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Basic notions on set theory
(Luc Jaulin, Monday, 10h15-10h45)

Basic operation on sets
Consider two sets X and Y. We define

Xny = {z|zeXand z €Y} (intersection)
Xuy & {z|zeXorzeY} (union)
X\Y def {z|zeXand z ¢ Y} (deprivation)
Xxy & {(z,y) |z € Xand y € Y} (Cartesian product)

If Z =X x Y, then the projection of a subset Z; of Z onto X (with respect to Y) is defined as

projx (Z1) & {z € X| 3y € Y such that (z,y) € Z; }.

x < <

projx (Z,)

Example 1: If X = {a,b,¢,d} and Y = {b, ¢, z, y}, then

XNnY = {bc}
XuY = {a,b,cd,x,y}
X\Y = {a,d}

XxY = {(a,),(a,c),(a,x),(a,y),...,(d,b),(d,c),(d,x),(dy)}.

1f Z, %< {(a, ¢), (a,), (b,¢), (d,9)} C X x Y, we have

projx (Zl) = {avbvd}v
projy (Z1) {e,y}-

Example 2: If
S ={(z,y,2) € [1,5] x [2,4] x [6,10] | z =2+ y},

then
projy (S) (6, 9]
pron (S) = [27 4]
projz (S) = [2,5].

Relation (or binary constraint)



A relation in X is a subset of X x X.
Example 1: If X = {a, b, ¢, d}, the set

C= {(aa a), ((L, b)’ (ba a)’ (b’ C)’ (dv d)}

is a relation or a binary constraint in X. Since X is finite, it can be represented a directed graph.

a
e
*C
‘\_/
b
or by the matrix

1 1.0 0
10 1 0
0 0 0 O
0 0 0 1

Example 2: The set
¢ = {(z,y) € R2ly = sin(a)}

is a relation in R. This relation can be written as "y = sina", or "sin(y, x)" or "sin".

Example 3: The set
C={(z,y) eR?*|y <z}

is a relation in R. This relation can be written as "y < z", or "< (y,z)" or "<".

Example 4: The set
¢ = {(z.y) € B|sin(z +y) = 0}

is a relation in R. This relation can be written as "sin(x 4+ y) = 0".

Constraints
A constraint in X is a subset of X x X x -+ x X.

Example 1: If X = {a, b, ¢,d}, the set
C ={(a,a,a),(a,b,c),(c,c,a)}

is a ternary constraint in X.

Example 2: The set
C={(z,y,2) eR’|z =z +y}

is a ternary constraint in R. This set can be written as "z =« + y", or "+(z,y,2)" or "+".

Functions
Consider a function f: X — Y. If Xy C X the direct image of X1 by f is

def

fX) ={f(@) |z e Xy}
If Y1 C Y, the reciprocal image of Yq by f is

def

S7HY) = {z e X | f(z) € Y1}



If ) denotes the empty set, then the previous definitions imply that f(0) = f=* (0) = (. It is trivial to show that if
X1 and X5 are subsets of X and if Y; and Y5 are subsets of Y, then
FXnXy) Cf(Xy)nf(Xy
FXuXs) = f(X)U
FHYNYs) = f7H (V)
FHYuY,) = f71 (V)
Ft (Y)) cY, (16)
Xp W)= (X))o
XpcXy= (X)) C f(Xy),
Y CYo= f7H(Yy) € fH(Ys),
X CVY; x Yy = XC projy, (X) x projy, (X).

Example 1: If f is defined as follows

then
f(4) = {2,3,4} = Im(f).
“1(B) = {a,b,c e} =dom(f). (17)
f_l(f(A)) = {a,bcie} CA
f_l(f({bvc})) = {a,b,c}.
|
Example 2: If f(x) = 22, then
f(12,3) [4,9] (18)
fﬁl([4v QD - [737 72} U [2v 3]
This is consistent with the property f (f~!(Y)) C Y. |
Example 3: If f(z) = log, then
FH(=3-2)) = 0. (19)
Correct the error in the book page 13, line 6 of (2.10). [ |




Interval computation
(Luc Jaulin , Monday, 12h00-12h30).

Intervals
A (closed) interval is a connected, closed subset of R. The set of all intervals of R will be denoted by IR. For example
[1,3], {1}, ] — o0, 6], R and () are considered as intervals whereas |1, 3[,[3,2] and [1, 2] U [3, 4] are not. The lower bound
of the interval [z] is defined by

z = 1b([z]) = inf {z|z € [z]}. (20)

The upper bound of the interval [z] is defined by

S]]

— ub([a]) = sup {ex € [o]}. (21)

By convention, ub()) = —oo and 1b()) = +oo. The width of the interval [z] is defined by w ([z]) = & — z. The
midpoint of the interval [z] is defined by B

mid ([z]) = x? (22)
The enveloping interval associated with a subset X of R is the smallest interval containing X and is denoted by [X].

For instance

[[1,3|U[6,7]]=[1,7]. (23)

For two intervals [z] and [y], the interval union is defined by

2] U [y] = [[=] U Y]] (24)

Binary operators
If o € {4, —, *, /, max, min}, where * is the multiplication, and if [x] and [y] are two intervals, we define

(@] o[y] < oy | o €[],y € [y])] (25)
Therefore,
[z[,a?] ]+ {y,ﬂ} = {w(ww] |
z,Z) - ly,y| = |min(zy, Ty, 2y,7Y),
max(zy, Ty, 21, TY) (26)
max ([z, 7], [y, 9]) = [max(z,y), max(z,7)]
For instance,
[_173] + [275] - [178}7
[_173]'[275] = [_5715]7
-1.3)/[2.5] =[3.3] &0
max ([—1,3],[2,5]) =[2,5].
We have
([1,2] + [-3,4]) * [-1,5] = [~2,6] % [-1,5] = [~10, 30]. (28)
Elementary functions
If f € {cos, sin, sqr, sqrt, log, exp, ...}, is a function from R to R, we define its interval extension as
f () © [{f(@) | = € [a]}]. (29)
For instance
sin ([0,7]) = [0,1],
sar([-1,3]) = [-1,3]* =10,9],
abs ([-7,1]) = [0,7], (30)
sqrt ([_1(); 4]) =V [_10’4] = [07 2},
log ([-2,—-1]) = 0.



The sine function with an interval argument

Interpretation
If f is an expression then

f([=], [y]) = [2] = Va € [2], Yy € [y), Iz € [2], 2 = f(=,y)
Modal intervals : handle proper intervals (such as [1,2]) and improper intervals (such as (2, 1]).

For instance,
[1,4] +[2,1] = [3, 5]

should be interpreted as
Vo e [1,4],3y[1,2],3z € [3,5],z=x+y

and
[4,1] +[1,2] = [5, 3]
should be interpreted as
Yy € [1,2],Vz € [3,5],Fx € [1,4],z =z +y.

Modal interval analysis can be useful to prove quickly propositions such as
Ve, € [$1},V£E2 S [ZCQ],
Iy [y1]7 Jys € [yQL Jdz e [Z],
z = sin(z122) + 2oy — Y3,

m

Boxes
A box, or interval vector, [x] of R™ is the Cartesian product of n intervals i.e. a vector with interval components:

(x] = [y, 3] X - X [z, Bal = 1] X X ] (31)
The set of all boxes of R™ will be denoted by IR". The width w ([x]) of a box [x] is the length of its largest side

w([x]) = max w([x]). (32)
ie{l,...,n}
For instance
If w([x]) =0, [x] is said to be degenerated. In such a case, [x] is a singleton of R™ and will be denoted {x}. The
principal plane of [x] is the symmetric plane [x] perpendicular to its largest side.

A n-dimensional box has n symmetric planes



To bisect a box [x] means to split it in the two parts separated by its principal plane. For instance, the bisection of
[x] = [1,2] x [—1, 3] generates the two boxes Left([x]) = [1,2] x [—1, 1] and Right([x]) = [1,2] x [1, 3].



Set inversion
(Luc Jaulin, Tuesday, 9h45-10h30).

Subpavings
A subpaving of R™ is a set of non-overlapping boxes of R™. Compact sets X can be bracketed between inner and outer
subpavings:

X~ cXcX*'. (34)

The following figure illustrates the bracketing of the set
X ={(z1,22)| 27+ 23 €[1,2]} (35)

between subpavings with an increasing accuracy from left to right. The frame corresponds to the box [—2,2] x [—2, 2].
The subpaving AX in grey contains the boundary of X whereas the subpaving X~ in white is inside X.

Set operations such as Z := X+ Y, X:=f"1(Y),Z:=XNY... can be approximated by subpaving operations.

Stack-queue

A list is a (possibly empty) ordered finite set. If the list is nonempty, all its elements, except one (called the last),
have a next element. The element of the list which is the next of nobody is called the first element. A queue is a list
on which two operations are allowed : (i) add an element at the end (push) (ii) remove the first element (pull). A
stack is a list on which two operations are allowed : (i) add an element at the beginning of the list (stack) (ii) remove
the first element (pop).

Example: Let £ be an empty list. The next table illustrates the evolution of the queue when different operations are
performed.

k operation result
0 L=10
1 push(L,a) L =A{a} (36)
2 push(L,b) L ={a,b}
3 z:=pull(L) xz=a,L={b}
4 z:=pul(L) z=0bL=0.
For a stack, the table becomes
k  operation result
0 L=1
1 stack (L,a) L ={a} (37)
2 stack(L£,b) L ={a,b}
3 x:=pop(L) x=0bL={a}
4 z:=pop(L) z=a,L=0.

Set inversion
Let f be a possibly nonlinear function from R™ to R™ and let Y be a subset of R™ (for instance, a subpaving). Set

inversion is the characterization of
X={xeR"|f(x) e Y}=Ff1Y). (38)

For any Y C R™ and for any function f admitting a convergent inclusion function [f](.), two subpavings X~ and X*
such that
X~ cXcXt, (39)



can be obtained with the algorithm StviA (Set Inverter Via Interval Analysis), to be described now. To test if a box
[x] is inside or outside X, we shall use the following tests.

() MEpcy = KcX )
i) [f(xHNY=0 = [xnNX=0.

Boxes for which these tests failed, will be bisected, except if they are too small (i.e., smaller than the required accuracy
¢). The box [x](0) is a box which is assumed to enclose the solution set X. £ is a queue of boxes.

Algo S1viA(in: [x]; out: £7,L7)

1 L:={x}; L~ =0; LT :=0;

2 1f L #10, [x]:=pop (L), else end;

3 if [f]([x]) € Y, push(L™, [x]);push(L7, [x]); goto 2;
4 if [£]([x ])ﬂY:(/), goto 2;
5 )
6

if w([x]) < e, push(LT, [x]); goto 2;
stack(L,Left([x]) ,Right([x])); goto 2.

If X~ denotes the union of boxes in £~ and if XT is the union of boxes in £T then :

X~ cXcXxt. (41)

Sivia with contractors
The constraint f(x) € Y defining X can be translated into nonlinear inequalities:

q1(z1, @, ... x,) < 0,
: S (42)
Im(T1, @2, ... xy) < 0.

Thus

X = {x€R" | max(@u(e...2n)s. s gn(ars... 7)) <0} and (43)
-X {x €R" | max (g1(x1,...,Zn)s- vy gm(T1,...,xy)) > 0}.

A contractor Cx for X and a contractor C_x for —X can easily be obtained (for instance, by a forward-backward
propagation).

Algorithm S1viaC(in: [x]; out: £7,L7T)

1 L:={x]} L =0; LT :=0;

2 if L #( then [x ] := pop (£) else end;

3 [x] == Cx([x]); if [x] =0, goto 2

4 fa) i= Cp(()

5 if [a] # [x], push(L, [x ]\[a}),push(£+,[><]\[a]);
6 it (w([al) < <), push(L*, [a)); goto 2

7 stack(L,Left([a]) ,Right([a])); goto 2.




Unconstrained global optimization
(Luc Jaulin, Tuesday, 11h45-12h30).

Constraints propagation (reminder)
Consider the three following constraints

(C1) : y=2a?
(C2) & zy=1 (44)
(C3) @ y=—-2zx+1

To each variable, we associate the domain | — oo, 00[. A constraint propagation consists in projecting all constraints

until equilibrium.

N

_
|

.
=
. .

x +sin(y) —xz <0,

vel-11)ye[-1,1]z € [-1,1] (45)
can be decomposed into the following one.
a = sin(y) ze[-1,1] a€]—o0,00
b=z+a y€e[-1,1] be]—o0,00] (46)
c=1xz ’ ze[-1,1] c€]— 00,00
b—c=d d €] —00,0]

Recall that since the decomposition introduces pessimism, the decomposition should only be done for constraints for
which no projection procedure are available.

Minimization
The problem to be considered now is the minimization of a cost function f(x) over a box [x] € R™
f = min f(x). (47)
X€E[x]
In the following algorithm, £ is a list of boxes which contains all global minimizers. The real number f* is an upper

bound for the global minimum f. It is assumed that f(x) is twice differentiable and has a global minimizer x* which
is not on the boundary of [x]. Hence, the gradient V f(x*) at x* should be zero and the Hessian H (x*) at x* of f
must be positive semi-definite (> 0). If H([x]) is proved to contain no matrices = 0, then [x] cannot contain any
minimizer. This is the nonconvezity check used by Hansen to eliminate boxes [x]. The test used by Hansen checks
the signs of the diagonal entries of the interval matrix [H]. If one of them is negative then the matrix cannot be > 0.

Algorithm MINIMIZE(in: [x]; out: fT, L)

1 L= {[x]}; fT = oo;

2 if all boxes have a width < ¢, return (£);
3 pull the largest box [x] of £;

4 f* =min(f*,localmin (f,[x]));

)

6

7

8

(%] == Cxi 0 < f+,9 £ (0 =0,H; (x) =03 ([X]);

if [x] = 0, goto 2;

if (w([x]) < &) then push [x] into £; goto 2;

bisect [x] and store the two resulting boxes in £; goto 2.

10



Example (Collaboration with D. Henrion)
Consider the three-hump camel function (this is also the example chosen by Hansen to illustrate his nonconvexity
check):

6
f(x) =222 — 1.05z] + % — 129 + 22, (48)
Its gradient is
I 4 _ — 4923 5
- o - T — T2 21y + a7
vieo=( % )= () (9

Its Hessian is

H (x) — ( 4+ 53:‘%_—1 12. 6x% —21 ) ' (50)
After decomposition, the constraints f(x) < f*,Vf(x) = 0, Hy(x) = 0 become
()r12 = 2%; (i) 213 = 23; (iii) 214 = 27; (V) 215 = 255 (V)16 = 285 (vi)222 = 22; (Vii)a = 7122
2010 — 105 214 + 8% —a+ 392 < fT
(viii) e 9:22;24_.2;:13 e _ 8 (51)
( 4+ 59514_—1 12.6x12 —21 ) -~ 0
Note that the eigen values of the Hessian matrix
( 4+ 5$14_E 12.6212 ;1 > (52)

are given by:

5 1
/\172 = §$14 —6.3r12 £ 5\/20x14 — 50.4x12 — 126210714 + 15876$%2 + 25.%%4 + 8+ 3.

should be positive. Since the constraint (viii), which involves 7 variables, is an LMI, it can be projected and should
not be decomposed.

LMIs
A linear matrix inequality (LMI) has the form

AX) YA+ 21A + -+ 2 A = O, (53)

where x € R™ is a vector of variables and the A; are square symmetric matrices. An LMI set is a subset of R™ which

can be defined by an LMI. The box-LMI problem, which consists in finding the smallest box [x] which encloses a set
X defined by an LMI constraint, has a polynomial complexity in the worst-case.

Example 1. A set of linear constraints (equalities or inequalities) is an LMI. For instance

a11x1 + a12x9 + bl Z 0 (54)
a2121 + a22x9 + b2 Z 0
is equivalent to the following LMI
a1171 + a2 + by 0
-
( 0 2121 + ag9x + by ) =0, (55)

i.e.,

bl 0 a1 0 a2 0
(O b2)+9:1<0 a21>+x2<0 aﬂ)tO. (56)

11




Example 2. An ellipsoid of R" is an LMI set. Consider for instance, the ellipse defined by 3x2 + 223 — 2x122 < 5. We
have

1

1 X
3x%+2x§—2x1x2§5 = T, 2 1 =0
T2 1 3
1 0 0 0 1 0 0 0 1 (57)
=3 0 2 1 + xq 1 0 0 |42 0 0 O =0
01 3 0 0 O 1 0 O
[ |

12



Minimax Optimization
(Luc Jaulin, Tuesday, 14h00-14h45).

Perturbed minimization
Consider the function

g(x) = ;reli[;l] f(x,y). (58)

Assume that an inclusion function [f]([x], [y]) for f(x,y) is available. An inclusion function [¢]([x]) for g(x) can be
obtained by the algorithm below. The real number fT represents the best known upper bound for g([x]).

Algorithm PERTMIN(in: [x], [y],[f]; out: [g]([x]))

L:=A{lyl}; /T = oo

if Vy] € £, w(ly]) < w([x]) + ¢, return mingye . [f]([x], [y])
take the largest box [y] of £;

ST = min(f*,ub([f]([x],center([y]));

i ()], [y]) > £+ then goto 2;

if (w([y]) < w([x]) + ¢ then push [y] into £; goto 2;

bisect [y] and store the two resulting boxes in £; goto 2.

N OO W N

Note that in PERTMIN, the box [x] is not bisected. At step 2, the arguments of the min operators are intervals (for
instance, min([3, 7, [2, 9], [4, 5]) = [2,5]). At step 6, ¢ is a small positive number which is useful for the particular case
where [x] is a singleton. The behavior of the algorithm is illustrated by the following figure.

fy)

g (x>\

[v]

The perturbed maximization problem can be solved using PERTMIN: since

hx) = max f(x,y) = — min_— £(x,), (59)
yely] y€ly]
an inclusion function for h(x) can be obtained by [h]([x]) = —PERTMIN([x], [y],[—f])-

Perturbed minimization with constraints
The function

g(x)= min  f(x,y) (60)
YEly]
s.t. h(x,y)<0
can be rewritten as
g(x) = min f(x,y) +n(h(x,y)), (61)
yElyl
where ;
0 ifv<o
n(v) = { oo otherwise (62)

13



The minimal inclusion function [n] for 7 is [n] = [n(v), n(7)]. For instance

n(=1,-3,-2) = 0
n(=1,-3,2) 00;
l([=3, =1),[=3,2],[=2,5]) = [0,00]; (63)
(=3, =1}, [=3, -2, [=2,-1]) = [0,0];
(=3, =1],[1,2],[=2,5]) = [o0,00;

As a consequence, an inclusion function for f(x,y)+n(h(x,y)) is [f]([x], [y])+ [7]([h]([x], [y]))- The previous algorithm

can thus be used to get an inclusion function [¢]([x]) for g(x) 4 min {f(x,¥),y € [y], h(x,y) < 0} if inclusion functions
for f(x,y) and h(x,y) are available.

Minimax optimization
Consider the problem of computing an enclosure for

fa= min max min x1 (x2 + x3) .
T3 € [—1,2] To € [—1, 1] xr1 € [0, 10]
sin(w3) <0 23 4+22<0 2?4+ w223 <0

—_——
fo (21,22, 23)
i rr) oy
f2 (x3)
It can be rewritten as
f3= min 7 (sinzg) + max —n (23 4+ z2) + min n(z? + wo23) + 21 (2 + 23)
xg € [—1,2] x9 € [—1,1] x1 € [0,10]
o (21,72, 23)
oy (w2, 73)
@ (x3)

An inclusion function for ¢, (21, 2, 23) can be obtained using interval arithmetic. An inclusion function for ¢, (z2, z3)
can be obtained using PERTMIN. An inclusion function for ¢, (x3) can also be obtained using PERTMIN. An enclosure
for the real number f3 can thus be obtained using PERTMIN where the perturbed box is now degenerated.

Remark: The operators min and max cannot commute in general. For instance,

max min zy = max x.(—sign(z)) = —1 65
ze{—-1,1} ye{-1,1} 4 ze{—1,1} ( g ( )) ( )
min max xy = min sign(y).y = 1. 66
e I . R (%)
We always have
< . 67
max min f(z,y) < mipmax f(z,y) (67)
|
Set projection
Problems involving 3 and V are closely related to minimax problems. For instance, proving that
v103 € [133],3102 € [172],Vp1 S [0, ]-]apl +p2p3 < 1 (68)
amounts to proving that
max min  max p; + pops < L. (69)

p3€[1,3] p2€[1,2] p1€[0,1]

14



Consider the set
def

S={x€[x]]3y € [y].f(x,y) <0}. (70)

This problem is known as the set projection problem. The set S can be written as

S = {x € [x]| ml[n] max(f1(X,¥), .-, fm(x,y)) < 0} . (71)
yely
If an inclusion function is available for all f;, an inclusion function is also known for max(f1(x,y),...,fm(x,y)). From

PERTMIN, an inclusion function [¢] (x) for

g(X) = ;Iell[;l] max(fl (X’ Y)a s afm(X7 Y)) (72)

can thus be obtained. This inclusion function can thus be used by SIVIA to characterize S.
Epigraphs (Collaboration with M. Dao, M. Lhommeau)

We shall now give an illustration of the set projection methodology to a problem related to global optimization.
Consider the following optimization problem

H‘EI%{I}L f(x) s.t. g(x) <0. (73)
Its epigraph is defined by
S={(x,a) eR" xR | a> f(x) and g(x) < 0}. (74)

For many applications (such as detecting non-identifiability problems), it is of interest to have a guaranteed graphical
representation of the sets

Si ={(x;,a) ERXR | I(21,...,2%-1,%i,...,2,) | a> f(x) and g(x) <0},i€{1,...,n}. (75)

The set S; is called the ith profile of the epigraph.
An enclosure of S; gives an interval containing the global minimum as well as some information about the possible
existence of quasi-global minimizers. Consider, for instance, the following problem

m%@n sinzizy s.t. 3 + a3 € [1,2]. (76)
xe n

The sets Sy (and also Ss, since the two sets are equal), represented below, has been obtained by PR0OJ2D.

Example: Assume that the criterion to be minimized is given by

f(p) = max |e P+ 1.0l.e P2 —y
te{1,2,3}

where
y1 = 0.504, yo = 0.153 and y3 = 0.052.

This problem corresponds to a discrete minimax estimation problem in the case where the model is almost non-
identifiable. In this example, the true values for the parameters are p; = 1 and po = 2. Its epigraph projection can be
obtained by the following PROJ2D program.

15



Variables
pl in [-3,3]
p2 in [-3,3]
a in [0,1]
Constraints
max (abs (exp(-pl*1)+1.01*exp(-p2%1)-0.504),
abs (exp(-p1*2)+1.01*exp(-p2%2)-0.153),
abs(exp(-p1*3)+1.01*exp(-p2%3)-0.052)) -a in [-1000,0]
Projected variables
pl;a;
Epsilon
0.05
EndQOfFile

The corresponding picture on the (p1,a)-space is as below. Even if there is here a unique global minimizer p = (1,2),
this picture shows that there is another local minimizer p = (2,1) which is almost a global one.

Interval hull

Characterizing a (full) compact set X may turn out to be too costly when the dimension n of x is high and when X
is large, because the paving of all the boxes generated by SiviA accumulates on the boundary of X. In the hope of
computing less if less if asked for, consider now the problem of finding the interval hull [X] of X (the smallest box that
contains it) instead of requesting a detailed characterization of X. Given a set X for which a contractor is available,
compute two boxes [xi,] and [X,u] such that

[xin] C [X] C [Xout]-

X]

For this purpose, we shall compute a guaranteed enclosure [z; ,z;] and [Z; ,Z;] of mingex ¥; and maxyex ;4 €
{1,...,n}. This amounts to solving 2n global optimization problems. Since
X] = {minxl,maxxl} X e X {minxn,maxxn} , (77)
xeX xeX xeX xeX

16



we will have
[,z x - x [z, 2] C [X] C 27, 2] x - x [, 7,1 (78)

n?

Example: Consider the problem of characterizing the set
X = {(21,22) €[0,5]* |Vt € [0,1], [t* + 2t +1 — 21™"| < 1}. (79)

The subpavings obtained when performing the four optimizations of are presented in figure (a) below. Compare with
(b), which presents the subpavings generated by SIviA when solving the same example.
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Constraints propagation for estimation
(Luc Jaulin, Wednesday, 14h30-15h45).

Constraint propagation (remainder)
A CSP is composed of

e aset of variables V = {x1,...,z,},
e a set of constraints C = {c1,...,¢,} and
e a set of interval domains {[z1],...,[zn]}.

The aim of propagation techniques is to contract as much as possible the domains for the variables without loosing
any solution. Denote by [x]|M¢;, the smallest box which contains all points in [x] = [z1] X --- X [z,] that satisfy c;.
The principle generally used to contract the [x;]’s is arc consistency. It consists in computing the box

(((((([x]Mer) Mex) Mo ) Mey,) Ner) Nez) - . (80)

until a steady box (also called the fixed point) is reached.

Constraint propagation for estimation (Collaboration with I. Braems, M. Kieffer, E. Walter)
Example 1: Consider the electronic circuit consisting of one battery and two resistors represented below

R1§ [Ul
&% IUQ

Assume that measures have been collected on this circuit, leading to the following relations :

>

1

Ole

E € [23V,26V], I € [44,84], U; € [10V,11V], (81)
Uy, € [14V,17V], P € [124W, 130W],

where P is the power delivered by the battery. Nothing is known about the values of the resistors except that they are
positive. Thus the prior domains for R; and Ry are |0, 00[. These quantities are related by the following constraints:

P = FEI E=(Ri+Ry)I; (82)
Ui = RiI; Uy=Rl; E=U; + Us.

Since the second constraint is not primitive, it is decomposed by introducing an auxiliary variable, say R, as follows:
E = (Ry + R») I is decomposed into (E' = RI; R= Ry + R»). (83)
The solver INTERVALPEELER (www.istia.univ-angers.fr/ baguenar/) generates the following results

Ry € [1.840,2.31Q], Ry € [2.58Q,3.350),
I € [4769A,5417A], Uy € [10V;11V], U, € [14V;16V], (84)
E € [24V;26V], P € [124W,130W].

We got rather accurate intervals containing R; and Rs. The domains for I and Us have also been contracted, whereas
the domains for U; and P have been left unchanged. |

Example 2: Consider now the following circuit
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where it is known that
U, €6V, 7V],r € [7,8]Q,U € [6,6.2]V
R € [100,110]2, E € [18,20]V, I, € [0.001, cc] A (85)
I€]—o00,00[4, I. €] —00,0[A4, R, € [50,60].

The constraints described by the circuit are given by

Zener diode I, = max(0, Z=to),
Ohm rule U, =R,

Current rule I =1.+ IZ,

Voltage rule E = RI+U,.

The solver INTERVALPEELER contracts the domains into:
U, € [6,007;6,518],r € [7,8]Q, U, € [6,6.2]V

R € [100,110]Q, E € [18,20]V, I. € [0.001,0.398] A (87)
1€[0.11;0.14]4, I, € [0.1;0,13]4, R. € [50,60]

Forward-backward propagation
Forward—backward propagation selects the primitive constraints to be used for contractions in an optimal order.
Consider the constraint

fx) € lyl, (88)
where
f(x) = x1 exp(z2) + sin(x3). (89)
The domains for the variables 1,22 and x3 are denoted by [z1], [x2] and [23]. To obtain an algorithm contracting
these domains, first write an algorithm that computes y = f(x), by a finite sequence of elementary operations.
ap = exp(z2);
Az =  T101;
az = sin(x3);
Y = a2+ as.

Then write an interval counterpart to this algorithm:

1 [a1] = exp ([x2]) ;
2 [az] := [21] * [a1];
3 [as] == sin ([z3]);
4 [y] == [y] N [az] + [a3].

If [y] as computed at Step 4 turns out to be empty, then we know that the CSP has no solution. Finally, a backward
propagation is performed, updating the domains associated with all the variables to get

5 [az] := ([y] — [as]) N [az]; // see Step 4
6 [as] := ([y] — [a2]) N [as]; // see Step 4
7 [z3] := sin™!([as]) N [z3]; // see Step 3
8 [a1] := ([a2]/[21]) N [a1];  // see Step 2
9 [21] := ([a2]/[a1]) N [21];  // see Step 2
10 [z2] :=log([a1]) N [z2]. // see Step 1



At Step 8, sin~*([as]) N [x3] returns the smallest interval containing {z3 € [x3] | sin(z3) € [a3]}. The associated
contractor is given below

Algorithm C|;(inout: [x])
1 Ja1] :=exp ([z2]);
2 [az] == [z1] * [a1];
3 [as] :=sin([z3]);
4 [yl = [y] N ([a2] + [as]);
5 lag] == ([y] — [as]) N [az];
6 [as] == ([y] — [az]) N [as];
7 [xs] = sin"!([as]) N [x3];
8 [a] := ([az]/[z1]) N [aa];
9 [z1] := ([a2]/las]) N [aa];
10 [z2] := log([ai]) N [xa].

Application to state estimation
Consider the non-linear discrete-time system

x1 (k) _ 0.1x1 (k— 1)+ a9 (k— 1) exp(z1 (kK — 1))
w1 (k — 1) + 0.1z (k — 1) + sin(k) )

z2 (k) [z1(k),

(90)

<

—
>

S~—
I

with k € {1,...,15}. Interval data have been generated as follows. First, starting from the true value x* (0) = (—1 0)T
of the initial state vector, the true values x*(k) and y* (k),k € {1,...,15} were computed by simulation. To each
noise-free output y* (k) a random error was then added, with a uniform distribution in [—e, €], to generate noisy data
y(k). Finally, the prior domains for y(k) was taken equal to [§(k)] = [g(k) — e, 9(k) + €]. [g(k)] is thus guaranteed to
contain the unknown noise-free output y* (k) . The problem to be solved is then: given the equations of the system, the
interval data [y(k)], and bounded intervals [Z1(0)] and [#2(0)] containing the initial state variables x1(0) and z2(0),
compute (accurate) interval enclosures for the values of the variables x1(k), xzo(k) and y (k), k=1,...,15.

Algorithm ¢(in: z1(0), 22(0); out: y(1),...,y(15))

1 for k:=1 to 15,

2 z1 (k) :=0.1%x1 (k—1)4x2 (k— 1) * exp(xy (k — 1));
3 zo (k) =21 (k—1) + 0.1 %23 (k — 1) + sin(k);

4 (k) o (k) /1 ().

This simulator can be decomposed into primitive statements as follows

Algorithm ¢(in: 21(0),25(0); out: y(1),...,y(15))
1 for k:=1 to 15,

2 21 (k) = exp(er (k1))

3 z(k)=z2(k—1)x2(k);

4 x1 (k) == 01*301( ) +22 (k);

5 z3 (k) := 0.1xsqr(zo (K — 1));

6 24 (k) := 23 (k) + sin(k);

7 xo (k) := a1 (k= 1) 424 (k) ;

8 (k) = o (k) Jor (k).

The contractor for the set X(0) is in the following table.
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Algorithm Cy  (in: [y(1)],..., [y(15)]; inout: [z1(0)], [x2(0)])
1 fork:=1to15
2 [z(k)] = [—o0,00]; [wa(K)] := [—00, o]
3 [a(k)] = [-00,00]; [2(k)] := [-00,00]
1 [ealh)] = [—00r00]; [za(k)] = [—o0,oc)
6 do
7 for k:=1 to 15, // forward
8 [21 (F)] := [21 (k)] Nexp([z1 (k —1)));
9 [22 (K)] := [22 (F)] N ([w2 (k = D] * [21 (K)]) ;
10 [z1 (B)] := [z (R)] N (0.1 [21 (k — 1)]+[22 (F)]) 5
11 [23 (K)] = [23 (k)] N (0.1 % sqr([z2 (k — 1)])) ;
12 (24 (K)] := [24 (K)] N ([z3 (F)] + sin(k)) ;
13 [z (k)] := [z2 (K)] N ([21 (B — D] + [z1 (K)]) ;
14 [y (K)] == [y (B)] 1 ([2 (F)]/ [z (R)]) 5
15 for k := 15 down to 1, // backward
16 (2 (K)] := [z (k)] N ([y (k)] * [21(F)]) ;
17 [z1 (k)] := [z1 (R)] N ([22 (R)]/[y (F)]) 5
18 (21 (k = D] := [z (k = D] 0 ([22 (F)] = [24 (F)]) 5
19 (24 (K)] := [24 (F)] 0 ([w2 (k)] = 21 (k = 1)]);
20 (23 (K)] := [23 (K)] N ([z4 (F)] — sin(k)) ;
2 [ (k- )] = [z (b — D] 0 (01 sar (25 ()
22 [z1 (k = D] := [z (k = D] N (10 ([21 (k)] —[22 (F)]))
23 [ (k)] = [ (W] O ([ ()] — 0.1 % [ ( — 1))
24 [w2 (k = 1)] == [w2 (k = D] N ([z2 (k)]/[21 (K)]) ;
25 [21 ()] = [21 (k)] N ([22 (K)]/[22 (k — 1)]);
26 [z1 (k= 1)] := [z1 (k = 1)] Nlog([z1 (K)])
27 while contraction is significant.

The prior domains for the components of the initial state vector were taken as
[21(0)] = [-1.2,-0.8], [#2(0)] = [-0.2,0.2]. (91)

In the absence of noise (i.e., e = 0), the contractor is able to find the actual values of all the variables with an accuracy
of 8 digits in 0.1 s on a PENTIUM 133. No bisection turned out to be necessary to get this result. The boxes drawn
on the left part of the figure are those obtained after each iteration of the contractor Cj;. For e = 0.5 (i.e., in the
presence of noise), the volume of X(O) is no longer equal to zero, and thus, even with an ideal contractor, bisections
have to be performed (see the right part of the figure).

7,(0) 2,(0)

z,(0) . 7,(0)

Always in the case where noise is present (e = 0.5), interval output data are on the following figure (left). The
corresponding contracted interval outputs [¢(k)] containing y*(k) are on the right.

21



1| 1]
1
of? v, G K
T T
! 15 15
1] -1

Contracted domains for z(k) (left) and xa(k) (right) as functions of k are represented below.
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Estimation of the bathymetry (or bottom relief) of the ocean with a sonar (Collaboration with M. Legris)
The figure represents an autonomous underwater vehicle (AUV) equipped with two lateral sonars. At each sample, the
sonar measures a signal resulting from the echo of the acoustic wave emitted by the sonar itself onto some obstacles.
These echoes can be assumed to belong to a unique plane, as illustrated by the figure.

The sonar to be considered has three antennas Ao, A;, As. The acoustic wave emitted by Ag is s(t) = e>™/o!, where

fo = 455 kHz. Since the velocity of the wave in the water is ¢ = 1500 ms~!, the associated wave length is A\ = & =

fo
4é2880 = 3 mm. The figure below represents a situation where the echo measured at time ¢ results from two obstacles

E1,FE5. Note that we have ¢ = 2¢r where r = dist(Ag, Fy) = dist(Ag, E»).
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The sensors A,,,m = 0,1,2 receive the signal
Mmax .
Sm(t) = Z aneﬂﬂfotﬂ%fo%+j<ﬁnej2ﬁoim%‘””l7 (92)

n=1

where nyax represents the number of existing obstacles located at a distance r from Ag and ¢,, () is an unknown phase
difference resulting on the superposition of many microscopic reflections. We shall take dy = 0,d; = 1.5\ = 4.94mm
and dy = 4\ = 13.187 mm. The Fresnel transformation associates to the signal 5(¢), the signal 5(¢)/e/27fot. Thus, the
Fresnel transformation of the previous signal gives:

Nmax b Mmax o
T m sin by, L m sin by,
Sp(1) = § €127 f0 ST @27 fo =BT — E :anejpneﬂﬂfo ol

n=1 n=1

where p,, (r) = 27 fo% + ¢, (r). For each r, we have a system of 6 equations with 37n,.x unknowns (the a,’s, the 0,,’s
and the p,,’s). When n,.x = 1, an analytical resolution of these equations can be obtained and a three dimensional
view of the bottom can be reconstructed.

. . dyp sin 0
Sm(r) = apelPrei2mfo=m

= aj(cosp; + jsinp,) (cos (27rf0dm+m01) 4 jsin <2ﬂf0 dm scln 01 )> (03)
= " <COS py COS <27Tfodms—cmel> — sin p; sin (277]"0 Gm S0 Scm 2 )>

dy, sin 0 d,. sin 0
+iom (Sin Py €OS (27Tf0$) + cos p,, sin (27rf0$)) :
¢ C

Since, cosacosb — sinasinb = cos (a + b) and sinacosb + cosasinb = sin (a + b), we get

Re(sm)

dm sin 01
C

Qy COS <p1 + 27 fo (94)

Tm(s,,)

d,y, sin 6
o1 sin <p1 + 277]"0%)

From the knowledge of s,,(r) for m = 1,2 we are then able to compute directly aq (), p1(r), 01 (r). The results obtained
by this method is illustrated by the figure below.
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In practice, more that one obstacle should be taken into account as illustrated by the following picture. These data
have been given by the GESMA (Groupe d’Etudes Sous Marines de ’Atlantique). They have been collected by a
Klein 5000 with fo = 455 kHz and a resolution of 20 cm x 6cm. The AUV is represented in white. The black bar
in the center illustrates the absence of echo. Then the surface of the sea is first detected. In the next step the echo
corresponds to a superposition of an echo from the surface and an echo from the bottom. The black horizontal thin
window corresponds to an echo signal.

L1
No echo
L | L 1

surface of the sea
L | L |

surface and bottom of the sea
L 1 L 1

No more echo can be detected
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Consider now the case nya.x = 2. The equations become

sm(r) = Y apelfneitnfotuipis
n=1
N~ dy, sinf, d,, sin 0,
= Z ap, (cos p,, + jsinp,,) <cos <27Tfo sin > +jsin <27Tf0 b;n >) 5)
n=1
n . '
max dm Hn . . dm en
— Z Qn (COS Py, COS (277]”0&) — sinp, sin (27Tfo sin ))
¢ c
n=1
Al dm i 9n dm i en
+] Z (7% (Sin pn COS (27]’f0 &) + cos pn sin (271-']00&)) .
n=1 C c
Thus
Re(sm) = Z (cos Py, COS (27rf0$) — sin p, sin (27Tf0 sin )) (96)
n=1 & c
Im(sm) = Z (Sm P, COS (27Tf0$> + cos p,, sin (27rf0&)) .
n=1 c -

Since, cosacosb — sinasinb = cos (a + b) and sinacosb + cosasinb = sin (a + b), we get

Mmax

d 0
Re(s;,) = Z Qup, COS <pn + 27 fo— sin ") (97)
n=1
o d,, sin @,
Im(sm) = Z apsin | p, + 27 fo————
The equations to be solved for each r € {15m,15.03m,15.06m, ..., 150m} are
RC = 1 COsp; + Qg COS Py
s{)m = aqsinp; + agsinp,
d 0 dysin@
s{‘e = o Cos (pl + 27 fo 151 1) + g cos ( + 27 fy 15 2)
c
) dy sinf dy sin 6
st = oy sin <p1 + 27 fo— p 1) + agsin <p2 + 27 fo— p 2) (98)
d 0 d 0
s8¢ = ajcos (pl + 27 fy 2510 1) + a cos <p2 + 27 fo 25in 2)
d 0 d 0
soh = qysin <p1 + 2ﬁf0$) + ag sin <p2 + QWfO&) .
Set y = (sfie, si™, se, si™, site, i) | and x = (61, 02) , we get the following state equations
x(r+dr) = X(7) + by(r)
(v COS Py + (ug COS Pg
aqsin p; + ag sin py
o cos (py + 27 fo ML) + s cos (p2 + 27rf0d disingy (99)

_ ( )

Y(T) a Qg sin (p1+2ﬂ'f w)—&-agsm <P2+27Tf di sine 2)
Q1 COS (pl + 27Tf QZM) + g cos (p2 + 27Tf dzsmgcz)

arsin (py + 27 fo BEEEL) + ansin (py + 2 fo 2

where by () represents the feasible variations for x and pq, py, 1, @ represent the non-additive noise output. In the
case where [by] = [—00, 00]2, the state estimation amounts to solving 15095315 = 4500 systems of 6 nonlinear equations
with 6 unknowns. For a realistic situation, the solutions, obtained in less than 1 hour, have been represented on the
figure below. For dark points, the existence of a unique solution has be proved using the Newton operator. The small
circle represents the sonar. For [by] = [0.1,0.1]?, the two curves representing the surface of the sea and the bottom

can be retrieved without any parasite solutions.
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Robust stability of linear systems
(Luc Jaulin, Thursday, 10h00-11h00).

Routh criterion
Let P(s) = a,s™ + -+ 4 a1s + ap be a polynomial. Tts Routh table is defined by

Qnp (p—2 (p—4 (n—6 0 0
an—1 (p—3 ap—5 ap—7 010
b1 b bs 010
C1 Co C3 0 0
with
b __ OGn—-10n—2—0n0n—-3 b __ On—10n—4—0nAan—5
1= 5 =7
n— n—1
bian_3z—an_1b2 bian_s5—an_1bs

o = - — L (100)

Note that the first two lines are the coefficients of P(s). The other elements of the table t;; are obtained by the
following relation

ti 1 1ti_o s —ti ot s
tij _u 1,10—-2,941 i—2,10 17_]—"-1. (101)
ti—1,1

The roots of P(s) are all stable (i.e., with negative real parts) if and only if all entries of the first column of the table
have the same sign.

Stability domain
The stability domain S, of the polynomial

P(s,p) = 5" +an-1(p)s" " + ...+ ai(p)s + ao(p) (102)
is the set of all p such that P(s,p) is stable. Consider for instance the polynomial P(s,p) given by
s* 4 (p1 +p2 +2)s° + (1 +p2 + 2)s + 2p1p2 + 6p1 + 6p2 + 2+ 07, (103)

o = 0.5. Its Routh table is given by

1 p1+p2+2
p1L+p2+2 2p1p2 + 6p1 + 6p2 + 2+ o
(p1+p2+2)°—2p1p2+6p1+6p2+2+0° _ (p1—1)"+(p2—1)" =0 0
p1tpa+2 p1tpa+2
2p1p2 + 6p1 +6p2 +2+ 0 =2(p1 +3)(p2 +3) — 16 + 0* 0
Its stability domain is thus defined by
S, Y {p eR" | r(p) > 0} = r " (]0,+00[*") . (104)
where
p1+p2+2
rp)=| (m—-17+@2-1)72-0> |. (105)

2(p1 + 3)(p2 + 3) — 16 + 02

The corresponding set, obtained by PROJ2D (www.istia.univ-angers.fr/~dao/) is represented on the following
figure.

27



Robust stability of a controlled motorbike (Collaboration with M. Christie, L. Granvilliers, X. Baguenard)

A CSP is infallible if any arbitrary instantiation of all variables in their domains is a solution, i.e., its solution set
is equal to the Cartesian product of all its domains. To prove that a CSP is infallible, it suffices to prove that its
negation has an empty solution set.

Consider for instance the CSP

Vv = {zy}
{lz][y]} (106)
C = {flz,y) <0, g(z,y) <0}.

>
|

The CSP is infallible if
Va e [z],Vy € [y], f(z,y) <0 and g(z,y) <0,
< Al@y) elz] x [yl | flz,y) > 0or g(x,y) >0} =0 (107)
& A{(z,y) € 2] x [y] | max (f(=z,y),9(z,y)) >0} = 0.

This task can be performed efficiently using interval constraint propagation techniques. As an illustration, consider a
motorbike with a speed of 1m/s. The input of the system is the angle 0 of the handlebars and the output is the rolling
angle ¢ of the bike. The transfer function is
1
¢(s) = 5——0(s). (108)

ST —

Because of the small velocity of the bike, the system is unstable (the gyroscopic effect of the front wheel is not sufficient
to maintain the stability). In order to stabilize the system, we add the following controller

o + a3s

0(s) = 22 (64(5) = 6,(5)) . (109)
where ¢, is the wanted rolling angle and ¢,,, is the measured rolling angle. Since the sensor is not perfect ¢,,, is not
identical to the rolling angle ¢ of the bike. These quantities are related by the relation :

G (s) = (14 25+ ks?) ¢(s). (110)
The whole system is depicted on the following picture.
$a(s) | + as+azs | 0(s) l 1 ¢(32
= Ts+1 2 -
S
Dm(s) (1+ 25+ ks?) |«
The input-output relation of the closed-loop system is :
Qg + a3s
o(s) = — Pa(s)- (111)

(2 —ay)(1s+ 1) + (o + azs) (1 + 25 + ks?)
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Its characteristic polynomial is thus

(52 — al) (ts+ 1)+ (a2 + azs) (1 425+ k;sQ) = a3s® + ass® + a1s + ag, (112)
with ag = 7+ ask, as = ask + 2a3 + 1, a1 = ag — a7 + 2 and ag = —a; + as. The associated Routh table is :
as ay
et (113)
ap . 0

The closed-loop system is thus stable if ag, as, %ﬂl and ag have the same sign. Assume that it is known that

ar € Jon] =[8.8;9.2], a3 € [az] =[2.8;3.2] ,a3 € [a3] = [0.8;1.2], (114)
o€ [r]=1.822 ke [k = [-3.2;—2.8)].

The system is robustly stable if it is stable for all feasible parameters, i.e.,

Yoy € [aq],Vas € [as],Vas € [ag], VT € [1],VE € [K],

as, as, ﬂﬂlﬁﬂl and ag have the same sign. (115)
Now, we have the equivalence
b1, ba, bg and by have the same sign (116)
< max (min (bl, ba, b3, b4) , —Inax (bl, ba, b3, b4)) >0
The robust stability condition amounts to proving that
Jday € [an], Jas € o], Jas € [ag], 3T € [7], Tk € [K],
max (min (ag, as, %a;‘“"ﬁ, ao) , —max (ag, as, %a;‘“'ﬂl,ao)) <0 (117)
is false, i.e., that the following CSP
V = {ag,a1,0a2,a3,01,02,a3,7,k},
D = {law], o], [a2],[as],[ee], [as], [7], K]}, (118)
a3 =T+ agk; as = ask +2a3+1; a; = ag — a7 + 2a0o,
c = ag = —aq + g ; b= 24—0ad0;

2
max (min (a3, az, b, ag) , — max (as, az, b, ap)) < 0.

has no solution. This task has been performed using INTERVALPEELER (see the figure below).

a)X]
Fie Edt Run Hep
L]
£
Add a new variable Add a new constraint iﬂ
View R
Variables Constraints
D [aphatin[88.92] a3=tau+alphas’™ o
alphaz in[2.8.32] a2=alphaz*k+2*alphad+1
| %] [2prasin [08.12] al=alpha-alphaltau+2*alpha2 g
el a0=alpha2-alphal il
Kin[-32-28] b=(a2*al-a3"a0)/a2
| [rinfo00] r=max(b1 b2) )
b1=min(a3.min(a2.min{b.a0))}
| b= a0) I

| £ Start Contraction
Results

lempty box: there is no solution in interval's domains

s demarrer. L
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Analysis of a time-delay system (Collaboration with M. Dao, M. Di Loreto, J.F. Lafay and J.J. Loiseau)
Consider the following linear system

§t) — gt = 1) +29(t) — 9t — 1) +y(t) = u(t). (119)

Its transfer function is 1

T = Grea e

(120)

Its magnitude transfer function is

G(w) = [H(jw)| = ! | (121)

V(14 oﬂ).\/(l —wsin(w))? + w? (1 — cos(w))?

The Bode diagram is defined by
S = {(w,h) € R*|G(w) = h}. (122)

The Bode diagram has picks every 2m. The thickness of the picks decreases exponentially when w increases. The four
following pictures show that an elementary interval algorithm makes it possible to draw the Bode diagram in a reliable
way whereas MATLAB has some difficulties, even for a very high precision.

2.8 T T T T T T T T T
2t s e
1.5 i
1+ i
[ER i
0 fd ) . Lol sl il d ] ) ! Y
-1000 -300 -600 -400 -200 Q 200 400 600 a0 1000

Bode diagram h = G(w) with MATLAB with Aw = 0.1rad.s™!

1.4 T T T T T T T T T

o8- T

04r- B

02r- A
I I L I L | I I L I

0
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Bode diagram h = G(w) with MATLAB with Aw = 0.001rad.s~!
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Bode diagram obtained by PrR0J2D for w € [—1000, 1000]
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-ﬂ.S_m 0 =0 w

Bode diagram obtained by PR0J2D for w € [—50, 50]

Moreover, PROJ2D has been able to bracket that the H., norm of the system around 2. The set of all feasible roots
(or root locus) of the system is given by

S = {seC|(s+1)(s(1—e*)+1) =0} (123)

. x—(rxcosy+ysiny)e ¥ +1 1\
{erij(C( x+ (zsiny —ycosy)e ™ =0r-

The following picture representing S has been obtained by PR0OJ2D. It illustrates the asymptotic direction of the poles

of the system.
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Stability degree

The location of the roots of P(s) provides more information that just the stability or instability of the system .
When ¥ is stable, the real parts of the roots of its characteristic polynomial are related to the speed with which x
converges to 0 in the absence of input, and complex roots are responsible for oscillations in the process, if any. For
instance, if the roots of P(s) are

(0.2 — 3§, 0.2 + 35, —0.5 — 7j, —0.5 + 7j, —1 — 3j, —1 + 37), (124)
then, in the absence of input, all the components y;(t) of the output vector y(¢) of the system X have the form

yi(t) = a1sin(3t + ¢y) exp(—0.2t) + aq sin(7t + @) exp(—0.5¢t)
+ agsin(3t 4 ¢5) exp(—t), (125)

where the coefficients oy, ag, ag, 1, Py, ¢35 depend on the initial conditions. The function y;(t) is depicted below for
a1 =ay =as =1 and ¢; = ¢, = ¢5 = 0. The asymptotic enveloping exponential curves correspond to £ exp(—0.2¢).
The location of the roots is directly related to the temporal behavior of the outputs of the system.

Y
2.5

2

1.5

-1.5 1 L L L 1 L ! L ! | A
0 2 4 6 8 10 12 14 16 18 20

A system X is said to be d-stable if all its roots are on the left of the vertical line Re(s) = —4§. For our example ¥ is
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0.1-stable but 0.3-unstable. To check the d-stability of P(s), it suffices to check the stability of the polynomial

Qs(s) = Pls—0)
= (s=0)"+a,1(s=0)"t+...+ai(s—08) +ao (126)
= 8"+ by 1(8)s" 4+ ... +b1(d)s + by (d),

i.e., P(s) is d-stable if and only if P(s — ¢) is stable. The stability of Qs(s) can be tested using the Routh criterion.
Define the -Routh vector r(d) as the Routh vector associated with Qs(s). Then

P(s) is 6-stable < Qs(s) is stable < r(d) > 0. (127)

The stability degree of P(s) is

def
o = 0. 128
NG (128)

The larger the stability degree of X is, the faster the state of ¥ will return to equilibrium in the absence of inputs.
The figure illustrates the significance of the stability degree d; which is found here to be equal to 0.2. This means
that asymptotically the dominant component of y;(¢) is ay sin(3t + ¢, ) exp(—0.2t).
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Robust stability degree
When ¥ depends on a vector p of parameters, so does its d-Routh vector r (p,d). The stability degree of 3(p) is
defined as

def

dpy(p) = max 4. (129)

r(p,5)>0
Example 1: If the characteristic polynomial for 3(p) is given by
P(s,p) = s>+ (p1 + p2 + 2)s° + (p1 + p2 + 2)s + 2p1p2 + 6p1 + 6p2 + 2+ 07, (130)
the level sets associated with § € {0;0.1} are as follows.
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Example 2: Consider now the uncertain system X (p) given by
0 1 —P1
X = 1 0 —p2 | x, p1 € [-7,1.3], po € [—1,2.5]. (131)
P1 D2 1
Its characteristic polynomial is
P(s,p)=s"+s"+(pi +p5 + 1)s + 1. (132)
The only unstable point is p = 0. Some level sets are given on the figure below.
Dy
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|
The robust stability degree dpr([p]) of X(p) for p in [p] is the stability degree in the worst case:
Op([p]) = min  max 4. (133)

p€[p] r(p,§)=0

If p([p]) > 0, then all the roots of X(p) are in C~ and the uncertain system X([p]) is robustly stable (i.e., it is
stable for any p in [p]), as illustrated by the subfigure on the left., where R ([p]) is the set of all feasible roots for
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Y(p),p € [p]. If da([p]) < 0, then there exists some p in [p] such that X(p) is unstable, as illustrated by the right
subfigure.

Im Im
/

A N
R{[p]) R([p))
\
5,,([p]) > 0 @/ 51u([p]) < 0
—_—
> - >
Re b{‘ Re
Example 3. Consider the uncertain system
P2
2
1+p2
% = x. (134)
P2 P1
14+p1 14 p}

For [p] = [1,2] x [0,0.5], the interval algorithm PERTMIN finds that the robust stability degree satisfies
—2.01590 < 83/ ([p]) < —2.01451.

The system is thus not robustly stable. |

Value-set approach
The concept of value set allows a simple geometrical interpretation of robust stability in the complex plane. Recall
that the uncertain system X(p) with characteristic polynomial

P(5,p) = an(p)s" + an_1(P)s" * + ... 4+ a1(p)s + ao(p) (135)

is robustly stable in [p] if the CSP
H: (P(s,p) =0,p € [p],Re(s) > 0) (136)

has no solution. Since s is complex, the dimension of the search space is dim p + 2. It is often possible to reduce this
dimension to dim p + 1 by taking advantage of the continuity of the roots of P(s,p) with respect to its coefficients.
Assume that [p] contains a stable vector py and an unstable vector p;. The roots associated with pg all have negative
real parts and at least one of the roots associated with p; has a positive real part. Assume also that the coefficients
of P(s,p) are continuous in p. When p moves from pg to p; in [p], at least one of the roots crosses the imaginary
axis, i.e., there exist p in [p] and w in R such that P(jw,p) = 0.

Im
Dy A

Sak
0
A

by

v
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Theorem: If the coefficients of P(s,p) are continuous functions of p, if the leading coefficient a, (p) never vanishes
over [p] and if there exists pg in [p] such that P(s, po) is stable, then P(s,[p]) is robustly stable if and only if the CSP

H: (P(jw,p) =0,p € [p], w € R) (137)
has no solution. [ |

The stability of P(s,pp) can be checked with the Routh criterion. The domain for w can be restricted to w > 0,
because if (p,w) is a solution of (137), so is (p, —w). The dimension of search space is now dim p + 1 instead of dim
p + 2. To apply interval methods to prove that (137) has no solution, it is important to bound the domain for w. As
the module of P(jw, p) tends to infinity with w, there exists an angular frequency w. (cutoff frequency) beyond which
P(jw,p) will never be equal to zero for any p in [p]. The following theorem provides a mean for computing an upper
bound for w,.

Theorem: All the roots of P(s) = a,s™ + -+ + a1s + ag, with a, # 0, are inside the disk with centre zero and radius

max{|ao|, |a1], ..., |an—1}

=1+ ] (138)
|
When P(s) depends on p, /3 becomes a function of p. An inclusion function for 5(p) is thus
_ ., max({fao)([P))], - - -, l[an—1]([P])])
)= a0 | o

If 3 is the upper bound of the interval [3]([p]), the uncertain polynomial P([p], s) has all its roots inside the disk with
centre 0 and radius /3. § is thus an upper bound of the cutoff frequency w.. The domain for w is now taken as [0, 5],
which is finite.

Stability radius
The stability radius of %(p) at p° is

def .
p = sup{n>0]|X(p) is stable for all p € [p](n)}, (140)
= min{n > 0 |X(p) is unstable for one p € [p](n)},

where [p](n) is the box with centre p° such that w([Bj,]_oj]) = 2nw; for some prespecified positive number w;. The

quantity 7 is thus the radius of the hypercube [p](n) in the L, norm weighted by the w;s. The figure illustrates this
notion for dim p = 2 and wy = ws = 1.

P
A

ph+m

Now, since
pepl(n) e Vjie{l...,n} (] - <pj < pj+1w;) (141)
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and since

Y(p) is unstable < 3i such that r;(p) <0 (142)
& () <O V- V(m(p) <0),
< max(ri(p)),...,m(p)) <0, (143)

the stability radius can also be defined as

p = minn,
n=0
max (r1(p)) ..., (p)) <0 (144)
subject to

0 _ i — 1 <
/\<Vj€{1,...,n},{pﬂ nw; —p; <0 )

=) —nw; +p; <0

Example 1: Consider the polynomial

P(s,p) = s+ (p1+p2+2)s®+ (p1+p2+2)s
+2p1pa + 6p1 + 6p2 + 2 + 02

When p; and py are positive, this polynomial is stable for all parameter vectors outside the disk with centre p® = (1,1)T
and radius o. An interval optimization algorithm is now used to compute the stability radius for different values of o.
The nominal value for p is taken as p’ = (1.4,0.85)T, and the weights are w; = 1.1 and wy = 0.85. The box [p](n) is
thus defined by

14—-11n < p1 < 1.4+ 1.1n,

0.85—0.857 < po < 0.85+0.85 (145)
The results, obtained on a PENTIUM 90 for different values of ¢ are given in the next table.
o 1071 1073 10-° 1077
Number of iterations 66 113 55 63
Computing time (s) 0.44 0.55 0.44 0.49
Number of solution boxes 1 5 1 2
Stability radius 0.2727 0.3627 0.3636 0.3636
|
Example 2: Consider the polynomial
P(s,p) = s° + az(p)s” + a1 (p)s + ao(p), (146)
with '
ap(p) = sin(p2)e’? +pip2 — 1,
ai(p) = 2p1+0.2pe2, (147)
az(p) = p1+p2+4.
The coefficient function a(p) is neither linear nor polynomial. A computation of the stability radius, using an interval
optimization algorithm, finds it to be approximately equal to 2.025 at p® = (1.5,1.5)7. |
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Nonlinear control of a sailboat
(Luc Jaulin, Thursday, 11h15-11h45).

Projection of an equality.
We shall first provide a methodology to compute an inner and an outer approximation of the set

SE{peP|3qeQ f(p.a)=0}. (148)
where P and Q are boxes and f is a continuous function. This methodology can only be used if only one equation is
involved and cannot not be generalized to the case where dim f > 2.

Since Q is a connected set and f is continuous, we have

S={peP| 3q1€ Q, f(p,q1) <0) and (3q2€ Q, f(p,q2) > 0)}. (149)
ie.,
S={peP| CacQ,f(p,a1) <0)}N{peP| (3a2€ Q, f(p,az) > 0)}. (150)
or equivalently
S={peP|I(q,q) € Q° f(p,a1) <0 and f(p,q2) >0}. (151)

Polar speed diagram of a sailboat (Collaboration with M. Dao, M. Lhommeau, P. Herrero, J. Vehi and M. Sainz)
The sailboat represented on the figure is described by the following state equations

T = vcos b,

y o= vsing — [V,

o = w,

55 = Ui,

57" - Uz, (152)
o _ fssinds—frsind,—oayv

. o (0—rs5cosds)fs Ir:"r cos 0, fr 770491,;)

w = 7 5

fs = as(Vcos(0+ds) —wvsindy),

fr = o, vsind,.

The state vector x = (z,9,0,0,0,,v, w)T € R7.The inputs u; and usy of the system are the derivatives of the angles
0s and 9.




The polar speed diagram of the sailboat is the set S of all pairs (6,v) that can be reached by the boat. During a

cruising behavior of the boat, the speed of the boat, its course, its angular velocity, ... are constant, i.e.,
0=0,6,=0,6=0,0=0,0=0. (153)
From Equation (152), we get
0 _ fssinds—frsind,.—ajyv
o (0—rs cos 65)7}177’7, cos 6,,.f7,.
0 = 7 ~ (154)
fs = as(Veos(0+6ds) —vsindy),
fr = a,vsin d,..
An elimination of fy, f, and ¢, yields
((oz,,. +2ay)v — 20,V cos (0 + 65) sinds + 20,0 sin? 55)2 (155)
' 2 155
+ (2%2 (6 —rscosds) (Veos(f+ds) —vsin 55)) —a?? = 0
The polar speed diagram can thus be written as
s={(0,v)/30 € (-3, 51| £(6,0,8,) =0} (156)

An inner and an outer approximation of the polar speed diagram is given below in the case where the parameters are
given by

L = 1,a5 =60,ap =500, = 500, c, = 300,58 = 0.05,

rs = 1,7, =2,V =10,m = 1000, J = 2000. (157)

This diagram has been obtained with a modal version of the above methodology. Since the theory of modal interval
analysis has not been introduced in this lesson, a nonmodal algorithm has been given here.

1]

]
\

Feedback linearization
To illustrate how feedback control can be applied to our sailboat, we shall consider a normalized version of the state
equations where all parameters are equal to 1, i.e.,

0 w,

55 = Uut,

(.5,,« = U9,

v o= fssindy — frsind, — v, (158)
w (1 —cosds) fs — cosd,fr — w,

fs = cos (0 + 05) — vsinds,

fr = vsind,.
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Denote by F(x,u) the set of all variables that can be written as algebraic functions of x and u. We have

(0,555,060, £, 1) € Flx,w), (159)
but &, = i, ¢ F(x,u). Since
0 w,
v o= fssinds + fsug cosdy - frsind, — frus cosd, - v
O = wursindsfs + (1 —cosds) fs +uzsind, f,. — cos . fr — w. (160)
0 = w
fs = — (w4 up)sin (0 + ds) — vsinds — vuq cosdg
Ir Usin d, + vug cos d,.
We have . . . cee
(9,@,@, for for 0) € F(x,u). (161)
Denote by F,(x,u) the set of all variables of F(x,u) which are not constant with respect to u. We have
(ulvu%(;svgrvi}vwaf.sufrvlé.) GFU(X,U). (162)
Take two state variables and store them into y. For instance
Y= (6T (163

Note that (55, 9) € Fu(x,u) :

( 312 ) _ ( 59 ) (164)

- L 0 (165)
o fssindg + (cosds — 1) (veosds +sin (6 + ) frsind, —vcos? §, "
0 0 —wsin (0 + d5) — vsind, 0
+( 1—cosdy —cosd, > ( v sin )+( —w ) (166)
= A(x)u+b(x).
If we take
u=A"(x)(v - b(x)), (167)
The closed loop system becomes linear: .
(55:» = U1,
{ A (168)

This linear and decoupled system should now be stabilized.

Linear control. o
Denote by w = (wy,ws) = ((55, 0) the wanted values for y = (04, 60). Classical PD™ controllers are given by :

v = ap(w; —d), (169)
va = Bp(ws—0)+ By (wg—e) + Bps (wg—e).
If wy is assumed to be constant, the closed loop system can be written:
55 = op (wl - 65)
. . 170
{ 0 = BP (w2—9)—ﬁD9—ﬁD29. ( )
The transfer matrix is
op 0
M(s) = ( o 5 ) : (171)
s3+8p252+8p s+8p
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The characteristic polynomial is
P(s) = (s+ap) (53+5D252+5D3+5P)7 (172)
If we want all roots to be equal to —1, we should solve:

(s+ap) (s®+Bp2s® + Bps+Pp) = (s+1)*

) 1
= (s+1)(s*+3s?+3s+1) (173)
Thus the linear controller to be taken is
U1 = wi — 55,
{ vs = (ws—8)—30—30. (174)
Control with wanted inputs (Collaboration with M. Dao, P. Herrero, J. Vehi, M. Sainz)
The system to be controlled is described by :
x = f(x,u). (175)

As seen before, for some rather large conditions on the system and for specific output vector y = g(x), feedback
linearization methods make it possible to find a controller of the form

u:Ru(Xay)v (176)

such that the output y converges to y. Now, in many cases, the user wants to choose its own output vector w = h(x)
and not to have an output vector y imposed by the structure of the system to make the feedback linearization method
working. The problem of interest is to find a controller

u=TRy(x,W) (177)
such that the w converges to the wanted vector w. Define the set of all feasible wanted vectors by
W={weR"3IxeR",FuecR" f(x,u) =0,w=h(x)}. (178)

Since W is defined by n + m equations for n 4+ 2m variables (where n = dimx and m = dimu = dimw), except for
atypical situations, the set W has a nonempty volume.

We first have to characterize an inner and an outer approximation of W. Then, the user will be allowed to choose any
point w inside W. From W, we will then compute some corresponding X and @ such that f(X,@) = 0, w = h(X). Note
the solution pair (X,@) may be not unique. From X, we shall compute § = g(X). Then the controller R, (x,y) will
compute u such that y converges to y. As a consequence, x will tend to X and w to w.

Wy

For the normalized sailboat, with y = (d,,60) a feedback linearization method leads to the controller R,(x,y) =
Ru(x,05,0) given by

u=A-l(x) <( - 985,_358, , ) - b(x)) (179)

where
1 0
Alx) < fssinds + (vcosds +sin (0 + 05)) (cos s — 1) fr-sind,. — vcos? §, (180)
0 0
b(x) = < (vsindg + wsin (0 4 d5)) (cosds — 1) — v cosd, sind, > B ( W )

The principle of the control is as follows.
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. Choose w = (17, 9) in the polar speed diagram.

. Using an interval algorithm compute ¥ = (J5,6) such that Ix, f(x,¥) = 0 and w = h(x). We know from (178)
that there exists at least one solution.

. Apply the control (179) based on feedback linearization.
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Control of a wheeled stair-climbing robot
(Luc Jaulin, Thursday, 11h45-12h15).
(Collaboration with students and colleagues from ENSIETA)

Control problem
We shall now consider the class of constrained dynamic systems which can be described by

(i) %(t) = f(x(t), u(t))
(i) (x(t),v(t) €V, (181)

where u(t) € R™ is the evolution input vector, x(t) € R"= is the state vector, f : R"=T"« — R"= is the evolution
function, v(t) € R"™ is the viable input vector and V is the viable set. We have assumed here that the evolution inputs
and viable inputs are independent, i.e., u acts only in (i) whereas v affects only (ii). This is not always the case.
However, for many robotics applications, it is possible to conceive the robot and to insert the actuators at the right
place in order to get a decoupling between the evolution and the viable inputs. If the value for v(¢), chosen at time ¢,
is such that (x,v) € V then the system is said to be alive. Otherwise, it is dead. In practice, the condition (x,v) ¢ V
translates into events such as "an element of the system brakes down" or "the robot is sliding", etc. In such situations
the differential equation x(¢) = f(x, u) is not satisfied anymore and the behavior of the system becomes unpredictable.
Consequently, all should be done to avoid such a situation.

From a control viewpoint, two problems should be treated. The first one consists in finding the evolution input vector
u in order to get a satisfactory behavior of the system. This problem can be solved using classical techniques even when
f is nonlinear. The second problem to be considered is to find a viable input vector v such that the set-membership
relation (ii) is satisfied for the given state vector x. This research should be done for each ¢ in a very short time.

Wheel stair-climbing robot

The figure below presents a two-dimensional robot made by three driving wheels and two pendulums. The center of
the ith wheel will be denoted by c¢;. The back wheel and the middle wheel are linked by a platform with weight p;.
The front wheel and the middle wheel are linked by a platform with weight u,. At the top of each pendulum are
located two weights 5 and p,. We shall denote by m; and my the centers of the two platforms and by ms and my
the vertices of the pendulums. The angles v; and vo between the pendulum and the corresponding platform can be
tuned as desired and will be used to prevent the robot from any sliding. The abscissa of the center of the back wheel
is denoted by x. The robot is equipped with a strong electric motor which is linked to each of the three wheels. It can
be assumed that when the robot is not sliding, = satisfies the following differential equation

T =u, (182)

where the evolution input u can be chosen arbitrarily. Here, we shall choose u small enough to be allowed to assume
that the robot has a quasi-static motion. We shall assume that all wheels keep a contact with the ground. Thus, our
robot has three degrees of freedom: x,v; and vo. The contact point p; between the ith wheel and the ground will be
assumed to be unique.

Two dimensional three-wheeled climbing robot to be moved in an uneven urban environment
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Assume that the robot is immobile and denote by T'; the reaction force generated by the ground onto the ith wheel.
The Coulomb cone C; associated with the ith wheel and represented with dotted lines on the figure is the cone with
vertex p; whose symmetric axis in orthogonal to the ground and with an half aperture angle ¢ = 0.54 (corresponding
to a tire/concrete contact). If there exist T§ € C;,T9 € Ca, TS € C3 such that the fundamental static conditions
are fulfilled then the robot is known to be at a steady position and will not slide. Note that the actual values for
T1,T2, T3 cannot be computed without an in-depth knowledge of the internal tensions inside the robot (which is

unrealistic here) and may be different from T'9, 9, T'9.

Viability constraints

Let us now write the fundamental static conditions of the robot in order to translate the non-sliding condition into
the form (z,v1,v2) € V, (since a quasi-static motion is assumed, the dependency with respect to @ does not exist).
When the robot does not move, we have

—Pumm; A pyj + Pres A £ — B3 A pis) = 0
Pt A jiof — P2c A £ +P2Pi A Ty —pami A = 0 (189

?1_—)(M1+H3)j+f = 0

To— f — (g +p)ji+ T 0,

where f denotes the reaction force generated by the second platform onto the first platform. A scalar decomposition
yields
—Hq (mlr - plr) + (ng _plx) fy - (CQy _ply) fz— M3 (m3r - plr) = 0
— Mo (QO - me) - (Cgm - sz) fy + (CQy - pr) fz

+ (P32 — P22) T3y — (P3y — P2y) T30 — iy (Maz — P2r)
T1z + fw

le*,ulflua‘Jrfy =

T20 — fx + 13z

Toy — Jy — Mo — fta + 73y =

(184)

SCoocoo

This system can be written into a matrix form as
A (2).y =by(z), (185)

where

w
)

0 0 Piy — C2y C2z — Plz  —
P2y —P3y P3z — P2z C2y — P2y P2z — Cox

0 0 1

0 0 0

1 0

0 1

o = O

—1
0 —1
M1 (mla; - plw) — U3P1x

Ho (mQac - p2:c> — HyqD2z
0

K1+ pg
0

g+ fig
- T
y = (7"1:07le;7‘2177"2y77"3xa7‘3y7f:c:fy;m3:cym4m)

coor oo
coroooO
o~ ocooo
—ocoooo
cocoocooox
cocoox

bl(ac) =

The system of equations (185) has ten unknowns for six equations. If v = (vq, v2) is known, then it remains two more
unknowns than equations. This is due to the fact that our robot is a statically undetermined structure with a second
order hyperstatic equilibrium.

None of the wheels will slide if all T'; belong to their corresponding Coulomb cones. Thus, we should have

det(T';,u;) <0 and det(u), T’;) <0, (186)

where u; and uj denote the two vectors supporting the ith Coulomb cone C;. These two inequalities can be rewritten
into a matrix form as
U, —Uu,
(i )wi<o (187)

Uiy Wig
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Thus, we should have,

Ax(z).y <0, (188)
where
uy, —up 0 0 0 0 0000
—uj, uf, 0 0 0 0 0000
0 0 uy; —u; O 0 0000
_ Yy 2z
As(2) 0 0 —uy, uf, O 0 0000 (189)
0 0 0 0 uz -uzp 0 0 0 0
0 0 0 0 —ug, uj, 0 0 0 0

The figure below represents a computed situation where the robot is immobile and not sliding. Vectors uiﬂu;r

delimiting the Coulomb cones are represented with dotted lines. Since all ground reaction forces T; are inside their
corresponding cones, the robot cannot slide.
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First, we have
Mae = Cip + {1 cos (v + arctan (22— ) )
Magy = C35 + locos vy + arctan C—?%
x x

Moreover the variables mg, and my, should be such that the pendulums be at feasible locations : the pendulums
should not intersect the ground or the robot itself. This condition can be translated into

00000000 010 g, ]
(0 O 0 0 O o0 o0 o0 1 )ye < [ min max] ) (191)

Mgy Mgy,
where the bounds mi2", mya*, mu", mp* can be obtained with sensors. Our robot can be described by

(i) @

= u
(i) (zov1,v2) €V

[eni o

(192)

where the condition (z,v1,v2) € V is equivalent to
3 (rizs T1ys 722, T2y T32, T3y, fas fys M3z, Mag) such that (185), (188), (191) and (190) are satisfied

The control problem we wish to solve now is the following: find the angles v; and vy such that the fundamental
principle of static, the non-sliding conditions and the feasible conditions for the pendulums are satisfied. To achieve
this task, we shall act as follows:

1. Estimate the vectors c1, 2, €3, P1, P2, P3, m1,my and the two intervals [mPi® miiax] [mipin mppax],
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2. Solve the following linear program

1 (193)
0 [mn, mie]
1 > ve ( [migin, miie]

where 1 = (11111 1)T. Since the rank of A; is full, the linear program always has a solution. If the minimum
¢ is negative, the non-sliding condition (188) can be satisfied and the robot will not slide. If é is positive, the
robot will slide.

o O
o O
o O
o O
O =

3. From y, compute the viable inputs v; and vy such that (190) is satisfied.

4. Compute independently the control u using a classical control method.

Let us move the robot slowly in a urban irregular ground. As illustrated by the figure below the pendulums react
in order to avoid any sliding from the robot. The simulation of the control has been performed with SCILAB and
the source code is available at www.ensieta.fr/e3i2/Jaulin/etas.sce. For each sample, the computation of the
control v required less than 0.01 sec on a Pentium 1.5 GHz. The shape of the ground has been chosen so as to be
as chaotic as possible while still preserving the possibility to move the pendulums in order to avoid any sliding. For
the simulation, the parameters that have been chosen for the robot are ¢ = 0.54 for the angle friction coefficient,
pp = 8bmm, py, = 7bhmm, p; = 85mm for the radius of the wheels and ¢; = ¢, = 350mm for the lengths of the
pendulums. The weights of the platforms and the pendulum are given by p; = py = 70N, ps3 = 1y = 20N. The height
and the width of the stairs have been chosen equal to 220mm and 280mm, respectively. On the figure, dotted lines
represent the Coulomb cones. Since each cone contains the corresponding reaction force created by the ground onto
the wheel, the robot never slides.

Different configurations for the robot; Since the Coulomb conditions are always satisfied, the robot never slides

The figure below represents the robot built by the robotics team of the ENSIETA engineering school that has won
the 2005 robot cup organized by ETAS, France. The robot can be seen as a three-dimensional version of the robot
treated above. It has been proven to be very competitive on irregular grounds but failed to cross over some compulsory
obstacles (such as stairs). For the 2006 competition, we are planning to implement the mass transfer system on the
robot. Carrying out the mass transfer as well as the localization of the robot with respect to the ground remain to be
developed.
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Robot on which the mass transfer system will be implemented
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Robust control

(Luc Jaulin and Michel Kieffer, Thursday, 14h00-15h15).

Robust control of a linear system

The robust control problem to be considered is find a controller that stabilizes a parametric model as on the figure.
We assume that p € [p] = [0.9,1.1]*3 and that c has to be chosen arbitrarily in a box [c¢] = [0, 1]2. Denote by X(c, p)
the closed-loop system. It is easy to find, for instance via the Routh criterion, a function r: R? x R3 — R such that

X(p, ) is stable < r(c,p) > 0.

2
u | T CyS + ¢ D1P3

2 2
(pos +1)(s +pys +p3)

Finding all robust controllers amounts to characterizing the set
Te ={c € [c] | ¥p € [p], 7(c,p) > 0} .
The complementary set of T, in [c]:

-T. = {c€[c]|3p € [p],(c,p) <0}

is thus the projection of a set defined by a nonlinear inequality. The transfer function of 3(p, c) is

(cas + c1) p1p3

H(s) =

The first column of the corresponding Routh table is

b2
P2p3 + 12 .
pap3 + p3 — = (?;;ipllm)
2 2 (p2ps+1)*(c1p1p3)
P €2p1ps — (p2p3+ps) (p2pa+1)—p2(p3+cap1p3)
01p1p:2»,

Since p2 > 0, the closed-loop system Y (p, c¢) is asymptotically stable if and only if

P2D3 +(1 )
2 2
2 p2(p3+capip
def . p2p3 +p3 — ;2p3+1 s 0
7 (c,p) = min (p2p3+1)° (c1p1p3) > 0.

2 2
c _
P3  C2p1P3 (p2p2+ps) (p2ps+1)—p2 (p3+capip)

C1P1p§

The complementary set

~T. % {c €[0,1]? | 3p €[0.9; 1.1]*%,r (¢, p) < 0}

of the set of robust controller T. computed by PR0J2D is depicted on the figure below.
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Approximation of the set =T,

Optimal robust control
The problem to be now studied is the computation of the set S, of the vectors ¢ that maximize the stability degree in
the worst case. This set satisfies
S =arg max min  max 0. (201)
c€lc] pelp] r(p.c,0)>0
The rightmost maz corresponds to the definition of the stability degree. The min ensures the worst-case conditions.
The leftmost mazx corresponds to the optimality requirement.

Example: For the closed-loop system Y (p, c) considered immediately before, PERTMIN gives the results of the table
below. In this table, #S. is the number of boxes in the subpaving S. containing all the values of ¢ corresponding to

optimal robust controllers, [S.] is the interval hull of S., and [65,] is an interval guaranteed to contain the associated
optimal robust stability degree. The times are indicated for a PENTIUM 90.

D] Time (s) | #S. [S] [0%]
(1,1, 1)t 5.5 66 | [0.257,0.273] x [0.305,0.354] | [0.300, 0.326]
[0.99,1.01]*3 85 69 | [0.239,0.274] x [0.264,0.382] | [0.288,0.299]
[0.95,1.05]*3 339 37 | ]0.207,0.277] x [0.179,0.437] | [0.261,0.282]
[0.9,1.1]%3 345 17 | [0.207,0.254] x [0.191,0.367] | [0.230,0.246]
|
Control of a time-delay system (Collaboration with M. Dao, M. Di Loreto, J.F. Lafay and J.J. Loiseau)
Consider the unstable system
(t) = x(t) + u(t — 1). (202)
Let us try to stabilize this system using the following control law:
u(t) = ax(t) + Px(t — 1). (203)
We have
z(t) = x(t) + ax(t — 1) + Bz(t — 2). (204)
The characteristic equation is
s—1—ae = e 2 =0. (205)
The stability domain is
S={(a,B)|Bs € CT,s — 1 —ae™® — Be > =0}. (206)

Proving that a box is inside S can be performed using interval constraint propagation methods. The black boxes in
the figure below have been proved to belong to S using PROJ2D.
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Robot Calibration

(Luc Jaulin and Nacim Ramdani, Friday, 14h00-14h30).

Presentation of the robot (Staubli RX90). (Collaboration with X. Baguenard, P. Lucidarme and W. Khalil)
Consider the following robot

7

q= (Qh sy QG) S RG) (207)

Its configuration vector is

where the ¢;’s are the angles of the articulations of the robot in radian. The tool, is represented by 3 points A;, Ay, A3
forming the vector

_ (1 1 1 2 2 2 3 3 3\t 9
X = (az‘va’y’a’z7am7ay7az7am’ay7az) 6 R * (208)

The parameter vector of the robot is given by

P = (7‘0,0&1,(11,7"1,... ,Oé5,d5,7"5,0z6,d6,90,0?,..., g,bl bl bl b2 b2 b2 b3 b3 bs) (209)

T Ty Yz Yy Yy Yz Yy Yy Yz

contains all geometric constants which characterize the robot. For instance, d; correspond to the length of the ith
arm. The direct geometric model is given by

x =f(p,q). (210)

where f is given by the following algorithm.
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Algorithm f
- T
inputs : q =(q1,..-,96) ",
p = (aj,dj,r;, 00,02, b, b0 b, )
outputs : x:(ai,,a}ﬂai,ai,a%,aﬁ,ai,af’/,aﬁ)T
1 0 0 dg cosqg —singg 0 O
1l v 0 cosag —sinag O singg CoS gg 0 0 |.
’ 0 sinag cosag 0 1 0 0 1 0 |’
0 0 0 1 0 0 0 1
2 | forj:=5tol,
3 0 =07 + q5;
10 0 d; cosf@ —sinf 0 0O
4 M e 0 cosa; —sina; 0 . sinf cos¢ 0 O M-
0 sina; cosa; 0 0 0 1 7 ’
0 0 0 0 0 0 1
5 | endfor
100 0 09890 —sinfyg 0 0
6lm=(o010 0 sinflg  cosfg 0 0 M
0010 0 0 1o
0 0 0 1
T|fori:=1t03, bi=(b b, b 1);
M 0 0 b!
8| x:=1 0 M 0 b?
0 0 M b3

Principle of the calibration

1. Choose r different configuration vectors q(1),...,q(r).

2. For these r configurations, measure the coordinates of the three points characterizing the tool: x(1),...,x(r)
(recall that the x (i)’s all belong to RY),

3. Generate the constraints
x(k) =f(p,a(k)), k={1,....,r}. (211)

4. Contract the prior domains for all variables p,q(k),x(k) k = {1,...,7}.

DAG (Directed Acyclic Graph)
Our problem is a CSP with a huge number of variables and constraints. It is important to rewrite our constraints in
an optimal way in order to make the propagation more efficient. Consider for instance the constraints

y1 = cos(iy + i2).sin(iy + i2), (212)
Yo 3. sin? <i1 + ig).

They can be decomposed into primitive constraints as follows

a; =11 + 12,
CZQZCOS(al), a5:i1 +i2,
as = il + ig, ag = sin(a5), (213)
ay = sin(as), ar = ag,
Y1 = a2.a4. Yo = i3.a7.
A more efficient representation is
a; =iy + 12,
as = cos (a1),
ay = sin(ay), ar = a3, (214)
Y1 = a2.a4. Y2 = i3.a7.

which is associated to the following DAG
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An automatic way to get an optimal decomposition use the notions of DAG (Directed Acyclic Graph) and hatching
table.

Generation of simulated measurements
The nominal values chosen for the geometric parameters of the robot STAUBLI RX90 are

Loy Td [67]r
o[- [- [ZT05
1010 Jo o
2[-Z [0 [0 |0
30 [05][0 [0
[z [0 [0 [05
5 -2 [0 [0 [0
62 [0 [- [-

The three points of the tool with coordinates b, b}, and b} in the terminal arm frame are chosen as

Lo [ bx [By [0 ]
T 01]02]01
2010102
3702 0101

For 50 random configuration vector q(k), we computes x(k) = f(p,q(k)) + e(k) where e(k) is a random bounded
noise. To each variable, we associated an interval which contains the true values for the variables.

Results
It took about 10s to the solver INTERVALPEELER (www.istia.univ-angers.fr/ baguenar/) to perform the propa-
gation. The file containing all constraints takes about 837Ko. The results obtained are given below.

initial domains || contracted domains
0 0.4,0.6] 0.494046, 0.50101]
dq 0,0.1 0,0.000558009]
7 0,0.1 0,0.00693694]
ds || [0.49,0.51 0.498385,0.501133]
T4 0.49,0.51 0.499216, 0.50114]
bl 0,0.2] 0.0996052, 0.100629]
bqll 0.1,0.3] 0.199502, 0.200455]
bl 0,0.2 0.0997107,0.100714
b2 0,0.2 0.0996747,0.100712
b?, 0,0.2 0.0994585, 0.10031]
b? 0.1,0.3 0.199535, 0.200642
b3 0.1,0.3 0.199689, 0.200578
bg 0,0.2 0.0997562, 0.100319
b 0,0.2 0.0995661, 0.100557
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Path planning

(Luc Jaulin, Friday, 15h15-16h00).

We shall present a recent approach to finding a collision-free path for an object in a environment cluttered with known
obstacles. Most of the methods available in the literature are based on the concept of configuration space (or C-space).
Each coordinate in C-space represents a degree of freedom of the object. The number of independent parameters
needed to specify the configuration of this object corresponds to the dimension of C-space. The initial configuration
and desired final configuration of the object become two points a and b in C-space.

The feasible configuration space S is a subset of C-space that only contains configuration vectors for which the object
does not collide with obstacles. Path planning amounts to finding a path belonging to S from the initial point a to
the desired point b.

Graph discretization of the configuration space
A guaranteed characterization of the feasible configuration space S can be obtained using a subdivision algorithm such
as SIVIA.
The following figure describes a paving P = {[p1],[p2],. .., [Po]} of the box [po] = [-2, 10] x [-2,6].
Do

A

6

[p] [p] ;]

[PG]

B
»

1 4 7 10 P,

Two boxes in P are neighbors if they share, at least partly, an (n — 1)-dimensional face. For instance, [p1] and [p4]
are neighbors but [ps] and [ps] are not. Any paving P of a box [pg] can be represented by a graph G. Each element
[pi] of P is associated with a vertex v; of G. If two boxes [p;] and [p,] of P are neighbors, then G contains the edge
v;v;. For instance, the graph G associated with the paving of the figure above is given in Subfigure a. Subpavings can
also be represented by graphs (see Subfigure b).

Vg

Graph G and one of its subgraph.

Among the algorithms that have been proposed for finding the shortest path between two specified vertices v, and
vy in a graph G, one of the most efficient is due to Dijkstra. With each vertex v of G is associated an integer d(v)
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representing the minimum number of edges in a path from v, to v. G (i), ¢ € N denotes the set of all vertices of G
such that d(v) = i. If the algorithm DIJKSTRA returns an empty list £, then v, and v, are not in the same connected
component of G. Otherwise, it returns one of the shortest paths from v, to v, in terms of the number of vertices
crossed.

Running DIJKSTRA (G, v1,v6) on the graph of Subfigure a, one gets d(v1) = 0, d(v2) = d(vg) = 1, d(v3) = d(vs) = 2,
d(ve) = d(v7) = d(vg) = d(vg) = 3. DIJKSTRA returns either the path {vq, va, v3,v6} or the path {vi, vy, v5,v6}.

A first approach to obtain a path from a to b is to use the procedure S1vIA to build a paving P and two subpavings
P and P of P satisfying

PcScP. (215)

The graphs G and G associated with P and P are then built, and two boxes [p,] and [py] of P are selected, such that
a € [ps) and b € [py]. Let v, and v, be the two vertices of G associated with [p,] and [py]. One then calls the
procedure DIJKSTRA to get a path £ of G from v, to v,. If no such path is found, then a and b have been proved
to belong to disconnected components of S and one reports that there can be no path. If a non-empty £ is found,
then DIJKSTRA is run again to find a path £ of G connecting v, to vp. If such a path £ = {vg,v1,...,0-1,0p} i8
found, then the associated box path in P is included in S and a point path can thus be generated. If £ is empty, the
algorithm reports failure because nothing has been proved yet about the existence or inexistence of a feasible path
from a to b. One may then run the algorithm again with a smaller .

A second approach takes into account that the time spent running DIJKSTRA is very short compared to that required
to build a detailed characterization of the feasible configuration space. During each iteration, DIJKSTRA is used to
locate the regions of configuration space that seem most promising, and the algorithm stops as soon as a feasible path
has been found. Let P be the current paving of the search box [pg]. As in the first approach, we first look for a
shortest path £ in the graph associated with an available subpaving P of P, which satisfies S C P. If no such path is
found, then a and b are not in the same connected component of S and the algorithm reports that there can be no
path. If the path exists, then we try to find the shortest path £ in the graph G associated with a subpaving P of P.
If such a path is found, it is returned. Otherwise, since the box path corresponding to £ may nevertheless contain a
feasible path, all subboxes of this path are bisected and a new paving P is thus obtained.

Test case
The configuration space of this test case was chosen two-dimensional, so that the feasible configuration set S can be
visualized easily, but it suffices to try to find a solution to realize that the problem is nevertheless quite complicated.

I yany
Initial configuration: 7= (0 0)" Goal configuration: = (17 0)"

Consider a two-dimensional room that contains j segment obstacles. The extreme points of the jth obstacle are
denoted by a; and b; for j € 7 ={1,... ,7}. The object to be moved is a non-convex polygon with 4 vertices, denoted
by s; € R%i € Z ={1,...,i}. In the example to be treated, j = 2 and i = 14. The vertex s; is constrained to stay on
the horizontal axis of the room frame. The configuration of the object is thus represented by a two-dimensional vector
p = (p1,p2)T, where p; is the coordinate of s; along the horizontal axis and p, is the heading angle of the object (in
radians).

A vector p associated with a given configuration is feasible if and only if none of the edges of the object intersects
any of the segment obstacles and the extreme points of each segment obstacle lay outside the object. As illustrated
by below, p = (8, 7/4)" is feasible.
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In what follows, segm(a, b) denotes the segment with end points a and b, and line(a, b) is the straight line passing
through a and b. Since [A] denotes the interval hull of A (i.e., the smallest box containing A), [a U b] will represent
the smallest box that contains a and b. If s, is taken equal to s, then

VieZ,VjeJ, segm(s;,sit1)N segm(a;,b;) =0 ) (216)

(pes) < < and a; and b, are outside the object

From this equivalence, we can obtain inequalities describing the set S. The S1via algorithm generates the following
paving. Then DIJKSTRA is then able to compute the path from a to b.

The principle of the second approach is described by the following figure. The DIJKSTRA find the green path. All
ambiguous boxes of this green path will be bisected at the next iteration.
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The final paving of the second approach as well as the corresponding path is represented below.

A display of the motion corresponding to the path is given on the picture.
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Computing the number of connected components of a set (Collaboration with N. Delanoue and B. Cottenceau)
The point v is a star for S C R™ if Vx € S, Vo € [0,1], av + (1 — a)x € S. For instance, in the figure below vy is a
star for S whereas vy is not.

The set S C R" is star-shaped is there exists v such that v is a star for S.

Theorem: Define the set

S {x € [x]|f(x) <0} (217)

where f is differentiable. We have the following implication

{xe[x]| f(x)=0,Df(x).(x —v) <0} =0 = v is a star for S. (218)

Df(x) r—n

If v is a star for S; and a star for So then it is a star for S; NS, and for S; US,. As a consequence, interval methods
can be used to prove that a point v is a star for a set defined by a conjunction or a disjunction of inequalities.
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Consider a subpaving P = {[p,], [P,],...} covering S. The relation R defined by
[PIRla] & SN p|Nla] #0 (219)

is star-spangled graph of the set S if
V[p] € P,SN[p] is star-shaped. (220)

For instance, a star-spangled graph for the set

; % +4y? — 16
S (z,y) €eR? | 2sina — cosy + y> — 3 <0y, (221)
(432 Ay - 22+

obtained using the solver CIA (http://www.istia.univ-angers.fr/ delanoue/), is given below.

For each [p] of the paving P, a common star located at the corner of [p] (represented in red) has been found for all
three constraints.

Theorem: The number of connected components of the star-spangled graph of S is equal to that of S.

An extension of this approach has also been developed by N. Delanoue to compute a triangulation homeomorphic to
S.
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