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1 Probabilistic-set approach



About interval methods

Interval methods provide guaranteed results only if some

assumptions (bounds on the errors, constraints, state space

model, . . . ) are satisfied.

In practice we are not able to give 100% reliable assump-

tions, but we can associate some probabilities on them.



For parameter estimation, if that the assumptions are satis-

fied with a probability π, the solution set encloses the true

value for the parameter vector with a probability > π.



Bounded-error estimation

y = ψ (p) + e,

where

• e ∈ E ⊂ Rm is the error vector,

• y ∈ Rm is the collected data vector,

• p ∈ Rn is the parameter vector to be estimated.



Or equivalently

e = f (y,p) = fy (p) ,

where

fy (p) = y −ψ (p) .



The posterior feasible set for the parameters is

P̂ = f−1y (E) ∩ P.



In a Bayesian approach, prior pdf Πe,Π
prior
p are known for

e,p.

The Bayes rule gives us the posterior pdf for p

Πpost
p (p) =

Πe(fy (p)).Π
prior
p (p)

∫
p∈RnΠe(fy (p)).Π

prior
p (p).dp

.





Probabilistic-set approach. We decompose the error space

into two subsets: E on which we bet e will belong and E.

We set

π = Pr (e ∈ E)
The event e ∈ E is considered as rare, i.e.,

π ≃ 1



Once y is collected, we compute

P̂ = f−1y (E) ∩ P.
If now P̂ �= ∅, we conclude that p ∈ P̂ with a probability

of π.

If P̂ = ∅, than we conclude the rare event e ∈ E occurred.



Example 1. The model is described by y = p2 + e, i.e.,

e = y − p2 = fy (p)
Assume that Πe:N (0, 1) . If E = [−6, 6] then,

Pr
(
e ∈ E

)
= − 1√

2π

∫ 6

−6
exp

(
−e

2

2

)
de ≃ 1.97×10−9.



We now collect y = 10. We have

P̂ = f−1y (E) ∩ P = f−1y ([−6, 6]) ∩ [−∞,∞]
=

√
10− [−6, 6] =

√
[4, 16] = [−4,−2] ∪ [2, 4].

with a prior probability of 1− 1.97× 10−9.



Let us apply the Bayesian approach, with Π
prior
p : N (3, 1).

The posterior pdf for p is

Πpost
p (p) =

Πe(fy (p)).Π
prior
p (p)

∫
p∈RΠe(fy (p)).Π

prior
p (p)dp

=
e−
(10−p2)2

2 .e−
(p−3)2
2

∫∞
−∞ e

−(10−p
2)2

2 .e−
(p−3)2
2 .dp

≃ 2.57 e−
p4−19p2−6p+109

2 .



Example 2. Now y = −10. Since

P̂ = f−1y (E) = ∅,
the probabilistic-set approach concludes to an inconsistency.

The Bayesian approach gives

Πpost
p (p) ≃ 6.930 5× 1023.e−

p4−39p2−6p+409
2 .

which corresponds to a precise posterior pdf for p around

p = 4.45.

In practice, the huge factor (6.930 5×1023) is interpreted
as an inconsistency.



Example 3. Assume that

Pr (e1 ≤ −1) = 0.2, Pr (e2 ≤ −2) = 0.2,
Pr (e1 ∈ [−1, 1]) = 0.4, Pr (e2 ∈ [−2, 3]) = 0.6,
Pr (e1 ∈ [1, 2]) = 0.2, Pr (e2 ≥ 3) = 0.2,
Pr (e1 ≥ 2) = 0.2.

and that e1 and e2 are independent.





The joint pdf for (e1, e2) is

[e2]
\[e1] [−∞,−1] [−1, 1] [1, 2] [2,∞]

[3,∞] 0.04 0.08 0.04 0.04
[−2, 3] 0.12 0.24 0.12 0.12

[−∞,−2] 0.04 0.08 0.04 0.04

Thus

Pr (e ∈ E) = 0.08+0.04+0.12+0.24+0.12+0.12+0.08 = 0.8.
P̂ = f−1y (E) encloses p with a prior probability of 0.8.



Remark: Representing the pdf Πe for the error by boxes

with an associated probability can be interpreted as a dis-

cretization of Πe. The resulting object can be represented

via

• potential clouds (Neumaier),

• p-boxes (Berleant) or

• Dempster-Shafer structures.

However, such abstractions will not be needed here and we

limit ourselves to classical probabilities.



2 Robust regression



Consider the error model

e = fy (p) .

yi is an inlier if ei ∈ [ei] and an outlier otherwise. We

assume that

∀i, Pr (ei ∈ [ei]) = π
and that all ei’s are independent.



Equivalently,





f1 (y,p) ∈ [e1] with a probability π
... ...

fm (y,p) ∈ [em] with a probability π



The number k of inliers follows a binomial distribution

m!

k! (m− k)!π
k. (1− π)m−k .



The probability of having strictly more than q outliers is

thus

γ (q,m, π)
def
=
m−q−1∑

k=0

m!

k! (m− k)!π
k. (1− π)m−k .

Example. For instance, if m = 1000, q = 900, π = 0.2,

we get γ (q,m, π) = 7.04 × 10−16. Thus having more

than 900 outliers can be seen as a rare event.



Denote by E the set of all e ∈ Rm such that the number

of outliers is smaller (or equal) than q.

P̂ = f−1y (E) will contain the parameter vector with a prior

probability of 1− γ (q,m, π) .



Illustration the q-relaxed intersection





3 Test case



Generation of data. m = 500 data are generated as

follows

yi = p1 sin (p2ti) + ei, with a probability 0.2.

yi = r1 exp (r2ti) + ei, with a probability 0.2.

yi = ni

where ti = 0.02∗(i+1), i ∈ {1, 500}, ei : U ([−0.1, 0.1])
and ni : N (2, 3).

We took p∗ = (2, 2)T and r∗ = (4,−0.4)T.



Estimation. We know that

yi = p1 sin (p2ti) + ei,with a probability 0.2.

and that we have no idea of what happen otherwise.

We want

Pr
(
p∗ ∈ P̂

)
≥ 0.95

Since γ (414, 500, 0.2) = 0.0468 and γ (413, 500, 0.2) =

0.12, we should assume q = 414 outliers.





4 State estimation



{
x(k + 1) = fk(x(k),n (k))
y(k) = gk(x(k)),

with n (k) ∈ N (k) and y (k) ∈ Y (k).



Without outliers

X(k + 1) = fk
(
X(k) ∩ g−1k (Y(k)) , N (k)

)
.



Define



fk:k (X)

def
= X

fk1:k2+1 (X)
def
= fk2(fk1:k2 (X) ,N (k2)), k1 ≤ k2.

The set fk1:k2 (X) represents the set of all x (k2), consis-

tent with x (k1) ∈ X.



Consider the set state estimator




X(k) = f0:k (X(0)) if k < m, (initialization step)
X(k) = fk−m:k (X(k −m)) ∩

{q}⋂

i∈{1,...,m}
fk−i:k◦g−1k−i (Y(k − i)) if k ≥ m





We assume that all errors are time independent.

If (i) within any time window of lengthm we have less than

q outliers and that (ii) X(0) contains x (0), then X(k)

encloses x (k).

What is the probability of this assumption ?



DefineHq(k1:k2), which states that among all k2−k1+1
output vectors, y(k1), . . . ,y(k2), at most q of them are

outlier. We have

Pr (Hq(k −m : k − 1)) =
m∑

i=m−q

m!

i! (m− i)!π
i
y. (1− πy)m−i .



Theorem. Consider the sequence of sets X(0),X(1), . . .

built by the set observer. We have

Pr (x (k) ∈ X(k)) ≥ α ∗ Pr (x (k − 1) ∈ X(k − 1))
where

α = m

√√√√√
m∑

i=m−q

m! πiy. (1− πy)m−i
i! (m− i)!

with an equality if N (k) are singletons.



5 Application to localization



Sauc’isse robot inside a swimming pool



The robot evolution is described by




ẋ1 = x4 cosx3
ẋ2 = x4 sinx3
ẋ3 = u2 − u1
ẋ4 = u1 + u2 − x4,

where x1, x2 are the coordinates of the robot center, x3 is

its orientation and x4 is its speed. The inputs u1 and u2
are the accelerations provided by the propellers.



The system can be discretized by xk+1 = fk (xk) , where,

fk




x1
x2
x3
x4


 =




x1 + δ.x4. cos (x3)
x2 + δ.x4. sin (x3)

x3 + δ. (u2(k)− u1(k))
x4 + δ. (u1(k) + u2(k)− x4)






Underwater robot moving inside a pool





Emission diagram at time t = 9 sec





t(sec) Pr (x ∈ X) Outliers
3.0 ≥ 0.965 58
6.0 ≥ 0.932 50
9.0 ≥ 0.899 42
12.0 ≥ 0.869 51
15.0 ≥ 0.838 51
16.2 ≥ 0.827 49


