Probabilistic set-membership estimation

Luc Jaulin

www.ensieta.fr/jaulin/ ENSIETA, Brest

June 10, 2009

SWIM'09, Lausanne

1 Probabilistic-set approach

About interval methods

Interval methods provide guaranteed results only if some assumptions (bounds on the errors, constraints, state space model, \ldots) are satisfied.

In practice we are not able to give 100% reliable assumptions, but we can associate some probabilities on them.

For parameter estimation, if that the assumptions are satisfied with a probability π , the solution set encloses the true value for the parameter vector with a probability $> \pi$.

Bounded-error estimation

$$\mathbf{y}=\boldsymbol{\psi}\left(\mathbf{p}\right)+\mathbf{e},$$

where

- $\mathbf{e} \in \mathbb{E} \subset \mathbb{R}^m$ is the error vector,
- $\mathbf{y} \in \mathbb{R}^m$ is the collected data vector,
- $\mathbf{p} \in \mathbb{R}^n$ is the parameter vector to be estimated.

Or equivalently

$$\mathbf{e}=\mathbf{f}\left(\mathbf{y},\mathbf{p}
ight)=\mathbf{f_{y}}\left(\mathbf{p}
ight),$$

where

$$\mathbf{f}_{\mathbf{y}}\left(\mathbf{p}\right) = \mathbf{y} - \psi\left(\mathbf{p}\right)$$
.

The posterior feasible set for the parameters is

 $\widehat{\mathbb{P}}=\mathbf{f}_{\mathbf{y}}^{-1}\left(\mathbb{E}
ight)\cap\mathbb{P}.$

In a Bayesian approach, prior pdf $\Pi_{e},\Pi_{p}^{\text{prior}}$ are known for e,p.

The Bayes rule gives us the posterior pdf for ${\bf p}$

$$\Pi_{\mathbf{p}}^{\mathsf{post}}(\mathbf{p}) = \frac{\Pi_{\mathbf{e}}(\mathbf{f}_{\mathbf{y}}(\mathbf{p})).\Pi_{\mathbf{p}}^{\mathsf{prior}}(\mathbf{p})}{\int_{\mathbf{p}\in\mathbb{R}^{n}}\Pi_{\mathbf{e}}(\mathbf{f}_{\mathbf{y}}(\mathbf{p})).\Pi_{\mathbf{p}}^{\mathsf{prior}}(\mathbf{p}).d\mathbf{p}}.$$

Probabilistic-set approach. We decompose the error space into two subsets: \mathbb{E} on which we bet e will belong and $\overline{\mathbb{E}}$.

We set

$$\pi = \mathsf{Pr}\left(\mathbf{e} \in \mathbb{E}
ight)$$

The event $\mathbf{e}\in\overline{\mathbb{E}}$ is considered as rare, i.e.,

 $\pi\simeq 1$

Once ${\bf y}$ is collected, we compute

$$\widehat{\mathbb{P}}=\mathbf{f}_{\mathbf{y}}^{-1}\left(\mathbb{E}
ight)\cap\mathbb{P}.$$

If now $\widehat{\mathbb{P}} \neq \emptyset$, we conclude that $\mathbf{p} \in \widehat{\mathbb{P}}$ with a probability of π .

If $\widehat{\mathbb{P}} = \emptyset$, than we conclude the rare event $\mathbf{e} \in \overline{\mathbb{E}}$ occurred.

Example 1. The model is described by $y = p^2 + e$, *i.e.*,

$$e = y - p^2 = f_y(p)$$

Assume that $\Pi_{e}:\mathcal{N}(0,1)$. If $\mathbb{E}=[-6,6]$ then,

$$\Pr\left(e \in \overline{\mathbb{E}}\right) = -\frac{1}{\sqrt{2\pi}} \int_{-6}^{6} \exp\left(-\frac{e^2}{2}\right) de \simeq 1.97 \times 10^{-9}$$

We now collect y = 10. We have

$$\widehat{\mathbb{P}} = f_y^{-1}(\mathbb{E}) \cap \mathbb{P} = f_y^{-1}([-6,6]) \cap [-\infty,\infty]$$

= $\sqrt{10 - [-6,6]} = \sqrt{[4,16]} = [-4,-2] \cup [2,4].$

with a prior probability of $1-1.97 imes10^{-9}.$

Let us apply the Bayesian approach, with $\Pi_p^{\text{prior}} : \mathcal{N}(3, 1)$. The posterior pdf for p is

$$\Pi_{p}^{\text{post}}(p) = \frac{\Pi_{e}(f_{y}(p)).\Pi_{p}^{\text{prior}}(p)}{\int_{p \in \mathbb{R}} \Pi_{e}(f_{y}(p)).\Pi_{p}^{\text{prior}}(p)dp}$$
$$= \frac{e^{-\frac{(10-p^{2})^{2}}{2}}.e^{-\frac{(p-3)^{2}}{2}}}{\int_{-\infty}^{\infty} e^{-\frac{(10-p^{2})^{2}}{2}}.e^{-\frac{(p-3)^{2}}{2}}.dp}$$
$$\simeq 2.57 \ e^{-\frac{p^{4}-19p^{2}-6p+109}{2}}.$$

Example 2. Now y = -10. Since

$$\widehat{\mathbb{P}}=f_{y}^{-1}\left(\mathbb{E}\right)=\emptyset,$$

the probabilistic-set approach concludes to an inconsistency. The Bayesian approach gives

$$\Pi_p^{\mathsf{post}}(p) \simeq 6.9305 imes 10^{23}.e^{-rac{p^4 - 39p^2 - 6p + 409}{2}}.e^{-rac{p^4 - 39p^2 - 6p + 409}{2}}.e^{-2p + 40}{2}}.e^{-2p + 40}{2}}.e^$$

which corresponds to a precise posterior pdf for p around p = 4.45.

In practice, the huge factor (6.9305×10^{23}) is interpreted as an inconsistency.

Example 3. Assume that

$$\begin{array}{ll} \Pr\left(e_{1} \leq -1\right) &= 0.2, & \Pr\left(e_{2} \leq -2\right) &= 0.2, \\ \Pr\left(e_{1} \in [-1,1]\right) &= 0.4, & \Pr\left(e_{2} \in [-2,3]\right) &= 0.6, \\ \Pr\left(e_{1} \in [1,2]\right) &= 0.2, & \Pr\left(e_{2} \geq 3\right) &= 0.2, \\ \Pr\left(e_{1} \geq 2\right) &= 0.2. \end{array}$$

and that e_1 and e_2 are independent.

The joint pdf for (e_1, e_2) is

$[e_2]^{[e_1]}$	$[-\infty, -1]$	[-1, 1]	[1,2]	$[2,\infty]$
$[3,\infty]$	0.04	0.08	0.04	0.04
[-2, 3]	0.12	0.24	0.12	0.12
$[-\infty, -2]$	0.04	0.08	0.04	0.04

Thus

$$\label{eq:pressure} \begin{split} &\mathsf{Pr}\left(e\in\mathbb{E}\right)=0.08{+}0.04{+}0.12{+}0.24{+}0.12{+}0.12{+}0.08=0.8.\\ &\widehat{\mathbb{P}}=\mathbf{f}_{\mathbf{y}}^{-1}\left(\mathbb{E}\right) \text{ encloses }\mathbf{p} \text{ with a prior probability of }0.8. \end{split}$$

Remark: Representing the pdf Π_e for the error by boxes with an associated probability can be interpreted as a discretization of Π_e . The resulting object can be represented via

- *potential clouds* (Neumaier),
- *p-boxes* (Berleant) or
- Dempster-Shafer structures.

However, such abstractions will not be needed here and we limit ourselves to classical probabilities.

2 Robust regression

Consider the error model

$$\mathbf{e}=\mathbf{f}_{\mathbf{y}}\left(\mathbf{p}
ight)$$
 .

 y_i is an *inlier* if $e_i \in [e_i]$ and an *outlier* otherwise. We assume that

$$\forall i, \ \mathsf{Pr}\left(e_i \in [e_i]\right) = \pi$$

and that all e_i 's are independent.

Equivalently,

 $\begin{cases} f_1(\mathbf{y}, \mathbf{p}) \in [e_1] & \text{with a probability } \pi \\ \vdots & \vdots \\ f_m(\mathbf{y}, \mathbf{p}) \in [e_m] & \text{with a probability } \pi \end{cases}$

The number k of inliers follows a binomial distribution

$$\frac{m!}{k!(m-k)!}\pi^k.(1-\pi)^{m-k}.$$

The probability of having strictly more than q outliers is thus

$$\gamma(q, m, \pi) \stackrel{\text{def}}{=} \sum_{k=0}^{m-q-1} \frac{m!}{k! (m-k)!} \pi^k (1-\pi)^{m-k}.$$

Example. For instance, if m = 1000, q = 900, $\pi = 0.2$, we get $\gamma(q, m, \pi) = 7.04 \times 10^{-16}$. Thus having more than 900 outliers can be seen as a rare event.

Denote by \mathbb{E} the set of all $\mathbf{e} \in \mathbb{R}^m$ such that the number of outliers is smaller (or equal) than q.

 $\widehat{\mathbb{P}} = \mathbf{f}_{\mathbf{y}}^{-1}(\mathbb{E})$ will contain the parameter vector with a prior probability of $1 - \gamma(q, m, \pi)$.

Illustration the q-relaxed intersection

3 Test case

Generation of data. m = 500 data are generated as follows

$$y_i = p_1 \sin (p_2 t_i) + e_i$$
, with a probability 0.2.
 $y_i = r_1 \exp (r_2 t_i) + e_i$, with a probability 0.2.
 $y_i = n_i$

where $t_i = 0.02*(i+1)$, $i \in \{1, 500\}$, $e_i : \mathcal{U}([-0.1, 0.1])$ and $n_i : \mathcal{N}(2, 3)$.

We took $\mathbf{p}^* = (2,2)^{\mathsf{T}}$ and $\mathbf{r}^* = (4,-0.4)^{\mathsf{T}}$.

Estimation. We know that

 $y_i = p_1 \sin (p_2 t_i) + e_i$, with a probability 0.2.

and that we have no idea of what happen otherwise.

We want

$$\mathsf{Pr}\left(\mathbf{p}^{*}\in\widehat{\mathbb{P}}
ight)\geq \mathsf{0.95}$$

Since γ (414, 500, 0.2) = 0.0468 and γ (413, 500, 0.2) = 0.12, we should assume q = 414 outliers.

State estimation

$$\left\{ egin{array}{ll} \mathbf{x}(k+1) &=& \mathbf{f}_k(\mathbf{x}(k),\mathbf{n}\left(k
ight)) \ \mathbf{y}(k) &=& \mathbf{g}_k(\mathbf{x}(k)), \end{array}
ight.$$

with $\mathbf{n}(k) \in \mathbb{N}(k)$ and $\mathbf{y}(k) \in \mathbb{Y}(k)$.

Without outliers

$$\mathbb{X}(k+1) = \mathbf{f}_k\left(\mathbb{X}(k) \cap \mathbf{g}_k^{-1}\left(\mathbb{Y}(k)\right), \mathbb{N}(k)\right).$$

Define

$$\begin{cases} \mathbf{f}_{k:k} (\mathbb{X}) & \stackrel{\text{def}}{=} \mathbb{X} \\ \mathbf{f}_{k_1:k_2+1} (\mathbb{X}) & \stackrel{\text{def}}{=} \mathbf{f}_{k_2} (\mathbf{f}_{k_1:k_2} (\mathbb{X}), \mathbb{N} (k_2)), \ k_1 \leq k_2. \end{cases}$$

The set $\mathbf{f}_{k_1:k_2} (\mathbb{X})$ represents the set of all $\mathbf{x} (k_2)$, consis-

tent with $\mathbf{x}(k_1) \in \mathbb{X}$.

Consider the set state estimator

$$\begin{cases} \mathbb{X}(k) = \mathbf{f}_{0:k}(\mathbb{X}(0)) & \text{if } k < m, \text{ (initialization step)} \\ \mathbb{X}(k) = \mathbf{f}_{k-m:k}(\mathbb{X}(k-m)) \cap \\ \{q\} \\ \bigcap_{i \in \{1,...,m\}} \mathbf{f}_{k-i:k} \circ \mathbf{g}_{k-i}^{-1}(\mathbb{Y}(k-i)) & \text{if } k \ge m \end{cases}$$

We assume that all errors are time independent.

If (i) within any time window of length m we have less than q outliers and that (ii) $\mathbb{X}(0)$ contains $\mathbf{x}(0)$, then $\mathbb{X}(k)$ encloses $\mathbf{x}(k)$.

What is the probability of this assumption ?

Define $\mathcal{H}_q(k_1:k_2)$, which states that among all $k_2 - k_1 + 1$ output vectors, $\mathbf{y}(k_1), \ldots, \mathbf{y}(k_2)$, at most q of them are outlier. We have

$$\Pr\left(\mathcal{H}_q(k-m:k-1)
ight) = \sum_{i=m-q}^m rac{m!}{i! \ (m-i)!} \pi_y^i \cdot (1-\pi_y)^{m-i}$$

Theorem. Consider the sequence of sets $X(0), X(1), \ldots$ built by the set observer. We have

$$\mathsf{Pr}\left(\mathbf{x}\left(k
ight)\in\mathbb{X}(k)
ight)\geqlpha\ *\ \mathsf{Pr}\left(\mathbf{x}\left(k-1
ight)\in\mathbb{X}(k-1)
ight)$$

where

$$\alpha = \sqrt[m]{\sum_{i=m-q}^{m} \frac{m! \ \pi_{y}^{i} . (1 - \pi_{y})^{m-i}}{i! \ (m-i)!}}$$

with an equality if $\mathbb{N}(k)$ are singletons.

Application to localization

Sauc'isse robot inside a swimming pool

The robot evolution is described by

$$\begin{cases} \dot{x}_1 = x_4 \cos x_3 \\ \dot{x}_2 = x_4 \sin x_3 \\ \dot{x}_3 = u_2 - u_1 \\ \dot{x}_4 = u_1 + u_2 - x_4, \end{cases}$$

where x_1, x_2 are the coordinates of the robot center, x_3 is its orientation and x_4 is its speed. The inputs u_1 and u_2 are the accelerations provided by the propellers. The system can be discretized by $\mathbf{x}_{k+1} = \mathbf{f}_k\left(\mathbf{x}_k
ight)$, where,

$$\mathbf{f}_{k}\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix} = \begin{pmatrix}x_{1}+\delta.x_{4}.\cos(x_{3})\\x_{2}+\delta.x_{4}.\sin(x_{3})\\x_{3}+\delta.(u_{2}(k)-u_{1}(k))\\x_{4}+\delta.(u_{1}(k)+u_{2}(k)-x_{4})\end{pmatrix}$$

Underwater robot moving inside a pool

Emission diagram at time $t = 9 \sec$

t(sec)	$Pr\left(\mathbf{x}\in\mathbb{X} ight)$	Outliers
3.0	\geq 0.965	58
6.0	\geq 0.932	50
9.0	\geq 0.899	42
12.0	\geq 0.869	51
15.0	\geq 0.838	51
16.2	\geq 0.827	49