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1. Présentation
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X2 = —Uu

The small-time local controllability can only be obtained for
driftless states.

For .71, the driftless states have the form X = (0,x).



Linearization. The linearized system around a driftless states X is
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Controllability matrix
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Since rank(Ccom) = 1, we cannot conclude anything about the local
accessibility.



Lie brackets for controllability

2. Lie brackets for
controllability



Lie brackets for controllability

Dubins car



Lie brackets for controllability

X] = Uujpcosxs
Xy = u sinx3
X3 = U



Lie brackets for controllability

i.e.,
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Lie brackets for controllability

cosx3 0 sinxg
Rank | sinx3 0 —cosx; | =3
0 1 0

The system is small-time locally controllable.



Lie brackets for controllability

Interpretation of the Lie bracket: If we apply the cyclic
sequence:

t€[0,8] t€[8,28] t€[26,30] t€[38,46]
u1:1 u1:0 u1:—1 u1:0
uy =0 uy =1 u; =0 uy = —1

then
x(t+46) =x(1)+[f,g] (x(1)) 82+o (52) .



Lie brackets for controllability

Swim disk with cubic friction



Lie brackets for controllability

The system has drift



Lie brackets for controllability
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Lie brackets for controllability

Swim disk with square friction
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Again, the rank of Lie(f,g) is full, but the system is not controllable.
Indeed
k1 +ip=—-x1 <0

We have bad Lie brackets.
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3. Large cycles



Large cycles
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Large cycles

The system

X2 = —Uu

is globally accessible from any initial state.
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Large cycles

Swim cycle



Large cycles

The parameters (a,®,e) of the swim cycle corresponding to

Wy, m,T,b are
=0+ 0
_ —b?—by/b2—4(w—b)wy
a= 2(b—w))
~_ T
€=z, 7
a2 ' b2
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Controller
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Large cycles

Proposition. The speed system .¥ is fully .Z-asymptotically
controllable.



Large cycles

We take the .Z norm
L) = / x(7)|de
We define

Xsel(t) = 0 ift<n
Xt —e(t) = x(f) otherwise



Large cycles

The function x(7) : R — R asymptotically converges to zero with
respect to .Z, we will write x Zoif

Ve > O,Elt],.i/ﬂ(xtl_)oo> S E.

A system x = f(x,u) Z-asymptotically stable if for any x(0), each
i A
x;(1) satisfies x; = 0.
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