A contractor which is minimal for narrow boxes

L. Jaulin

27-29 June 2023 SWIM'23, Angers

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Goodbye Nico

Stability analysis of linear systems Minimal contractors Asymptotic minimality Results

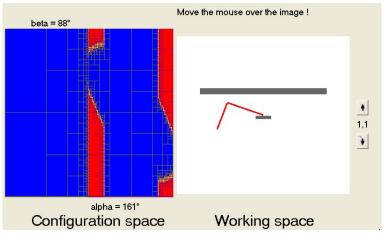
1. Goodbye Nico

▲ロ▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Nicolas Delanoue < □ > < □ > < □ > < □ > < □ > æ

Goodbye Nico

Stability analysis of linear systems Minimal contractors Asymptotic minimality Results



Configuration space

A star-spangled decomposition for the set

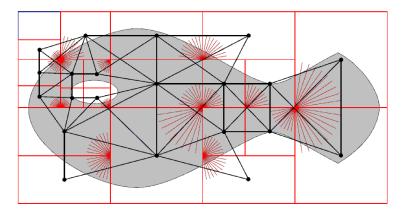
$$\mathbb{S} = \left\{ (x, y) \in \mathbb{R}^2 \mid \left(\begin{array}{c} x^2 + 4y^2 - 16\\ 2\sin x - \cos y + y^2 - \frac{3}{2}\\ -(x + \frac{5}{2})^2 - 4(y - \frac{2}{5})^2 + \frac{3}{10} \end{array} \right) \le 0 \right\},\$$

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

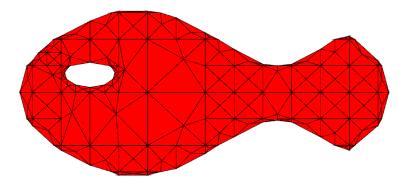
is:

Goodbye Nico

Stability analysis of linear systems Minimal contractors Asymptotic minimality Results



An extension of this approach has also been developed by N. Delanoue to compute a triangulation homeomorphic to \mathbb{S} .



▲□→ ▲圖→ ▲国→ ▲国→ 三国

Tips : With a microscope we can see everything.

2. Stability of a linear systems

(日) (日) (日) (日) (日) (日) (日)

Consider the Palm system

$$\ddot{x} + \sin(p_1p_2) \cdot \ddot{x} + p_1^2 \cdot \dot{x} + p_1p_2 \cdot x = 0$$

Its characteristic function is

$$\theta(\mathbf{p},s) = s^3 + \sin(p_1p_2) \cdot s^2 + p_1^2 \cdot s + p_1p_2$$

Stability domain

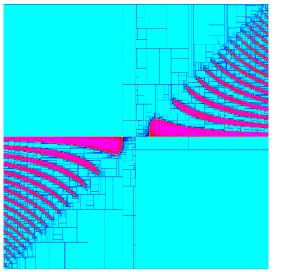
 $\mathbb{S} = \{\mathbf{p} \,|\, \boldsymbol{\theta}(\mathbf{p}, s) \,\mathsf{Hurwitz} \}.$

<ロ> <同> <同> <同> <同> < 同> < 同> <

We have

$$\mathbb{S}: \begin{cases} p_1 p_2 \ge 0\\ \sin(p_1 p_2) \ge 0\\ p_1^2 \sin(p_1 p_2) - p_1 p_2 \ge 0 \end{cases}$$

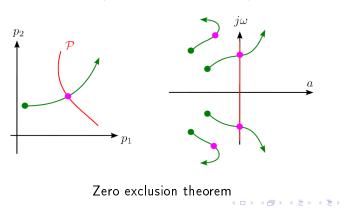
メロト メタト メヨト メヨト 三日



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Value set approach

The roots of $\theta(\mathbf{p},s) = 0$ change continuously with \mathbf{p} . We define the *value set*



$$\mathscr{P} = \{ \mathbf{p} | \exists \boldsymbol{\omega} > 0, \, \boldsymbol{\theta}(\mathbf{p}, j\boldsymbol{\omega}) = 0 \}.$$

Cut off frequency. The roots of

$$P(s) = s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}$$

are in the disk with center $\boldsymbol{0}$ and radius

$$\omega_c = 1 + \max\{\|a_0\|, \|a_1\|, \dots, \|a_{n-1}\|\}$$

<ロ> <同> <同> <同> <同> < 同> < 同> <

3

which is the Cauchy bound.

For

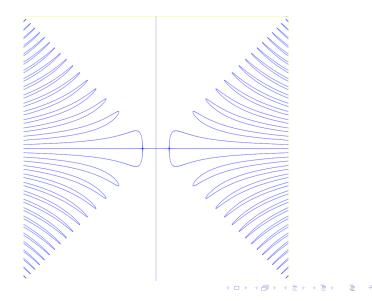
$$\theta(\mathbf{p},s) = s^3 + \sin(p_1p_2) \cdot s^2 + p_1^2 \cdot s + p_1p_2$$

and $s = j\omega$, we get

$$(j\omega)^3 + \sin(p_1p_2) \cdot (j\omega)^2 + p_1^2 \cdot (j\omega) + p_1p_2 = 0$$

$$\Leftrightarrow \quad -j\omega^3 - \sin(p_1p_2) \cdot \omega^2 + jp_1^2 \cdot \omega + p_1p_2 = 0$$

$$\Leftrightarrow \quad \begin{cases} -\sin(p_1p_2) \cdot \omega^2 + p_1p_2 = 0 \\ -\omega^2 + p_1^2 = 0 \end{cases}$$



Linear systems with delays

▲ロト ▲御ト ▲ヨト ▲ヨト 三回 めんの

Periodic system

$$x(t+1) - x(t) = 0$$

The characteristic function is

$$\boldsymbol{\theta}(s) = e^s - 1$$

The roots are

 $s = 2\pi kj, k \in \mathbb{N}$

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ●

Turkulov system. Consider the system

$$\ddot{x}(t) + 2\dot{x}(t - p_1) + x(t - p_2) = 0$$

Its characteristic function is

$$\boldsymbol{\theta}(\mathbf{p},s) = s^2 + 2se^{-sp_1} + e^{-sp_2}.$$

We define

$$\mathscr{P} = \{\mathbf{p} \mid \exists \boldsymbol{\omega} > 0, \, \boldsymbol{\theta}(\mathbf{p}, j\boldsymbol{\omega}) = 0\}.$$

Now

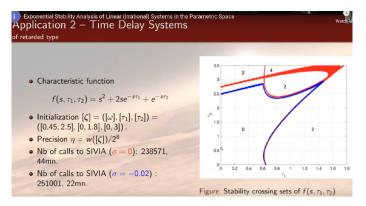
$$\begin{aligned} \theta(p_1, p_2, j\omega) \\ &= -\omega^2 + 2j\omega e^{-j\omega p_1} + e^{-j\omega p_2} \\ &= -\omega^2 + 2j\omega(\cos(\omega p_1) - j\sin(\omega p_1)) \\ &+ \cos(\omega p_2) - j\sin(-\omega p_2) \\ &= -\omega^2 + 2\omega\sin(\omega p_1) + \cos(\omega p_2) \\ &+ j \cdot (2\omega\cos(\omega p_1) - \sin(\omega p_2)) \end{aligned}$$

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

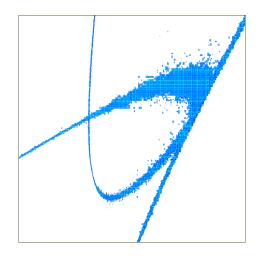
We have

$$\Leftrightarrow \underbrace{\begin{pmatrix} \theta(p_1, p_2, j\omega) = 0 \\ (-\omega^2 + 2\omega \sin(\omega p_1) + \cos(\omega p_2) \\ 2\omega \cos(\omega p_1) - \sin(\omega p_2) \end{pmatrix}}_{\mathbf{f}(p_1, p_2, \omega)} = \mathbf{0}$$

With $[p_1] = [0, 2.5]$, $[p_2] = [1, 4]$, $[\omega] = [0, 10]$, with a Matlab implementation, with a forward-backward contractor, and $\varepsilon = 2^{-8}$, [5] got:



https://youtu.be/DaR2NZZIV10?t=2453



 $\varepsilon = 2^{-8}$, Codac [9] generated 43173 boxes. We still have a *Clustering effect*

Hey !

With a microscope you can see everything

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > <

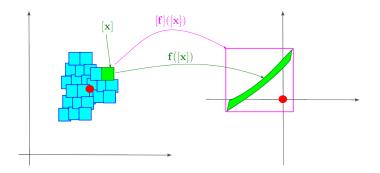
3. Minimal contractors

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Given a function $\mathbf{f}:\mathbb{R}^n\mapsto\mathbb{R}^p.$ An inclusion function for \mathbf{f} is minimal if

 $[\mathbf{f}]([\mathbf{x}]) = [\![\{\mathbf{y} = \mathbf{f}(\mathbf{x}) \,|\, \mathbf{x} \in [\mathbf{x}]\}]\!].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ



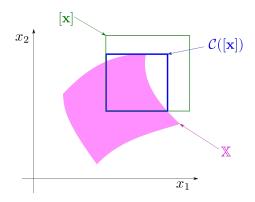
With a minimal inclusion, the clustering effect may exist, when solving $\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{0}$

イロト イロト イヨト イヨト 三日

A contractor associated to the set $X \subset \mathbb{R}^n$ is a function $\mathscr{C} : \mathbb{IR}^n \mapsto \mathbb{IR}^n$ such that

$$\begin{array}{ll} \mathscr{C}([\mathbf{x}]) \subset [\mathbf{x}] & \quad \mbox{(contraction)} \\ [\mathbf{x}] \cap \mathbb{X} \subset \mathscr{C}([\mathbf{x}]) & \quad \mbox{(consistency)} \end{array}$$

It is minimal if $\mathscr{C}([\mathbf{x}]) = \llbracket [\mathbf{x}] \cap \mathbb{X} \rrbracket$.



(日) (日) (日) (日) (日) (日) (日)

Tree matrices

Consider the interval linear system:

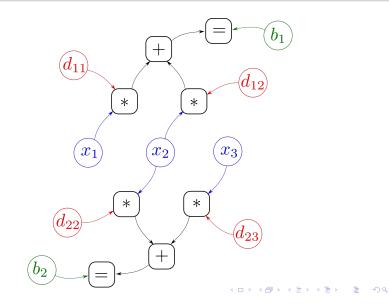
$$\left(\begin{array}{ccc} d_{11} & d_{12} & 0 \\ 0 & d_{22} & d_{23} \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} b_1 \\ b_2 \end{array}\right)$$

where

$$d_{ij} \in [d_{ij}], x_j \in [x_j], b_i \in [b_i]$$

(日) (종) (종) (종) (종) (종)

The optimal contraction can be obtained by a simple interval propagation.



No cycle for:

$$\left(\begin{array}{cccc} d_{11} & d_{12} & 0 & 0\\ 0 & d_{22} & d_{23} & 0\\ 0 & 0 & d_{33} & d_{34} \end{array}\right) \left(\begin{array}{c} x_1\\ x_2\\ x_3\\ x_4 \end{array}\right) = \left(\begin{array}{c} b_1\\ b_2\\ b_3 \end{array}\right)$$

A matrix **D** such that $\mathbf{D} \cdot \mathbf{x} = \mathbf{b}$ has no cycle is a *tree matrix*.

We a Gauss Jordan transformation:

 $\mathbf{A}\mathbf{x} = \mathbf{c} \Leftrightarrow \mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{Q} \cdot \mathbf{c}$

we may get a tree matrix: $\mathbf{D} = \mathbf{Q} \cdot \mathbf{A}$.

Simplex contractor

For the linear system

$$Ax = c, x \in [x], c \in [c]$$

we can use the simplex algorithm to build the minimal contractor. Guarantee can be obtained with an inflation [8]

4. Asymptotic minimality

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 めんの

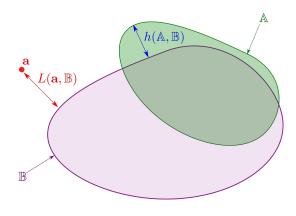
Proximity. Denote by $L(\mathbf{a}, \mathbf{b})$ a distance between \mathbf{a} and \mathbf{b} of \mathbb{R}^n induced by the *L*-norm (L_{∞} or L_2). The *proximity* of \mathbb{A} to \mathbb{B} is

$$h(\mathbb{A},\mathbb{B}) = \sup_{\mathbf{a}\in\mathbb{A}} L(\mathbf{a},\mathbb{B})$$

where

$$L(\mathbf{a},\mathbb{B}) = \inf_{\mathbf{b}\in\mathbb{B}} L(\mathbf{a},\mathbf{b}).$$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト



Proximity of $\mathbb A$ to $\mathbb B$

Definition. The pessimism of an inclusion function $[\mathbf{f}]$ is

 $\eta([\mathbf{x}]) = h([\mathbf{f}]([\mathbf{x}]), [\![\mathbf{f}([\mathbf{x}])]\!])$

Definition. An inclusion function $[\mathbf{f}]$ is of order j if

 $\boldsymbol{\eta}([\mathbf{x}]) = o(w^j([\mathbf{x}]))$

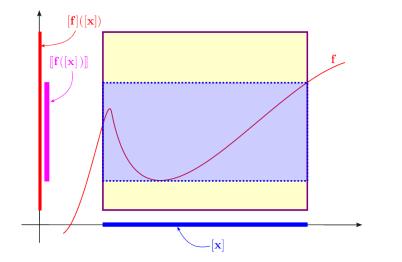
Definition. [f] is convergent if it is of order j = 0:

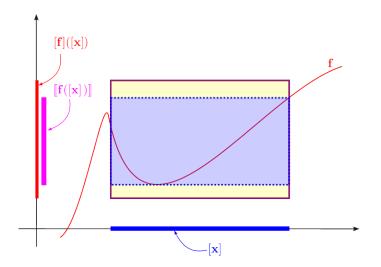
 $\eta([\mathbf{x}]) = o(w^0([\mathbf{x}])) = O(w([\mathbf{x}]))$

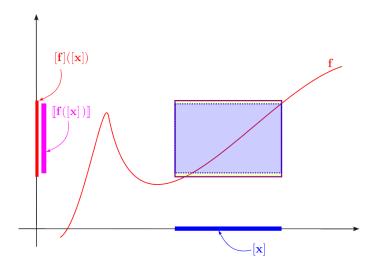
イロト イポト イヨト イヨト 三日

Definition. [f] is asymptotically minimal if it is of order j = 1:

 $\boldsymbol{\eta}([\mathbf{x}]) = o(w([\mathbf{x}]))$







Proposition. The centered form

$$[\mathbf{f}]([\mathbf{x}]) = \mathbf{f}(\mathbf{m}) + [\mathbf{f}']([\mathbf{x}]) \cdot ([\mathbf{x}] - \mathbf{m})$$

where $\mathbf{m} = \text{center}([\mathbf{x}])$ is asymptotically minimal.

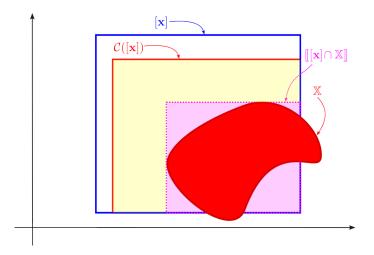
Definition. The pessimism of a contractor ${\mathscr C}$ for ${\mathbb X}$ at [x] is

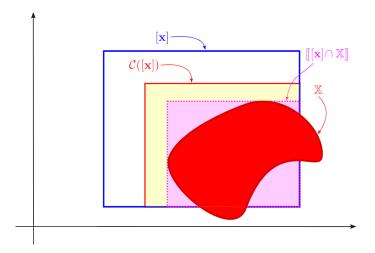
 $\eta([\mathbf{x}]) = h(\mathscr{C}([\mathbf{x}]), \llbracket [\mathbf{x}] \cap \mathbb{X} \rrbracket)$

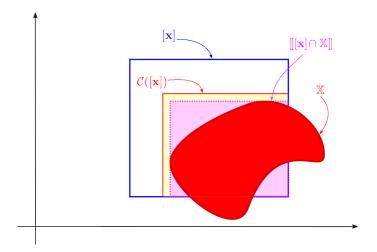
(日) (종) (종) (종) (종) (종)

Definition. A contractor \mathscr{C} for \mathbb{X} is of order j if

 $\boldsymbol{\eta}([\mathbf{x}]) = o(w^j([\mathbf{x}]))$







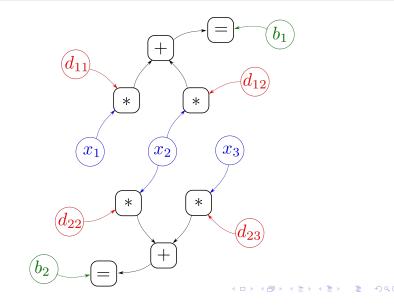
Proposition. Consider a set $X = \{x \in \mathbb{R}^n | f(x) = 0\}$. Take [x] with center \mathbf{m} . Define \mathbf{Q} s.t. $\mathbf{Q} \cdot \frac{d\mathbf{f}}{dx}(\mathbf{m})$ is a tree matrix. An interval propagation on;

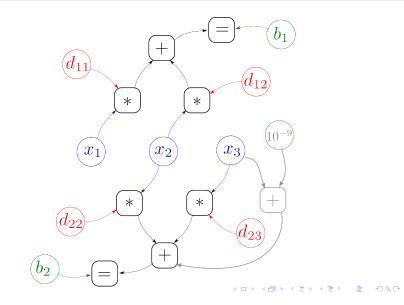
$$\begin{aligned} \mathbf{Q} \cdot \mathbf{f}(\mathbf{m}) + \mathbf{Q} \cdot \mathbf{A} \cdot (\mathbf{x} - \mathbf{m}) &= \mathbf{0} \\ \mathbf{A} \in [\frac{d\mathbf{f}}{d\mathbf{x}}]([\mathbf{x}]) \\ \mathbf{x} \in [\mathbf{x}] \end{aligned}$$

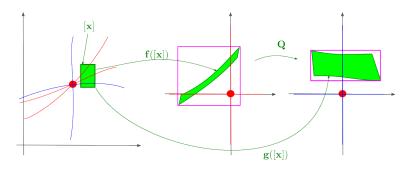
イロト 不得 トイヨト イヨト 三日

yields an asymptotically minimal contractor for \mathbb{X} .

Proof. ...







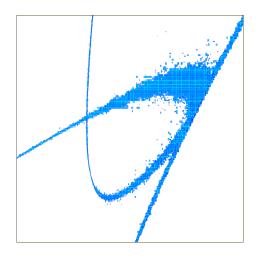
Centered contractor

Input:	f, [x]
1	$\mathbf{m} = center([\mathbf{x}])$
2	Compute the Gauss-Jordan matrix Q for $\frac{d\mathbf{f}}{d\mathbf{x}}(\mathbf{m})$
3	Define $\mathbf{g}(\mathbf{x}) = \mathbf{Q} \cdot \mathbf{f}(\mathbf{x})$
4	For $i \in \{1, \dots, p\}$
5	For $j \in \{1, \dots, n\}$
6	$[\mathbf{a}] = [\frac{\partial g_i}{\partial \mathbf{x}}]([\mathbf{x}])$
7	$[s] = \sum [a_k] \cdot ([x_k] - m_k)$
	$k \neq j$
8	$[x_j] = [x_j] \cap (-g_i(\mathbf{m}) - [s])$
9	Return [x]

```
def GaussJordan(A):
   n=A.shape[0]
   m=A.shape[1]
   P.L.U = lu(A)
   Q=inv(P@L)
   for i in range(n-1, 0, -1):
      p=m-n
      K=U[i,i+p]*np.eye(n)
      K[0:i,i] = -U[0:i,i+p]
      Q=K@Q
      U=Q@A
   return Q
```

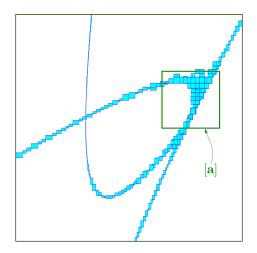
5. Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

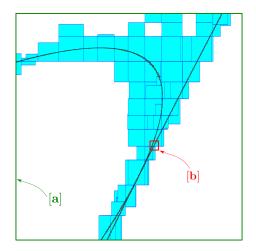


With a forward-backward contractor and $arepsilon=2^{-8}$

(日) (종) (종) (종) (종) (종)

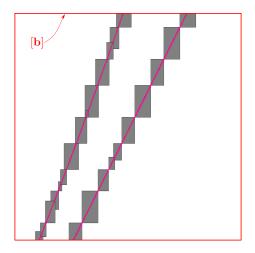


With the centered contractor ${m arepsilon}=2^{-4}$



Blue:
$$arepsilon=2^{-4}$$
 ; Thin: $arepsilon=2^{-8}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



Gray: $oldsymbol{arepsilon}=2^{-8}$; Magenta: $oldsymbol{arepsilon}=2^{-12}$

Contributions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ① ○○○

Notion of asymptotic minimal contractor Link between the preconditioning and acyclic constraint networks Better results than the basic affine arithmetic No use of guaranteed linear programming

Perspectives

Compare with modern affine-arithmetic approaches Improve the tree preconditioning Use linear programming with an order 1 inflation Implement in codac.io

References

◆□ > ◆□ > ◆ 三 > ◆ 三 > ◆ □ > ● □ > ◆ □ > ◆ □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ > ● □ >

- Thesis of Nico (2006) : [1]
- Counting the connected components of a subset of $\mathbb{R}^n[2]$

イロト イポト イヨト イヨト 二日

- Stability : [3]
- Palm system : [4]
- Propagation in a tree is perfect : [6]
- Turkulov system [10]
- Centered form [7]

N. Delanoue.

Algorithmes numériques pour l'analyse topologique. PhD dissertation, Université d'Angers, Angers, France, 2006.

N. Delanoue, L. Jaulin, and B. Cottenceau. Counting the number of connected components of a set and its application to robotics.

In Applied Parallel Computing, J. Dongarra, K. Madsen, J. Wasniewski (Eds), Lecture Notes in Computer Science, 3732:93–101, 2006.

N. Delanoue, L. Jaulin, and B. Cottenceau.
 An algorithm for computing a neighborhood included in the attraction domain of an asymptotically stable point.
 Communications in Nonlinear Science and Numerical Simulation, 21(1-3):181-189, 2015.

L. Jaulin.

Solution globale et garantie de problèmes ensemblistes ; application à l'estimation non linéaire et à la commande robuste.

PhD dissertation, Université Paris-Sud, Orsay, France, 1994.

🔋 R. Malti, M. Rapaić, and V. Turkulov.

A unified framework for robust stability analysis of linear irrational systems in the parametric space.

Automatica, 2022. Second version, under review (see also https://hal.archives-ouvertes.fr/hal-03646956).

U. Montanari and F. Rossi.

Constraint relaxation may be perfect.

Artificial Intelligence, 48(2):143-170, 1991 + CB + CE + CE + SC

R. Moore.

Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, jan 1979.

📄 A. Neumaier and O. Shcherbina.

Safe bounds in linear and mixed-integer linear programming. *Math. Program.*, 99(2):283–296, 2004.

🔋 S. Rohou.

Codac (Catalog Of Domains And Contractors), available at http://codac.io/. Robex, Lab-STICC, ENSTA-Bretagne, 2021.

V. Turkulov, M. Rapaić, and R. Malti. Stability analysis of time-delay systems in the parametric space.

Automatica, 2022.

Provisionally accepted. Third version submitted (see also https://arxiv.org/abs/2103.15629).