamamura-8 13 13.3 44.6 10.8 0.98 0.3 1.20 29615 115211 13211
Katsura-19 1430 1583 1583 1583 0.90 0.90 0.90 145839 153193 153193
Trigexp1-30 2465 3244 3244 3244 0.76 0.76 0.76 1e+07 1e+07 1e+07
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Results with 3BCID (using HC4) and Interval Newton
Benchmark TIME in second TIME(Init) / TIME #Boxes

Init ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Init ICSE-NC I-CSE
Rose 2882 5.17 4.04 4.04 557 713 713 4e+06 5711 5711
Prolog 38.5 60 0.14 0.14 0.64 275 275 4647 11 11
EqCombustion 0.42 0.37 0.06 0.06 1.35 7 7 427 23 23
Hayes 32.6 27.2 5.67 5.67 1.13 5.7 5.7 17455 1675 1675
Design 52 17.9 13.3 13.3 2.9 3.9 3.9 16359 4401 4401
I5 33.5 41.1 17.9 17.8 0.81 1.9 1.9 10619 4387 4281
6-body 0.14 0.08 0.1 0.1 1.75 1.4 1.4 173 51 51
Kin1 1.66 2.66 1.76 1.23 0.62 0.94 1.35 85 161 197
Bellido 10.3 10.4 9.98 9.98 1 1.03 1.03 4487 4341 4341
Eco9 11.6 11.6 12.4 13.2 1 0.94 0.88 6205 6045 5749
Pramanik 73.8 114 96.8 96.8 0.65 0.76 0.76 124663 95305 95305
Caprasse 1.96 2.51 2.5 2.92 0.74 0.78 0.67 1285 1311 1219
Geneig 696 1050 1050 1050 0.66 0.66 0.66 362225 362045 362045
Trigexp2-19 2308 2.23 0.03 0.03 1035 77000 77000 250178 7 7
Brown-7* 600 318 0.01 0.01 1.88 60000 60000 662415 9 9
ExtendWood-4 185 0.03 0.03 0.03 6167 6167 6167 669485 35 35
Dis-Integral-6 135 0.18 0.51 0.03 750 264 4500 86487 185 7
Brown-7 600 318 4.75 0.22 1.88 126 2700 662415 2035 23
Yamamura-12* 1751 1842 1.01 1.01 0.95 1700 1700 364105 307 307
Yamamura-12 1751 1842 31.1 8.72 0.95 56.3 200 364105 5647 445
Trigono-10* 1344 506 19.4 19.4 2.67 69 69 140512 2033 2033
Trigono-10 1344 506 156 49.6 2.67 8.62 27 140512 19883 3339
Broy-Banded-100 9.96 20.3 14.8 8.21 0.49 0.67 1.21 13 23 11
Trigexp1-50 0.15 0.19 0.17 0.17 0.79 0.88 0.88 1 1 1
Katsura20 3457 5919 5919 5919 0.58 0.58 0.58 62451 120929 120929
Brown-30 >3600 >3600 >3600 22.9 ? ? >150 >210021 >151527 31
Dis-Integral-20 >3600 >3600 >3600 1.12 ? ? >3200 >111512 >75640 39
Yamamura-16 >3600 >3600 681 35.6 ? >5 >100 >522300 96341 919
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Conclusion

CSs can bring significant gains in filtering and not
only a decrease in the number of operations.
Gains in filtering can only be expected when the CSs
do not correspond to monotonic and continuous
unary operators (x3, log).
Gains of several orders of magnitude.
Future work: Interval Newton.
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