
Resolution of nonlinear interval
problems

using symbolic interval arithmetic

Luc Jaulin and Gilles Chabert

ENSIETA, Brest

Talk for the working group Set Methods for Control of

the GDR Macs

Paris, November 22, 2007.



1 Interval problem



Interval optimization

min
[x]∈IRn

f ([x])

where f : IRn→ R and IRn is the set of boxes in Rn.



Interval inequality

Characterize the set

S = {[x] ∈ IRn, f ([x]) ≤ 0} ,
where f : IRn→ Rp.



Interval inclusion

Characterize the set

S = {[x] ∈ IRn, [x] ⊂ [f ] ([x])}
where [f ] : IRn→ IR

n.



Quantified interval inequalities

Characterize the set

S = {[x] ∈ IRn,∃[y] ∈ IRp, f ([x], [y]) ≤ 0}
where f : IRn × IRp→ Rm.



2 Boundarification

An interval constraint is a function from IR
n to {0, 1}. An

example of interval constraint is

C ([x]) : [x1] ⊂ [x2],
where [x] = [x1]× [x2].



An interval constraint is monotonic if

[x] ⊂ [y]⇒ (C ([x])⇒ C ([y])) .

For instance C([x])
def
= (0 ∈ [x]) is monotonic.



Define the intervalization function i as follows

i :






R2n → IR
n






x−1
x+1...
x−n
x+n






→ [x] =






[
x−1 , x

+
1

]

...[
x−n , x+n

]




 if ∀i, x−i ≤ x+i

[x] = ∅ otherwise



An interval constraint C ([x]) from IR
n to {0, 1} is equiv-

alent to a constraint C on their bounds:

C :






R2n → IR
n → {0, 1}




x−1
x+1...
x−n
x+n






︸ ︷︷ ︸
x

i→






[
x−1 , x

+
1

]

...[
x−n , x+n

]






︸ ︷︷ ︸
[x]

C→ C ([x])



From an expression of C ([x]) we can get an expression for

C (x).

The procedure to get such an expression is called bound-

arification.

For instance the boundarification of

C ([x])
def
= ([x1] ⊂ [x2] and [x] 
= ∅)

is

C






x−1
x+1
x−2
x+2





:






x−1 ≥ x−2 and

x+1 ≤ x+2 and

x−1 ≤ x+1 and

x−2 ≤ x+2

.



The boundarification can be made easier using symbolic

interval arithmetic.



3 Symbolic-intervals



A term is a word (a finite sequence of elements of the

alphabet {a, b, . . . , Y, Z,+,−, /, ∗, ), (, . . . }) which can

be obtained by the following rules

′a′, . . .′ z′,′A′, . . .′Z′ ∈ S
A ∈ S,B ∈ S ⇒ AB ∈ S
A ∈ S,B ∈ S ⇒ A+ B ∈ S
A ∈ S,B ∈ S ⇒ A ∗ B ∈ S
A ∈ S ⇒ sin (A) ∈ S

. . .



For instance

sin("aaa")+cos("bbb")

is a term.



A symbolic interval is a couple [A,B] of terms. We define

the following operations or functions for symbolic intervals.

[A,B] + [C,D] = [A+ C,B +D]
[A,B]− [C,D] = [A−D,B − C]
[A,B] ∗ [C,D] =

[min (A ∗ C,A ∗ D,B ∗ C,B ∗ D)
,max (A ∗ C, . . . )]

[A,B]2 =
[max(0, sign (A ∗ B)min

(
A2, (B)

)

,max
(
A2,B2

)
]

exp ([A,B]) = [exp (A) , exp (B)] .
1/ [A,B] =

[min (1/B,∞∗A ∗ B)
,max (1/A,−∞ ∗A ∗ B)]

[A,B] ∩ [C,D] = [max (A, C) ,min ((B,D))]
[A,B] ⊔ [C,D] [min (A, C) ,max ((B,D))]
w ([A,B]) = B −A



For instance ,

exp ([aaa,bbb]− [ccc,aaa]) = exp ([aaa− aaa , bbb− ccc])
= [exp(aaa− aaa), exp(bbb− ccc)



Define the following relations on symbolic intervals

([A,B] = [C,D]) = (A− C = 0 and B −D = 0)
([A,B] ⊂ [C,D]) = (A− C ≥ 0 and D − B ≥ 0)

For instance

([aaa , bbb]= [ccc , ddd]) = (aaa = ccc and bbb=ddd)

Another example is the following

(
[a, b] ⊂ [a, b]2

)
=






a−max(0, sign(a.b) ∗min(a2, b2) ≥ 0
and
max(a2, b2)− b ≥ 0

.



4 Implementation

struct sint

{

AnsiString lb;

AnsiString ub;

};



void plus(sint& r,sint& a,sint& b)

{

r.lb=a.lb+"+"+b.lb;

r.ub=a.ub+"+"+b.ub;

}



void moins(sint& r,sint& a,sint& b)

{

r.lb=a.lb+"-("+b.ub+")";

r.ub=a.ub+"-("+b.lb+")";

}

void moins(sint& r,sint& a,AnsiString b)

{

r.lb=a.lb+"-"+b;

r.ub=a.ub+"-"+b;

}

void moins(sint& r,AnsiString a, sint& b)

{

r.lb=a+"-"+b.ub;

r.ub=a+"-"+b.lb;

}



void mult(sint& r,sint& a,sint& b)

{

AnsiString z11="("+a.lb+")*("+b.lb+")";

AnsiString z12="("+a.lb+")*("+b.ub+")";

AnsiString z21="("+a.ub+")*("+b.lb+")";

AnsiString z22="("+a.ub+")*("+b.ub+")";

AnsiString z =z11+","+z12+","+z21+","+z22;

r.lb="min("+z+")";

r.ub="max("+z+")";

}



void exp(sint& r,sint& a)

{

r.lb="exp("+a.lb+")";

r.ub="exp("+a.ub+")";

}



void sqr(sint& r,sint& a)

{ AnsiString z1="sqr("+a.lb+")";

AnsiString z2="sqr("+a.ub+")";

AnsiString z3="sign("+a.lb+"*"+a.ub+")*min("+z1+","+z

r.lb="max(0,"+z3+")";

r.ub="max("+z1+","+z2+")";

}

void sqrt(sint& r,sint& a)

{ r.lb="sqrt("+a.lb+")";

r.ub="sqrt("+a.ub+")";

}



void inv(sint& r,sint& a)

{

AnsiString z1="1/("+a.ub+")";

AnsiString z2="1/("+a.lb+")";

AnsiString z3="+oo*("+a.lb+"*"+a.ub+")";

AnsiString z4="-"+z3+"";

r.lb="min("+z1+","+z3+")";

r.ub="max("+z2+","+z4+")";

}



void div(sint& R,AnsiString a, sint& B)

{

sint Z1;

inv(Z1,B);

mult(R,a,Z1);

}



void inter(sint& r,sint& a,sint& b)

{

r.lb="max("+a.lb+","+b.lb+")";

r.ub="min("+a.ub+","+b.ub+")";

}

AnsiString subset(sint& a,sint& b)

{

return a.lb+"-("+b.lb+") in [0,+oo] \n"
+ b.ub+"-("+a.ub+") in [0,+oo]";

}



5 Experimental design



Example

Tomorrow, we will make an experiment with a moving ob-

ject.

Its speed will be measured using a speed sensor with an

accuracy less that ±1ms−1.
Its weight will be measured with an accuracy less than

0.1kg.

We are interested by its kinenic energy E = 1
2mv

2.

We will use the interval formula [E] = 1
2 [m] . [v]

2.

Question : With which accuracy will we be able to measure

E ?



Formalism

Quantities xi will be measured with an accuracy can be

bounded a priori.

The quantity y of interest satisfies y = f(x1, . . . , xn).

An interval for [y] will be obtained using a known interval

function [f ].

Question : With which accuracy will we be able to measure

y ?



Interval analysis makes it possible to build an interval func-

tion

[f ] :

{
IR
n → IR

[x] → [y] = [f ] ([x])

that computes an enclosure for y.



Assuming that x will be measured with an accuracy less

that w̄, the worst-case uncertainty for [y] is

max
[x]∈IRn
w([x])≤w̄

w ([f ] (x))



Example

A boundarification of the following interval optimization

problem

max
[x]∈IR
w([x])≤1

w
(
exp

(
[x]− [x]2

))

is

max
b−a∈[0,1]

eb−max(0,sign(ab).min(a
2,b2)) − ea−(max(a2,b2)

The maximum is inside [3.324807; 3.324808] and the global

optimizer satisfies

(a∗, b∗) ∈ [0.547, 0.548]× [1.547, 1.548].
i.e., the interval optimizer is an interval [a∗, b∗] which sat-

isfies the previous relation.



The figure shows the set

S =
{
[x] ∈ IR, w([x] ≤ 1 and w

(
exp

(
[x]− [x]2

))
> 1

}
.

inside the box [−2, 2]× [−2, 2].



6 Comparing two inclusion functions

Consider the two following inclusion functions

[f ] ([x]) = [x] ∗ ([x]− 1)
[g] ([x]) = [x]2 − [x]

We would like to known for which intervals [x], [f ] is more

accurate than [g].



We have

[f ] ([x]) = [a, b] ∗ ([a, b]− 1)
= [a, b] ∗ [a− 1, b− 1]
= [min (a (a− 1) , b (a− 1) , a (b− 1) , b (b− 1)) ,

max (a (a− 1) , b (a− 1) , a (b− 1) , b (b− 1))]



Moreover

[g] ([x]) = [a, b]2 − [a, b]
=

[
max(0, sign (a.b)min

(
a2, b2

)
),max

(
a2, b2

)]

−[a, b]
= [max(0, sign (a.b)min

(
a2, b2

)
− b

,max
(
a2, b2

)
− a]



Thus

[f ] ([x]) ⊂ [g] ([x])

⇔






min (a (a− 1) , b (a− 1) , a (b− 1) , b (b− 1))
−max(0, sign (a.b)min

(
a2, b2

)
) + b ≥ 0

max
(
a2, b2

)
− a−

max(a (a− 1) , b (a− 1) , a (b− 1) , b (b− 1)) ≥ 0



• If [x] = [1, 2]

[f ] ([x]) = [1, 2] ∗ ([1, 2]− 1) = [0, 2]
[g] ([x]) = [1, 2]2 − [1, 2] = [−1, 3]

We have [f ] ([x]) ⊂ [g] ([x]) .

• If [x] = [−2,−1],

[f ] ([x]) = [−2,−1] ∗ ([−2,−1]− 1) = [2, 6]
[g] ([x]) = [−2,−1]2 − [−2,−1] = [2, 6]

We have [f ] ([x]) ⊂ [g] ([x]) but we are not able to

prove it.

• If [x] = [−1, 1],

[f ] ([x]) = [−1, 1] ∗ ([−1, 1]− 1) = [−2, 2]
[g] ([x]) = [−1, 1]2 − [−1, 1] = [−1, 2]

we have [f ] ([x]) 
⊂ [g] ([x]) .



In red [f ] is more accurate that [g]

In blue [f ] is not more accurate that [g]

In yellow, we don’t know.

The frame box is [−2, 2]× [−2, 2].



7 Analysis of the Newton operator

Consider the equation f(x) = 0 with f(x) = ex − 1.

The interval Newton operator is defined by

N ([x]) = x0 −
f (x0)

[f ′]([x])
,

where x0 is any point in [x]. Here, we shall take x0 = x
−

and thus

N ([x]) = x− −
f
(
x−
)

[f ′]([x])
. = x− − ex

− − 1
exp ([x−, x+])



The Newton operator is contracting if

N ([x]) ⊂ [x].
The interval Newton set is the set of all [x] such that N
is contracting.



If we set [x] = [a, b], we get

N ([a, b]) = a− a− 1
exp ([a, b])

A boundarification of the relation N ([a, b]) ⊂ [a, b] yields





a−max
(
ea−1
eb
, e
a−1
ea

)
− a ≥ 0

b− a+min
(
ea−1
eb
, e
a−1
ea

)
≥ 0

b− a ≥ 0



Set of all intervals such that the interval Newton operator

is contracting

The frame box is [−2, 2]× [−2, 2].



8 Proving global consistency

8.1 Motivation

Consider the angle constraint
(
x2
y2

)

=

(
cos θ − sin θ
sin θ cos θ

)(
x1
y1

)

.

The corresponding optimal contractor C∗ is defined by





IR
5 → IR

5

[x] →











x1
y1
x2
y2
θ





∈ [x],

{
x2 = x1 cos θ − y1 sin θ
y2 = x1 sin θ + y1 cos θ








Conjecture: Consider the set of constraints
{
x2 = x1 cos θ − y1 sin θ
y2 = x1 sin θ + y1 cos θ

If we add the following redundant constraints





x1 = x2 cos θ + y2 sin θ
y1 = −x2 sin θ + y2 cos θ
x21 + y

2
1 = x22 + y

2
2

tan θ = x1y2−y1x2
x1x2+y1y2

A hull consistency algorithm with input [x] will to converge

toward C∗ ([x]).



With Xavier Baguenard, we tried to prove it by hand, but

we failed.

Question : Can we automatically prove this conjecture

with interval methods ?



8.2 Example

Consider a simpler constraint given by

x2 − x = 0



A hull consistency contractor for this constraint amounts

to iterate the two statements

[x] = [x] ∩ [x]2

[x] = [x] ∩
√
[x]

from an initial interval [x] until a steady interval is reached.



The resulting contractor is said optimal if it always converge

to the smallest box which encloses all solutions that belongs

to [x].

Question: Is the hull contractor optimal ?



Step 1. Compute all solutions of the equation x2−x = 0.
With an interval method (with bisections), we get that we

have exactly two solutions

x1 ≃ 0 and x2 ≃ 1
Thus any safe contractor has at least 3 steady boxes (those

corresponding to [0, 0], [1, 1], [0, 1]).



Step 2. Since the hull contractor will converge the biggest

box inside [x](0) which satisfies

[x] ⊂ [x]2

[x] ⊂
√
[x]

The interval CSP translates into the following bound-CSP

a−max(0, sign(a.b).min(a2, b2) ≥ 0
max(a2, b2)− b ≥ 0

min(a−√a,
√
b− b) ≥ 0

b− a ≥ 0



This bound-CSP has three solutions enclosed by

[0.999999999, 1]× [0.999999999, 1]
[0, 3.10−39]× [0, 3.10−39]
[0, 3.10−39]× [0.999999999, 1]

A unicicity test concludes that each of the three boxes

contains a unique solution.

Thus, we know that we have exactly three steady boxes.



Thus, we have proven that the hull contractor is optimal.


