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1 V-stability
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X1: outside the corridor.
Xo: inside the corridor.



Definition. Consider a differentiable function V' (x) : R"” —
R. The system is V-stable if

(V(x)20 = V(x)<0).
Since
V)= (£

Checking the V-stability can be done using using interval
analysis.






Non-holonomic system



2 Tubes

A tube is a function which associates to any ¢ € R a subset
of R™.



In the machine a tube can be represented by two
stair functions



Example of tubes

(/1) = [1,2]-t+sin([1,3] 1)

[91(t) = [ao] + [a1] t + [a2] t° + [a3] °
t _ t2 t3 t4
/O lg] (7)dT = [ao]t + [a1] B + [ao] 3 + [a3] R




3 Capture tubes



Consider the time dependant system

S:x="~Ff(x,t)

and a tube

G(t) C R",t € R.



The tube G(t) is said to be a capture tube if

x(t) € G(t), > 0=x(t+ 1) € G(t + 7).




Theorem. Consider the tube

G(t) = {x,g(x,t) < 0}

where g : R™ x R — R™. If the cross out condition

ZQZ(X t) £(x, t)+a (x,1) >0
{ ) gZ(X,t)
g; (Xa t) =0
g(x,t) <0

is inconsistent for all (x,¢,), then G (%) is a capture tube
forS:x=1f(x,t).



A software Bubbibex (using Ibex) made by students from
ENSTA Bretagne uses interval analysis to prove the incon-
sistency.

Bubbibex

Display | Parameters

& Draw Simulation & Draw Paving Draw Field Zoom | +

i

(N

il




4 Test-case



Robot

T = U
y = w
6 = —0.

Target (x4, y4) = (t,0). We choose the control

uy = —x +t, up = —vy.



The closed loop system satisfies
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Target tube. The tube we want is
G(t)={x]g(x,t) <0},
with

91 (%, 1) (z1 — t)° + :13% — r?
g2 (x,t) = (coszz—1)%+sin2z3 — 0.2.

For » = 4, Bubbibex proves that G () is a capture tube.

For r < 1, some trajectories leave G (t) forever.



b Lattice and capture tubes



Consider S :x =1f(x,t).

If T is the set of tubes and T is the set of all capture tubes
of S then (T¢, C) is a sublattice of (T, C).



We have indeed

{Gl(t) c Te :>{ G1(t) NGo(t) € T¢
Go(t) € T¢ G1(t) UGo(t) € T



6 Computing capture tubes



If G(t) € T, define

capt (G(t)) = ({G(t) € Tc | G(t) C G(t)} .

This set is the smallest capture tube enclosing G(¢).



Problem. Given G(t) € T, compute an interval [G_(t), G+(t)] c
[T such that

capt (G(t)) € [G—(t), G+(t)] .
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Flow. The flow associated with the system Sf @ x =
f(x,t) is a function ¢ ;. : R™ — R™ such that

x = f(x,1) = ¢4y, (x(t0)) = x(t1) -



Proposition. For the system S¢ : x = f(x,t) and the
tube G(t), we have

capt (G(t)) = G(t) U AG(2),
with

AG(t) = {(x,t) | F(xg,tg) satisfying the cross out condition
t > to, Pyt (%0) & G(2) )

Recall the cross out condition:
Tl (x,t) f(x,t) + FE(x,t) >0

gi(Xat) =0
g(x,t) <0
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7 Test case 1



Consider the system

r = —x+1t
S:q Yy = -y
0 = —0.

and the tube

Jaxt) = (@—t)°+a3—r(t)
) { g2 (x,t) = (cosz3 — 1)22+ sin®z3 — 0.2,

r(t) =0.2-(t+1)2.

Some trajectories leave and come back to G ().
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8 Test case 2



Consider the robot (Dubin’s car)

r = cosf
y_j sin 6
6 = wu

where u € [-2,2].



To move toward the target (x4, y4), we take the controller:

- - i) ()
) V@a—2) >+ (ya—y)? \ Yd ~Y AN

6; = atan2(n)
u = —2-sin(0—0,).




Target

x4 (1) P, COSt
Ya(t) = pysint.

For the derivative, we get

{ Tq ()

Ya (t)

—pSint
Py COS L.



Target tube. We want the robot to stay inside the set
G(t) ={x|g(x,t) <0},
with
() = (@-wal+(y—va =
g (x,t) = (cos@ — ﬁ) + <sin0 _ HnTyH) _ a2



Resolution. We used the solver Bubbibex.
The tube is proved to be unsafe.
For given parameters, Bubbibex is able to compute the

margin (i.e., Width([@r—(t), G+(t)D).
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