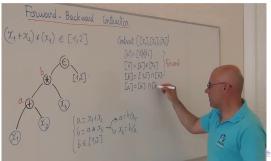
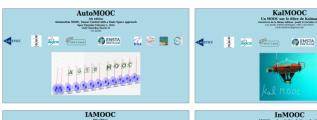
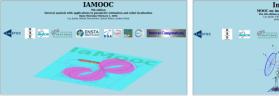
RobMOOC pour l'enseignement à distance de la commande non linéaire des robots mobiles

Luc Jaulin





4 juillet 2024, Enseignement Distanciel de la Robotique


1. Présentation

Présentation Un mini-cours : la chaîne d'intégrateurs Un exercice : la manivelle

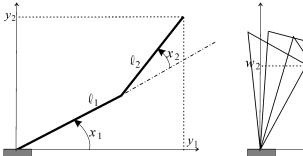
1:20:06	Modelization and control of a quadrotor We find the state equations of a quadrotor and then we propose a controller so that the quadrotor is stable and moves along a cycle	© Public	None	Apr 3, 2018 Published	12,624	12
22.51	Luenberger observer This exercise shows how to get a Luenberger observer on a simple second order system https://www.ensta-bretagne.ft/automooc/	© Public	None	Mar 31, 2020 Published	9,397	4
16:48	Kalmooc, Exercice 34 : règle de Bayes et filtre de Kalman On utilise ici la règle de Bayes à travers le filtre de Kalman dans un contexte scalaire, linéaire et Gaussien https://www.ensta-bretagne.fr/_	© Public	None	Nov 25, 2017 Published	8,079	1
49:34	Kalmooc, Exercice 26 : kalman pendule inversé Observateur d'état pour le pendule inversé https://www.ensta-bretagne.fr/ jaulin/isterob.html https://www.ensta-bretagne.fr/kalmooc/	⊗ Public	None	Dec 2, 2014 Published	6,274	6
10 (2000) 15 a 15	Leçon A de KalMOOC https://www.ensta-bretagne.ft/kalmooc/		None	Sep 3, 2016 Published	5,727	0
27:54	robmoocB : bouclage linéarisant Leçon B. Commande par bouclage linéarisant, singularités et modes glissants Résumé. La leçon B, présentera d'une façon plus générale	© Public	None	Jan 2, 2016 Published	4,918	1
47:23	robmoocA : Intro Leçon A. Introduction au bouclage linéarisant. Résumé. Dans cette leçon A, nous présenterons la problématique de la commande non-linéaire de	© Public	None	Dec 30, 2015 Published	4,986	7
O time	InMood, Exercise 3 : formule de Varignon Formule de Varianon matrice de rotation See the MOOC associated with	⊗ Public	None	Sep 15, 2014 Published	4,693	2

Channel analytics Advanced mode Jul 4, 2023 - Jul 2, 2024 Overview Content Audience Inspiration Last 365 days Your channel got 35,008 views in the last 365 days Realtime Updating live 1.352 Views Watch time (hours) Subscribers Subscribers 35.0K @ 2.7K @ +166 @ See live count 17% less than previous 365 days 5% less than previous 365 days 11% less than previous 365 days Views - Last 48 hours Top content Views Modelization and control of ... Jul 4, 2023 Sep 3, 2023 Nov 2, 2023 Jan 2, 2024 Mar 3, 2024 May 2, 2024 Jul 2, 2024 Luenberger observer See more Leçon A de KalMOOC

See more

https://www.ensta-bretagne.fr/robmooc/

Un minicours : la chaîne d'intégrateurs


$$y^{(n)} = u$$

3. Un exercice : la manivelle

Exercise 1. Let us consider the manipulator robot composed of two arms of length ℓ_1 and ℓ_2 . Its two degrees of freedom denoted by x_1 and x_2 . The inputs u_1,u_2 of are the angular speeds of the arms $(u_1=\dot{x}_1,u_2=\dot{x}_2)$. The output vector $\mathbf{y}=(y_1,y_2)$ corresponds to the end of the second arm.

- 1) Give the state equations of the robot. We take the state vector $\mathbf{x} = (x_1, x_2)$.
- 2) Give a control law so that ${f y}$ to follow the setpoint

$$\mathbf{w} = \mathbf{c} + r \cdot \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

- 3) Study the singularities of the control.
- 4) Write a program illustrating this control law.

 w_1

References

- Robmooc [2]
- 2 La robotique mobile [1]

L. Jaulin.

Mobile Robotics

ISTE editions, 2015.

L. Jaulin.

RobMOOC, un MOOC sur la commande non-linéaire des robots mobiles, www.ensta-bretagne.fr/robmooc/. ENSTA-Bretagne, 2019.