Exploiting Common Subexpressions in Numerical CSPs

Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

INRIA, Université de Nice-Sophia, CERTIS, France

SWIM, June 2008, Montpellier, France

Outline

2 Filtering and CSE

3 The I-CSE Algorithm

Common Subexpressions Elimination (CSE)

- The symbolic form of the equations is crucial for interval-based solving techniques.
- CSE is an important feature in optimization of code.
- CSE consists in replacing common subexpressions (CS) by auxiliary variables.

For example:

 $\mathbf{a} = \mathbf{b}^* \mathbf{c} + \mathbf{g}$

d = **D*C** * d

It may be worth (in performance) transforming the code to:

Common Subexpressions Elimination (CSE)

- The symbolic form of the equations is crucial for interval-based solving techniques.
- CSE is an important feature in optimization of code.
- CSE consists in replacing common subexpressions (CS) by auxiliary variables.

For example:

It may be worth (in performance) transforming the code to:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Common Subexpressions Elimination (CSE)

- In interval analysis, Schichl and Neumaier proposed a unique DAG to represent a system of equations.
- It is thought that the gain in CPU time due to common subexpressions is only due to a reduction of the number of operations.

Contributions

- State when CSE may be useful to improve the performance of interval solvers (bringing *a better contraction/filtering*).
- An algorithm (I-CSE) that generates a new system of equations.
 - I-CSE replace CSs only if it may improve the contraction/filtering of solvers.
 - I-CSE is able to find all the maximal CS including so-called conflictive CSs that overlap.
 - I-CSE is not intrusive.

Outline

3 The I-CSE Algorithm

HC4 Algorithm

- Filtering algorithm (similar to AC3) used in interval solvers. Handles the constraints individually with a procedure HC4-revise.
- The system is represented as a set of binary trees.
- HC4-revise works in two 2 phases: forward or evaluation phase and backward or narrowing phase.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ●

Example: The sum x + z is shared by two constraints A and B. $A := ... * (x + z)^3 + ... = 0$ B := ... + x + z = 0

Observation

The contraction obtained by narrowing an expression (n_1) is in general lost in the next evaluation of the same expression (n_2) .

5000

Example: The sum x + z is shared by two constraints A and B. $A := ... * (x + z)^3 + ... = 0$ B := ... + x + z = 0

Observation

The contraction obtained by narrowing an expression (n_1) is in general lost in the next evaluation of the same expression (n_2) .

シック 中 イル・イル・イモ・トー

Example: The sum x + z is shared by two constraints A and B. $A := ... * (x + z)^3 + ... = 0$ B := ... + x + z = 0

Observation

The contraction obtained by narrowing an expression (n_1) is in general lost in the next evaluation of the same expression (n_2) .

nac

Example: The sum x + z is shared by two constraints A and B. $A := ... * (x + z)^3 + ... = 0$ B := ... + x + z = 0

Observation

Adding the new constraint $(n_1 = n_2)$ the contraction is not lost.

Solution

Replace n_1 and n_2 by a common variable v, and add a new constraint v = x + z.

Some properties

Proposition 1

HC4 obtains a **better or equivalent** filtering in a system modified by CSE.

Proposition 4

The lost Δ of a binary sum x + y can be estimated. $\Delta \leq 2 \times \min(Diam(x), Diam(y)).$

Some properties

Proposition 1

HC4 obtains a **better or equivalent** filtering in a system modified by CSE.

Proposition 2 and 3

	<i>x</i> ²	<i>x</i> ³	sin	COS	log	exp	+	×
Useful	X		X	X			X	X
Useless		X			X	X		

Proposition 4

The lost Δ of a binary sum x + y can be estimated. $\Delta \leq 2 \times \min(Diam(x), Diam(y)).$

シック・ 州 ・ ・ 川 ・ ・ 一 ・ ・ ・ ・ ・

Some properties

Proposition 1

HC4 obtains a **better or equivalent** filtering in a system modified by CSE.

Proposition 2 and 3 $x^2 x^3 \sin \cos \log exp + \times$ UsefulXXXUselessXXX

Proposition 4

The lost Δ of a binary sum x + y can be estimated. $\Delta \leq 2 \times \min(Diam(x), Diam(y)).$

Outline

4 Experiments and conclusions

- The novelty of I-CSE lies in the way additive and multiplicative CSs are taken into account.
- I-CSE manages conflictive subexpressions.
- Algorithm divided into 4 steps.

・ロト・(四ト・(日下・(日下・))

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Step 1: DAG Generation

- Every equation in the system is represented by an n-ary tree.
- The trees are compacted into a DAG, merging together equivalent subtrees.
- Standard bottom-up procedure.

Initial System:

$$\frac{x^2 + y + (y + x^2 + y^3 - 1)^3 + x^3}{(y^3 + x^2) \times (x^2 + \cos(y)) + 14} = 8$$

Initial System:

$$\frac{\mathbf{x}^{2} + y + (y + \mathbf{x}^{2} + y^{3} - 1)^{3} + x^{3}}{(y^{3} + \mathbf{x}^{2}) \times (\mathbf{x}^{2} + \cos(y)) + \mathbf{14}} = 8$$

・・

Step 1: DAG Generation

Observations

Equivalent nodes are merged together.

Step 2: Pairwise Intersection

 Nodes corresponding to n-ary sums (resp. multiplications) are intersected pairwise, creating intersection nodes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Observations + $(x^2, y, node_2, x^3, -2)_1 \cap +(y, x^2, y^3, -1)_4 = +(y, x^2)$

Observations + $(x^2, y, node_2, x^3, -2)_1 \cap +(y, x^2, y^3, -1)_4 = +(y, x^2)_{1.4}$

Observations

The set of intersection nodes correspond to all the maximal CSs between every pair of expressions.

Observations

The set of intersection nodes correspond to all the maximal CSs between every pair of expressions.

Step 3: Integrating CSs into the DAG

- The CSs are integrated into the DAG
- CSs of a node sharing terms are called **conflictive**.
- To attach conflictive CSs it is necessary to create redundant nodes.

For example:

$$n_4 := y + \mathbf{x}^2 + y^3 - 1$$

 $n_{1.4} := y + \mathbf{x}^2$
 $n_{10} := \mathbf{x}^2 + y^3$
 $n_4 := n_{1.4} + y^3 - 1$
 $n_{4B} := y + n_{10} - 1$

Step 3: Integrating CSs into the DAG

- The CSs are integrated into the DAG
- CSs of a node sharing terms are called **conflictive**.
- To attach conflictive CSs it is necessary to create redundant nodes.

For example:

$$n_{4} := y + \mathbf{x}^{2} + y^{3} - 1$$

$$n_{1.4} := y + \mathbf{x}^{2}$$

$$n_{10} := \mathbf{x}^{2} + y^{3}$$

$$n_{4} := n_{1.4} + y^{3} - 1$$

$$n_{4B} := y + n_{10} - 1$$

Step 3: Integrating CSs into the DAG

- The CSs are integrated into the DAG
- CSs of a node sharing terms are called **conflictive**.
- To attach conflictive CSs it is necessary to create redundant nodes.

For example:

$$n_{4} := y + \mathbf{x}^{2} + y^{3} - 1$$

$$n_{1.4} := y + \mathbf{x}^{2}$$

$$n_{10} := \mathbf{x}^{2} + y^{3}$$

$$n_{4} := n_{1.4} + y^{3} - 1$$

$$n_{4B} := y + n_{10} - 1$$

Step 3: Integrating CSs into the DAG

- The CSs are integrated into the DAG
- CSs of a node sharing terms are called **conflictive**.
- To attach conflictive CSs it is necessary to create redundant nodes.

For example:

$$n_4 := y + \mathbf{x}^2 + y^3 - 1$$

$$n_{1.4} := y + \mathbf{x}^2$$

$$n_{10} := \mathbf{x}^2 + y^3$$

$$n_4 := n_{1.4} + y^3 - 1$$

$$n_{4B} := y + n_{10} - 1$$

Observations

A redundant node is generated (4B) to attach coflictive CSs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Observations

A redundant node is generated (4B) to attach coflictive CSs.

Step 3: Integrating intersection nodes (CSs) into the DAG

Observations

An equal node is generated to incorporate redundant nodes into the DAG.

Step 4: Generation of the new system

- It is possible to use directly the DAG obtained at step 3 (Vu et al.). But it implies modifying the propagation algorithm.
- To continue using classical algorithms, I-CSE generates a new system.
 - Useful CSs and equal nodes generate new variables and equations.

Observations

The new equations are generated.

Step 4: Generation of the new system

The new generated system is:

$$\frac{v_2+v_5^3+x^3-2}{v_3\times v_4+14}-8 = 0$$

$$\begin{array}{rclrcl} v_1 &=& x^2 & & v_4 &=& v_1 + \cos(y) \\ v_2 &=& y + v_1 & & v_5 &=& v_2 + y^3 - 1 \\ v_3 &=& v_1 + y^3 & & v_5 &=& -1 + y + v_3 \end{array}$$

くちゃく 前々 ふかく 山や ふらや

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Outline

Filtering and CSE

Experiments and conclusions

◆ロト ◆帰 ト ◆ 三 ト ◆ 三 ト ◆ ◎ ト

Implementation of I-CSE

- I-CSE has been implemented using Mathematica.
- Two variants that find fewer CSs: I-CSE-B and I-CSE-NC.
- Solving algorithms have been developed in Ibex library (C++).
- Branch and prune process.

Selected Benchmarks

Benchmark			I-CSE-B	ICSE-NC	I-CSE		Benchmark			I-CSE-B	ICSE-NC	I-0	CSE
	#s	Ν	#cs	#cs	#cs	#rc			Ν	#cs	#cs	#cs	#rc
6body	5	6	2	3	3	0	Kin1		6	13	13	19	3
Bellido	8	9	0	1	1	0	Pramanik	2	8	0	15	15	0
Brown-7	3	7	3	7	21	24	Prolog	0	21	0	7	7	0
Brown-7*	3	7	3	1	1	0	Rose		3	5	5	5	0
Brown-30	2	30	26	53	435	783	Trigexp1-30	1	30	29	29	29	0
BroyBand-20	1	20	22	37	97	73	Trigexp1-50	1	50	49	49	49	0
BroyBand-100	1	100	102	119	479	473	Trigexp2-11	0	11	15	15	15	0
Caprasse	18	4	6	7	11	2	Trigexp2-19	0	19	27	27	27	0
Design	1	9	3	3	3	0	Trigonom-5	2	5	7	9	20	14
Dis-Integral-6	1	6	4	6	18	9	Trigonom-5*	2	5	7	6	6	0
Dis-Integral-20	3	20	18	34	207	171	Trigonom-10	24	10	15	15	26	15
Eco9	16	8	0	3	7	1	Trigonom-10*	24	10	15	12	12	0
EqCombustion	4	5	7	8	11	1	Yamamura-8	7	8	5	10	36	48
ExtendWood-4	3	4	2	2	2	0	Yamamura-8*	7	8	5	1	1	0
Geneig	10	6	11	14	14	0	Yamamura-10	9	12	7	14	55	79
Hayes	1	8	9	8	8	0	Yamamura-10*	9	12	7	1	1	0
15	30	10	3	4	10	5	Yamamura-12	9	12	9	18	78	119
Katsura-19	5	20	81	81	81	0	Yamamura-12*	9	12	9	1	1	0
Katsura-20	7	21	90	90	90	0	Yamamura-16	9	16	13	26	136	224

Results I-CSE

• I-CSE time < 1 second.

くちゃくゆゃくゆゃくりゃ

Results with HC4 and Interval Newton

Benchmark		TIME in	second		TIM	E(Osys) / '	TIME	#Boxes			
	Osys	ICSE-B	ICSE-NC	I-CSE	ICSE-B	ICSE-NC	I-CSE	Osys	ICSE-NC	I-CSE	
EqCombustion	>3600	26.1	0.35	0.14	>137	>10000	>25000	>1e+08	3967	1095	
Rose	>3600	500	101	101	>7.2	>35	>35	>3e+07	865099	865099	
Hayes	141	51.9	15.7	15.7	2.7	9	9	550489	44563	44563	
6-body	0.22	0.07	0.07	0.07	3.1	3.1	3.1	4985	495	495	
Design	176	65.2	63.2	63.2	2.7	2.8	2.8	425153	122851	122851	
15	>3600	>3600	1534	1565	?	>2.3	>2.3	>3e+07	7e+06	7e+06	
Geneig	3323	2910	2722	2722	1.14	1.22	1.22	7e+08	4e+08	4e+08	
Kin1	8.52	8.32	8.32	8.01	1.02	1.02	1.06	905	909	905	
Pramanik	89.3	92.1	84.9	84.9	0.97	1.05	1.05	487255	378879	378879	
Bellido	15.7	15.9	15.6	15.6	0.99	1.01	1.01	29759	29319	29319	
Eco9	23.9	23.9	24	24.1	1.00	1.00	0.99	126047	117075	110885	
Caprasse	1.56	1.81	1.68	2.16	0.86	0.93	0.72	8521	7793	7491	
Brown-7*	500	350	0.01	0.01	1.42	49500	49500	6e+06	95	95	
Dis-Integral-6	201	0.46	1.3	0.03	437	155	6700	653035	4157	47	
ExtendWood-4	29.9	0.03	0.03	0.03	997	997	997	422705	353	353	
Brown-7	500	350	30.7	1.49	1.42	16.1	332	6e+06	258601	3681	
Trigexp2-11	1118	208	56.2	56.2	5.38	19.9	19.9	1e+06	316049	316049	
Yamamura-8*	13	13.3	0.75	0.75	0.98	17.3	17.3	29615	2161	2161	
Broy-Banded-20	778	759	261	58.1	1.03	2.98	13.4	172959	46761	12623	
Trigonometric-5*	15.8	12.3	1.49	1.49	1.28	10.6	10.6	10531	1503	1503	
Trigonometric-5	15.8	12.3	8.94	6.97	1.28	1.77	2.27	10531	7369	5307	
Yamamura-8	13	13.3	44.6	10.8	0.98	0.3	1.20	29615	115211	13211	
Katsura-19	1430	1583	1583	1583	0.90	0.90	0.90	145839	153193	153193	
Trigexp1-30	2465	3244	3244	3244	0.76	0.76	0.76	1e+07	1e+07	1e+07	

Results with 3BCID (using HC4) and Interval Newton

Benchmark	TIME in second				TIN	IE(Init) / TI	ME	#Boxes		
	Init	ICSE-B	ICSE-NC	I-CSE	ICSE-B	ICSE-NC	I-CSE	Init	ICSE-NC	I-CSE
Rose	2882	5.17	4.04	4.04	557	713	713	4e+06	5711	5711
Prolog	38.5	60	0.14	0.14	0.64	275	275	4647	11	11
EqCombustion	0.42	0.37	0.06	0.06	1.35	7	7	427	23	23
Hayes	32.6	27.2	5.67	5.67	1.13	5.7	5.7	17455	1675	1675
Design	52	17.9	13.3	13.3	2.9	3.9	3.9	16359	4401	4401
15	33.5	41.1	17.9	17.8	0.81	1.9	1.9	10619	4387	4281
6-body	0.14	0.08	0.1	0.1	1.75	1.4	1.4	173	51	51
Kin1	1.66	2.66	1.76	1.23	0.62	0.94	1.35	85	161	197
Bellido	10.3	10.4	9.98	9.98	1	1.03	1.03	4487	4341	4341
Eco9	11.6	11.6	12.4	13.2	1	0.94	0.88	6205	6045	5749
Pramanik	73.8	114	96.8	96.8	0.65	0.76	0.76	124663	95305	95305
Caprasse	1.96	2.51	2.5	2.92	0.74	0.78	0.67	1285	1311	1219
Geneig	696	1050	1050	1050	0.66	0.66	0.66	362225	362045	362045
Trigexp2-19	2308	2.23	0.03	0.03	1035	77000	77000	250178	7	7
Brown-7*	600	318	0.01	0.01	1.88	60000	60000	662415	9	9
ExtendWood-4	185	0.03	0.03	0.03	6167	6167	6167	669485	35	35
Dis-Integral-6	135	0.18	0.51	0.03	750	264	4500	86487	185	7
Brown-7	600	318	4.75	0.22	1.88	126	2700	662415	2035	23
Yamamura-12*	1751	1842	1.01	1.01	0.95	1700	1700	364105	307	307
Yamamura-12	1751	1842	31.1	8.72	0.95	56.3	200	364105	5647	445
Trigono-10*	1344	506	19.4	19.4	2.67	69	69	140512	2033	2033
Trigono-10	1344	506	156	49.6	2.67	8.62	27	140512	19883	3339
Broy-Banded-100	9.96	20.3	14.8	8.21	0.49	0.67	1.21	13	23	11
Trigexp1-50	0.15	0.19	0.17	0.17	0.79	0.88	0.88	1	1	1
Katsura20	3457	5919	5919	5919	0.58	0.58	0.58	62451	120929	120929
Brown-30	>3600	>3600	>3600	22.9	?	?	>150	>210021	>151527	31
Dis-Integral-20	>3600	>3600	>3600	1.12	?	?	>3200	>111512	>75640	39
Yamamura-16	>3600	>3600	681	35.6	?	>5	>100	>522300	96341	» 9 <u>1</u> 9

◆ロト ◆帰 ト ◆ 三 ト ◆ 三 ト ◆ ◎ ト

Conclusion

- CSs can bring significant gains in filtering and not only a decrease in the number of operations.
- Gains in filtering can only be expected when the CSs do not correspond to monotonic and continuous unary operators (x³, log).
- Gains of several orders of magnitude.
- Future work: Interval Newton.

◆ロト ◆帰 ト ◆ 三 ト ◆ 三 ト ◆ ◎ ト

Exploiting Common Subexpressions in Numerical CSPs

Ignacio Araya, Bertrand Neveu, Gilles Trombettoni

INRIA, Université de Nice-Sophia, CERTIS, France

SWIM, June 2008, Montpellier, France