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Test-case
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Consider an underwater robot:

X = cosy
y = siny
z = U
Vo= w
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The robot is able to measure its altitude, the angle of the gradient
of h and its depth

v = z—h(xy)
y2 = angle(Vh(x,y)) -y
3 = —z
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We take the controller

u= y3—Y3
-tanh(ho +y3 +y1) +sawtooth(y2 +3) )
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Guaranteed integration[6][5]
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Consider the system

7 x(t) = v(x(t))
Denote by ¢,(t,x) the flow map.
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The forward reach set of X C R" is:

Forw (X) = {x | 3xo €X,3t > 0,x = (py(t,xo)}.
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X1 = 1
X = sign(sin(x;)—x2)
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Largest positive invariant sets
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Example: Consider

f(l = X2
Xy = (l—xlz)-xz—xl
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Positive invariant sets: Inv™ (X) with X = [—4,4] x [-4,4].
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Computing invariant sets

The largest positive invariant set in X C R" is:

Invt (X) = {Xo ‘ Vvt > 0,¢(t,X0) S X} .
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InvT (X) with X = [—4,4] x [4,4].
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Computing invariant sets

We have

Forw(A) = X\EitzO,(py(—t,x)eA}

{
= {x |Vt >0,0,(—t,x) GK}

= Inv™ (A)
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Forw(A)
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A maze [6][2] is a set of trajectories.
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The trajectory x(-) belongs to the maze [x](-)
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Here, a maze £ is composed of
e A paving &

@ Doors between adjacent boxes
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The set of mazes forms a lattice with respect to C.
L, C % means :

o the boxes of .%, are subboxes of the boxes of .Z,.
@ The doors of %, are thinner than those of .%}.
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Contract trajectories that never go to A
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Contract trajectories that possibly go to A
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Getting the largest positive invariant set
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Motivation
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Visiting the three red boxes using a buoy that follows the currents
is an Eulerian state estimation problem
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Lattice
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Kleene approach

A lattice (£,<) is a partially ordered set, closed under least upper
and greatest lower bounds [1].

A machine lattice (£, <) of £ is complete sublattice of (£, <)
which is finite.
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Kleene algebra
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] Kleene algebra \ (A4, %) ‘
Addition at+b
Product a-b

Associativity

at+(b+c)=(a+b)+c

a-(b-c)y=(a-b)-c

Commutativity

atb=b+a

Distributivity

a-(b+c)=(a-b)+(a-c)

(b+c)-a=(b-a)+(c-a)

zero at+l=a

One a-T=T-a=a
Annihilation a-l=1-a=1
Idempotence ata=a
Partial order a<b&sa+b=>b
Kleene star a*=T+a+a-ata-a-a+..
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A Kleene algebra 7 (<,+,-,%,L,T) is a lattice.
We can also define the machine Kleene algebra (J#y,<) of % .
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Automorphism
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Given a lattice (Z,A,V, L, T), an automorphism of £ is a
function f:.¥ — .Z such that

(i) F(T)
(i)  f(anb)

-
f(a)Af(b)

We denote by o7 (£) the set of automorphisms of .Z.
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Example. f(A)=¢(1,A) is an automorphism.

o f(ANB)=f(A)Nf(B)
o f(R") =R"
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e AN@(1,A) is an automorphism
o ANg@(1,A)N@?(1,A) is an automorphism
e (¢(1,A))" is an automorphism
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Factorization

We want to compute expressions, such as

f*(a)A(g" (b) v h"(a))".

We have
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FEAFY=F*
(F*ng*) =(FAg)"
f*o(fog*) =(fAg)"
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Algorithm
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Path planning reach set
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Dynamical systems

We want the set X of all paths that start in A, avoid B and reach
C. We have

x = (b @nkz ©)
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Control reach set
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Dynamical systems

Consider the system:
7 x(t) = v(x(t). ), u € {0,1}

We want to compute the largest set X that can be reached from
the set A.
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Dynamical systems

We have
x=(fo%) (&)
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Car on the hill system [3] :

X1 = X2
xp = —9.81sin(0.55sin(1.2x;) — 0.6sin(1.1x1)) —0.7x2 + u
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Minimal robust positive invariant set
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Dynamical systems

The example is a continuous-time version of an example in [4]:

5(1 = 0.2X1 +0.2X2 — X1
o= —0.2x14+05%+0—x

where @ € [-1,1].
We want the minimal robust positively invariant set containing 0
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