
SAUC’ISSE : our interval underwater
robot

L. Jaulin

ENSIETA, Brest

Girona, monday, july 30, 2007



1 SAUC’E competition

In Portsmouth, July 12-15, 2007.

1.1 Principle







1.2 SAUC’ISSE



(show the movie)













1.3 Localization and control





1.4 Model

State equations






ẋ = v cos θ
ẏ = v sin θ

θ̇ = u2 − u1
v̇ = u1 + u2 − v
α̇ = ωs



Observation equation:

input : (x, y, θ, α)
ũ = (cos (θ + α) ; sin (θ + α)) ; ℓ =∞;

m =(x y)T ;
for j = 1 to n

if det
(
aj−m, ũ

)
. det

(
bj−m, ũ

)
≥ 0 then next j;

d :=
det(m−aj−m,bj−aj)

det(ũ,bj−aj)

if d < 0 then next j;
ℓ := min (ℓ, d) ;

next j
return (ℓ);



2 Set observers



2.1 Principle

Consider the discrete time dynamic system
{
x(k + 1) = fk(x(k))
y(k) = g(x(k))

In a bounded-error context, we generally assume that

y(k) ∈ Y(k).



We can thus define recursively the feasible set X(k) for

x(k):

(i) X(k) = Rn, if k ≤ 0.

(ii) X(k + 1) is the set of all x(k + 1) ∈ Rn such that





∃x(k) ∈ X(k),
∃y(k) ∈ Y(k).
x(k + 1) = fk(x(k))
y(k) = g(x(k))



The set X(k) of all state vectors that are consistent with

the past can be computed recursively as follows

X(k + 1) = fk (X(k)) ∩
(
fk ◦ g

−1
)
(Y(k)) .



2.2 Dealing with outliers

To robustify against outliers, we make the following as-

sumption:

Outliers may exist for the outputs but within any time win-

dow of length ℓ we never have more than q outliers.



We can thus define recursively the feasible set X(k) for

x(k):

(i) X(k) = Rn, if k ≤ 0.

(ii) and X(k+1) is the set of all x(k+1) ∈ Rn such that





∃x(k − ℓ) ∈ X(k − ℓ), . . . , ∃x(k) ∈ X(k),
∃y(k − ℓ), . . . ,∃y(k),∧

i∈{0,...,ℓ}

x(k − i+ 1) = fk−i(x(k − i))

∧

i∈{0,...,ℓ}

y(k − i) = g(x(k − i))

{q}∧

i∈{0,...,ℓ}

(y(k − i) ∈ Y(k − i)) .

Moreover, we will assume that all fk are bijective.



Theorem: The feasible set for the state vector assuming

a maximum of q outliers is

X(k + 1) = fk (X(k)) ∩
{q}⋂

i∈{0,...,ℓ}

f ik◦g
−1 (Y(k − i)) .

where

f ik(x(k − i)) = fk◦fk−1◦ . . . ◦ fk−i (x(k − i)) .







Proof of the theorem: Define

f ik(x(k − i)) = fk◦fk−1◦ . . . ◦ fk−i (x(k − i)) .

By applying several times the equivalence

(∃a ∈ A,g(b) = a)⇔ g(b) ∈ A

we get that x(k + 1) ∈ X(k + 1) is equivalent to





∧

i∈{0,...,ℓ}

((
f ik

)−1
(x(k + 1)) ∈ X(k − i)

)

{q}∧

i∈{0,...,ℓ}

(
g◦
(
f ik

)−1
(x(k + 1)) ∈ Y(k − i)

)
.

By applying several times the equivalence

g(b) ∈ A⇔ b ∈ g−1 (A) ,

we get that x(k + 1) ∈ X(k + 1) is equivalent to





∧

i∈{0,...,ℓ}

x(k + 1) ∈ f ik (X(k − ℓ))

{q}∧

i∈{0,...,ℓ}

(x(k + 1)) ∈
(
f ik

)
◦ g−1 (Y(k − i)) .



Thus

X(k+1) =
⋂

i∈{0,...,ℓ}

f ik (X(k − i)) ∩
{q}⋂

i∈{0,...,ℓ}

f ik◦g
−1 (Y(k − i))

Since, this formula is valid for all k, we get

f0k (X(k)) ⊂ f
1
k (X(k − 1)) ⊂ f

2
k (X(k − 2)) ⊂ . . .

and thus

⋂

i∈{0,...,ℓ}

f ik (X(k − i)) = f0k (X(k))

Finally,

X(k+1) = f0k (X(k − i)) ∩
{q}⋂

i∈{0,...,ℓ}

f ik◦g
−1 (Y(k − i)) .





3 Intervals

A random variable x of R can be represented by an interval

[x] such that

Supp (px) ⊂ [x].

Advantage : The manipulation is much more easy in a

nonlinear context.



3.1 Arithmetics



If ⋄ ∈ {+,−, ., /}, we have

[x] ⋄ [y] = [{x ⋄ y | x ∈ [x], y ∈ [y]}] .

For instance,

[−1, 3] + [2, 5] = [1, 8],
[−1, 3].[2, 5] = [−5, 15],

[−1, 3]/[2, 5] = [−12,
3
2],



3.2 Projection

Consider x, y, z three variables which satisfy

x ∈ [−∞, 5],

y ∈ [−∞, 4],

z ∈ [6,∞],

z = x+ y.

Values < 2 for x, < 1 for y and > 9 for z are inconsis-

tant.



Since x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞] and z =

x+ y, we have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].



3.3 Propagation

Consider the three constraints





(C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x+ 1

To each variable we assign the domain [−∞,∞].

Constraint propagation amounts to project all constraints

until equilibrium.

















(C1)⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2)⇒ x ∈ 1/[0,∞] = [0,∞]
(C3)⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1)

= [0,∞] ∩ ([−∞, 1]) = [0, 1]

x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 12]

(C1)⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2)⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

y ∈ [0, 1/4] ∩ 1/∅ = ∅



3.4 Bounded-error estimation

One battery and two resistors

Battery : E = 25V ,

Resistors : R1 = 2Ω, R2 = 3Ω.



Constraints

P = EI; E = (R1 +R2) I;

U1 = R1I; U2 = R2I; E = U1 + U2.

Initial domains

R1 ∈ [0,∞]Ω R2 ∈ [0,∞]Ω E ∈ [23, 26]V
P ∈ [124, 130]W I ∈ [4, 8]A
U1 ∈ [10, 11]V U2 ∈ [14, 17]V.

Contracted domains

R1 ∈ [1.84,2.31] Ω R2 ∈ [2.58,3.35]Ω E ∈ [24, 26]V
P ∈ [124, 130]W I ∈ [4.769,5.417]A
U1 ∈ [10, 11]V U2 ∈ [14,16]V.



3.5 Contractors

If X is a subset of Rn, a contractor CX is an operator such

that

∀[x] ∈ IRn, CX([x]) ⊂ [x] (contractance)
CX ([x]) ∩ X = [x] ∩ X (completeness)

We shall say that

C is monotonic if [x] ⊂ [y]⇒ CX([x]) ⊂ CX([y])
C is minimal if ∀[x] ∈ IRn, CX([x]) = [[x] ∩ X]
C is idempotent if ∀[x] ∈ IRn, CX (CX ([x])) = CX ([x]) .
C is convergent if ∀x /∈ X,∃ε > 0,

(x ∈ [x],w([x]) < ε⇒ CX ([x]) = ∅)



If Z is defined from X and Y, we can often build CZ from

CX and CY :

Z = X× Y CZ([z]) = CX([x])× CY([y]),
Z = X ∩ Y CZ([z]) = CX([x]) ∩ CY([y]),
Z = X ∪ Y CZ([z]) = CX([x]) ⊔ CY([y]).



3.6 Enclosing sets

The following algorithm generates a subpaving enclosing

[x] ∩ X.

Algorithm Enclose(in: [x], out: L)
L := {[x]} ;
while we have time and L �= ∅

pull ([x],L) ;
contract([x]) with respect to X
if [x] �= ∅, bisect [x] and push the resulting boxes into L;

end while
return L.



3.7 q-intersection

If

X = ([a] ∩ [b])∪([b] ∩ [c])∪([a] ∩ [c]) =
{1}⋂
{[a], [b], [c]}.

then a minimal contractor for X can be obtained as follows

Algorithm C([x])

1 X =
{
x−, x+, a−, a+, b−, b+, c−, c+

}

2 V = X ∩ [x] ∩ X
3 Return the smallest interval enclosing V.



For instance, if

X =
{1}⋂
{[1, 3], [2, 7], [6, 9]} and [x] = [0, 5],

we have

X = {0, 5, 1, 3, 2, 7, 6, 9}

and

V = X ∩ [x] ∩ X = {0, 5, 1, 3, 2} ∩ X = {3, 2} .

Thus

C([x]) = [{3, 2}] = [2, 3].



3.8 Vector case

We have

[x] ∩ [y] = ([x1] ∩ [y1])× · · · × ([xn] ∩ [yn]) ,

[x] ∪ [y] ⊂ ([x1] ∪ [y1])× · · · × ([xn] ∪ [yn]) .



If

X =
{q}⋂
{[a], [b], [c]} ⊂ Rn

X ⊂





{q}⋂
{[a1], [b1], [c1]}






︸ ︷︷ ︸
X1

×· · ·×





{q}⋂
{[an], [bn], [cn]}






︸ ︷︷ ︸
Xn

Thus, a contractor for X is given by

CX ([x]) = CX1 ([x1])× · · · × CXn ([xn]) .



Example: Take

X =
{1}⋂
{[a], [b], [c]}.



The black box is the 2-intersection of 9 boxes



3.9 Relaxed set inversion

X =
{q}⋂

i∈{1,...,ℓ}

f−1i ([y](i))
︸ ︷︷ ︸

Xi



















4 Competition


























