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1 Interval analysis



Problem. Given f : Rn → R and a box [x] ⊂ Rn, prove
that

∀x ∈ [x] , f (x) ≥ 0.

Interval arithmetic can solve efficiently this problem.



Example. Is the function

f (x) = x1x2 − (x1 + x2) cosx2 + sinx1 · sinx2 + 2

always positive for x1, x2 ∈ [−1, 1] ?



Interval arithmetic

[−1, 3] + [2, 5] = [1, 8],
[−1, 3] · [2, 5] = [−5, 15],
abs ([−7, 1]) = [0, 7]



The interval extension of

f (x1, x2) = x1·x2−(x1 + x2)·cosx2+sinx1 ·sinx2+2

is

[f ] ([x1] , [x2]) = [x1] · [x2]− ([x1] + [x2]) · cos [x2]

+ sin [x1] · sin [x2] + 2.



Theorem (Moore, 1970)

[f ] ([x]) ⊂ R+ ⇒ ∀x ∈ [x] , f (x) ≥ 0.



2 Set inversion



A subpaving of Rn is a set of non-overlapping boxes of Rn.

Compact sets X can be bracketed between inner and outer

subpavings:

X
− ⊂ X ⊂ X+.



Example.

X = {(x1, x2)
��� x2

1 + x2
2 ∈ [1, 2]}.

Set operations such as Z := X+ Y, X := f−1 (Y) ,Z :=

X ∩ Y . . . can be approximated by subpaving operations.



Let f : Rn → Rm and let Y be a subset of Rm. Set

inversion is the characterization of

X = {x ∈ Rn | f(x) ∈ Y} = f−1(Y).



We shall use the following tests.

(i) [f ]([x]) ⊂ Y ⇒ [x] ⊂ X
(ii) [f ]([x]) ∩ Y = ∅ ⇒ [x] ∩ X = ∅.

Boxes for which these tests failed, will be bisected, except

if they are too small.



.

Algorithm Sivia(in: [x](0), f ,Y)
1 L := {[x](0)} ;
2 pull [x] from L;
3 if [f ]([x]) ⊂ Y, draw([x], ’red’);
4 elseif [f ]([x]) ∩ Y = ∅, draw([x], ’blue’);
5 elseif w([x]) < ε, {draw ([x], ’yellow’)};
6 else bisect [x] and push into L;
7 if L �= ∅, go to 2



3 Contractors



3.1 Definition



The operator CX : IRn → IR
n is a contractor for X ⊂

Rn if

∀[x] ∈ IRn,
�
CX([x]) ⊂ [x] (contractance),
CX([x]) ∩ X = [x] ∩ X (completeness).







3.2 Primitive contractors



Let x, y, z be 3 variables such that

x ∈ [−∞, 5],

y ∈ [−∞, 4],

z ∈ [6,∞],

z = x+ y.

Which values for x, y, z are consistent.



Since x ∈ [−∞, 5], y ∈ [−∞, 4], z ∈ [6,∞] and z =

x+ y, we have

z = x+ y ⇒ z ∈ [6,∞] ∩ ([−∞, 5] + [−∞, 4])
= [6,∞] ∩ [−∞, 9] = [6, 9].

x = z − y ⇒ x ∈ [−∞, 5] ∩ ([6,∞]− [−∞, 4])
= [−∞, 5] ∩ [2,∞] = [2, 5].

y = z − x⇒ y ∈ [−∞, 4] ∩ ([6,∞]− [−∞, 5])
= [−∞, 4] ∩ [1,∞] = [1, 4].



The contractor associated with z = x+ y is.

Algorithm pplus(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] + [y]) ;
2 [x] := [x] ∩ ([z]− [y]) ;
3 [y] := [y] ∩ ([z]− [x]) .



The projection procedure developed for plus can be ex-

tended to other ternary constraints such as mult: z = x ·y,
or equivalently

mult �
�
(x, y, z) ∈ R3 | z = x · y

�
.

The resulting projection procedure becomes

Algorithm pmult(inout: [z], [x], [y])
1 [z] := [z] ∩ ([x] · [y]) ;
2 [x] := [x] ∩ ([z] · 1/[y]) ;
3 [y] := [y] ∩ ([z] · 1/[x]) .



Consider the binary constraint

exp � {(x, y) ∈ Rn|y = exp (x)} .
The associated contractor is

Algorithm pexp(inout: [y], [x])
1 [y] := [y] ∩ exp ([x]) ;
2 [x] := [x] ∩ log ([y]) .





3.3 Solvers



Example. Consider the system.

y = x2

y =
√
x.



We build two contractors

C1 :

�
[y] = [y] ∩ [x]2

[x] = [x] ∩
�

[y]
associated to y = x2

C2 :

�
[y] = [y] ∩

�
[x]

[x] = [x] ∩ [y]2
associated to y =

√
x





















3.4 Decomposition into primitive constraints



x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]

How to contract?



x+ sin(xy) ≤ 0,
x ∈ [−1, 1], y ∈ [−1, 1]

can be decomposed into





a = xy
b = sin(a)
c = x+ b

,
x ∈ [−1, 1] a ∈ [−∞,∞]
y ∈ [−1, 1] b ∈ [−∞,∞]

c ∈ [−∞, 0]



4 Matrices-contractors-algebra



linear application → matrices

L :

�
α = 2a+ 3h
γ = h− 5a

→ A =



2 3
1 −5

�

We have a matrix algebra and Matlab.

We have: var(L) = {a, h}, covar(L) = {α, γ} .
But we cannot write: var(A) = {a, h}, covar(A) =

{α, γ}.



constraint → contractor

a · b = z →



Contractor fusion
�
a · b = z → C1
b+ c = d → C2

Since b occurs in both constraints, we fuse the two con-

tractors as:

C = C1 × C2⌋(2,1)

= C1|C2 (for short)





5 Underwater SLAM



The Redermor, GESMA



The Redermor at the surface



Why choosing an interval constraint approach for

SLAM ?

1) A reliable method is needed.

2) The model is nonlinear.

3) The pdf of the noises are unknown.

4) Reliable error bounds are provided by the sensors.

5) A huge number of redundant data are available.



5.1 Sensors



A GPS (Global positioning system) at the surface only.

t0 = 6000 s, ℓ0=(−4.4582279o, 48.2129206o)± 2.5m

tf = 12000 s, ℓf= (−4.4546607o, 48.2191297o)± 2.5m



A sonar (KLEIN 5400 side scan sonar). Gives the distance

r between the robot to the detected object.



Screenshot of SonarPro



Detection of a mine using SonarPro



A Loch-Doppler. Returns the speed of the robot vr and

the altitude a of the robot ± 10cm.



A Gyrocompass (Octans III from IXSEA). Returns the roll

φ, the pitch θ and the head ψ.




φ
θ
ψ




 ∈





φ̃

θ̃

ψ̃




+






1.75× 10−4. [−1, 1]
1.75× 10−4. [−1, 1]
5.27× 10−3. [−1, 1]




 .



5.2 Data

For each time t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},
we get intervals for

φ(t), θ(t), ψ(t), vxr (t), v
y
r(t), v

z
r(t), a(t).



Six mines have been detected by the sonar:

i 0 1 2 3 4 5
τ(i) 7054 7092 7374 7748 9038 9688
σ(i) 1 2 1 0 1 5
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98

6 7 8 9 10 11
10024 10817 11172 11232 11279 11688

4 3 3 4 5 1
37.90 36.71 37.37 31.03 33.51 15.05



5.3 Constraints satisfaction problem

t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4},

i ∈ {0, 1, . . . , 11},


px(t)
py(t)

�

= 111120



0 1

cos
�
ℓy(t) ∗ π

180

�
0

�

ℓx(t)− ℓ0x
ℓy(t)− ℓ0y

�

,

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =






cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0

0 0 1




 ,

Rθ(t) =






cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)




 ,



Rϕ(t) =






1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)




 ,

R(t) = Rψ(t).Rθ(t).Rϕ(t),

ṗ(t) = R(t).vr(t)

||m(σ(i))− p(τ(i))|| = r(i),

RT(τ(i)) (m(σ(i))− p(τ(i))) ∈ [0]× [0,∞]×2,

mz(σ(i))− pz(τ(i))− a(τ(i)) ∈ [−0.5, 0.5].



5.4 GESMI



GESMI (Guaranteed Estimation of Sea Mines with

Intervals)









6 Probabilistic-set approach



Bounded-error estimation

y = ψ (p) + e,

where

e ∈ E ⊂ Rm is the error vector,

y ∈ Rm is the collected data vector,

p ∈ Rn is the parameter vector to be estimated.



Or equivalently

e = y −ψ (p) = fy (p) ,



The posterior feasible set for the parameters is

P = f−1
y (E) .



Probabilistic set approach. We decompose the error

space into two subsets: E on which we bet e will belong

and E. We set

π = Pr (e ∈ E)

The event e ∈ E is considered as rare, i.e., π ≃ 1.



Once y is collected, we compute

P = f−1
y (E) .

If P �= ∅, we conclude that p ∈ P with a prior probability

of π.

If P = ∅, than we conclude the rare event e ∈ E occurred.









7 Robust regression



Consider the error model




e1
...
em






� �� �
=e

=






y1 − ψ1 (p)
...

ym − ψm (p)






� �� �
=fy(p)

The data yi is an inlier if ei ∈ [ei] and an outlier otherwise.

We assume that

∀i, Pr (ei ∈ [ei]) = π

and that all ei’s are independent.



Equivalently,






y1 − ψ1 (p) ∈ [e1] with a probability π
... ...

ym − ψm (p) ∈ [em] with a probability π



The probability of having k inliers is

m!

k! (m− k)!π
k. (1− π)m−k .



The probability of having strictly more than q outliers is

thus

γ (q,m, π)
def
=

m−q−1�

k=0

m!

k! (m− k)!π
k. (1− π)m−k .



Denote by E{q} the set of all e ∈ Rm consistent with at

least m− q error intervals [ei].

For m = 3, we have

E{0} = [e1]× [e2]× [e3]

E{1} = ([e1] ∩ [e2]) ∪ ([e2] ∩ [e3]) ∪ ([e1] ∩ [e3])

E{2} = [e1] ∪ [e2] ∪ [e3]

E{3} = R3.



Define

P
{q} = f−1

y

�
E
{q}� .

We have

prob
�
p ∈ P{q}

�
= 1− γ (q,m, π)

prob
�
p ∈ P{q}

�
= γ (q,m, π) .

Thus P{q} is the inverse of E{q} and inner/outer approxi-

mations can thus be found.



8 Relaxed intersection



q-relaxed intersection



The black box is the 2-intersection of 9 boxes



P
{q} = f−1

y

�
E
{q}� =

{q}�

i∈{1,...,m}
f−1
yi ([ei]) .



Proposition. We have

P{q} =
{m−q−1}�

f−1
yi

�
[ei]

�
.

This proposition allows to obtain an inner approximation

of P{q}.



9 Application to localization



A robot measures distances to three beacons.

beacon xi yi [di]
1 1 3 [1, 2]
2 3 1 [2, 3]
3 −1 −1 [3, 4]

The intervals [di] contain the true distance with a proba-

bility of π = 0.9.



The feasible sets associated to each data is

Pi =
�
p ∈ R2 |

�
(p1 − xi)

2 + (p2 − yi)2 − di ∈ [−0.5, 0.5]
�
,

where d1 = 1.5, d2 = 2.5, d3 = 3.5.



prob
�
p ∈ P{0}

�
= 0.729

prob
�
p ∈ P{1}

�
= 0.972

prob
�
p ∈ P{2}

�
= 0.999



Probabilistic sets P{0},P{1},P{2}.



10 With real data



Robot equipped with a laser

rangefinder and a compass.



143 distances collected by the rangefinder ±10cm



For q = 16,m = 143, π = 0.95, the probability of being

wrong is

α = γ (q,m, π) = 8.46× 10−4.



P{16} contains p∗ with a probability 1− α = 0.99915.



11 SAUC’ISSE



Robot SAUC’ISSE



Portsmouth, July 12-15, 2007.















12 State estimation



�
x(k + 1) = fk(x(k),n (k))
y(k) = gk(x(k)),

with n (k) ∈ N (k) and y (k) ∈ Y (k).



Without outliers

X(k + 1) = fk

�
X(k) ∩ g−1

k (Y(k)) , N (k)
�
.



x
j
h+1 = f(x

j
h,u

j
h), h ∈ {k − h̄, . . . , k}

The observer: C
k,j
x =

�
h∈{k−h̄,...,k}C

j
x(h)

var(Ck,jx ) =var(Ck,j
x(h)

) =
�
x
j
k−h̄, . . . ,x

j
k,x

j
k+1

�
.



z
j
h = h(x

j
h)

Observer RSO:C
k,j
x,z = C

k,j
x ∩ �{q1}

h∈{k−h̄,...,k}
�
C
k,j
x |Ch,jz

�
.



t = 0



t = 0.1



t = 0.2



t = 0.3



t = 0.4



t = 0.5



t = 0.6



t = 0.7



t = 0.8



t = 0.9



t = 1.0



t = 1.1



t = 1.2



t = 1.3



t = 1.4



12.1 Set interpretation





12.2 Application to localization



Sauc’isse robot inside a swimming pool



The robot evolution is described by





ẋ1 = x4 cosx3
ẋ2 = x4 sinx3
ẋ3 = u2 − u1
ẋ4 = u1 + u2 − x4,

where x1, x2 are the coordinates of the robot center, x3 is

its orientation and x4 is its speed. The inputs u1 and u2

are the accelerations provided by the propellers.



The system can be discretized by xk+1 = fk (xk) , where,

fk






x1
x2
x3
x4






=






x1 + δ.x4. cos (x3)
x2 + δ.x4. sin (x3)

x3 + δ. (u2(k)− u1(k))
x4 + δ. (u1(k) + u2(k)− x4)








Underwater robot moving inside a pool






