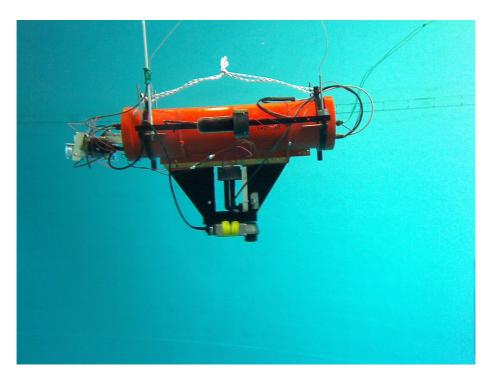
Image Shape Extraction using Interval Methods

L. Jaulin, S. Bazeille ENSIETA, Brest

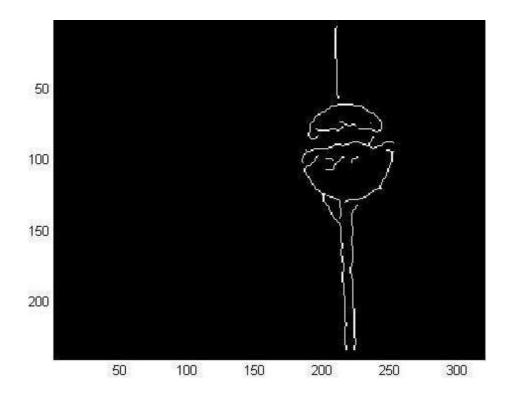
Sysid 2009 Saint Malo, Juillet 2009

1 Shape detection problem



Sauc'isse robot swimming inside a pool

A spheric buoy seen by Sauc'isse



2 Set estimation

An *implicit parameter set estimation problem* amounts to characterizing

$$\mathbb{P} = \bigcap_{i \in \{1,...,m\}} \underbrace{\{\mathbf{p} \in \mathbb{R}^n, \exists \mathbf{y} \in [\mathbf{y}](i), \mathbf{f}(\mathbf{p}, \mathbf{y}) = \mathbf{0}\}}_{\mathbb{P}_i}$$

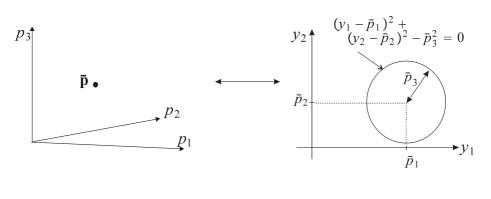
where \mathbf{p} is the parameter vector, $[\mathbf{y}](i)$ is the *i*th measurement box and \mathbf{f} is the model function.

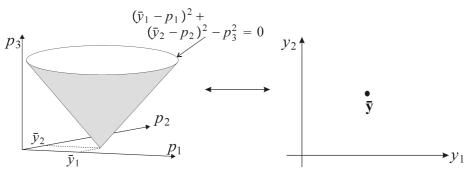
3 Shape extraction as a set estimation problem

Consider the shape function f(p, y), where $y \in \mathbb{R}^2$ corresponds to a pixel and p is the shape vector.

Example (circle):

$$f(\mathbf{p}, \mathbf{y}) = (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2.$$





The shape associated with p is

$$\mathcal{S}\left(\mathbf{p}
ight)\stackrel{\mathsf{def}}{=}\left\{\mathbf{y}\in\mathbb{R}^{2},\mathbf{f}\left(\mathbf{p},\mathbf{y}
ight)=\mathbf{0}
ight\}.$$

Consider a set of (small) boxes in the image

$$\mathcal{Y} = \{ [\mathbf{y}](1), \ldots, [\mathbf{y}](m) \}$$

Each box is assumed to intersect the shape we want to extract.

In our buoy example,

• $\mathcal Y$ corresponds to edge pixel boxes.

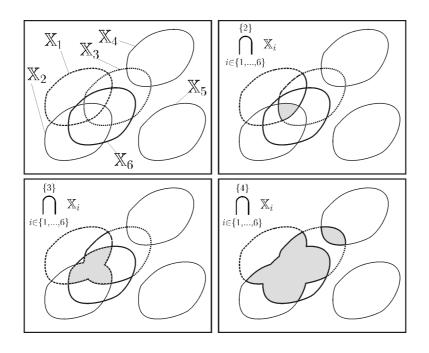
•
$$f(\mathbf{p},\mathbf{y}) = (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2$$
.

• $\mathbf{p} = (p_1, p_2, p_3)^T$ where p_1, p_2 are the coordinates of the center of the circle and p_3 its radius.

Now, in our shape extraction problem, a lot of [y](i) are outlier.

4 Robust set estimation

 $\begin{array}{c} \{q\} \\ \mbox{The q-relaxed intersection denoted by $\bigcap \mathbb{X}_i is the set of all \mathbf{x} which belong to all \mathbb{X}_i's, except q at most. } \end{array}$



The \boldsymbol{q} relaxed feasible set is

$$\mathbb{P}^{\{q\}} \stackrel{\text{def}}{=} igcap_{i \in \{1,...,m\}}^{\{q\}} \left\{ \mathbf{p} \in \mathbb{R}^n, \exists \mathbf{y} \in [\mathbf{y}](i), \mathbf{f}(\mathbf{p}, \mathbf{y}) = \mathbf{0}
ight\}.$$

5 Interval propagation

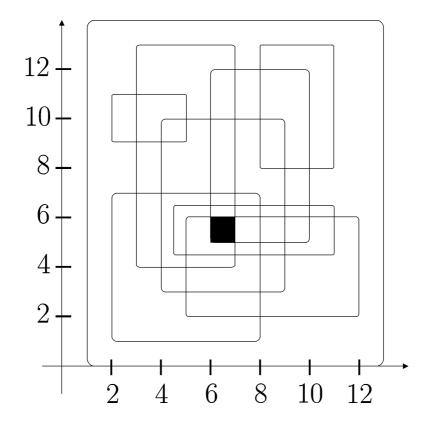
An optimal contractor for the set

$$\left\{\mathbf{p} \in [\mathbf{p}], \exists \mathbf{y} \in [\mathbf{y}], (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2 = \mathbf{0}\right\}$$

FB(in: [y] , [p] , out: [p])	
1	$[d_1]:=[y_1]-[p_1]$;
2	$[d_2] := [y_2] - [p_2];$
3	$[c_1] := [d_1]^2$;
4	$[c_2] := [d_2]^2$;
5	$[c_3] := [p_3]^2;$
6	$[e]:=[0,0]\cap ([c_1]+[c_2]-[c_3])$;
7	$[c_1] := [c_1] \cap ([e] - [c_2] + [c_3]);$
8	$[c_2] := [c_2] \cap ([e] - [c_1] + [c_3]);$
9	$[c_3] := [c_3] \cap ([c_1] + [c_2] - [e]);$
10	$[ar{p}_{3}] := [p_{3}] \cap \sqrt{[c_{3}]};$
11	$[d_2] := [d_2] \cap \sqrt{[c_2]};$
12	$[d_1] := [d_1] \cap \sqrt{[c_1]};$
13	$[p_2]:=[p_2]\cap \dot{(}[y_2]-[d_2])$;
14	$[p_1] := [p_1] \cap ([y_1] - [d_1]);$

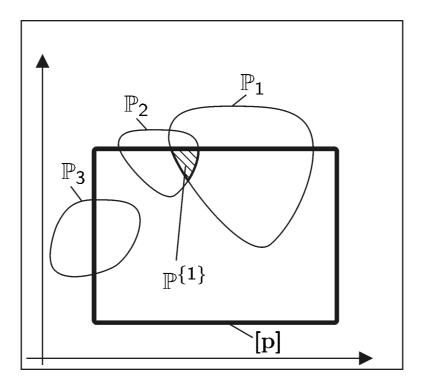
5.1 Relaxed intersection of boxes

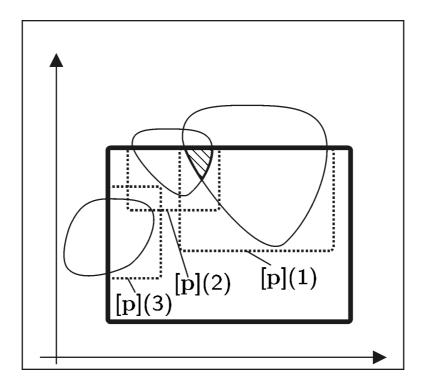
Computing the q relaxed intersection of m boxes is tractable.



The black box is the 2-intersection of 9 boxes

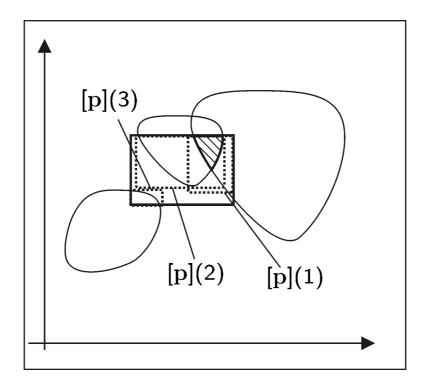
5.2 Algorithm

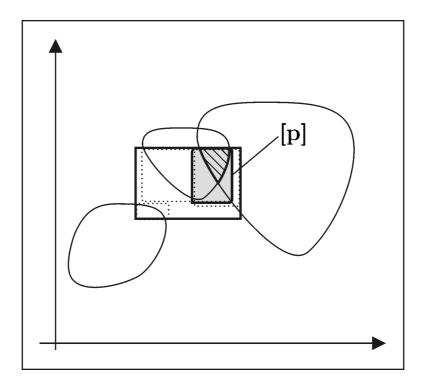










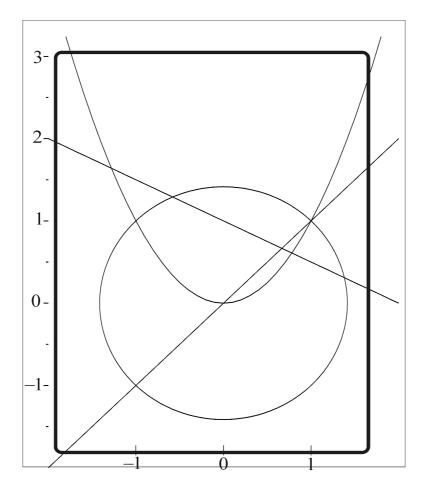


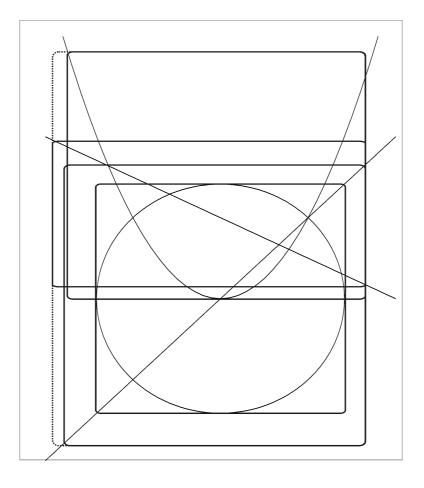
5.3 Example

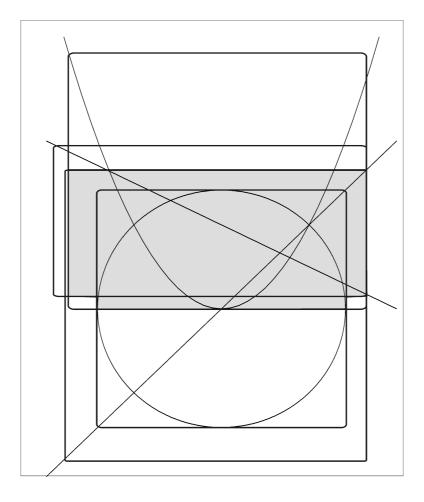
Solve

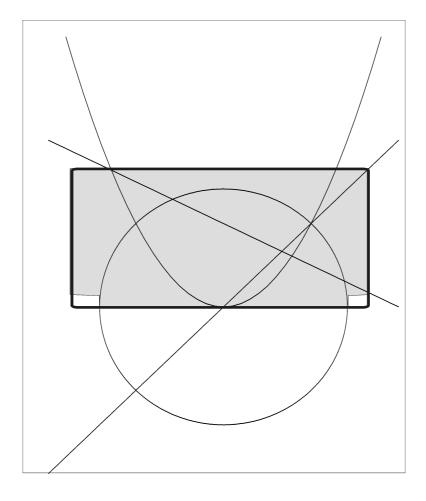
$$\begin{cases} p_2 - p_1^2 &= 0\\ p_2^2 + p_1^2 - 1 &= 0\\ p_2 - p_1 &= 0\\ 2p_2 + p_1 - 2 &= 0 \end{cases}$$

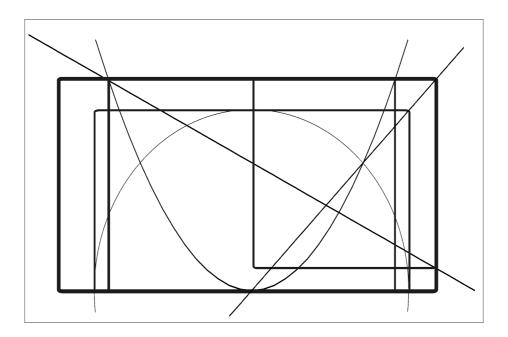
with q = 1.

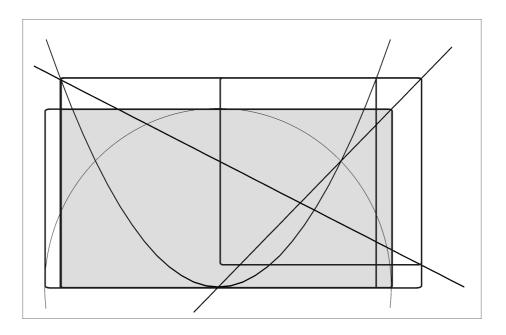


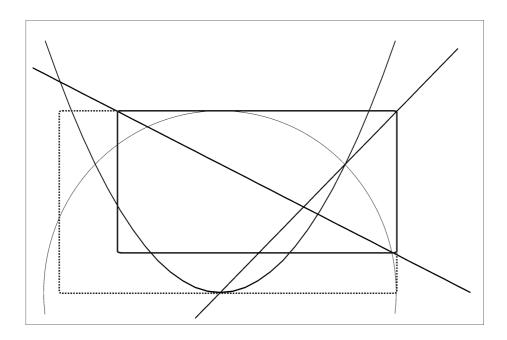


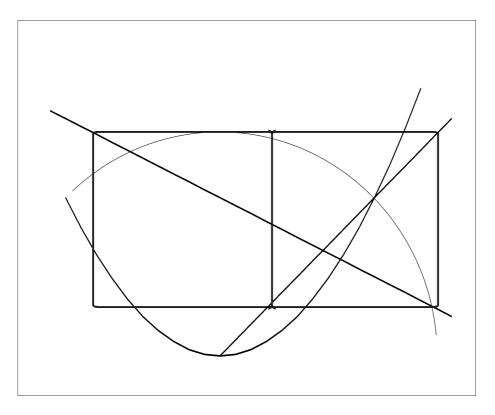


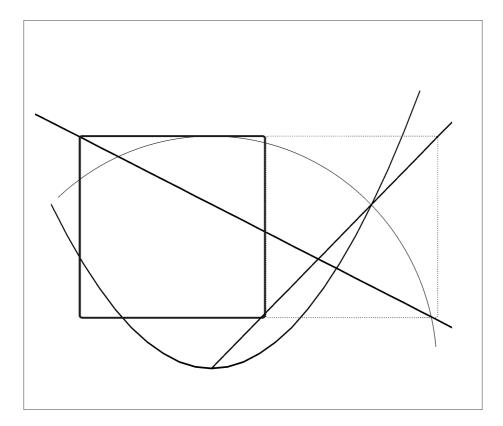


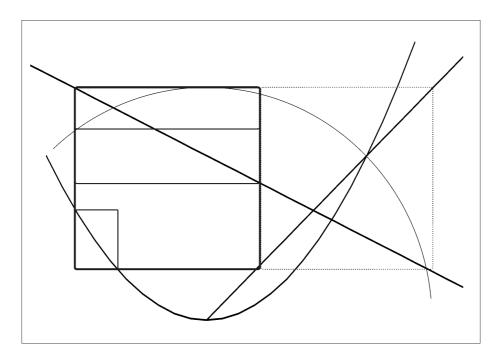


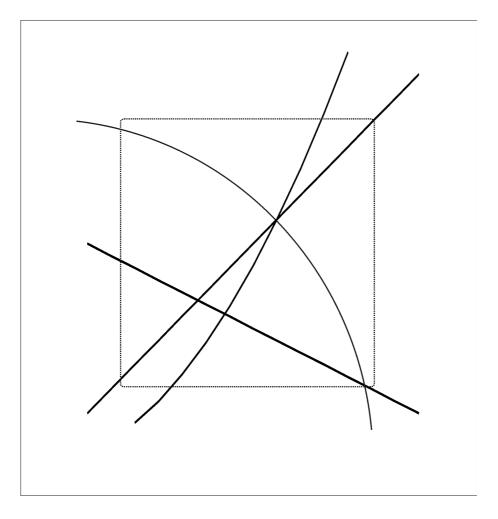


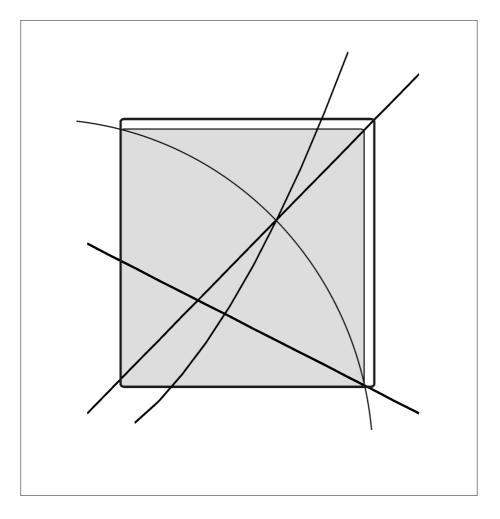


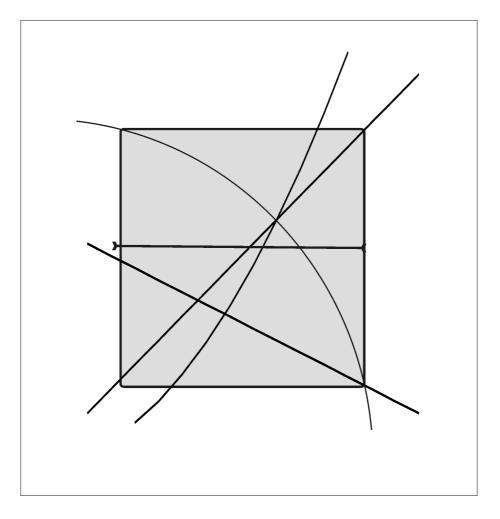


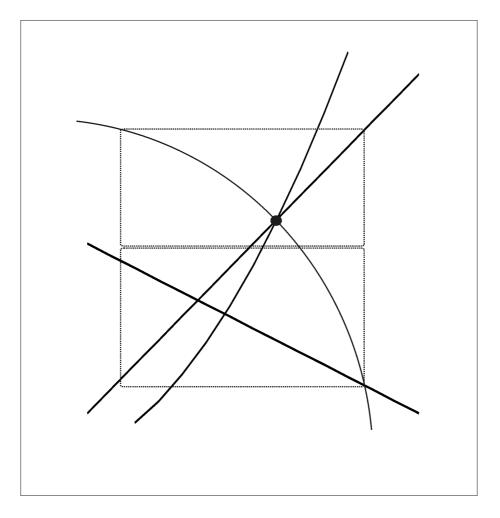




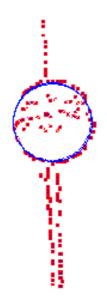




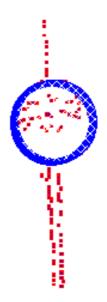




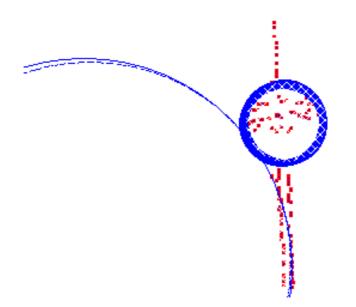
6 Results



q= 0.70 m (i.e. 70% of the data can be outlier)



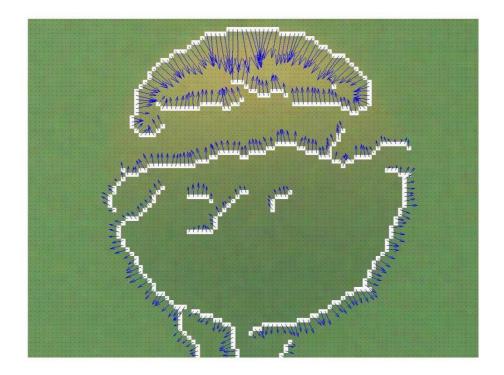
q= 0.80 m (i.e. 80% of the data can be outlier)



q= 0.81 m (i.e. 81% of the data can be outlier)

O'Gorman and Clowes (1976), in the context of the Hough transform (1972):

the local gradient of the image intensity is orthogonal to the edge.



Now, $\mathbf{y} = (y_1, y_2, y_3)^T$ where y_3 is the direction of the gradient.

The gradient condition is

$$\det \left(\begin{array}{cc} \frac{\partial f(\mathbf{p},\mathbf{y})}{\partial y_1} & \cos\left(y_3\right) \\ \frac{\partial f(\mathbf{p},\mathbf{y})}{\partial y_2} & \sin\left(y_3\right) \end{array}\right) = 0.$$

For
$$f(\mathbf{p}, \mathbf{y}) = (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2$$
, we get

$$f(\mathbf{p}, \mathbf{y}) = \begin{pmatrix} (y_1 - p_1)^2 + (y_2 - p_2)^2 - p_3^2 \\ (y_1 - p_1)\sin(y_3) - (y_2 - p_2)\cos(y_3) \end{pmatrix}.$$

New outliers: the edge points that are on the shape, but that do not satisfy the gradient condition.

The computing time is now 2 seconds instead of 15 seconds.

7 Hough transform

The Hough transform is defined by

 $\eta (\mathbf{p}) = \mathsf{card} \left\{ i \in \{1, \ldots, m\}, \exists \mathbf{y} \in [\mathbf{y}](i), \mathbf{f} (\mathbf{p}, \mathbf{y}) = \mathbf{0} \right\}.$

Hough method keeps all \mathbf{p} such that $\eta(\mathbf{p}) \geq m - q$.

Instead, our approach solves $\eta(\mathbf{p}) \geq m - q$.

8 Perspective

